当前位置: 仪器信息网 > 行业主题 > >

智能变形检测器

仪器信息网智能变形检测器专题为您提供2024年最新智能变形检测器价格报价、厂家品牌的相关信息, 包括智能变形检测器参数、型号等,不管是国产,还是进口品牌的智能变形检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能变形检测器相关的耗材配件、试剂标物,还有智能变形检测器相关的最新资讯、资料,以及智能变形检测器相关的解决方案。

智能变形检测器相关的论坛

  • 【求助】检测PCB是不是只能用ECD检测器?

    大侠们好: 请问检测PCB时是不是只能用ECD检测器啊?氢火焰的检测器可以吗?要开展这方面的工作,可是自己实验室没有带ECD检测器的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],只有氢火焰的,好郁闷啊!谢谢热心的朋友告知!

  • FPD检测器是不是只能检测硫和磷

    请问各位专家,气相色谱的FPD检测器,是不是应该,只检测含硫和磷化合物,对别的化合物不响应,也就是里面有别的化合物也不会出峰,但是我们新买的这个(我就不说是哪家了,),FPD检测器却只能测噻吩,而且溶剂(比如正庚烷)居然也出峰,而二苯并噻吩居然不出峰,只出一个溶剂峰,开始我以为只要带FPD检测器的色谱应该都是一样的,所以我怀疑是他们的检测器的问题,我们以前用的那个,不同的硫化物都会出峰,溶剂是不会出峰的,我还没有付钱,真不知该不该退掉,退掉厂家肯定不会乐意。希望专家们解释一下,能不退,我就不退了,对了他们给用的是极性PE色谱柱,谢谢!

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 尼高利的FT-IR200受潮致使检测器和光学窗片变形,应如何维修?

    我公司购买了美国尼高利的红外IR200,但用了三个月后不能正常使用,维修人称因受潮致使检测器和光学窗片变形,请问这红外怎么这么容易坏?我以前的公司买的是岛津公司的FT-IR8201,使用四年,除了开抽湿机和更换硅胶外,没作特别维护,都没有出现什么故障,而这台IR200又开抽湿机和空调反而撑不了一个月检测器彻底坏掉,更可恨的是仪器公司不保修,真是痛苦!!!请问有谁也买了这个东东,怎么样维护成本最低又方便?

  • 【求助】液相色谱的检测器只能检测紫外吗???

    【求助】液相色谱的检测器只能检测紫外吗???

    http://ng1.17img.cn/bbsfiles/images/2013/06/201306142027_445152_2741773_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/06/201306142028_445153_2741773_3.jpg请问一下液相检测器是不是只能检测紫外区波段的,红外是不是不能用的,我实验室在515nm的时候基线走不稳,放大看是很多峰的,在紫外区波长就不会的,到底是什么原因,工程师也不是很明白,请老师们指导一下会是什么原因造成的

