当前位置: 仪器信息网 > 行业主题 > >

酚醛降解产物的检测

仪器信息网酚醛降解产物的检测专题为您提供2024年最新酚醛降解产物的检测价格报价、厂家品牌的相关信息, 包括酚醛降解产物的检测参数、型号等,不管是国产,还是进口品牌的酚醛降解产物的检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酚醛降解产物的检测相关的耗材配件、试剂标物,还有酚醛降解产物的检测相关的最新资讯、资料,以及酚醛降解产物的检测相关的解决方案。

酚醛降解产物的检测相关的资讯

  • 第二届含氟温室气体论坛 | 吴婧:氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究
    “第二届含氟温室气体论坛——履行《基加利修正案》的科学与技术”在北京大学顺利召开。会上北京交通大学吴婧副教授作了题为“氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究”的精彩报告。吴婧副教授在汇报中从基于物质流的网格化排放清单核算方法研究及模型构建、中国网格化排放清单建立及环境效应分析、降解产物三氟乙酸(TFA)大气监测及环境行为研究等三个方面作了详细报告。图1 吴婧副教授作报告吴婧副教授首先介绍了国家级、省级、网格化含氟温室气体排放清单核算方法以及多尺度高分辨率排放源空间分配模式的动态网格化排放清单模型。构建的排放清单方法学及清单结果已应用于国家温室气体清单编制相关工作。图2 动态网格化排放模型的总体架构图应用该模型,吴婧副教授课题组建立了中国8种HFCs 2005-2060 年长时间序列的动态网格化(1 度×1 度)排放清单并分析了其环境效应。同时,通过将NAME正向模型的模拟浓度与观测浓度进行比较,以验证了建立的网格排放量的准确性。根据清单和分析结果,行业、物质和空间的排放变化特征如下:(1)实物、GWP排放的关键物质均为HFC-134a、HFC-32、HFC-125。(2)制冷空调行业始终是HFCs排放的主要行业,消防行业排放也不容忽视。(3)整体空间规律表现为东部高于西部、南方高于北方的特征;热点网格主要集中在上海、广东和北京。在环境影响方面,中国HFCs温室气体排放对全球贡献逐年升高;减排HFCs会显著减少气候影响,但替代可能加速降解产物三氟乙酸(TFA)的累积。此外,吴婧副教授探讨了含氟温室气体降解产物三氟乙酸(TFA)大气污染特征、气粒分配机制及来源归趋。2021-2022研究期间TFA年均大气浓度为1081.5 ± 724.7 pg m-3 。年均颗粒相质量分数为10.8 ± 9.8% ,更易分配在气相。全年TFA沉降通量约为489.70 ± 64.26 μg m-2 yr-1 ,湿沉降占总沉降的74.6%。
  • 中国出入境检验检疫协会发布《茶叶中丁醚脲及其降解产物残留量的测定液相色谱-串联质谱法》等三项团体标准(征求意见稿)
    CIQA/TC12各成员单位及专家、各有关单位:根据《中国出入境检验检疫协会团体标准管理办法》及实施细则的规定,《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》P/CIQA-142-2023、《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》P/CIQA 141-2023、《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》P/CIQA-140-2023等三项团体标准已由中国出入境检验检疫协会综合质量服务标准化技术委员会(CIQA/TC12)组织起草完毕,现进入征求意见阶段。请在30天内将意见和建议填写在《意见反馈表》中,于2024年7月12日前将书面意见以邮件形式反馈至CIQA/TC12秘书处。请务必留下您的姓名、单位名称及联系方式,便于联系。CIQA/TC12秘书处联系人:汪顿;010-84538815,15210031335邮箱:wangdun@ccic.com协会联系人:阳 焰;01062029721, 13901217549邮箱:yangyan@ciq.org.cn。附件:附件.zip1.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》团体标准征求意见稿2.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明3.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》反馈意见表4.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)团体标准征求意见稿5.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明6.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》反馈意见表7.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》团体标准征求意见稿8.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》(征求意见稿)编制说明9.《食用植物油中乙基麦芽酚的测定 液相色谱–串联质谱法》反馈意见表中国出入境检验检疫协会2024年6月12日
  • 海南持续提升全生物降解材料及制品检测能力 推动降解产业高质量发展
    全生物降解塑料制品到底能否降解?在海南,只需7天就能揭晓答案。“可在过去,通常需要3到6个月。”近日,省市场监管局相关负责人在接受海南日报记者采访时透露,目前我省全生物降解材料及制品检测能力在全国处于领先地位,为海南禁塑工作提供了有力技术支撑。在海南大胜达纸浆模塑环保餐具智能研发生产基地,工作人员正在检查环保餐具质量。海南日报记者 袁琛 摄让这一检测时间实现大提速的,是海南省产品质量监督检验所(以下简称省质监所)联合中国科学院理化技术研究所打造的国家市场监管重点实验室(降解材料质量安全评价与研究)。成立仅两年,该重点实验室便在技术攻关等方面取得多项突破。目前,该重点实验室已开发堆肥生物降解专用材料5种,设计和合成海水降解材料2种,研制降解制品3种,开发生物降解塑料制品检测新方法6项,获CMA(检验检测机构资质认定)或CNAS(中国合格评定国家认可委员会)检验参数578项,获CNAS认可的国际标准33项。全生物降解材料及制品检测能力的提升,一方面助力“禁塑”监管执法,一方面也正通过科技成果转化服务企业发展,推动海南降解塑料制品产业高质量发展。“随着我省‘禁塑’工作的开展,降解塑料制品企业逐渐增多,急需检验检测机构提供技术帮扶。”省质监所相关负责人介绍,目前该所已为我省一批降解塑料生产企业提供准确、高效的检测服务,帮助企业打通从生产到销售的产品质量关。为服务海南降解材料产业发展,我省还成立了降解材料产业质量基础设施一站式服务平台,通过有机融合计量、标准、认证认可、检验监测、质量管理等要素资源,持续满足降解材料产业高质量发展需求。“近年来,海南生物降解产业发展迅猛,全省降解材料生产能力年产量达2.5万吨。”该负责人表示,今后,该所将依托不断提升的检验、科研、技术实力,进一步帮助降解材料企业引进技术、改进工艺、提高质量、开发新品,打造一批拥有自主知识产权的高新技术产品、绿色环保产品。
  • 海南省检验检测研究院产品质量监督检验所降解材料检测能力获全球多个机构认可
    9月18日,海南省检验检测研究院产品质量监督检验所(下称“质检所”)举行新闻发布会,宣布该所塑料材料红外光谱分析、化学成分分析、限量金属元素分析、植物生态毒性试验、蚯蚓生物毒性试验、崩解试验和生物降解性能试验等7项国际标准检测能力日前获得德国标准化学会认证中心(DINCERTCO)认可。发布会现场授牌(央广网见习记者 付美斌 摄)至此,质检所已具备检验检测机构资质认定(CMA)、中国合格评定国家认可委员会(CNAS)、德国标准化学会认证中心(DINCERTCO)、美国产品研究协会(BPI)、澳大利亚降解协会(ABA)、欧洲生物协会(EUBP)等降解材料检测相关资质,出具的检测报告将被全球大多数国家认可。据了解,这一重大成果将对海南省降解产业的市场监管、科研创新及全球化推进具有重大积极作用,对海南省降解产业高质量发展、产品技术革新和贸易全球化的推进意义重大。发布会现场(央广网见习记者 付美斌 摄)质检所是经海南省政府批准设立,隶属于海南省市场监督管理局管理,是海南省最早通过国家资质认定、实验室认可和授权“三合一”认可的省级综合性产品质检机构。2021年9月,国家市场监督管理总局批准以质检所为依托单位筹建国家市场监管重点实验室(降解材料质量安全评价与研究),成为海南省内首家兼具重点实验室及国际互认资质的降解材料检测机构。海南省市场监督管理局、省财政厅、省工信厅、省生态环境等相关主管部门高度重视,对重点实验室的建设给予极大的支持,经过两年的建设,重点实验室的规模及技术力量已处于全国领先水平,拥有核磁共振仪、降解呼吸仪、降解试验箱等专用检测设备85台,科研及检测技术人员33人。降解材料检测能力覆盖一次性塑料餐饮具、生物降解塑料购物袋、全生物地膜、全生物降解塑料垃圾袋等70个产品类别578项参数。重点实验室参与制定了海南省全生物降解塑料产业标准体系,制订海南省降解材料相关地方标准3个、团体标准7个,承担国家市场监督管理总局科技项目3个,国家重点研发计划项目1个,海南省重点研发项目1个,全生物降解检测科研水平在全国处于领先地位。另外,重点实验室研发的“塑料制品中不可降解成分的快速检测方法”被国务院作为禁塑经验在全国推广。质检所负责人吴毓炜向媒体介绍情况(央广网见习记者 付美斌 摄)海南省市场监督管理局相关负责人介绍,近年来,海南生物降解产业发展迅猛,全省降解材料生产年产量为2.5万吨,同时洋浦经济开发区10万吨级的热塑性生物降解材料上游生产企业、海口云龙产业园3万吨级的塑料改性工厂和老城经济开发区2万吨级加工产业也相继投产,打造规模化生物降解产业集群,已成为海南省发展的战略目标。质检所实验设备(央广网发 主办方供图)据了解,质检所降解材料检测能力实现国际互认,可更好地搭建国际化技术服务平台,通过检验、科研、技术实力,在更高层面和更广泛范围内,帮助降解材料企业引进技术、改进工艺、提高质量、开发新品,形成一批拥有自主知识产权的高新技术产品、绿色环保产品,全面参与国际竞争,为海南自贸港禁塑产业发展开辟新的国际赛道。认证会现场(央广网发 主办方供图)海南是“一带一路”海上丝绸之路的门户,内靠华南经济圈,外临东南亚地区,处于中国—东盟自由贸易区的地理中心位置,现已成为兼具亚洲特色和全球影响的国际交流平台。海南自由贸易港的建设,使海南成为了全国经济适用的一次性不可降解材料替代品材料或制成品进口最便利、最快捷的地方,形成全国生物降解材料制品生产、销售聚散地。海南降解材料检测能力国际互认,可为全国生物降解企业产品在贸易中提供质量比较和技术革新,为国内生物降解产品走向世界保驾护航。发布会现场签约(央广网见习记者 付美斌 摄)该负责人表示,海南自贸港进出口贸易繁多,获得国际互认后,质检所出具的降解材料检测结果可直接被全球大多数国家认可,自由贸易中实现进出口货物一次检测、快速验放,为进出口生物降解材料制品企业实现高效通关提供合格评定依据,有效促进通关便利,对助力海南自贸港商品贸易和经济往来发挥了重大作用。
