当前位置: 仪器信息网 > 行业主题 > >

雷达流速仪工作原理

仪器信息网雷达流速仪工作原理专题为您提供2024年最新雷达流速仪工作原理价格报价、厂家品牌的相关信息, 包括雷达流速仪工作原理参数、型号等,不管是国产,还是进口品牌的雷达流速仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合雷达流速仪工作原理相关的耗材配件、试剂标物,还有雷达流速仪工作原理相关的最新资讯、资料,以及雷达流速仪工作原理相关的解决方案。

雷达流速仪工作原理相关的资讯

  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 激光雷达 lidar
    激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.
  • 开创热雷达先河:浙大研发高光谱热雷达,为机器感知拓展全新领域
    作为浙大博士毕业生,鲍芳琳用一篇 Nature 封面论文开创了热雷达的先河,为人工智能安上了一双白天夜晚均能看见的“眼睛”。(来源:Nature)这得从他和所在团队提出的新型机器感知方法——HADAR (heat-assisted detection and ranging)说起。HADAR 的中文名是“高光谱热雷达”,也可以简称为“热雷达”。这是一种新颖的传感范式,与现有的微波雷达(radar)、激光雷达(LiDAR)、声纳(sonar)等有着根本性不同。微波雷达、激光雷达与声纳都是主动式传感,它们会主动向环境发射信号。热雷达是被动式传感,会和相机一样“默默”地接收信号。课题组之所以将它取名为雷达,是希望有朝一日热雷达可以像微波雷达和激光雷达一样,在各行各业中取得广泛应用。图 | 鲍芳琳(来源:鲍芳琳)从人类在夜晚没有视力说起当前,人类正处于人工智能蓬勃发展的时代。机器人外卖员、扫地机器人、自动驾驶汽车等已经开始走进人类生活。预计在未来十年,将会有数以百万记的机器人和人类共同生活在地球上。届时,机器人和人类的社会互动将达到一个空前的强度。对于这些机器人来说,它们必须借助传感器来“看”周围的环境,并在获得机器视觉之后做出自主决策。在当前的智能机器市场上,以谷歌以及特斯拉的无人驾驶汽车为例,它们主要采用相机以及激光雷达来获得机器视觉。相机结合机器学习算法的方法,在白天的确表现优异,但是一到夜晚就没法工作。事实上即使在白天,相机也不能很好地区分真正的行人与海报上的人像。另一方面,激光雷达以其高精度而著称,在机器视觉领域有着不可替代的作用。然而,激光雷达只适合单机使用,难以扩展到多人工智能的场景中。当多台激光雷达放在一起,就会出现信号串扰,并对人眼造成安全隐患。由此可见对于即将来临的机器人时代来说,显然需要新一代的传感器,以便不分昼夜地支持多人工智能场景。当然,作为人类的我们早已习惯了白天与黑夜的二分世界。在黑夜看不见东西也是一个再自然不过的现象。那么,想要造出一个不分昼夜的传感器,先得回过头去思考:为什么人的眼睛在黑夜没有视觉能力?这其实是生物演化的结果。几百万年前,人类跟其他陆地动物一样都还是远古海洋生物。海洋几乎只在可见光区域透明。从那时起,人的眼睛就一直围绕着可见光演化。然而,地球一直在自转,始终只有一面朝着太阳。背对太阳的另一面没有可见光,于是就形成了黑夜。而人工智能既没有生物演化,也无需考虑海洋的透明窗口。那么,人工智能的机器视觉可以做到没有昼夜之分吗?鲍芳琳说:“我们的热雷达工作给出了肯定的答案,YES!”在这项工作中,第一步便是利用红外热辐射作为传感信号源。事实上,我们周围的所有物体诸如地面、房子、人体等,都会不分昼夜地发出红外热辐射。利用红外热辐射进行成像,具有一定的夜视能力。然而,热成像有着非常典型的“鬼影效应”。如下图,热成像之下的人脸没有细节,更像个“鬼魂”。