  • 揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    这类检测器绝对属于检测器中的独门兵器,平时少有人用,仅限于某某门派或者家族独门使用,比如唐门的暗器,或者小李探花的飞刀,这类兵刃罕见于江湖,不过一旦出手,必定奏效,检测器中的荧光检测器,电导检测器等等就属于这类偏门武器。 平时我们很难见到这些兵刃行走于江湖,但是当它们出手的时候,必定是致命致胜的犀利招数。之所以说他们犀利,是因为他们对于分析某些类型的样品有非常好的效果,但可惜的是,这些样品的种类不多,或者应用的行业十分局限,所以这类兵刃也就很难在茫茫江湖中大显身手了,只有遇到正好相克的对手,才能轻松取胜。这类兵刃中,比较有典型代表性的应当属示差折光检测器(RID)和荧光检测器(FLD)了,另外,就是电性检测器一族。我们来一一说说他们的武功路数吧。=======================================================================1、示差折光检测器(RID)RID,简称示差,这是武林兵刃中最令人唏嘘感慨的一个,本来它是作为第一种被人们使用的兵器出现在武林的,是最早商品化的液相色谱检测器,可是现在沦落到只能偏居各类检测器的一隅,沧海桑田的变化,令人感慨万分。不过,造成这种变化的原因,完全是由于它自身的局限和特点,就像木棒,最早被人类用来当武器,主要是因为它随手可得,而且无需太多使用技巧,对付任何野兽都有效果,不过,随着石器加工的出现,以及后来金属冶炼技术的出现,木棒就逐步退出了作为常用武器的行列,偶尔只能在街头斗殴或者农民起义的场景中发挥一些余热。RID的境遇也差不多,由于这类检测器是检测经过流通池的液体的折光率的变化而产生响应的,所以具有很好的通用性,因为被分析物溶解在流动相中以后,一定会改变流动相的折光率,所以示差检测器可以对所有能进行液相分析的样品产生响应,在过去的年代,大家对分析的要求还很低,不要求灵敏度,不要求分析速度,在加上示差的这种通用性,让他当之无愧的成为了风靡一时的通用型检测器。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607267_2452211_3.jpg这就是示差检测器的基本原理,左边杯子里的是纯水,右边的是浓盐水,可以看到两种溶液对光的折射率是有差异的,示差检测器就是“显示这种差异”的检测器,不过,盐水的浓度要浓到什么程度才能显示出差异呢?答案是:很浓,很浓很浓...http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607265_2452211_3.jpgRID检测器工作原理图不过,随着技术进步,大家对分析的要求越来越高,速度,灵敏度上都有了更严格的要求,RID的弱点就日益凸显出来了:灵敏度低:通常示差检测器能分析的样品浓度都是在几个mg/mL以上的,这对于现在的分析要求来讲,实在是差的太远了。无法运行梯度方法:示差检测器靠得是检测流动相折射率的变化进行检测,如果流动相自己的折射率都一直在变化,示差就无法正常工作,梯度方法由于其中不同流动相的比例在不停变化,折射率也在不停变化,这就让示差检测器无法正常工作了。也是由于这个原因,示差检测器在使用的时候,通常要平衡非常久,保证流动相绝对均匀稳定之后,才能开始分析。另外,一切会影响折射率的因素:温度的变化,混合的均匀性,气泡等等对于示差来讲都是致命的。加上新检测的不断涌现,示差曾经的江湖大佬地位逐渐萎缩,不过,,幸运的是,它还没有完全消亡,由于价格便宜,一些经典的应用分析大家还是会选择示差,比如糖的分析(当然是在不追求灵敏度的情况下)。另外,示差凭着自己的一身底子,也在淡出江湖后给自己找了个适合的工作:体积排阻色谱的检测器,这是一类用于分析大分子聚合的专门技术,由于很多大分子化合物没有紫外吸收,所以就需要用到一个通用的检测器进行分析,而江湖新秀ELSD由于线性响应差的问题,经常会造成测定结果的偏差,而示差检测器正好弥补了ELSD的这项不足;另外就是这类分析当中,不会使用到梯度分析的方法,而且样品的含量都很高,所以正好也不会遇到示差检测器的短板,在加上价格便宜,示差检测顺理成章的就成了这类分析的“标配”。江湖新秀ELSD本来是为了做聚合物分析而产生的,后来确成了市场上的“通用设备”,而原本最通用的RID由于自身条件限制,只能在聚合物等一些很小的领域内继续发挥余热,这种角色和地位的转变,真是令人感触颇多啊…=======================================================================2、荧光检测器(FLD)接下来的一个代表,是荧光检测器(FLD),它的经历远远没有示差检测器那么曲折复杂令人唏嘘,因为,它天生就是被设计用来测定具有荧光响应的化合物的。荧光是什么?是化合物吸收了紫外光能量之后从激发状态变回基态时候以光能释放出来的一部分能量,大概可以理解为某人吃了大餐长了肉,之后用跑步的方式去减肥,那么吃的大餐就以出汗的方式被释放掉了,荧光检测器就是检测这个家伙在跑步过程中到底出了多少汗——即释放了多少强度的荧光的。知道了这个过程,我们可以看看荧光检测器的优势专属性:由于具有荧光响应的物质种类不多,所以,荧光检测器的专属性非常好,只对有荧光特性的物质才产生响应,其他一概不管,极大程度的减小了干扰。通常,多环芳烃这种含有超大共轭体系的化合物都是具有荧光响应的物质。看到这类能诱发密集恐惧症的分子结构,荧光检测器的用武之地就来了http://ng1.17img.cn/bbsfiles/images/2016/08/201608291331_607268_2452211_3.jpg灵敏度:荧光检测器的灵敏度非常高,很多情况下,其在灵敏度上的表现堪比质谱检测器,这是由于荧光检测器是属于发射光检测器,不同于紫外这类吸收光型检测器,由于不受到样品溶液本身等因素的影响,即使有很微量的光发射出来,也可以很好的被检测。除了上面两个最大的优势之外,荧光检测器在线性,流动相兼容性(只要避免一些有荧光淬灭效应的试剂就可以)以及采样频率上也都有不错的表现。那么大家要问,这么NB的检测器,为啥只能混到第三梯度里当个阿猫阿狗,主要的原因就在于,液相测定的应用里有荧光响应的东西,实在是太少了…连5%都占不到,算上大家为了利用荧光检测器的优势将样品衍生为有荧光响应的物质,也大概勉强就能占到10%吧。所以,荧光检测器的招式虽然犀利无比,但是由于钻入了牛角尖,它注定也只能做个江湖山的小配角了。=======================================================================3、电化学和电导检测器最后,我们要说一说电性检测器一家子,这类检测器,可以分为电化学和电导检测器两大类,前者,顾名思义,是利用了被检测化合物的电-化学性质进行检测的,这里面包括了极谱,库伦和安培检测器,利用了物质的氧化还原反应中间的电能变化进行检测,最常见的是安培检测器;后一种主要是利用了离子的电性进行检测,通常用做离子色谱法的专门检测器。比起上面提到的荧光检测器,这类检测器的招式就更加独门了,只对能产生“电”特定的物质才有响应,要不物质本身具有氧化还原特性,要不就是它自己本身就是个离子,其实,要是细算下来,液相能分析的化合物中,有着两类特

  • GC各功能部分维护保养经验(4)-----检测系统(检测器)