  • 美科学家研制硅制可降解电路 可用于医疗和环境监测
    有些科学家想制造出能存世几百年甚至上千年的东西,有些科学家却想让他们制造出的东西快速消亡。日前,来自美国的一个科研团队就想方设法地要让看似经久耐用的硅制电路在几天甚至十几个小时之内化为乌有。  他们将这种能够在水或者生物质液体中存留一定时间而后发生分解的电路称为&ldquo 瞬时电路&rdquo 。该技术将有望在生物医学植入、可降解传感器以及许多其他半导体设备领域获得应用。  物理学家组织网1月16日报道称,这项研究由美国伊利诺伊大学厄巴纳&mdash 香槟分校的约翰· 罗杰斯和塔夫斯大学的洛伦左· 奥姆内托领衔,相关论文发表在《物理评论快报》上,他们对各种可溶性半导体材料的性能和溶解时间进行了分析。研究表明,硅这种在今天的电子元件中最常见的半导体也能溶于水。  研究人员发现,虽然大块的硅需要上百年甚至几个世纪才能溶解,但硅薄片却能在一个看似缓慢但仍能被人接受的时间内完成分解,这个速度大概是每天5&mdash 90纳米。硅在水中溶解,会与水反应形成硅酸。而硅酸具有生物相容性和环境友好的特征,因此完全可以在生物医学植入和环境监测中进行应用。  在这项新的研究中,研究人员对二氧化硅和钨的溶解特性进行了分析,这是他们用来制造场效应晶体管和环形振荡器的材料。在生物相容的条件下&mdash &mdash 温度37摄氏度,pH值7.4,用钨制成的部件溶解速度大约是1周的时间,二氧化硅组件的溶解速度从3个月到3年不等。  研究人员发现电子设备的溶解速度与材料的厚度、溶液中离子的类型、浓度,以及制造二氧化硅原始基板的沉积方法相关。通过显微镜观察,他们发现,电路的溶解并不是按照一层一层的方式来进行的,而是有些地方的溶解速度更快。这是由于一些电路的机械结构更为脆弱,溶液更容易渗入其中。  虽然有机电子材料也能够实现可生物降解,但基于硅的电子器件具有性能更好以及使用互补金属氧化物半导体(CMOS)制造工艺能够实现大规模生产的特征。  罗杰斯称,他们在此项研究中最大的一个发现是,制造传统芯片的工厂完全能够通过选材、设计以及加工工艺顺序的改变生产瞬时电路。这将在很大程度上降低瞬时电路制造成本,缩短其技术转化过程。  瞬时电子设备具有非常广泛的应用领域,特别是在医疗领域当中。例如,它们可以被用来制造可以溶解的导管 用来监测肾脏、心脏或肺的可生物降解的传感器 术后用于监测细菌感染的水溶性电子设备等。在用于环境监测时,瞬时电路可以从远程位置发送数据,任务完成后可降解到土壤当中,减少对环境带来的污染。  罗杰斯说:&ldquo 我们正在与一些工厂进行接触,希望能一起制造出更先进的可降解电路和传感器,让具备水溶性的聚合物电路基底成为可能,相信在不久的将来上述设想都能够成为现实。&rdquo
  • 2分钟快速检测!环保可降解塑料检测仪等快速检测仪器助力深圳“快速检测+管办服”改革
    近日,深圳市市场监管局举行了“快速检测+监管、办案、服务”改革试点启动仪式。市场监管和执法中强调应用快检技术,目的是为了提升监管效率和质量,强化快处效能。本次改革试点重点强调了根据基层监管实际,开展产品质量风险监测、结果比对,提升快检精确度和适用范围;建立完善规则,坚持快检技术和基层监管、执法、服务一体化推进,助力深圳制造业高质量发展。在改革试点启动仪式上,深圳市检测院技术人员现场展示了电源适配器、塑料购物袋等产品质量的检测过程与结果。其中,环保可降解塑料快速鉴别检测仪格外亮眼,该仪器依托近红外光谱分析技术,通过校正模型的建立,实现对未知样本的定性或定量分析,实现2分钟内同时得到样品是否可降解和材质成分结果,突破了传统测量技术生物降解性受降解环境影响因素多、生物降解体系复杂、环境中微生物种类和数量难以控制、耗时长、成本高等技术难点问题,从检测设备与技术上支撑塑料污染治理和生态环境建设工作。图片来源于央广网早在2021年,市场监管总局便发布《关于进一步深化改革促进检验检测行业做优做强的指导意见》,《意见》明确提出,要更加完善检验检测体系,强调培育具有国际影响力的检验检测知名品牌,以及检验检测高技术服务业集聚区和公共服务平台,同时鼓励更多的效益好、技术水平高、行业信誉优的检验检测企业进入检验检测行业。尤其在当前新的市场监管模式下,快检方法、快检设备、快检标准等的研发显得尤为重要,科学仪器行业的发展将有更大的空间。
  • 复旦大学陈建民/方明亮等合作揭示可降解塑料微粒在体内的健康风险
    暴露于人为来源的“生态友好型”可生物降解塑料的健康风险及其对胃肠道的影响在很大程度上是未知的。  2023年3月2日,复旦大学方明亮、陈建民及安徽医科大学黄以超共同通讯在Nature Nanotechnology(IF=40)在线发表题为“Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation”的研究论文,该研究表明肠道酶催化的聚乳酸塑料释放低聚物纳米颗粒引发急性炎症。该研究证明了聚乳酸微塑料在胃肠道过程中通过争夺甘油三酯降解脂肪酶而酶解生成纳米塑料颗粒。纳米颗粒低聚物通过疏水驱动的自聚集形成。  在小鼠模型中,聚乳酸寡聚物及其纳米颗粒在肝脏、肠道和大脑中生物积累。水解低聚物引起肠道损伤和急性炎症。大规模药效团模型显示,低聚物与金属氧化物酶12相互作用。在机制上,低聚物对锌离子指区具有较高的结合亲和力,导致金属氧化物酶12失活,这可能介导了聚乳酸低聚物暴露后的不良肠道炎症反应。生物降解塑料被认为是解决环境塑料污染的解决方案。因此,了解生物塑料的胃肠道命运和毒性将为潜在的健康风险提供见解。  微塑料(MPs)在水生和陆地环境中无处不在,是世界上最紧迫的环境问题,因为它们对环境和人类健康有潜在风险。MPs在环境中转移,并通过食物链和直接吸入或摄入进入人体进行生物积累。尽管人类MP暴露的确切数量存在很大的不确定性,但研究初步估计,每周口服MP颗粒的摄入量在0.1至5.0克之间。因此,MPs已在人类粪便中检测到。对小鼠、牡蛎和贻贝的研究表明,接触与环境相关的MPs会导致生殖受损、DNA损伤和神经毒性。导致这些影响的机制主要是未知的,尽管许多研究调查了MPs物理损伤的原因,喂入量减少或有毒化学物质的浸出。为了减轻塑料污染,人们引入了可生物降解塑料作为传统塑料的环保替代品。例如,聚乳酸(PLA)是最常见的生物塑料,被用于制造食品包装、一次性餐具和生物医学输送载体。PLA产量稳步增长,预计到2024年将超过30万吨。包装是PLA塑料的主要用途,2014年占收入份额的36%以上。采用人类和小鼠模型的研究表明,基于PLA的植入会引发炎症。此外,PLA MPs对斑马鱼具有显著的不良影响风险,尽管其确切机制尚不清楚。  胃脂肪酶消化PLA MPs(图源自Nature Nanotechnology )PLA塑料可能比“持久性”聚合物产生更多的MPs,因此,PLA MPs越来越多地出现在土壤、沉积物和室内灰尘中。尽管摄入PLA MPs的毒理学作用值得进一步深入研究,但对其在肠道中存在的生物转化如何影响人类健康的知识尚缺乏。在低pH和酶的生理条件下,人们对PLA MPs的化学结构如何被体内的相互作用所改变的理解是不够的。因此,必须对增加PLA MPs生物反应活性的机制进行详细分析,这些机制增强了它们与蛋白质和细胞表面的相互作用。该研究探讨了PLA作为人体肠道中可生物降解塑料模型的转化和毒性。PLA MPs被胃肠道中的脂肪酶消化,形成数百万个纳米塑料。此外,生物物理和计算方法表明,所得的低聚物水解产物可以形成纳米塑料。总之,该研究表明,肠道酶会产生意想不到的降解产物,包括来自PLA塑料的低聚物和纳米塑料,这些具有潜在的健康风险,需要继续研究和潜在的监管。原文链接:https://www.nature.com/articles/s41565-023-01329-y
  • 洛克泰克(RTK)推出密闭呼吸计用于塑料生物降解需氧量检测
    湖北洛克泰克仪器股份有限公司(RTK)又发布新产品啦!RTK CRM-18密闭呼吸计是一款专门针对密闭呼吸计相关测试标准的、多通道的材料生物降解性能测试设备。该设备广泛适用于以液态或固态培养基作为降解环境,采用超微量气体流量测定(GMC)专利技术,可在密闭试验系统中直接测定需氧量。本产品主要应用于材料降解标准测试,是国家标准认可和指定的标准测试装置:同时,本产品也广泛应用于其他降解环境以及微生物学、水质、环境保护领域的测试和研究。本产品具有产品特点:(1) 18通道高通量设计,适合多组平行试验,提高效率。(2) 全实验周期,软件WEB服务器跨平台操作,可实现远程控制。(3) 模块化设计,方便更换和升级不同模块,适应不同标准测试。(4) 可高达1.0 mL测量精度。(5) 软件自动化控制、采集数据、绘图等,省时省力。(6) 即可采用机械搅拌,也能采用磁力搅拌,方式灵活。(7) 断电数据保存,电源再次启动后自动测试。(8) 可适用不同试验或检测目的,也可用于多种科学研究领域测试。(9) 设置有尾气吸收装置,可以通过环评。 湖北洛克泰克仪器股份有限公司(RTK)是国家高新技术企业(证书编号GR202042003741)。我司自主研发生产的塑料崩解仪,严格按照国家标准,可用于在定义堆肥化中试条件下测试塑料材料崩解程度。另外,我司还自主研发生产RTK PBDA塑料生物降解分析仪、RTK PBD 全自动塑料崩解分析仪、RTK CRM密闭呼吸计、RTK BMP全自动甲烷潜力测试系统、RTK-BRE微生物降解呼吸仪等产品,可用于各类塑料生物降解性能评估标准方法,欢迎垂询!