图 | 鲍芳琳的热成像照片(来源:鲍芳琳)其实热成像下的其他物体也都一样:缺乏纹理、对比度低,远不如白天我们眼见的景象。那么,“鬼影效应”是怎么产生的?假如能从热成像中恢复纹理细节,使热成像达到类似于白天景象的效果,就能得到真正的夜视吗?鲍芳琳说:“我们的热雷达工作正是解释并克服了‘鬼影效应’,并实现了真正的夜视。热雷达可以在黑夜看到类比于白天的景象,在此基础之上实现不分昼夜的机器感知。”由于热雷达是被动式传感,所以非常适合用于多人工智能场景,有望为未来的人机交互时代提供传感支持,并有望为机器视觉以及人工智能带来突破。可以说,热雷达重新定义了低可见度环境下的机器感知,即将为低可见度下的机器视觉以及成像技术带来革命。审稿人也评价称:“这篇论文将会吸引全球学者来探索热雷达,并将热雷达的框架应用到低可见度情况的各个任务场合。”同时,热雷达毫无疑问将提升自动驾驶以及其他机器辅助技术。随着热雷达的进一步优化,它将开辟一个全被动的、对物理环境有着灵敏传感的机器感知技术。由此可见,热雷达有望重塑我们的未来,它会让我们更加接近一个人机交互的社会。在那里,机器可以通过高灵敏传感为我们提供既关键、又安全的信息。(来源:Nature)具体来说:热雷达最直接的应用就是作为机器人以及无人驾驶汽车的传感器。热雷达采取完全被动式的传感方式,可以感知材料、温度、几何纹理等多维度的物理信息,还能在黑夜看到类似白天的景象,这将为机器人提供全新的机器视觉支持。热雷达也能用于野生动物监测。野生动物大多只在夜间活动。热雷达的夜视能力以及灵敏的温度感知能力,将帮助我们更好地监测珍稀野生动物。热雷达也可用于智能医疗,更好地在夜间监测患者的行为、状态。热雷达还能用于国防领域,由于其具备被动传感的特征,故其具有良好的隐蔽性。日前,相关论文以《热辅助探测和测距》(Heat-assisted detection and ranging)为题发在 Nature,并成为当期封面论文。鲍芳琳是第一作者,美国普渡大学祖宾雅各(Zubin Jacob)担任通讯作者[1]。图 | 相关论文(来源:Nature)“本来也不存在路,路都是人走出来的”事实上,这篇发表于 Nature 封面的论文,一开始起源于鲍芳琳用来练手的一个小课题。2019 年 5 月,为了拓宽个人研究方向,鲍芳琳来到美国普渡大学 Zubin Jacob 组从事博后研究,原本他打算做一个量子多体物理与张量网络的课题。然而等鲍芳琳真正来到普渡大学,Zubin 却并没有成功申请到张量网络的项目。于是,他们打算先花两三个月时间,拿个小课题练练手。一边积累机器学习与张量网络方面的知识,一边申请新的项目。对于这个小课题,Zubin 给鲍芳琳设定了一些相对浅显的内容:用机器学习对红外光谱进行材料分类。不过,Zubin 却给这个小课题取了一个响亮的名字——HADAR(heat-assisted detection and ranging),这便是此次研究的前身。但是,Zubin 和鲍芳琳都没有红外遥感方面的基础。等鲍芳琳掌握了张量网络、神经网络与机器学习方面的必要知识后,鲍芳琳又开始了解领域内的现状,结果发现对于红外光谱进行材料分类这种工作,早在十年前就被做完了,因此并不能作为新的课题。但是,鲍芳琳觉得 HADAR 这个名字有点意思。利用红外辐射进行被动式传感,相比激光雷达而言也有其独特的优势。在 HADAR 这个单词里,D 跟 R 分别代表目标探测与距离测量。如果不像激光雷达那样主动发射信号出去,又该如何测量目标物体的距离呢?最直接的做法就是模拟人眼,用双目视差法测量距离。然而,鲍芳琳发现热成像受到“鬼影效应”影响,普遍都缺乏纹理,这时就很难采用双目视差的方法,这也是热成像传感领域的一个瓶颈。那么,为什么热相机拍照片无法像普通相机那样富含纹理呢?“鬼影效应”又是怎么产生的?