    气质中,质谱选择离子位置重要性。如果有重叠,将导致定量错误。俗话说得好:没有不好骑的马,只有骑不好马的骑师。只有把GC当朋友,好好了解它的习性、掌握维护保养要领并坚持保养它才能服服帖帖听你的话。GC主要有载气系统、进样系统、分离系统、检测系统、记录系统共五个主要组成部分,要做好保养首先得先了解GC各部分构造以及可更换或清洁的零部件,这部分知识可参考各种GC产品使用说明书。下面主要就GC各功能部分维护保养经验、要领一一列举:(续)四、检测系统(检测器):就目前而言,GC检测器主要有热导检测器 (TCD)、氢火焰离子化检测器 (FID)、电子捕获检测器 (ECD)、微电子捕获检测器 (mECD)、氮磷检测器 (NPD)、双波长火焰光度检测器(DFPD)、火焰光度检测器 (FPD)、脉冲火焰光度检测器(PFPD)、光离子化检测器(PID)、电导检测器 (ELCD, HALL)、质谱检测器 (MSD)、红外光谱检测器(IRD) 、原子发射检测器 (AED)等等,大多数检测器都需要简单的,但是定期的清洗,以保持最佳性能。对于高灵敏度的检测器尤其如此。没有日常的维护,GC系统性能降低并能引起检测器失效。1)TCD检测器:TCD检测器比较两路气体——纯载气(也称作参比气)和载气加样品组分(也称作柱流出气)的热导率。主要维护工作为热丝维护和热导池维护。热丝维护:TCD的主要维护包括热丝的维护。大多数步骤包括延长热丝寿命或确保热丝不被损坏或污染。氧气的持续存在会通过氧化作用永久地损坏热丝。最常见的氧气来源是载气或尾吹气中较高的氧气含量,或靠近检测器处的泄漏。推荐在载气和尾吹气气路中使用氧气捕集阱以降低氧气水平。正确的柱安装技术和定期检漏(特别是安装色谱柱之后)有助于最大限度地避免泄漏问题的发生。当热丝电流较高时,氧气所引起的损坏将更加严重。化学活性样品组分,如酸和卤代化合物可能损坏热丝。尽可能避免这些化合物将延长热丝寿命。当TCD不使用时,关闭或大大降低热丝电流也可延长热丝寿命。2)NPD检测器:NPD维护主要有铷珠维护、气流、气体纯度、清洗和避免污染等。a.铷珠维护:NPD不很稳定,需要经常维护。许多参数中任何一项很小的变化都会改变NPD的性能特征。铷珠最需要维护。需要经常更换,因此,一个备用的铷珠是必须的。铷珠必须保持干燥,其贮存寿命限制为6个月。当安装新的铷珠时,缓慢升高检测器温度和微铷珠电流。快速加热能到导致铷珠破碎或裂开,尤其当铷珠在潮湿环境中贮存时,更是如此。已经证实,较高的氢气流速和铷珠电流将会缩短铷珠寿命。当NPD不用时,应当降低或关闭氢气流速和铷珠电流,以延长铷珠寿命。在加热的检测器内或当铷珠有电流时,确保某种气流存在。铷珠寿命:为了延长铷珠寿命,可采用下列措施:a) 采用最低的使用调解补偿或铷珠电压b) 运行干净样品并保持进样口/衬管干净以使污染最小c) 不使用时,关闭铷珠电流d) 保持高的检测器温度(320-350℃)e) 在溶剂出峰过程中和运行之间,关闭氢气流速f) 若NPD在高湿度环境中长期不用,检测器中可能积聚水。为了蒸发这些水,将检测器温迪设定至100℃,并保持30min,然后设定检测器温度150℃ ,并保持30minb.气流:氢气、空气及补充气流速应当经常测定。它们可随时间的变化飘移,或在无征兆的情况下改变。每种气体流速必须独立测定以得到准确的数值。NPD对于气体流速的改变十分敏感,保持流速一致是维持性能不变所必需的。c.气体纯度:NPD具有高灵敏度,因此需要很纯的气体(99.999%或更好)。强烈推荐载气及所有检测器气体,包括检测器氢气、空气及尾吹气,都是用水分捕集阱及烃类捕集阱。脏的气体不仅是色谱性能变差,而且将会缩短铷珠寿命。d.清洗和更换:NPD需要进行定期清洗。在大多数情况下,只包括清洗收集极和喷嘴。一般GC都配有刷子和金属丝。刷子用于清扫喷嘴口的颗粒物。不要迫使太粗的金属丝或探针进入喷嘴口,否则喷嘴口将被破坏若喷嘴变形,将会导致灵敏度下降或峰形变差。用刷子清洁之后,可以用超声波清洗各个部件。最终将需要更换喷嘴,因此,强烈推荐在手头有备用的喷嘴。经过一段时间的使用,来自于铷珠或样品的残留物将会积聚在收集极上,并导致基线问题。在更换铷珠2-3次后,应该清洗检测器。每次拆装均会造成金属垫片等的磨损。几次拆装之后(5次或更多次),密封环就可能无效导致基线不稳。更换检测器不见时一定要将检测器温度降低到室温。因为NPD没有任何火焰,其喷嘴不像FID喷嘴那样收集二氧化硅和燃烧烟尘。虽然可以清洗喷嘴,但是简单的用新喷嘴取代脏喷嘴往往更加实用。清洗喷嘴记得用金属丝,并且是清洁的,小心操作,千万不要损坏喷嘴的内部,也可以使用超声波清洗喷嘴。e.污染:使用NPD时还可能产生一些化学问题。因为它是痕量检测器,所以要小心操作,不要污染分析系统。玻璃器皿:必须干净,必须避免使用含磷去污剂,因此,推荐用酸洗涤玻璃器皿,然后用蒸馏水和溶剂冲洗。溶剂:必须检测溶剂纯度。含氯溶剂及硅烷化试剂能降低碱盐的使用寿命,可能时,应该在进样之前除去过量溶剂。其他污染源:含磷泄露探测器,经磷酸处理的柱子和玻璃毛、聚酰亚胺涂覆柱、或含氮固定液能够增加系统的噪音,应该避免使用。3)ECD检测器:ECD检测器含有放射性的63Ni,对人体可能造成一定的伤害,维护需要小心操作,可进行维护操作很少,主要是热清洗。热清洗:若基线噪音增大或输出值异常高,而已经确认问题不是由于GC系统的泄露而致,那么,检测器可能被柱流失污染,应该对检测器进行热清洗(烘烤)。气体纯度:ECD检测器载气及吹扫气要求非常清洁和干燥(99.9995%)。潮气、氧气或其他污染物可能改善灵敏度,但是会损失线性范围。在色谱柱连接到检测器之前,一定要预老化色谱柱。警告:除热清洗外,监测器的拆卸和/或清洗操作只能由经过培训并取得处理放射性物质执照的人员进行。在其他清洗操作中,

  • 揭秘液相色谱检测器中的独门兵器!

    揭秘液相色谱检测器中的独门兵器!