  • 食品包装含氟化物 人体降解需四年
    新知客2月9日报道 应用了半个多世纪的全氟化合物,由于可能损害人体健康,即将要被终结。  2009年5月9日,联合国环境规划署重新审订《持久性有机污染物名录》,全氟辛烷酸及其盐类(PFOS)和胺类(PFOA)化合物被列入黑名单,成为继滴滴涕之后的又一位上榜者。曾经一度被隐瞒20多年、几年前还在欧美等国就其去留问题引发争吵的全氟辛烷酸,终于被终结了。  北极熊和新生儿之劫  2008年,科学家在格陵兰岛的北极熊肚子里,检测出一种只有在人类化学工业里才使用的致癌物质:全氟辛酸胺(PFOA)。  科学家很快将这消息和之前进行的调查结果联系起来。2007年,约翰霍普金斯医学中心对在该院出生的300名婴儿的血液进行了抽样调查,发现100%的血液样本中含有PFOA,99%含有PFOS。PFOS和PFOA几乎普遍存在于母体子宫中。  这种人工合成的化学物质,在1997至2002这30年间,总产量在10万吨左右,主要用于生产杀虫剂、防护剂以及材料的表面改性。  无论PFOS还是PFOA都属于含氟化合物的一种。但和众所周知的氟利昂不同,这类化合物中的氢被氟全部代替,在碳链的末端形成一层致密的“氟壳”,不仅普通的酸碱对它根本不起任何作用,油、水和高温均奈何不了它,化学性能极其稳定。  但这同样也导致它很难降解。“PFOA在雌鼠体内的降解速度是几个小时,在雄鼠体内几天,在猴子体内是几个月,而在人体内则几乎是4年。”美国环保署污染预防和有毒品办公室的Jennifer Steed指出。动物和人身上表现出毒理实验的差异令科学家困惑。  “我们确实不清楚是什么样的生物学作用造成了这些差异。”美国环保署国家健康和环境影响实验室的首席生物学家Lau说。  更困难的是确定这些化合物的来源。因为这些化合物通常不作为商品出售,它们只是降解产物或制造其他商业化学品过程中的加工助剂,难以追踪。  这种只有化工里使用的成分,究竟是怎样进入人体,并最终漂洋过海袭击北极熊的?  氟从口入?  霍普金斯大学的研究指出,PFOS和PFOA应该是从消费产品渗透并污染整个生态环境,它们普遍存在于家庭用品中。PFOS常用于纺织品、皮革的防污防水涂层,而PFOA则广泛用于各种家具、金属、防火泡沫、包装材料的表面。  最著名的全氟化合物当属杜邦的“特氟龙”系列,这是杜邦公司对其研发的各种碳氢树脂的总称。其中最广泛的是聚四氟乙烯,它被称作“塑料之王”,作为一种最常用的表面涂料,在工业生产和日常生活中几乎无所不在。它由杜邦公司化学师Roy Plunkett在1938年偶然发明,并投入商业化生产。  然而近半个世纪后,这款曾经造福于人类的化工产品却遭到美国环境署的投诉。2006年,该署对杜邦公司提出抗议,称特氟龙的生产过程中添加了PFOA作为助剂,并被广泛用于全世界使用特氟龙涂料的不粘锅上,抗议还称,杜邦公司早在20多年前就已知道PFOA对人有害,却将这一秘密守口如瓶。  全球第一款采用杜邦特富龙不粘涂料的炊具诞生于1962年。除了不粘锅,很多快餐店也在铝质蛋盘上使用这种不粘涂料来降低成本,使得重复涂覆频率大大降低。玉米片制造商则用它涂在切马铃薯的刀面上,降低残渣的集积,使停工时间缩短。  继不粘锅之后,越来越多的线索将焦点指向了食物。科学家发现,一个重要入口就是食品包装。不仅美国人最喜欢的爆米花和比萨的防油包装纸上使用了聚四氟乙烯涂层,而且面包、奶酪以及方糖,从生产过程中的模具,到专卖店里的托盘,到家庭用的包装袋,几乎都离不开这种涂料。  全球狙击  杜邦事件并非孤例。早在2000年,美国3M公司就宣布全球召回PFOS。它曾是该公司著名的斯科奇加德防油防水剂的主要组分。3M的研究人员 .现,PFOS不仅会造成工作人员中毒,还会向环境释放。2 0 0 3年,3M宣布停止生产PFOS。  尽管对其危害性评估和每一个中间环节的整体论证仍需时日,一些国家已经坐不住了。  继美、加、英、挪等国之后,2006年12月27日,欧盟理事会发布限令,禁止PFOS在欧洲范围内生产、销售和使用,并出台了严格剂量标准和检测方法。  杜邦坚称,聚四氟乙烯本身是对人体无毒的,而作为生产助剂的PFOA即使对人体有毒,含量也很微小。在经过380度高温的烧结时,“不到两秒钟就消失了”。  真的如此吗?就算成品完全不含PFOA,在高温下特氟龙仍有可能会分解,释放出PFOA。为此,美国环境署特别对特富龙在高温焚化时大气环境中PFOS和PFOA的含量展开了测试。但目前的实验研究显示,特富龙涂料只会长链降解形成短链聚合物,而不会分解成PFOA或PFOS。  “理论上说很难完全清除”。中科院上海有机化学所的氟化学专家陈庆云院士说。他表示,国内这方面的研究还开展得很少。  据了解,环保部国际合作司正委托中国印染行业协会进行行业调查,至于相关研究,主要还停留在对检测方法的摸索上。这在很大程度上来自于履行国际公约的承诺,及欧盟限令对中国出口贸易的影响。卫生部门则尚未将其纳入近期工作计划。
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p  近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。/pp  烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。/pp  烷烃由高键能、非极性C-C单键和Cspsup3/sup-H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。/pp  聚乙烯和烷烃结构单元相似,均由C-C单键和Cspsup3/sup-H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。/pp style="TEXT-ALIGN: center"img title="tpxw2016-06-27-01.jpg" src="http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg"//pp style="TEXT-ALIGN: center"strong图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。/strong/pp/p
  • 把一滴水做到极致:张新星团队揭示百草枯在小水滴中的自发超快降解
    夺命百草枯——好用的除草剂,危险的杀人药百草枯、敌草快等紫菁类农药由于其毒性高、无解药、难以降解(在水中半衰期23周,在土壤中半衰期6年)的特性,涉及到的自杀、误食、投毒事件数不胜数,近年来在媒体和社交网络上臭名昭著。从中毒机制来看,紫菁在人体内通过一系列电子传递反应生成大量具有高度氧化能力的活性氧物种,通过对人体脏器的快速氧化,导致服毒者在极大的痛苦中缓慢死亡。受害者遭遇惨痛,几乎无一幸免。有媒体将其形容为“给你后悔的时间,不给你活命的机会”(图1)。针对百草枯的极大危害,我国农业农村部已经停止了百草枯水剂在国内的销售和使用。然而,由于百草枯的除草效果极佳,很多不法商家将其经常冠以不同的商品名偷偷售卖,引发的案件造成了恶劣的社会影响。图1:左)曾经市面上常见的几种百草枯商品;右)2021年12月29日,央视网通报的又一起百草枯投毒案。鉴于此,近日,南开大学张新星研究员团队另辟蹊径,通过把紫菁化合物的水溶液喷雾成微米级大小的小水滴,并结合原位质谱检测手段,对紫菁降解产物进行了研究。实验中发现,在微液滴反应体系中,只需要几十微秒,就实现了紫菁降解的超快动力学,相关论文近期以“Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation”为题发表在美国化学会会志JACS上。(论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c12028)神奇的小水滴化学近几年来,以斯坦福大学的Richard Zare院士、普渡大学的Graham Cooks院士为代表的科学家,发现很多原本在液相中难以进行的化学反应,在通过载气喷雾或者超声雾化产生的微米级小液滴中(如图2中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且液滴的尺寸越小,这些现象越明显。图2:家庭中常见的加湿器,产生的微液滴中可以是微小的反应容器。Zare认为,微液滴的表面自然带有高达109 V/m的电场(相比之下,在空气中生成闪电的击穿电压仅有106 V/m)。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上为微液滴表面极高电场的存在提供了新的证据。张新星指出,本实验中紫菁化合物在微液滴中的自发降解现象,是通过微液滴表面自发生成的电子还原了正二价的紫菁化合物,生成了相对不稳定的紫菁正离子自由基,并以此为基础,通过Beta消除反应和霍夫曼消除反应进一步分解。而质谱为上述反应机理涉及的自由基和中间产物提供了有力的证据(图3)。图3:a) 微液滴喷雾装置的示意图;b) 乙基百草枯的降解产物的质谱解析图。把一滴水做到极致——小水滴化学的研究未来在记者的采访中,张新星表示,相比这项工作的应用价值——开发了一种新的十分简便的降解百草枯的方法,他更在意这项工作背后的科学意义。水对于很多化学体系来说都是极其稳定的、无污染的绿色溶剂,为什么体相的水被打散成小水滴之后就能促成原本无法发生的化学反应的进行?是由于微液滴表面的极高电场吗?那么微液滴表面自发生成的极高电场的物理来源是什么,是正负离子在微液滴表面自发生成的双电层吗?如果这是真的,这些离子都倾向于扩散到微液滴的表面的物理驱动是什么?微液滴表面极高电场解离氢氧根产生的电子是以自由电子还是以水合电子的形式存在?微液滴表面解离氢氧根同时产生了电子和羟基自由基,前者具有极高的还原性,而后者具有极高的氧化性,这对矛盾是如何共存的?几乎所有大气化学的模型研究都是在水的体相中进行的,而云彩和雾都是微液滴,那么此前所有体相中的大气化学研究是否需要重新审视?张新星表示,上述的问题,有的已经部分有了答案,有的还在探索之中。无论如何,这些问题的解答都必将推动分析化学和物理化学认知的进步。通讯作者简介张新星,复旦大学学士、美国约翰霍普金斯大学PhD,美国加州理工学院博士后,南开大学化学学院研究员,研究方向为分析化学、物理化学、科学仪器的智能制造等多学科综合交叉的科学技术问题,迄今已发表SCI论文75篇,含第一或通讯作者论文56篇。2017年入选国家第14批海外高层次人才引进计划,2021年入选了天津市杰出青年基金。2018年回国独立工作以来,以南开大学为通讯单位发表了论文32篇,其中包括PNAS 1篇,JACS 3篇,Angew. Chem. 7篇,Nat. Commun. 1篇,JPCL 2篇。在科研上,开发了多项国际上独特独有的新型(智能)装置用于多学科交叉的化学体系研究,并由此获得了2020年中国化学会第二届菁青化学新锐奖(本届全国共5名),2021年美国质谱学会ASMS新兴科学家称号(本届全球共11名,2015年该称号设立以来唯一中国大陆获得者),2021年中国物理学会质谱青年奖(全国唯一获奖人),以及2021年天津市科协优秀青年科技工作者等称号。原文信息:Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation. 作者:宫矗、李丹阳、李熙来、张冬梅、邢栋、赵玲玲、苑旭、张新星* JACS
  • 科学岛团队在单原子负载氮化碳高效降解抗生素研究方面取得新进展