以及能否克服“鬼影效应”,实现热红外的目标探测与距离测量?这些问题让鲍芳琳来了兴趣,也让他看到了真正适合 HADAR 这个名字的、完全不同于当初小课题的研究思路与内容。找到新的研究思路之后,他很快就想通了“鬼影效应”的机制与克服办法,由此提出了“TeX 视觉”的概念,这也是热雷达的核心原理。与此同时,Zubin 也极大肯定了鲍芳琳的想法。综合一些其他想法,再加上组里的前期研究基础,他们很快就在一年之内申请到 4 个项目。热雷达项目,则由其中一个 DARPA 项目支持。获得支持之后,他们分析了热雷达的理论极限,也研究了一些基础问题,比如热雷达需要多少个光子才能分辨目标物体的材料、以及测量目标物体的距离等。另一方面,他们也开始着手使用仿真模拟的方法,去证实热雷达的可行性,以及通过户外实验去实现热雷达的原始模型。(来源:Nature)后来,他们把上述研究整理为论文并投稿到 Nature,尽管得到了非常正面的评价,期刊编辑以及审稿人都表示这项工作很有意思。不过,鲍芳琳和导师以及同事基本都是物理或光学背景出身,而审稿人全部来自计算机科学和机器视觉领域。不同背景学者的关注点很不一样。审稿人在点赞理论框架的同时,也希望鲍芳琳等人补充更多的模拟与实验,真正把热雷达做出来,并与现有的激光雷达等进行对比。在长达两年的审稿过程中,鲍芳琳自学了一些计算机图形的基础知识。他还带着几个研究生开发出一个基于光线追迹的计算机图形仿真软件,生成了世界上唯一一个公开的红外高光谱成像的数据库(the HADAR database)。利用这个数据库,他们开始训练机器学习,并对热雷达理论进行数值验证。同时,利用 DARPA 项目组提供的更加优质的实验数据,鲍芳琳开发了一系列算法,在实验上实现了热雷达的所有效果,包括 TeX 视觉、类比于白天的夜视能力、显著优于传统热成像的目标探测与距离测量等。热雷达是一个新概念,也是一个跨领域的工作。虽然目前只是一篇期刊论文,但是鲍芳琳感觉其工作量堪比一个博士学位论文。短短 6 页的 Nature 正文背后,有着将近 100 页的方法与补充材料,涵盖光学信息理论、机器学习算法、实验细节、与当前机器视觉的对比分析等内容。审稿意见以及修改材料也长达 143 页。原本 3 个月的小课题做了 4 年才有了这第一个阶段性成果。鲍芳琳说:“论文合作者之一的 Vaneet Aggarwal 教授曾问我,这么长时间没出成果,你不怕以后找不到工作(教职)吗?说实话,我也担心。不过权衡之下,我觉得‘做好一件事情’比‘做过多件事情’更重要,所以一直在坚持。”而鲍芳琳和同事踏实的论证工作,也得到了审稿人多次的赞赏。与此同时,漫长的研究也并未让鲍芳琳过于担心找工作一事。因为在此前,他曾在其他项目上发表过一些论文。但是,由于热雷达过于前沿,他也曾遇到过一些困惑。其表示:“我本科学的是物理,博士学的是光学。在做热雷达之前,我主要研究量子物理。”在做热雷达之后,曾经有很长一段时间,组里新来的同学问他从事什么研究方向,很多次他都答不上来。尽管热雷达涉及到多个学科的知识,但它本身是一个新生事物,不曾被明确定义过。直到研究临近结束,他才慢慢释然。“本来也不存在路,路都是人走出来的。也许若干年后,热雷达本身就成了一个研究方向。”鲍芳琳总结称。另据悉,在论文审稿期间,鲍芳琳也迎来了女儿 Louisa 的出生。组里同学开玩笑说,她的名字应该叫 HADAR。他继续说道:“这项工作能坚持到最后,离不开亲人们默默的支持。”未来,鲍芳琳会持续推动热雷达相关的研究,直到它像激光雷达等一样在社会上取得广泛的应用。这其实是一条漫长的路,前文提到了鲍芳琳的热成像照片。那么,它对应的热雷达图像在哪里?目前依旧无法得到。这是因为,目前的热雷达仍然处于概念验证的阶段,还有很多理论需要通过进一步的实验加以验证,也有更多应用值得去探索。与此同时,热雷达所使用的高光谱热相机非常笨重、迟缓和昂贵,急需得到进一步的突破。