    这类检测器绝对属于检测器中的独门兵器,平时少有人用,仅限于某某门派或者家族独门使用,比如唐门的暗器,或者小李探花的飞刀,这类兵刃罕见于江湖,不过一旦出手,必定奏效,检测器中的荧光检测器,电导检测器等等就属于这类偏门武器。平时我们很难见到这些兵刃行走于江湖,但是当它们出手的时候,必定是致命致胜的犀利招数。之所以说他们犀利,是因为他们对于分析某些类型的样品有非常好的效果,但可惜的是,这些样品的种类不多,或者应用的行业十分局限,所以这类兵刃也就很难在茫茫江湖中大显身手了,只有遇到正好相克的对手,才能轻松取胜。这类兵刃中,比较有典型代表性的应当属示差折光检测器(RID)和荧光检测器(FLD)了,另外,就是电性检测器一族。我们来一一说说他们的武功路数吧。示差折光检测器(RID)RID,简称示差,这是武林兵刃中最令人唏嘘感慨的一个,本来它是作为第一种被人们使用的兵器出现在武林的,是最早商品化的液相色谱检测器,可是现在沦落到只能偏居各类检测器的一隅,沧海桑田的变化,令人感慨万分。不过,造成这种变化的原因,完全是由于它自身的局限和特点,就像木棒,最早被人类用来当武器,主要是因为它随手可得,而且无需太多使用技巧,对付任何野兽都有效果,不过,随着石器加工的出现,以及后来金属冶炼技术的出现,木棒就逐步退出了作为常用武器的行列,偶尔只能在街头斗殴或者农民起义的场景中发挥一些余热。RID的境遇也差不多,由于这类检测器是检测经过流通池的液体的折光率的变化而产生响应的,所以具有很好的通用性,因为被分析物溶解在流动相中以后,一定会改变流动相的折光率,所以示差检测器可以对所有能进行液相分析的样品产生响应,在过去的年代,大家对分析的要求还很低,不要求灵敏度,不要求分析速度,在加上示差的这种通用性,让他当之无愧的成为了风靡一时的通用型检测器。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291403_607272_1610895_3.jpg这就是示差检测器的基本原理,左边杯子里的是纯水,右边的是浓盐水,可以看到两种溶液对光的折射率是有差异的,示差检测器就是“显示这种差异”的检测器,不过,盐水的浓度要浓到什么程度才能显示出差异呢?答案是:很浓,很浓很浓...http://ng1.17img.cn/bbsfiles/images/2016/08/201608291403_607274_1610895_3.jpgRID检测器工作原理图不过,随着技术进步,大家对分析的要求越来越高,速度,灵敏度上都有了更严格的要求,RID的弱点就日益凸显出来了:灵敏度低:通常示差检测器能分析的样品浓度都是在几个mg/mL以上的,这对于现在的分析要求来讲,实在是差的太远了。无法运行梯度方法:示差检测器靠得是检测流动相折射率的变化进行检测,如果流动相自己的折射率都一直在变化,示差就无法正常工作,梯度方法由于其中不同流动相的比例在不停变化,折射率也在不停变化,这就让示差检测器无法正常工作了。也是由于这个原因,示差检测器在使用的时候,通常要平衡非常久,保证流动相绝对均匀稳定之后,才能开始分析。另外,一切会影响折射率的因素:温度的变化,混合的均匀性,气泡等等对于示差来讲都是致命的。加上新检测的不断涌现,示差曾经的江湖大佬地位逐渐萎缩,不过,,幸运的是,它还没有完全消亡,由于价格便宜,一些经典的应用分析大家还是会选择示差,比如糖的分析(当然是在不追求灵敏度的情况下)。另外,示差凭着自己的一身底子,也在淡出江湖后给自己找了个适合的工作:体积排阻色谱的检测器,这是一类用于分析大分子聚合的专门技术,由于很多大分子化合物没有紫外吸收,所以就需要用到一个通用的检测器进行分析,而江湖新秀ELSD由于线性响应差的问题,经常会造成测定结果的偏差,而示差检测器正好弥补了ELSD的这项不足;另外就是这类分析当中,不会使用到梯度分析的方法,而且样品的含量都很高,所以正好也不会遇到示差检测器的短板,在加上价格便宜,示差检测顺理成章的就成了这类分析的“标配”。江湖新秀ELSD本来是为了做聚合物分析而产生的,后来确成了市场上的“通用设备”,而原本最通用的RID由于自身条件限制,只能在聚合物等一些很小的领域内继续发挥余热,这种角色和地位的转变,真是令人感触颇多啊…荧光检测器(FLD)接下来的一个代表,是荧光检测器(FLD),它的经历远远没有示差检测器那么曲折复杂令人唏嘘,因为,它天生就是被设计用来测定具有荧光响应的化合物的。荧光是什么?是化合物吸收了紫外光能量之后从激发状态变回基态时候以光能释放出来的一部分能量,大概可以理解为某人吃了大餐长了肉,之后用跑步的方式去减肥,那么吃的大餐就以出汗的方式被释放掉了,荧光检测器就是检测这个家伙在跑步过程中到底出了多少汗——即释放了多少强度的荧光的。知道了这个过程,我们可以看看荧光检测器的优势专属性:由于具有荧光响应的物质种类不多,所以,荧光检测器的专属性非常好,只对有荧光特性的物质才产生响应,其他一概不管,极大程度的减小了干扰。通常,多环芳烃这种含有超大共轭体系的化合物都是具有荧光响应的物质。看到这类能诱发密集恐惧症的分子结构,荧光检测器的用武之地就来了http://ng1.17img.cn/bbsfiles/images/2016/08/201608291404_607275_1610895_3.jpg灵敏度:荧光检测器的灵敏度非常高,很多情况下,其在灵敏度上的表现堪比质谱检测器,这是由于荧光检测器是属于发射光检测器,不同于紫外这类吸收光型检测器,由于不受到样品溶液本身等因素的影响,即使有很微量的光发射出来,也可以很好的被检测。除了上面两个最大的优势之外,荧光检测器在线性,流动相兼容性(只要避免一些有荧光淬灭效应的试剂就可以)以及采样频率上也都有不错的表现。那么大家要问,这么NB的检测器,为啥只能混到第三梯度里当个阿猫阿狗,主要的原因就在于,液相测定的应用里有荧光响应的东西,实在是太少了…连5%都占不到,算上大家为了利用荧光检测器的优势将样品衍生为有荧光响应的物质,也大概勉强就能占到10%吧。所以,荧光检测器的招式虽然犀利无比,但是由于钻入了牛角尖,它注定也只能做个江湖山的小配角了。电化学和电导检测器最后,我们要说一说电性检测器一家子,这类检测器,可以分为电化学和电导检测器两大类,前者,顾名思义,是利用了被检测化合物的电-化学性质进行检测的,这里面包括了极谱,库伦和安培检测器,利用了物质的氧化还原反应中间的电能变化进行检测,最常见的是安培检测器;后一种主要是利用了离子的电性进行检测,通常用做离子色谱法的专门检测器。比起上面提到的荧光检测器,这类检测器的招式就更加独门了,只对能产生“电”特定的物质才有响应,要不物质本身具有氧化还原特性,要不就是它自己本身就是个离子,其实,要是细算下来,液相能分析的化合物中,有着两类特性的东西也不算很少,至少,不比有荧光的化合物少,不过,绝大部分这些“电性”化合物都可以用江湖大佬紫外/可见检测器来测定,再加上电性检测器的价格也不算便宜,所以,大部分的化合物,大家还都是用大佬类检测器来测定,只有一些极个别的种类能碰到大佬的软肋,而且江湖新秀们也没有手段能对付的时候,大家才会考虑使用这种雪藏已久的秘密武器。至于优势,其实这类检测器在灵敏度上的表现是很不错的,线性也很不错,但是在专属性上,就要差一些了,其实我们刚才也说过,很多的东西(尤其在很多复杂的生物样品中)是具有氧化还原特性的,所以他们会对这类检测器造成一定干扰,使它在性能上打上一些折扣。到这里,关于液相色谱常见的检测器就大概介绍完了,由于篇幅和时间的问题,很难对每种兵刃做更详细的介绍和说明,希望以后可以对每种兵刃单独成篇做详细介绍。另外,江湖复杂,有很多兵刃是我不了解甚至未曾见过的,对于这些独特的兵刃,就需要大家在探索江湖的过程中慢慢的发现和了解了。(来源:液相达人馆)