    近期,中科院合肥研究院固体所环境材料与污染控制研究部孔令涛研究员团队提出了一种在氮化碳纳米片上锚定单原子的预组装策略,制备出系列单原子负载氮化碳类芬顿催化剂并用于水中四环素污染物的降解,将催化活性提升了1-2个数量级。相关研究成果发表在Separation and Purification Technology 上。   类芬顿是一种以自由基为主要活性物种的反应,H2O2和PMS(过硫酸盐)是两种常用的类芬顿氧化剂,由于两者产生的自由基的半衰期短,利用效率低,因此可通过缩短自由基向污染物分子的迁移距离提高催化效率。目前,单原子材料已被证明对氧化剂具有较好的活化作用。氮化碳是一种二维富氮材料,其具有纳米片结构、可调节的比表面和较高的稳定性,是一种很好的单原子催化剂支撑材料;同时,其丰富的氮元素可以为金属离子的嵌入提供理想位点,形成独特的配位结构和电子构型。因此,将金属原子固定在氮化碳纳米片上,可将自由基限制在污染物附近,从而有效提高类芬顿催化效率。   鉴于此,研究人员提出了一种具有广谱通用的热解配位聚合预组装策略,将单原子(如Cu、Fe、Co、Mn等)锚定在氮化碳纳米片上,并证明了它们在类芬顿催化中的通用性。作为概念性验证,研究选择单原子铜催化剂(SA-Cu-CN)作为四环素(TC)降解和机理阐述的模型材料。SA-Cu-CN的类芬顿催化活性相比于研究中使用的其他材料提高了1-2个数量级。EPR分析和淬灭实验表明该催化体系中?OH和SO4?-的生成对降解TC起着至关重要的作用。结合超高液相色谱-质谱分析与DFT理论计算,对TC的降解路径及产物毒性进行了分析鉴定,SA-Cu-CN类芬顿催化剂显示出对有机污染物的深度处理能力。此外,通过相同的制备方法合成了SA-Fe-CN、SA-Co-CN和SA-Mn-CN等系列单原子催化剂,均表现出较好的类芬顿催化活性。该研究对发展类芬顿催化剂及其在水处理领域的应用具有十分重要意义。   上述工作得到了国家重点研究开发计划、国家自然科学基金、安徽省自然科学基金及合肥研究院院长基金等项目的资助。图1. CN和SA-Cu-CN的形貌和结构表征。图2. SA-Cu-CN的类芬顿催化性能探究。图3. 四环素降解的路径分析以及其产物的鉴定和毒性评估。
  • 傅里叶变换离子回旋共振质谱仪揭示高硫原油的生物降解机理
    p 全球已探明的油藏中很大一部分是含硫原油,有不少高硫原油经历了生物降解。此外,全球供给的原油含硫量呈逐年上升趋势,高硫原油泄露引发的环境问题也相当突出,微生物修复技术已被成功地应用于漏油事件的处理中。已有研究表明,无论是在有氧还是在厌氧条件下,微生物都可以将一些结构简单的模型有机硫化物(二苯并噻吩等)作为碳源和/或硫源,但对原油中结构复杂的有机硫化物的降解机理的研究仍不够深入。这是因为原油中的大多数有机硫化物不仅分子结构和组成都非常复杂,极性弱且不稳定难以离子化,其降解产物的浓度也非常低,因此很难对有机硫化物的降解机理进行深入的研究。近期,中国科学院广州地球化学研究所研究员廖玉宏课题组通过原油好氧生物降解模拟实验的方法,结合中国石油大学(北京)教授史权课题组研发的加入HCOONH4的方法来增强弱极性的硫化物的电离效率,采用广州地化所最新引进的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T),研究了高硫原油的有氧生物降解过程。型号为SolariX XR 9.4T的傅里叶变换离子回旋共振质谱仪能够提供极高的分辨率和灵敏度,比常规的GC-MS都要高几个数量级,因而能很好地分辨出原油中各种浓度悬殊的有机硫化物及其降解产物。/pp 模拟实验中使用的含硫原油来自江汉盆地潜江组,所用的降解菌富集培养自内蒙古扎赉特旗露头油砂矿的油浸土壤,培养的时间最长达到了17周,从0周(Z-0)到17周(Z-17)每隔1到数周取出一个油样进行分析。随着降解时间增加,原油中的正构烷烃逐渐减少(图2),最终正构烷烃几乎消耗殆尽,异构烷烃也部分损失,因此这些降解油处于轻微-中度生物降解阶段。与烷烃的减少相对应的是,原油中羧酸的含量随着生物降解的加剧而呈上升趋势。这与研究人员之前对一高蜡原油的好氧生物降解模拟实验结果一致(Pan & Liao*等, 2017, Energy & Fuels)。这是因为烷烃发生末端氧化生成了羧酸。有趣的是,原油中的长链有机硫化物的降解似乎有着与烷烃降解类似的降解机理:随着降解时间增加,正构烷烃迅速减少直至基本被消耗完毕,随后发生降解的主要对象变成了只含有一个五元或六元硫环、与正构烷烃结构具有较高相似性的长链有机硫化物,说明长链有机硫化物在降解过程中也发生末端氧化形成了相应的有机酸类,这可以从原油中的含硫羧酸类化合物的快速增加得到印证。/pp 此外,研究人员并没有发现原油中的亚砜和砜类化合物与对照组相比有明显增加,这也从另一侧面证实了长链有机硫化物的降解产物主要为含硫羧酸而不是亚砜和砜类,即降解优先从烷基侧链开始。此外,研究还发现有机硫化物的环数增加可以提高其抗生物降解性能(图3)。这与Oldenburg等(2017)在储层中观察到的含硫原油的降解规律类似。这样的相似性可能表明储层中含硫原油的生物降解是好氧和厌氧微生物共同作用的结果。/pp 该项成果得到中科院先导科技专项B和A、国家自然科学基金面上项目以及有机地球化学国家重点实验室自主课题资助。论文近期发表在国际期刊Organic Geochemistry上,论文的第一作者为博士生刘卫民,通讯作者为廖玉宏,共同作者还包括广州地化所助理研究员潘银华、工程师蒋彬、实验员曾清,以及中国石油大学(北京)教授史权和佛罗里达州立大学教授许强。br//pp论文信息:Liu, W., Liao, Y.*, Pan, Y., Jiang, B., Zeng, Q., Shi, Q. and Hsu, C.S., 2018. Use of ESI FT–ICR MS to investigate molecular transformation in simulated aerobic biodegradation of a sulfur-rich crude oil. Organic Geochemistry, Vol.123, pp.17-26./pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c1f069a2-8da7-4870-adef-700bb0ae57ba.jpg" title="1.jpg"//ppbr//pp style="text-align: center "图1 广州地化所2016年引入的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T)/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/cbee4a85-50c8-4a5b-b2cd-c36bebd20f5f.jpg" title="2.jpg"//pp style="text-align: center "图2 降解油饱和烃的总离子流图/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/10c5643b-0356-4533-901b-38e1db1209b5.jpg" title="3.jpg"//pp style="text-align: center "图3 含有1、2、3个硫原子的有机硫化物的相对丰度/ppbr//p
  • 巧用光谱法 海洋塑料垃圾监测取得新进展
    113年前,一位名为贝克兰的人发明了酚醛塑料,从此,合成塑料的发展帷幕被拉开。经历了漫长的发展过程,到20世纪中期,这项塑料技术被人们发扬光大。得益于社会的快速发展,塑料工业如同雨后春笋般飞速成长。时至今日,塑料行业遍地开花,迅猛地占据了大量的市场,塑料制品充斥着每个人的生活,从吃穿住行到工业生产,塑料产品无处不在。趁着如火如荼的发展之势,塑料制品进军医药、食品、农业等诸多领域。塑料制品为人们带来发展利好的同时,也产生了负面效应。众所周知,塑料制品不仅好用,成本还非常便宜,正是因此,人们习惯性把其当成一次性用品,用完即丢。并且,塑料制品非常难以降解,人们对其丢弃后,它便会长期存在于地球的各个角落。如此一来,塑料垃圾数量越积累越多,悄悄涌向田野、山脉、海洋,甚至是人们身边的环境中。数量可观的塑料垃圾还无法快速处理掉,常用的填埋方法非常占地,还破坏土壤结构;对其进行焚烧处理又会释放大量的二氧化碳和有毒有害气体,危害健康还造成大气污染。如果置之不理,后果将无法想象。近几年,随着人们对生活质量的要求升高,塑料垃圾对生命健康以及生活环境的威胁备受人们的关注。不光陆地上存放了大量的塑料垃圾,就连偌大的海洋领域,也很大程度上受到了塑料垃圾的“侵入”。  那么,海洋里到底有多塑料垃圾呢?据中国科学报得知,从南极到北极,从地表到地下沉积,科学家在见到的每一个海洋环境中都检测出了塑料存在。重要的是,人类产生的其他材质废弃物,会随着时间慢慢腐烂或者锈化掉,但是塑料由于很难降解的性质,会持续存在多年。更为可怕的是,一部分塑料垃圾漂浮于海洋表面,易于检测出,而更为深层的海底塑料垃圾,却很难检测出来,所以,海洋里究竟存在多少的塑料垃圾,无法预估。海洋塑料垃圾不止是污染水体和环境,还伤害海洋动物的的生命,经过长久以来的观察和案例可知,海龟、鱼、海豹以及鸟类等,都无一幸免。它们或是被塑料中伤了身体器官,或是吃进去了塑料碎片,导致这些垃圾在消化器官中长期累积。尤其是会被送上餐桌的海洋动物,塑料垃圾长期以来在它们身体中无法分解,从而产生毒素,被人吃进人体。尽管人们自从意识到这些以来,就不断在处理塑料垃圾方面努力着,一方面加大废弃塑料的回收力度,一方面加速研发可帮助塑料垃圾降解的化学药剂。但是,每年仍然有超过8万吨塑料垃圾进入海洋中,可见,海洋塑料垃圾的治理工作还是不可懈怠。其实,对于海洋塑料垃圾的解决上,科技领域的研究者们也不断为其贡献着自己的力量,包括海洋塑料降解方面的研究,以及针对海洋塑料探测的研究。事实上,将海洋中的塑料从其它漂浮物中准确快速地筛选出来,是多年来困扰人们处理海洋塑料垃圾的一个大难题。4月23日,据科技日报得知,英国的《科学报告》刊登了一则关于海洋塑料垃圾处理的消息。消息称,英国一团队发现了一种能检测出海洋环境中大于5毫米的塑料漂浮物的新方法,该方法是利用欧洲空间局“哨兵2”号卫星数据,训练机器学习算法,实现将塑料从其他材料中区分出来的目的。经过试验,这个方法的平均准确率为86%,局部区域可高达百分之百。光谱仪据了解,关于机器识别塑料漂浮物的方法中,研究人员此次是从光谱法入手。他们发现,海洋中的不同漂浮物所吸收和反射的可见光与红外光波长也各不相同。基于此,他们利用这些不同的光谱特征,在“哨兵2”号的所识别出的漂浮物中,快速对漂浮物带中的材料进行详细划分,以此具体探测出海洋中存在的塑料垃圾。接下来,研究人员还将继续升级这项技术,致力于将光谱识别塑料技术与无人机或高分辨率卫星联用,为全球的海洋塑料垃圾监测工作提供更好的方法。  眼下,塑料制品仍是社会发展所离不开的产物,好在人们及时意识到了塑料给环境造成的影响以及带给人们的危害,积极采取防止措施。在此呼吁大家,防治塑料污染,从每一个日常习惯做起,塑料污染的危害并不远,就在我们身边。相信,在人们共同的努力和“科技魔法”的帮助下,海洋塑料垃圾终将消失得无影无踪。24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 国标在手-消毒副产物检测不用愁!