“我计划回国之后在这些方面继续开展研究工作,希望 2024 年初能回到祖国怀抱,我未来的研究方向也会继续围绕量子物理与人工智能开展,热雷达便是其中的一个方向。”他说。参考资料:1.Bao, F., Wang, X., Sureshbabu, S.H. et al. Heat-assisted detection and ranging. Nature 619, 743–748 (2023). https://doi.org/10.1038/s41586-023-06174-6
  • 安徽蓝盾“雷达综合立体监测”助力“金砖蓝”
    金砖国家领导人第九次会晤9月5日在美丽的滨海城市厦门圆满落幕。习近平总书记在金砖领导人晚宴欢迎致辞中用“抬头仰望是清新的蓝,环顾四周是怡人的绿”来形容厦门,这无疑是对奋战在第一线的环保工作者们最好的肯定。为了这一抹“金砖蓝”,有各级政府的不懈付出,有环保工作者的夜以继日,也有像安徽蓝盾光电子这样的环保企业的默默坚守。为全面保障金砖会晤期间厦门市的环境空气质量,安徽蓝盾光电子提供了多台气溶胶激光雷达和大气环境综合立体监测走航车参与此次保障工作。采用雷达组网与走航分析软件,将多台气溶胶激光雷达定点观测数据和走航车的移动观测数据结合,实时监测厦门市气溶胶的三维时空分布、演变趋势和周边环境对本地的影响,为金砖会晤期间的大气污染调控与环境改善提供给力的数据支撑。与此同时,安徽蓝盾光电子成立一支由了资深专家和数据分析工程师等组成的金砖保障团队。保障团队听党指挥、能打胜仗、作风优良,肩负光荣的使命,以饱满的热情做好数据分析和设备运维,以专业的素养为会商指挥中心提供及时、准确、全面的环境监测数据和分析报告。 蓝盾立体探测系列产品介绍 气溶胶激光雷达主要功能探测大气气溶胶的垂直分布和时空演变特征;监测云(云底、云高、云层数)时空演变;探测大气边界层的结构和时空演变;监测颗粒物质量浓度(如PM10等)的空间分布;大气能见度测量;监测大气中不同粒径大小颗粒物的时空分布;识别球形与非球形粒子(卷云、沙尘、烟尘等)分布;判定局地污染和外来污染对本地空气质量的影响度;结合风廓线雷达数据计算颗粒物输送通量。 大气环境综合立体监测走航车主要功能利用走航观测设备获取大气污染剖面数据,绘制大气污染的三维空间分布图,查明污染物的排放源、类型、污染程度;查找污染物可能的输送通道与来源情况,弄清城市之间区域输送的影响;计算污染物的输送通量;对雷达组网监测数据进行补充。 臭氧激光雷达主要原理功能大气臭氧探测激光雷达基于差分吸收原理,利用臭氧的吸收特性测量气体的浓度分布。激光雷达选取两个激光波长,利用待测吸收气体对两个激光波长的吸收差别,确定了两个脉冲激光共同路径上臭氧的浓度,从而实现对臭氧时空分布的探测。差分吸收激光雷达测量的结果具有高时空分辨率,测量精度高等特点。
  • 我国自主研发出商用团雾监测预警雷达
    p  近年来,大雾及团雾成为秋冬季交通事故、特别是高速公路重特大事故的重要元凶。由于团雾具有突发性和局地性,监测预警难度极大。日前,由国内自主研发的一款商用团雾监测预警雷达在安徽合肥面世,对团雾的定位精度可达7.5米。/pp  安徽中凯信息产业股份有限公司研发中心负责人周剑介绍说,这一团雾监测预警雷达由该企业与中科院合肥物质研究所共同合作,历时2年研发成功,其核心探测单元为团雾监测预警与能见度测量合成光学雷达。/pp  “团雾”往往出现在大雾中数十米到上百米的局部范围内,雾气更浓,能见度极低,且不断变化。/pp  “团雾监测预警雷达是基于光学遥感技术开发而来,内部有一个激光光源,在工作时,发射出来的激光照射到大气里,会使颗粒物产生后向散射,而雷达内部的光学望远镜系统会将散射光信号转为电信号,并通过数据采集系统记录分析,从而对团雾进行定位,目前定位精度可达7.5米。”周剑说。/pp  据介绍,这一雷达具有两项特点使其能够满足商用需要:一是能够探测出团雾区与非团雾区的界线以及雾区可见度 二是光源发射和工作原理的改进,大幅降低了成本。目前,该系统的激光雷达自动采集和防护的方法已申请国家发明专利,预计2018年将实现量产。/pp/p