  • 检测器的老化问题

    使用VARIAN机型的同仁了解一般光室温度在35度,检测器温度降低到-35度,不过设备使用6年后,光室升温慢了,检测器降温效果也差了,现在基本只能到-31度,而且速率慢了,不能达到理想的温度可能导致噪音提高,影响元素的信背比,检测器的老化问题不容忽视,为了降低噪音,大家该如何去考虑?

  • 气相检测器的选择

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器,应该是这两方面均处于最佳状态。一、检测器的正确选择和使用 建立[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。 通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。二、其他条件的优化 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。三、案例举例 腈菌唑(C15H17ClN4),通用名为myclobutanil。在腈菌唑分析检测中,由于其含有1个Cl和4个N,可分别使用ECD和NPD进行检测。其中,ECD灵敏度高,但是其选择性较差,对很多物质都有响应,具体表现为在分析过程中杂峰多,对目标物质干扰大。NPD则属于高选择性检测器,对含N和P的物质具有较高的灵敏度,并且由于其选择性较高,在分析过程中杂峰较少,对目标物的干扰少。 因此,在具体的检测中,使用ECD进行检测,这需要在前处理过程中进行较好的净化,去除杂质;而使用NPD进行检测,则可以简化前处理过程。 采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水果中腈菌唑的残留,分别选用ECD和NPD进行检测。考虑到ECD灵敏度比NPD高,腈菌唑在ECD上的响应高于NPD,应根据需要和具体的仪器配置选择合适的检测器。样品经过前处理以后,分别采用ECD和NPD检测。 以腈菌唑农药已知浓度的标准试样溶液作外标物,通过待测样品与标准样品的峰面积比较,用外标法定量。本方法检出限为:ECD为0.005mg/kg,NPD为0.008mg/kg。

  • 【求助】示差折光检测器的检测原理

    请问哪位高手可以告诉我示差折光检测器的检测原理吗?我们这里的紫外氘灯坏了,现在只能用示差折光检测器检测。我现在要分离分析芳香烃类的化合物 如 苯 甲苯 乙苯 之类的物质 能用示差折光检测器检测到信号吗?

  • 示差检测器

    示差检测器只能用单泵吗?也不可以走梯度?为什么啊?

  • 安捷伦科技公司重新设计了硫和氮化学发光检测器

    2015 年 10 月 1 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布推出其行业领先的硫和氮化学发光检测器的全新设计版本。 炼油厂、石油化工生产商以及食品和饮料公司均依赖于精确的硫和氮检测以满足污染和产品质量领域日趋严格的全球法规要求。 新型 Agilent 8355 硫化学发光检测器和 8255 氮化学发光检测器是能够全面集成气相色谱仪、检测器和软件的唯一一款解决方案,可实现快速可靠的低浓度分析。 安捷伦副总裁兼气相分离事业部总经理 Shanya Kane 表示:“随着硫和氮检测对于上游和下游活动的重要性日益凸显,我们深入研究了自己的金标产品并对其进行了重新设计,使其性能得到了显著提升。 我们的新型硫和氮检测器将能够满足当今时间紧迫且亟需获得准确结果的实验室的要求。” 重新设计的检测器具有出色的灵敏度与特异性,且由于采用减少了 50% 组件的简化燃烧头设计而更易于维护。 过去需要花费一小时的最常见维护程序如今仅需 10 分钟即可完成。 这款新型检测器可以与 Agilent 7890B 气相色谱仪完全集成。 它们还可作为独立单元提供,可与任意品牌气相色谱仪连接。 Agilent 8355 和 8255 标志着硫和氮化学发光检测技术的一次重大改进,使这项技术更加可靠且更易于使用。有人知道改进了哪么?性能变化如何?