    国标在手-消毒副产物检测不用愁!关注我们,更多干货和惊喜好礼上周五(2020.4.24),生态环境部标准《HJ 1050-2019 水质 氯酸盐,亚氯酸盐,溴酸盐,二氯乙酸和三氯乙酸的测定 离子色谱法》已经开始实施啦。消毒副产物(DBPs)的监测,正式从生活饮用水、矿泉水,扩展到环境地表水,地下水,生活污水和工业废水领域。这一系列标准方法,为水质中DBPs的全方位监测提供了技术支撑,为中国大地提供了全方位的水质安全保障。新冠病毒来袭,勤洗手、戴口罩、定时通风和消毒,成了老幼皆知、妇孺共守的日常习惯。“宅在家里消消毒,买菜回来消消毒,出入小区消消毒。”一场疫情,让消毒剂成了普通人大战新冠病毒的必备武器。但也有人担心,大量使用的消毒剂作为生活废水排放是否会引发健康风险?如何保证饮用水的安全引起了大家的广泛关注。其实对于饮用水问题,大家不用如此焦虑,无论是废水还是饮用水的排放,我国都有严格的卫生标准和规范。众所周知,无论取自何处的源水,都有被病毒,细菌和寄生虫卵等多种微生物污染的可能。为了防止通过饮水传染疾病,对饮水进行化学消毒是国际上公认和普遍采取的消毒工艺。 飞飞:国内水质采用何种消毒方式?赛老师:化学消毒方式(氯剂、二氧化氯和臭氧消毒)是主流消毒方式。 飞飞:消毒副产物是什么?如何产生的呢?赛老师:采用化学消毒工艺时,消毒剂不可避免的会与饮用水中的一些天然有机物或者无机物反应生成不同消毒副产物(DBPs)。 飞飞:DBPs主要包括哪些物质?有什么危害?赛老师:DBPs主要是三卤甲烷,卤代乙酸和卤氧化物等,大多具有较强的致癌性、致突变和致畸性。溴酸盐被国际癌症研究机构认定为2B级潜在致癌物质。 飞飞:DBPs有什么监测手段?赛老师:可采用GC、HPLC、IC进行监测。其中极性较强的卤代乙酸和卤氧化物,采用IC法具有操作简便、灵敏度高、选择性强等优势。 国标中消毒副产物限量多少? 高“三致”危害,必然有严格的限量规定。《GB 8537-2018食品国家安全标准 饮用天然矿泉水》将溴酸盐含量限定为10ppb。《GB 5749-2006生活饮用水卫生标准》对居民饮用水中卤氧化物和卤代乙酸进行了严格限定。 DBPszui大允许浓度BrO3-10ppbDACC50ppbTACC100ppbClO2-0.7ppmClO3-0.7ppm国标中的消毒副产物检测方法对于卤氧化物的测定,《GB/T 5750-2006》《GB/T 8538-2016》以及正式实施的《HJ 1050-2019》均推荐抑制电导-离子色谱法;对于卤代乙酸的测定,《GB/T 5750-2006》推荐衍生化气相色谱法,正式实施的《HJ 1050-2019》推荐与卤氧化物同时一次进样完成分离测定。 赛默飞消毒副产物监测方案方案壹抑制型电导-离子色谱法测定水中亚氯酸盐,氯酸盐,溴酸盐,二氯乙酸和三氯乙酸常规7种阴离子和5种消毒副产物分离色谱图优势赛默飞-抑制电导-离子色谱法(IC-CD)测定卤氧化物和卤代乙酸,具有以下优势:1. 样品无需前处理,过滤后即可上机测试;2. 无需柱前或柱后衍生化操作,直接测定;3.特色高选择性离子交换色谱柱(IonPac AS27),提供强极性离子形态和价态的差异化分离;4.特色高容量离子交换色谱柱(IonPac AS27),提供高样品基质兼容能力,兼容生活污水及工业废水等复杂基质;5.水质中5种消毒副产物的检出限可达0.43-1.53ppb;6.满足HJ 1050-2019 、GB/T 5750.10-2006、GB/T 8538-2016的检测要求;Thermo Scientific™ Dionex™ Integrion 离子色谱仪“只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图赛默飞Integrion高压离子色谱只加水技术,提供简单、方便、高效和高灵敏度的分析选择。方案贰 离子色谱-质谱法(IC-MS)测定水中卤代乙酸和卤氧化物 质谱利用质荷比进行化合物的定性筛选,是理想特异性检测器,离子色谱串联质谱法(IC-MS/MS)比抑制电导-离子色谱法具有更高的选择性、灵敏度和更少的假阳性。对于消毒副产物的检出限,IC-MSMS法可低至0.01-0.27ppb。赛默飞IC-MSMS方案,除满足碘乙酸、二氯乙酸、三氯乙酸及卤氧化物等热门DBPs的定性定量监测外,还可扩展完成所有氯代和溴代卤乙酸的分析测定。碘乙酸,二氯乙酸,三氯乙酸和卤氧化物9种卤代乙酸优势赛默飞提供du家的离子色谱和质谱自由平台,在IC-MSMS联用方面具有独特的技术优势:1.离子交换分离端兼顾抑制电导-离子色谱法所有技术优势;2.联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;3.质谱检测器的HESI II离子源探针盐耐受能力强,稳定性好;4.质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;5.Chromeleon 变色龙统一软件操作平台,实现离子色谱和质谱的同时控制。离子色谱串联质谱(IC-MSMS)抑制器脱盐原理图总结从抑制电导-离子色谱法到高端的离子色谱串联质谱(IC-MSMS),赛默飞提供了水质中卤代乙酸和卤氧化物的完整分析解决方案。消毒剂使用Tips:1. 按照说明书,合理使用消毒剂,避免和减少消毒剂的滥用。2. 各类消毒剂应单独使用,不要混合使用。3. 消毒产品只能用在说明书标识的对象上,不可超范围使用。4. 严格按照说明书浓度配制消毒剂,保证说明书最少消毒时间。5月7日赛默飞将云集国内外大咖 携HPIC高压离子色谱助您加速启程 探索离子世界扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 博纳艾杰尔将参加2010年第二届天然产物与传统医药国际会议
    第二届天然产物与传统医药国际会议将于2010年8月21-23日在西安举办,届时博纳艾杰尔将携带相关资料参加。我们在此次展会上重点展示的产品是CHEETAH,为了让广大客户进一步熟悉CHEETAH的使用,我们不仅将携带仪器在展会现场展示并讲解使用方法,同时在会议宣讲中进行题为&ldquo 天然产物的分离纯化&mdash &mdash 中压制备色谱应用&rdquo 的报告,热忱邀请新老客户届时参加讨论并提出问题,博纳艾杰尔希望与您共聚古城西安。
  • 上海塑料行业协会关于团体标准 《生物降解塑料制品快速检测方法 红外光谱法》的立项公告
    各会员单位、有关单位:根据《上海塑料行业协会团体标准管理办法》的相关规定,经协会标准化工作委员会专家对团体标准《生物降解塑料制品快速检测方法 红外光谱法》团体标准项目进行立项审查,认为所申报的团体标准是提供一种通过红外光谱快速、定性检测生物降解塑料制品的方法,可方便各生产和使用生物降解塑料制品的企业对产品快捷检验,同时提高政府部门监督检查效率,该团体标准符合立项条件,现批准立项。请参与研制的单位严格按照上海塑料行业协会团体标准编制工作要求及标委会专家意见,尽快组织标准研制,强化研制过程中的质量管理,加强组织协调,确保按期完成标准研制任务。如有单位对该标准项目存在异议,请在公告之日起15日内将意见书面反馈至上海塑料行业协会标准化工作委员会。同时,为使立项团体标准的制定更加科学合理,欢迎有意参与该团体标准研制工作的单位与上海塑料行业协会标准化工作委员会联系。联系人:钮贤圭电话:021-62985029/13701671577邮箱:sspi2012@163.com上海塑料行业协会2023年3月15日上海塑料行业协会关于团体标准《生物降解塑料制品快速检测方法 红外光谱法》立项公告.pdf
  • 上海塑料行业协会发布《生物降解塑料制品快速检测方法 红外光谱法》团体标准公开征求意见稿
    各位专家及有关单位:上海塑料行业协会批准立项的《生物降解塑料制品快速检测方法 红外光谱法》团体标准,经起草、专家评审和评审修改等环节,目前已完成标准征求意见稿(见附件2)。根据上海塑料行业协会《团体标准管理办法》有关要求,现对该项团体标准公开征集意见。请有关单位及专家积极提出宝贵意见或建议,并与2023年11月5日之前将《征求意见反馈表》(见附件2)反馈至上海塑料行业协会,逾期未回复按无意见处理。感谢您对我们标准化工作的大力支持!联 系 人:钮先生 联系电话: 13701671577;邮 箱: sspi2012@163.com地 址:上海市普陀区中山北路2299号215室上海塑料行业协会2023年10月22日关于《生物降解塑料制品快速检测方法 红外光谱法》团体标准公开征求意见通知.pdf团体标准征求意见反馈表.docx生物降解塑料制品快速检测方法-红外光谱法 征求意见稿.pdf
  • 上海塑料行业协会批准发布 《生物降解塑料制品快速检测方法 红外光谱法》 团体标准
    各有关单位:根据《上海塑料行业协会团体标准管理办法》规定,团体标准《生物降解塑料制品快速检测方法 红外光谱法》(T/SSPI 003-2024),已由上海塑料行业协会于2024年2月1日组织审定通过,现予发布。本标准从2024年4月23日起正式实施。 上海塑料行业协会2024年3月15日上海塑料行业协会关于发布《生物降解塑料制品快速检测方法 红外光谱法》团体标准的公告.pdf
  • advanced science | 研究发现新型可降解耐高温和低温粘合剂