  • 智能变送器的应用和原理

    智能变送器现在在生活中的应用越来越广泛了,在目前的油库油罐液位的测量设计中,差压变送器比较流行的是采用雷达液位计或浮球、浮标、钢带式液位计等。雷达液位计虽然精度高但成本也高,而浮标、浮球等液位计,安装、维护比较麻烦。差压式液位计,在锅炉汽包等密闭容器中应用广泛,但测量结果并非真正液位,因此在油罐液位测量的设计鲜有应用。其实油库油罐的精确液位,并不十分重要,用户实际要了解的并不是液位,而是通过测量液位来了解油罐中油品的实际数量(即吨数),从而防止满溢。 智能式变送器是由传感器和微处理器(微机)相结构而成的。它充分利用了微处理器的运算和存储能力,可对传感器的数据进行处理,包括对测量信号的调理(如滤波、放大、A/D转换等)、数据显示、自动校正和自动补偿等, 微处理器是智能式变送器的核心。它不但可以对测量数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节,以使采集数据达到最佳。由于微处理器具有各种软件和硬件功能,因而它可以完成传统变送器难以完成的任务。所以智能式变送器降低了传感器的制造难度,并在很大程主上提高了传感器的性能。目前市场上经营变送器这类产品的仪器仪表供应商还是挺多的,比如北京泰威智达仪表有限公司,安徽华润仪表线缆有限公司,江苏淮安国润仪表有限公司,淮安中翰自动化设备有限公司等。

  • 4种常用的气相色谱检测器的清洗办法?

    1热导检测器TCD的清洗将热导检测器冷却至室温并取下色谱柱,将隔垫置于检测器入口的螺母或者接头组件上,将螺母或接头组件置于检测器接头上并拧紧,确认有尾吹气流,通过隔垫向检测器注射10μL~100μL甲苯、苯、丙酮、十氢萘等溶剂,注射总量至少1mL,完成注射之后允许尾吹气继续流动10min以上,缓慢增加热导池的温度,使其比正常操作温度高20℃~30℃,30min之后将温度降低至正常值,并按照正常情况安装色谱柱。 注意:不能向检测器中注射卤代溶剂! 对于柱流失、样品污染产生沉积物污染热导检测器。引起基线漂移、噪声增加或测试色谱图响应改变时,可以采用热清洗,即通过加热检测器池体以蒸发掉污染物。2氢焰离子化检测器FID的清洗 当沾污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气并将检测器炉温升至120度以上,从进样口先注入20微升左右的蒸馏水,再用几十微升丙酮或氟里昂(Freon113等)溶剂进行清洗。在此温度下保持1-2小时检查基线是否平稳,若仍不满意可重复上述操作或卸下清洗。 当沾污比较严重时,必须卸下清洗。先卸下收集极,正极,喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜。若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用细砂纸(300-400#)打磨,再用适当溶剂(浸泡如甲醇与苯1:1),也可以用超声波清洗,最后用甲醇洗净,放置于烘箱中烘干。注意:勿用含卤素的溶剂(如氯仿、二氯甲烷等)。以免与聚四氟乙烯材料作用,导致噪声增加。 洗净后的各个部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气30分钟,再点火升高检测室温度,最好先在、120度保持数小时之后,再升至工作温度。 3电子捕获检测器ECD的清洗 注意:电子捕获检测器中有放射源,通常为Ni63,因此要特别小心。 先拆开检测器中有放射源箔片,然后用2:1:4的硫酸、硝酸及水溶液洗检测器的金属及聚四氟乙烯部分。当清洗液已干净时,再用蒸馏水清洗,然后用丙酮洗,再置于100度左右的烘箱中烘干。对H3源箔片,先用己烷或戊烷淋洗,绝不能用水洗。废液要用大量水稀释后弃去。对Ni63源更应小心,绝不能与皮肤接触,只能用长镊子操作。先用乙酸乙酯加碳酸钠淋洗或用苯淋洗,再于沸水中浸泡5分钟,取出烘干,装入鉴定器中。装入仪器后通载气30分钟,再升至操作温度,几小时后备用。清洗剩下的废液要用大量水稀释后才能弃去。4氮磷检测器(NPD)的清洗[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]NPD需要进行定期清洗 在大多数情况下,只清洗收集极和喷嘴。一般[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]都配有刷子和金属丝。刷子用于清扫喷嘴口的颗粒物。不要迫使太粗的金属丝或探针进入喷嘴口,否则喷嘴口将被破坏若喷嘴变形,将会导致灵敏度下降或峰形变差。用刷子清洁之后,可以用超声波清洗各个部件。最终将需要更换喷嘴,因此,强烈推荐在手头有备用的喷嘴。经过一段时间的使用,来自于铷珠或样品的残留物将会积聚在收集极上,并导致基线问题。在更换铷珠2-3次后,应该清洗检测器。 每次拆装均会造成金属垫片等的磨损。几次拆装之后(5次或更多次),密封环就可能无效导致基线不稳。更换检测器部件时一定要将检测器温度降低到室温。因为NPD没有任何火焰,其喷嘴不像FID喷嘴那样收集二氧化硅和燃烧烟尘。虽然可以清洗喷嘴,但是简单的用新喷嘴取代脏喷嘴往往更加实用。清洗喷嘴如果用金属丝,要是清洁的,小心操作,千万不要损坏喷嘴的内部,也可以使用超声波清洗喷嘴。

  • 再谈安捷伦故障:FID喷嘴断在检测器底座里。

    型号:6820故障:FID喷嘴断在检测器底座里。事件回放:记得那是2013年7月15日,清洗6820检测器,同时老化柱子,没有注意检测器设置成280度了,清洗后关机,温度没有降下来就安装了,转了几圈后怎么也转不动了,把检测器安装起来。检测器值特别高,发现喷嘴没有安装到位,就想紧一下, 感觉不合适,想把喷嘴拆下来,结果喷嘴拧断了,下半部分还在底座里呢!打电话找售后,只能换底座。n多钱,西部比较贫穷啊,想着喷嘴反正坏了,于是自己动手把底座给拆下来,从后面用钳子卡出小铁管,看能不能卸下来,断了一小节还没有卸下,反倒把管探出去了一毫米,参考网上大侠的经验,找了一个熟人,不是小管出来了一点吗,不好工作了,先在台钳上固定,用大钻头打出了一个平面,然后用3MM的钻头打透,用钢钉砂轮磨出了一个钢针,把残存的剥掉,换了一个喷嘴,悲剧了,上不上啊,最前面的一点丝可能是有一点变形,找丝锥吧,市面上英制的找不到啊,问800和工程师喷嘴丝的参数,上网买吧,可是他们也不清楚啊,不过告诉要不损坏丝,不影响密封,最后找到一家刃具公司,给售货大姐买了一堆饮料,拿着卡尺,库房里查了一个半小时,找到,3/16-32,用卡座小心的,仔细的攻丝,先背面,再正面,喷嘴可以装上,晚上再清洗一下,仔细装吧,耗费了我整整两天时间,一整天都在找丝锥啊。这次给我的教训和前面大侠的一样:1、装的时候一定要把螺纹对好, 2、 操作时一定要把温度降下来。

  • 【讨论】电化学检测器的检测限?

    我们的仪器是戴安的3000 我们用的是电化学检测器测单糖 一般我看标样是从0.1ppm做到10ppm 那我做样的话 浓度是不是超过这个范围就不行了?这个检测器就只能做到10ppm吗?高了行不行?

  • 二次电子检测器

    Leo 1530VP场发射扫描电镜,2001年安装投入使用,现二次电子检测器SE1不能使用了,据说是闪烁体时间长了,现在只能使用In Lens检测器,有时候感觉会不大方便,大家有碰到这种问题吗?能否修复二次电子检测器呀。

  • 【求助】又是ECD检测器的小小问题

    谁能告诉我,接ECD检测器的毛细柱到底拧紧到什么程度才合适。一般按工程师说的拧紧回1/4圈就可以了。但是我怎么拧起来感觉老是还能再紧,我知道拧的紧里面的石磨垫圈会变形,反而不利于密闭。但有时候就发现信号会上升。我又找不到其它的原因。

  • 气相色谱检测器的分类与使用一般原则

    气相色谱检测器的分类与使用一般原则

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器种类很多,性能特征不同,把它们按工作原理来进行分类则会对我们日常检测工作起到一定理顺的作用,今天就和大家聊聊[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器的分类与选择。 从工作原理考虑,检测器是利用组分和载气在物理或化学性能上的差异,来检测组分的存在与含量变化的。这些差异有许多方面:利用组分与载气的物理常数,如热导系数、密度等的差异来检测,称为物理常数检测法;利用组分与载气的光发射、吸收等性能的差异来检测,称为光度学检测法等。上述方法中,不少都是分析化学中比较成熟的检测方法,如光度法、电化学法和质谱法,经过近20年的发展,现已为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法所用。这些装置已成了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中检测器。下图为按检测方法分类的常见检测器。[img=,690,584]http://ng1.17img.cn/bbsfiles/images/2017/09/201709191116_01_2384346_3.png[/img] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法的一部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用;二是其他有关条件的优化。一个好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法,应该是这两方面均处于最佳状态,具体要求为: 1、检测器的正确选择与使用 建立[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法首先要针对不同样品和分析目的,正确选择不同检测器,并使检测器的灵敏度、选择性、线性与线性范围、稳定性等能得到充分发挥,即处于最佳状态。 通常用单检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间与精力,而且可能损坏检测器。 2、其他条件优化 一个良好的检测方法除考虑检测器本身外,还应考虑检测器前后色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以谱带宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。

  • 示差检测器

    示差检测器采集时的单位选择的RIU,报告模板查看噪音,怎么能把单位设置成RIU的,报告模板只能找到单位是Plot Units和mv的

  • 什么是变形监测? 变形监测的基本概念

    近年来变形监测在各行业中受到了越来越多的关注。那么什么是变形监测? 变形监测的基本概念是什么?一、变形是自然界中普遍存在的现象,它指的是在各种荷载作用下,变形体的形状,大小,及位置在时间域和空间中的变化。自然界的变形危害现象很多,例如地震,滑坡,岩崩,地表沉降、溃坝、桥梁建筑坍