    作者:李晨 来源:中国科学报可同时耐高温和耐低温的粘合剂的制备及应用。中国农科院供图聚硫辛酸3D打印新材料。中国农科院供图近日,中国农业科学院麻类研究所可降解材料开发与利用团队联合湖南大学、中南大学在环保型可降解粘合剂开发与利用方面取得重要进展。他们利用超分子聚合的方法从小分子出发制备出了一系列粘附性能好,使用范围大的粘合材料,并利用其粘性效果,将其作为3D打印材料。这些超分子聚合物基可降解粘合材料不仅粘附效果高于同类型材料,而且在应用上提供了一种新思路。相关研究成果在线发表于《化学工程杂志》(chemical engineering journal )和《先进科学》 (advanced science ),并获得国家发明专利授权。粘合剂在日常生活、医疗卫生、汽车工业、航天航空等领域有着普遍应用,随着环保意识的提升,开发环保型可生物降解粘附材料已成为一项重要的研究课题。现有粘合剂存在粘附效果不佳,特别是在极端环境下效果更差。更重要的是这些粘附材料无法进行增材制造,无法使其应用更广泛。研究人员利用分子识别和超分子聚合的策略合成一系列具有同时耐高低温的粘合剂,这些粘合剂在高温150°C达到了5.18MPa ,在低温-196°C达到了9.52MPa。在较宽的温度范围内(-80℃至150°C) 成功实现了对粘附行为的实时和定量监测,使用定制设备,可轻松监测粘附持续时间、衰减和失效。这项工作制备了一系列可同时耐高低温的、粘附效果好的粘附材料,同时也为粘附效果的监测提供了新思路。针对以往的粘附材料缺乏进一步增材使用的问题,研究人员进一步利用天然小分子硫辛酸的热响应开环聚合形成聚硫辛酸,制备了新型粘合剂。基于此粘合剂的时间依赖自增强效应,将其应用在增材制造的热熔沉积3D打印中。通过聚硫辛酸的3D打印,完全实现了不同尺度上的模型形成。3D打印后,聚硫辛酸打印的模型随着时间的推移表现出机械增强的特征。这是由聚硫辛酸和硫辛酸的微观自组装引起的。这项工作实现了微观层面的自组装和宏观层面的自组装有机结合。该研究也为粘合材料的可控制造和机械增强提供了一种可行的方法,为下一代功能粘合材料的应用开辟了道路。相关论文信息:https://doi.org/10.1016/j.cej.2022.138674https://doi.org/10.1002/advs.202203630授权发明专利:可同时耐高温和耐低温的粘合剂的制备方法ZL202011312658.8
  • 可自然降解传感器问世
    p style="text-indent: 2em "在英国《自然· 电子学》杂志14日在线发表的一篇动物研究论文中,美国科学家介绍了一种可移植、可伸展的应变及压力传感器,可以在有效使用期结束后自然降解。该装置将用于实时监测受损软组织所受的微弱应力和压力变化,有助于为患者设计个性化的康复方案。/pp style="text-indent: 2em "传感器技术早已“轻松”应用于多种不同的环境,它们能集成到小型化的发射器或接收器系统中,也能与人体直接接触服务于医疗应用。这其中,可降解传感器是一种新兴技术,它们在预定的使用期限结束后会自然降解,因此不需要通过二次手术取出来。/pp style="text-indent: 2em "但是,生物相容性微传感器的生产目前还是一个非常耗时和昂贵的过程,现有的这类传感器的感应性能十分有限,或是其生物相容性还未经证明。/pp style="text-indent: 2em "此次,美国退伍军人事务部研究人员佩吉· 福克斯、斯坦福大学鲍哲南及他们的同事,报告了一种由完全生物可相容材料构成的、可伸展、可生物降解的应变及压力传感器。这一可移植传感器具有高灵敏度,能够区分小到0.4%的应变和12Pa的压力(一粒盐产生的压力)变化。/pp style="text-indent: 2em "为了测试该传感器的生物相容性,研究团队将其移植进一只大鼠的背部。在移植手术8周后,未观察到负面炎症反应(除了第1周出现初期炎症反应)。/pp style="text-indent: 2em "研究人员表示,他们能够控制传感器的降解,使其寿命与组织愈合所需的时长一致。此外,经过一定的设计,在降解过程中,该传感器的灵敏度也不会有明显下降。/pp style="text-indent: 2em "针管有一次性的,医疗电子仪器也可以有一次性的。可降解的生物传感器一旦进入实用,我们就可以将很多临床定性描述转为量化指标,病人的恢复快慢可显示在屏幕上,痛觉程度也不再模糊。医生的工作将因此大大便利。/p
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • 质检总局削权分权两步走 机构改革方案年内敲定
    7月24日的国务院常务会议上提出&ldquo 减少法检(强制检验,编者注)商品种类,原则上工业制成品不再实行出口法检。抓紧研究法定检验体制改革方案。&rdquo   据了解,国家质量监督检疫检验总局(以下简称&ldquo 质检总局&rdquo )的机构改革已经提上议事日程,此次国务院常务会议对出口法检的决定是质检总局改革的一部分。  参与过法检体制改革讨论的人士向记者透露,质检总局机构改革中&ldquo 管办分离&rdquo 的大原则已定,现在进入了拿方案阶段,具体的改革方案会在今年年底之前制定完成,并于2014年全国两会提交全国人大。  上述人士表示,质检总局的改革分削权和分权两个步骤,此次取消出口商品的法检属于前者,后者将在全国人大通过之后实施,预计未来质检总局的职能会并入海关总署、农业部、卫计委等部委。而在&ldquo 管办分离&rdquo 的大原则下,第三方检验鉴定机构有望分享百亿元检验市场。  削权  &ldquo 这次变动对质检总局的震动很大,可能影响数万人员的调动和重新安排。&rdquo 来自福建质检分局的赵红军(化名)如此解释7月24日国务院常务会议有关整顿进出口环节的决议,赵红军平日的工作主要是和海关对接,负责动植物检疫检验。  7月24日的国务院常务会议决议提出&ldquo 减少法检商品种类,原则上工业制成品不再实行出口法检&rdquo 。这意味着质检总局一半的工作被砍掉了,随之而来的将是质检收费的剧减和人员的富余。  据了解,7月17日国务院曾组织过针对减少法检商品种类的专门讨论,质检总局的态度是减少300多种,与&ldquo 原则取消&rdquo 的幅度相差甚远。  7月25日,质检总局向全国35个直属的质检局下发了一份特急函,要求&ldquo 各局认真研究法检目录调整可能带来的影响及应对措施&rdquo 。并于7月26日下午5点之前以电子邮件的方式提交到总局检验司。  这份名为&ldquo 质检检函〔2013〕245号&rdquo 的特急函主要包括:&ldquo 出口法检目录调整对机构、实验室、人员和经费等方面的影响。对出口法检目录调整后如何构建出口商品检验监管体制的思考。对进口商品检验监管体制改革的建议。&rdquo   公开信息显示,从2001年中国加入世贸组织开始,至2013年之前,质检总局的权力一直在加强和扩大,《出入境检验检疫机构实施检验检疫的进出境商品目录》(简称《商品目录》)的检验种类一直稳中有升。2005年《商品目录》中,出口商品检验19类2228种,进口商品检验19类1523种。2013年《商品目录》中,进口商品检验达2093种,出口商品检验2141种。  质检总局由负责国内的国家质量技术监督局和负责进出口的国家出入境检验检疫局合并而来,在总部两个局合在一起办公,而在地方上,又有各自独立的体系。目前,总部负责进出口业务的原属国家出入境检验检疫局的人员编制虽然很少,但是加上地方上直属的各个检验检疫局员工,总数有20多万人。由于中国进口主要集中上海、北京、广东等少数地区,因此大量地方质检工作人员都从事出口检验,此次变动波及的范围恐超出外界的预估,甚至导致部分地方局的出入境检验检疫部门直接被裁撤。  &ldquo 实际上总局大概从两三个月前就开始这方面的调研了,显然早就意识到要出现这样的变化。&rdquo 来自质检总局内部的人士告诉记者,只是没想到变化会这么大。对未来质检总局人员工作安排问题,国家质检总局新闻处人员表示将会进一步商讨,无法给出答复。  分权  &ldquo 此次国务院常务会议的决议只是质检总局改革的第一步,接下来就是针对组织机构了。&rdquo 上述参与法检体制改革讨论的人士告诉记者,质检总局的权力可能逐步被分出去,比如动植物检验归农业部,因为只有农业部才有技术,同样,卫生防疫方面的检验会归到卫计委。  &ldquo 改革的结果可能是只保留国内质量技术监督这一块。&rdquo 上述人士表示,在管办分离的大原则下,未来检验的实际工作会更多地由第三方机构承担,政府部门只是负责制定政策和标准。  实际上,对质检总局的分权在今年的机构改革中已经出现,今年3月国家食品药品监督管理总局挂牌,质检总局下属食品生产监管司即被并入国家食品药品监督管理总局管理。  上述人士表示,由于牵涉到质检总局的留存,以及改革后的归属问题,仅在国务院层面还无法完全落实,具体的改革方案会在2013年底之前拿出,在2014年全国两会期间提交给全国人大,之后再正式实施。  据商务部专家马宇的调查,中国每年的质检收费在300亿元左右,其中工业制成品的出口法检占了近200亿元。  今后工业制成品出口法检取消,依然剩下100多亿元的市场空间。  质检争议  质检总局从成立之日起就饱受争议,随着中国的进出口激增,质检总局的权力不断强化,其与商务部、海关之间的矛盾日益突出,后两者指责质检总局增加了出口企业的经济负担,阻碍了外贸。此次国务院常务会议取消工业制成品的出口商检也是基于促进出口的考虑。  根据国内的规定,出口商品在出关前至少要检两次,质检总局检一次,海关检一次。&ldquo 有的情况下还不止这两次。&rdquo 一位海关人士表示,商品有可能在当地质检部门检测一次,然后到较大的进出口口岸,被当地质检机构开箱再次检测一次。  多次开箱检测的要求,不仅增加了商品的物流成本,增加了人力成本,还延长了商品交货时间,影响了出口商品的竞争力。  &ldquo 在国际上,商品一般都是通过行业认证,或者是第三方认证来显示产品质量过硬,而发证的或是行业组织,或是企业。行业认证和第三方认证都是民间的,是收费的商业行为,不会由政府来给企业发证。&rdquo 一位在外资第三方认证机构从业多年的人士介绍,像ISO认证、欧盟对家电的CE认证都是这样,只有中国是政府直接给企业发证,这中间的利益关系无法扯清。  马宇告诉本报记者,由于进出口商检,每年增加企业负担上百亿元,很多行业商检费用占到企业利润的5%左右,并且大大降低了企业运行效率,削弱了我国出口产品的国际竞争力,每年因此影响出口约400亿~600亿美元。  实际上,质检总局的出现有其历史偶然性。质检总局的前身是进出口商品检验局,1997年国务院机构改革时,关于其并入技术监督局或海关总署的传闻很多,但到了1999年底,国务院决定将原属于卫生部辖下的国家卫生检疫局和农业部辖下的国家动植物检疫局,与进出口商品检验局合并,成为出入境检验检疫局,即所谓&ldquo 三检合一&rdquo 。  到2001年中国加入世贸组织之前,按照世贸组织规则一国不能设有两个职能重合的部门,于是进出口商品检验检疫局又合并了质量监督局,统称质量监督检验检疫总局。