  • 气相色谱检测器的清洗

    由于检测器的种类不同,清洗的方法也各有特点。现对常用的四种检测器的清洗过程介绍如下:1.热导检测器(TCD)的清洗将丙酮、乙醚、十氢萘等溶剂装满检测器的测量池,浸泡一段时间(约20min)后倾出,反复进行多次至所倾出的溶液比较干净为止。当选用一种溶剂不能洗净时,可根据玷污物的性质先选用高沸点溶剂进行浸泡清洗,然后再用低沸点溶剂反复清洗。洗净后,加热赶去溶剂,将检测器装回到仪器上,再加热通载气冲洗数小时后,即可使用。2.氢火焰离子化检测器(FD)的清洗当FID玷污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气将检测器恒温箱升至120℃以上。再从进样口中注入20μL左右的蒸馏水,接着再用几十微升乙醇或氟里昂113溶剂进行清洗(用丙酮也可,但应注意,有的色谱仪氢焰室中喷嘴不适宜用丙酮清洗)。在此温度下保持1-2h检查基线是否平稳,若仍不理想,可重复上述操作或按下面方法处理。当玷污比较严重时,须拆下检测器淸洗。方法是先拆下收集极、极化极、喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜 若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用300~400号细砂纸打磨,再用适当溶剂(如1:1的甲醇与苯)进行浸泡。也可用超声波清洗器清洗,最后用甲醇洗净,放置于烘箱中烘干。在意勿用氯仿、二氯甲烷一类的含卤素的溶剂。以免与聚四氟乙烯材料作用,导致噪声增加。清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度玷污。装入仪器后,先通载气半小时,再点火升高检测室温度,最好先在120℃保持几小时之后,再升至工作温度。3.电子捕获检测器(ECD)的清洗首先,电子捕获检测器中有放射源,通常为H[sup]3[/sup]或Ni[sup]63[/sup],因此要特别小心。先拆开检测器,用镊子取下放射源箔片,然后用φ=2:1:4的硫酸/硝酸/水混合溶液清洗检测器的金属及聚四氟乙烯部分,当洗至清洗液已干净时,改用蒸馏水清洗,然后再用丙酮清洗,最后将清洗过的部分置于100℃左右的烘箱中烘干。对H[sup]3[/sup]源箔片,应先用己烷或戊烷淋洗(注意,绝不能用水洗!)。清洗的废液要用大量水稀释后弃去或收集后置放适当的地方。对Ni[sup]63[/sup]源箔片的清洗更应小心。首先,这种箔片绝不能与皮肤接触,只能用长镊子来操作。清洗的方法是先用醋酸乙酯加碳酸钠或用苯淋洗,再放在沸水中浸泡5min,取岀烘干后装入检测器中。检测器装入仪器后要先通载气30min,再升温至操作温度,预热几小时后备用。清洗后的废液要用大量水稀释后才能弃去或收集后置放在适当的地方。4.火焰光度检测器(FPD)的清洗该检测器的清洗可分为火焰喷嘴部分与光路部分。光路部分连同散热片可整体从火焰喷嘴上面拆下 火焰喷嘴部分的清洗与FID清洗很相近。而光路部分的清洗如下所述:火焰光度检测器具有高灵敏度响应的一种必要条件,是光路部分各光学部件的良好透光性。因此当发现检测器灵敏度下降时,可怀疑是光路部件因表面污染而影响透光率。拆卸光路部分之前,必须先切断负高压电源并注意仪器所在处最好无强光照射。首先将固定光电倍增管的螺丝旋下,轻轻拉出光电倍增管,待该管拉出后,立即用不透光的黑布把其包好。然后依次从散热片中取下石英窗及德光片,用无水乙醇对其进行冲洗,如发现表面太脏,也可用细纱布蘸上乙醇、乙醚轻轻擦洗,烘干后按回原位。安装时须注意各连接件与光路外壳的气密性,以防止火焰点燃后所产生的水蒸气由高温区渗入低温区而冷凝。安装后的另一个注意事项是整个光路不能漏光。(三)流量计及阀件的清洗转子流量计是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]气路部分中经常采用的流路监控部件之一。因载气中或多或少会带有水分(如干燥净化不够),会在玻璃管壁吸附一层水雾造成转子跳动。清洗时,要先拆下流量计,旋开螺帽,取下锥形管倒出两端的限位弹簧及转子。此时应注意锥形管的上下方向,大口径的在上侧而小口径的在下面。用乙醇或乙醚冲洗锥形玻璃管,然后用电热吹风机吹干。转子应注意不得接触有机溶剂,否则转子变形之后,整个流量计将报废。擦干净转子后依次将锥管装好,并注意锥形管的上下头位置,锥形管与流量计进出口间的橡胶密封垫圈必须装好,以防流量计漏气。气路中的控制阀件主要有稳压阀、稳流阀和针形阀。清洗这些阀件之前须预先熟悉各种阀件的结构。对于一种新型结构的流路控制阀件在拆卸时应按照操作指南,记下拆装顺序图,并将刚拆下的零件立即放到预先准备好的放置盒中,以免丢失与遗忘。阀件中各零件拆下后,可在无水乙醇中用小毛刷清洗,洗完后用无水乙醇对各部件冲洗,再晾干或用吹风机吹干 之后再按拆装顺序图使各零部件复原。装配时应注意橡胶膜片上通气孔的方向,阀杆与阀座间的配合以及密封垫片的安装。

  • 示差折光检测器

    为什么示差折光检测器不能跑梯度呢,目标物紫外吸收很差,只能用视差检测,现在的问题是峰形和分离不好,时间又长,不知道怎么改善,改梯度可以吗?为什么不能跑梯度呢

  • 示差折光检测器5

    2温度控制:温度控制对RID基线噪音的影响,非常非常大,温度的控制涉及到柱温,检测器温度和环境温度2.1柱温:对于常规的分析,控制柱温有助于得到稳定的保留时间;对于使用RID的方法,还有一个额外的用处—得到更平稳的基线,流动相从色谱柱流入检测器的时候,对于检测器内的温度是有改变的(色谱柱温度和检测器温度设置不同的时候),稳定的控温可以保证这种对于检测器温度变化的影响是一致的,可以说是个“系统误差”,但这本身不减小噪音,只能让噪音水平维持在一个稳定范围上,要减小噪音,就要设置柱温箱的温度让它和检测器的温度尽量接近,以尽可能的减小由于不同温度流动相进入检测器产生的噪音。有些分析方法使用到一些特殊的色谱柱,需要在较高的温度下使用(80摄氏度以上),这个时候使用柱温箱的柱后降温功能就非常重要了,因为示差检测器通常不能维持这么高的工作温度,如果柱温箱不具备降温功能,或者色谱柱长度太大,降温功能会造成色谱柱温度不均匀的时候,可以考虑使用一根比较长的不锈钢管线连接色谱柱出口和检测器并使它尽可能多的暴露在室温下,以充分冷却过热的流动相。

  • 【求助】Agilent 与 waters 荧光检测器的优劣?

    实验室需新购一台荧光检测器,主要用维生素,氨基酸,蛋白质等的日常检测, 因为已经有Agilent1100和waters alliance 系统,检测器只能在这两家间选择,请教各位大师,两家有何优劣,或使用心得?谢谢,

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制