  • 《化学品 降解筛选试验 化学需氧量》等化学品国标预审
    全国危险化学品管理标准化技术委员会化学品毒性检测分技术委会(SAC/TC251/SC1)在广州召开了对2008年制定的《化学品 降解筛选试验 化学需氧量》等13项化学品国家标准的预审会议。来自全国危标委、中国人民解放军军事医学科学院毒物药物研究所、中国科学院华南植物园、中山大学、暨南大学、中科院广州地球化学研究所、中国检科院多位专家到会出席了此次会议。  与会专家听取了标准编制单位的汇报,审议了提交的标准初稿,对标准预审稿进行了认真地讨论,并按照GB/T1.1-2009有关规定,就标准编制中的有关问题提出了修改意见和建议。请各标准起草单位按照预审专家组提出的要求和建议进行修改,提交技术委员会正式审定。标准分别是:  一、20080040-T-469化学品危险性分类试验方法 鱼类急性毒性试验  二、20080444-T-469化学品 降解筛选试验 化学需氧量  三、20080446-T-469化学品 生物降解筛选试验 生化需氧量  四、20080451-T-469土壤/污泥吸附常数估测试验 高效液相色谱法(HPLC)  五、20080453-T-469土壤中好氧厌氧转化试验  六、20080890-T-469水 沉积物系统中好氧厌氧转化试验  七、20081305-T-469化学品 快速生物降解性通则  八、20080448-T-469化学品 土壤微生物 碳转化试验  九、20081303-T-469 沉积物-水系统中摇蚊毒性试验 加毒于沉积物的方法  十、20081304-T-469沉积物-水系统中摇蚊毒性试验 加毒于水的方法  十一、20080445-T-469化学品 陆生植物测试 生长活性试验  十二、20080447-T-469化学品 土壤微生物 氮转化试验  十三、20080449-T-469化学品 有机化合物在消化污泥中的厌氧生物降解性 气体产量测定法
  • 国家市场监督管理总局关于对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年8月6日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001309,查询项目信息和反馈意见建议。2023年7月7日相关标准如下:#项目中文名称制修订截止日期1动物和动物产品沙门氏菌检测方法制定2023-08-062工业锅炉技术规范修订2023-08-063工业锅炉综合能效评价技术规范制定2023-08-064工业氯化钙分析方法修订2023-08-065工业碳酸氢钠修订2023-08-066工业用二甲基二氯硅烷修订2023-08-067工业用甲醇修订2023-08-068工业用六次甲基四胺修订2023-08-069锅炉温室气体排放测试与计算方法制定2023-08-0610锅炉温室气体排放监测技术指南制定2023-08-0611甲醇纯度及其微量有机杂质的测定 气相色谱法制定2023-08-0612奶粉定量充填包装机修订2023-08-0613农业拖拉机 机具用液压压力制定2023-08-0614起重机 分级 第3部分:塔式起重机修订2023-08-0615起重机 检查 第3部分:塔式起重机修订2023-08-0616起重机 司机培训 第3部分:塔式起重机修订2023-08-0617气体分析 纯度分析和纯度数据的处理修订2023-08-0618全自动旋转式PET瓶吹瓶机修订2023-08-0619输送带 基于带宽的压陷滚动阻力 技术条件和试验方法制定2023-08-0620输送带 实验室规模的燃烧特性 要求和试验方法修订2023-08-0621水处理剂 阳离子型聚丙烯酰胺修订2023-08-0622塑料 胺类环氧固化剂 伯、仲、叔胺基氮含量的测定制定2023-08-0623塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第1部分:命名系统和分类基础修订2023-08-0624塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第2部分:试样制备和性能测定修订2023-08-0625塑料 标准气候老化试验方法中性能变化的表观活化能测定制定2023-08-0626塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-08-0627塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第2部分:试样制备和性能测定制定2023-08-0628塑料 丙烯腈-丁二烯-苯乙烯 (ABS)模塑和挤出材料 第2部分:试样制备和性能测定修订2023-08-0629塑料 差示扫描量热法(DSC)第8部分:导热系数的测定制定2023-08-0630塑料 弹性指数 熔体弹性性能的测定制定2023-08-0631塑料 导热系数和热扩散系数的测定 第2部分:瞬时平面热源(发热盘)法制定2023-08-0632塑料 动态力学性能的测定 第12部分:非共振压缩振动法制定2023-08-0633塑料 动态力学性能的测定 第2部分:扭摆法制定2023-08-0634塑料 动态力学性能的测定 第3部分:共振弯曲振动法制定2023-08-0635塑料 对火反应 垂直方向试样的火焰蔓延和燃烧产物释放的试验方法制定2023-08-0636塑料 酚醛树脂 分类和试验方法制定2023-08-0637塑料 酚醛树脂 六次甲基四胺含量的测定 凯式定氮法、高氯酸法和盐酸法修订2023-08-0638塑料 酚醛树脂 游离甲醛含量的测定修订2023-08-0639塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第2部分:试样制备和性能测定制定2023-08-0640塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第3部分:选定模塑料的要求制定2023-08-0641塑料 粉状不饱和聚酯模塑料(UP-PMCs)第1部分:命名系统和分类基础制定2023-08-0642塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第1部分:命名系统和分类基础制定2023-08-0643塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第2部分: 试样制备和性能测定制定2023-08-0644塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第3部分:选定模塑料的要求制定2023-08-0645塑料 滑动摩擦和磨损 试验参数制定2023-08-0646塑料 环氧树脂硬化剂和促进剂 酸酐中游离酸的测定制定2023-08-0647塑料 环氧树脂用硬化剂和促进剂 第1部分:命名制定2023-08-0648塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯 (MABS)模塑和挤出材料 第2部分:试样制备和性能测定制定2023-08-0649塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯(MABS) 模塑和挤出材料 第1部分:命名系统和分类基础制定2023-08-0650塑料 聚氨酯生产用多元醇 近红外光谱法测定羟值制定2023-08-0651塑料 聚丙烯(PP)等规指数的测定 低分辨率核磁共振光谱法制定2023-08-0652塑料 聚乙烯(PE)和聚丙烯(PP)树脂中金属含量的测定 电感耦合等离子体发射光谱法制定2023-08-0653塑料 模塑和挤出用热塑性聚氨酯 第3部分:用于区分聚醚型聚氨酯和聚酯型聚氨酯的测定方法制定2023-08-0654塑料 磨料磨损性能的测定 往复线性滑动法制定2023-08-0655塑料 燃烧试验 标准点火源制定2023-08-0656塑料 热固性粉末模塑料(PMCs)试样的制备 第1部分: 一般原理及多用途试样的制备制定2023-08-0657塑料 热固性粉末模塑料(PMCs)试样的制备 第2部分: 小板制定2023-08-0658塑料 生产质量控制 采用单次测量的统计方法制定2023-08-0659塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第2部分:聚氯乙烯树脂修订2023-08-0660塑料 透明材料总透光率的测定 第1部分:单光束仪器制定2023-08-0661塑料 透明材料总透光率的测定 第2部分:双光束仪器制定2023-08-0662塑料 鲜映度的测定制定2023-08-0663塑料 液体环氧树脂 结晶倾向的测定制定2023-08-0664塑料 用氧指数法测定燃烧行为 第4部分:高气体流速试验制定2023-08-0665塑料 中高加载速率(1m/s)下断裂韧性(GIC和KIC)的测定制定2023-08-0666塑料 总透光率和反射率的测定制定2023-08-0667塑料/橡胶 聚合物分散体和橡胶胶乳(天然和合成)测试方法制定2023-08-0668无机化工产品中总碳和总有机碳含量测定通用方法制定2023-08-0669循环冷却水节水技术规范修订2023-08-0670压力管道规范 长输管道修订2023-08-0671医疗保健产品灭菌 辐射 第2部分:建立灭菌剂量修订2023-08-0672医疗保健产品灭菌 辐射 第3部分:开发、确认和常规控制的剂量测量指南修订2023-08-0673育苗纸修订2023-08-0674纸和纸板 耐脂度的测定 第3部分:松节油法制定2023-08-0675纸和纸浆 印刷纸产品的脱墨性试验方法制定2023-08-0676纸浆 丙酮可溶物的测定修订2023-08-06
  • 俄罗斯研制出生物降解复合材料
    p  俄罗斯普列汉诺夫经济大学与俄罗斯科学院伊曼纽尔生化物理研究所的科研人员经过联合研究,研制出聚乙烯和各种植物填充物基生物分解复合材料。这项新技术有助于制造生态无害包装材料,其成分包括各种工业天然废料。研究成果刊登在近期荷兰《聚合物和环境杂志》(Journal of Polymers and the Environment)上。/pp  俄罗斯普列汉诺夫经济大学化学和物理教研室“远景合成材料和技术”实验室的研究人员在混有各种植物填充物的聚乙烯基础上,对生物成分进行了生物分解试验,确定了填充物微粒大小影响聚合物的物理性能及其生物分解速度的合理性,从而生产出聚乙烯及植物填充物基生物分解复合材料。/pp  研究人员将葵花子的外壳、小麦谷糠、木材的锯末制成木质纤维粉颗粒,用亚麻和小麦茎秆的纤维制成颗粒,并将每种颗粒分别与聚乙烯等化学聚合物按一定比例混合,并加入含EVA树脂的添加剂,以促使混合物中各种材料更好地融合。研究组检测了制成的两类复合材料的物理特性、吸水性、高温下降解速度与生物材料颗粒尺寸之间的关系。/pp  实验结果表明,颗粒大的木质纤维粉与聚乙烯等混合制成的复合材料在土壤中自然降解的速度越快,但农作物茎秆纤维制成的颗粒大小与其制成的复合材料降解速度并无明显联系。专家指出,这种复合材料可大大减少环境污染,使用的廉价工业废料重量占成品复合材料总重量的30%到70%,成品复合材料的价格与传统聚合物持平,甚至更低。/pp  全世界目前正在积极开展制造此类复合材料的研究工作。美国研究人员尝试利用洋麻、棉花、香蕉纤维、咖啡壳用作填充物,中国利用竹子,印度利用黄麻,巴西利用甘蔗杆。研究人员面临的主要任务是要把这些填充物与聚合基体有效结合在一起,确保成品复合材料具有高的机械性能,在此条件下生物分解性能得以保持下来,俄罗斯研究人员成功做到了。/p
  • “‘复兴号’运营在即,那些高铁检测中的国产物性测试仪器”征文活动通知
    p  据中国铁路总公司消息,全国铁路将于9月21日实施新的列车运行图。届时,“复兴号”动车组将在京沪高铁率先实现350公里时速运营,我国将成为世界上铁路商业运营速度最高的国家。根据网上售票提前30天预售的规定,昨日(8月23日)已可以购买9月21日的火车票。/pp  strong纯正中国血统/strong——新亮相的“复兴号”动车组,除了寿命更长、能耗更低、乘坐更舒适等优点外,还有两大突出的特点,一是新标准动车组主要采用中国标准,全部254项重要标准中,中国标准高达84%之多 二是整体设计以及车体、转向架、牵引、制动、网络等关键技术都是中国自主研发,具有完全自主知识产权。/pp  strong加快中国高铁“走出去”/strong——“复兴号”的亮相,不仅为中国动车组实现全面自主化、标准化打下坚实基础,而且还将促进中国高速铁路可持续发展,全面系统掌握高速铁路动车组及关键装备的核心技术。/pp  高铁作为复杂的巨系统,任何子系统、设施、设备受自然和人为作用,可能出现病害或故障,因此对高铁、高速铁路等的各项检测就显得尤为重要。近年来,随着我国科学仪器设备行业的快速发展,越来越多国产仪器设备开始在各行各业的检测岗位上充当起重要角色。高铁作为国之重器,更是少不了国产测试仪器设备的身影。/pp  由中国仪器仪表行业协会指导,仪器信息网主办“国产仪器腾飞行动”自2013年启动以来,成功连续举办两届“国产好仪器”。2017年,以“物性测试仪器”为主题,开展的a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/gchyq/Experpoint?id=782"strongspan style="color: rgb(0, 176, 240) "“第三届国产好仪器”/span/strong/a正在火热开展。借此机会,仪器信息网发起span style="color: rgb(255, 0, 0) "strong“‘复兴号’运营在即,那些高铁检测中的国产物性测试仪器”/strong/span征文约稿活动。所有来稿均有机会在仪器信息网资讯相关版块展出,并择优刊载在仪器信息网首页资讯相关版块。/pp strong 一、征稿时间及征稿对象/strong/pp  即日起至2017年9月30日,面向物性测试仪器企业或用户。/pp  strong二、投稿方式/strong/pp  投稿直接发送至邮箱span style="text-decoration: underline color: rgb(0, 176, 240) "yanglz@instrument.com.cn/span,并以“投稿”作为邮件主题重要关键词,以免耽误。/pp  strong三、内容及格式要求/strong/pp  内容主题为“高铁相关检测过程中用到的国产检测仪器设备”,可围绕对应一款或多款仪器设备生产、研发、使用过程进行故事阐述,也可就设备参数、提供解决方案、设备优势等具体介绍。/pp  要求语句通顺,主题明确,体现国产检测设备在高铁检测中的重要作用,促进中国科学仪器产业健康发展。/pp  请用WORD文档提交稿件,稿件长度不得超过2000字,须同时提交撰稿人单位、姓名、联系方式。(发布时可据作者意愿隐去个人信息)/pp  仪器信息网拥有对稿件的编辑修改权。稿件通过审核后,将进行适当的编辑,并体现于仪器信息网资讯栏目。/pp  strong四、咨询热线/strong/pp  010-51654077-8032,杨编辑/p
  • Nature案例分享 | Monolith助力靶向RNA降解剂研究
    前言人类基因组中仅有1%是负责蛋白质编码的基因,其中疾病相关的蛋白大约有 3000个,只有不到700种被目前获批的药物作为靶点,绝大多数疾病相关的蛋白被认为是不可靶向的。针对疾病相关的非编码RNA以及不可成药的蛋白靶点,使用小分子靶向RNA的结构是治疗相关疾病的一种策略。但是小分子的结合并不一定能产生生物活性,有些小分子可能结合在RNA的非功能位点,或者小分子的结合强度不足以影响RNA的生物功能。高分文献解读2023年5月24日,Scripps研究所的Matthew D. Disney教授及其合作者在Nature杂志发表了题为“Programming inactive RNA-binding small molecules into bioactive degraders”的研究论文,利用核糖核酸酶靶向嵌合体技术将非活性小分子重编程为靶向RNA降解剂,成功降解miR-155和癌症靶标MYC、JUN的RNA。https://doi.org/10.1038/s41586-023-06091-8IF: 69.504 Q1研究人员基于二维组合筛选进行RNA和小分子高通量分子间相互作用检测,发现了一些可以与pre-miRNA-155结合的小分子。接下来使用Monolith分子互作仪完成了大量RNA小分子结合表征。研究人员验证了C1仅结合于5′GAU/3′C_A motif,其他RNA凸起或者点突变RNA在相同检测浓度范围内看不到明显的结合信号。在使用Monolith检测时无需固定RNA,仅需带有CY5标记即可直接在溶液中精确表征Kd,检测一对样品仅需10min。图1:pre-miR-155-binder C1结合曲线构建靶向嵌合体小分子结合于pre-miRNA-155的非活性位点,并不会对细胞内的miRNA-155表达水平产生影响。接下来研究人员构建了双功能小分子核糖核酸酶靶向嵌合体,一端与目标RNA结合,另一端招募并激活RNA酶,从而靶向降解目标RNA。改造后的嵌合体成功在细胞内降低miRNA-155的表达水平,并且在细胞和小鼠模型中抑制了三阴乳腺癌。图2:将结合pre-miR-155的惰性结合物转化为活性RIBOTAC降解剂为了测试该方法的适用性,研究人员又构建了靶向MYC和JUN的核糖核酸酶靶向嵌合体。这两种蛋白都是重要的癌症靶点,但都是无序蛋白,被认为是不可成药的。改造后的核糖核酸酶靶向嵌合体获得了生物活性并在细胞内精准地靶向降解各自的靶向RNA,使这些癌蛋白驱动的转录和蛋白组学进程失效。这项研究表明对于由这些常见但具有挑战性的致癌基因驱动的癌症,重编程非活性小分子为靶向RNA降解剂可能会带来新的变革。图3. JUN-RIBOTAC选择性降解JUN mRNA抑制胰腺肿瘤细胞的增殖和迁移Monolith系列分子互作检测仪在此项研究中,NanoTemper的Monolith分子互作检测仪在RNA小分子结合表征的检测中提供了可靠的实验数据。RNA分子量小,体外容易降解,而Monolith系列分子互作仪对分子量无限制,同时10分钟的快速检测可以最大程度避免RNA的降解。Monolith系列分子互作仪覆盖几乎任何分子类型、缓冲液成分或亲和力强弱的检测项目,并且检测不依赖于分子量,能够轻松应对不同类型的分子间相互作用检测难题,助力靶向RNA降解剂研究。NanoTemper微量热泳动分子互作检测仪Monolith-实用应用手册_诺坦普科技(北京)有限公司 (instrument.com.cn)
  • 《降解材料快速鉴定裂解气相色谱质谱法》团体标准成功立项
    近日,中国包装联合会发布《关于下达2022年第三批团体标准计划项目的通知》(中国包联质字[2022]34号),北京市检验检测认证中心所属市产品质量监督检验研究院成功立项《降解材料快速鉴定 裂解气相色谱质谱法》团体标准。  此团体标准中研发的生物降解材料快速鉴定方法将通过热裂解方式进入气相色谱,实现短时间内生物降解材质的鉴定,能够有效弥补堆肥法生物分解率检测周期长的不足,大幅提升检测时效,压缩检验周期,有力带动降解材料行业检测水平发展,为包装产业绿色升级提供坚实有力的技术基础,为推动“双碳”战略发挥积极作用。
  • 《降解材料快速鉴定裂解气相色谱质谱法》团体标准成功立项
    近日,中国包装联合会发布《关于下达2022年第三批团体标准计划项目的通知》(中国包联质字[2022]34号),北京市检验检测认证中心所属市产品质量监督检验研究院成功立项《降解材料快速鉴定 裂解气相色谱质谱法》团体标准。 此团体标准中研发的生物降解材料快速鉴定方法将通过热裂解方式进入气相色谱,实现短时间内生物降解材质的鉴定,能够有效弥补堆肥法生物分解率检测周期长的不足,大幅提升检测时效,压缩检验周期,有力带动降解材料行业检测水平发展,为包装产业绿色升级提供坚实有力的技术基础,为推动“双碳”战略发挥积极作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制