  • 雷达界的"裁判长",中国雷达技术科学家保铮院士逝世
    p style="text-align: center "strongspan style="text-align: justify text-indent: 2em "保铮:雷达界的“裁判长”/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e7ae0a17-5f41-4c7a-9cf1-3852a1ecc1ec.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center text-indent: 2em "保铮/pp style="text-align: justify text-indent: 2em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/fd963c1c-938a-43f8-8095-91760a1c220f.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong求真务实的学术路/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮,1927年12月1日出生于江苏南通,1953年毕业于解放军通信工程学院(现西安电子科技大学,简称西电),师从毕德显先生,是中国第一届雷达毕业生。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在雷达研究领域取得的开拓性研究成果广泛应用于中国大量雷达武器装备中,为中国雷达技术的进步和发展作出了历史性的杰出贡献。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1958年,作为技术骨干,保铮与其他几位教师共同研制出我国第一台气象雷达,经测试证明其主要技术性能与当时国外同类产品相当。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "据西电的雷达专业老教授讲,上世纪70年代初期,部队雷达出现故障,打电话找到在“五七”干校劳动的保铮,要求他帮助解决故障问题,而保铮往往只需对方讲述一下设备的运行情况,就能在电话中告诉指战员问题出在哪里,该如何解决,指战员按照电话里的指导进行操作,故障就真的排除了!/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1973年10月,正在陕西眉县“五七”干校劳动的保铮,突然接到去南京参加四机部召开的一个重要会议的通知。因当时我国民航部门从法国进口了一部航管雷达,虽然对方将雷达卖给我们,但不卖信号处理机,我国只有通过自己研制解决。参加会议的保铮看过国外的方案,认为其设计过于复杂,决定自己设计一台数字动目标显示器,而且要比国外进口的便宜。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1974年末,保铮在几年不搞科研、缺少研究设备的情况下,带领研究小组,悄悄地开始数字动目标显示的研究。经过一年多的艰苦攻关,研制出颇具特色的0.5微秒数字动目标显示器,不久又研制出0.2微秒的数字动目标显示器,推动了我国雷达数字信号处理的发展。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "他与研究组于1982年又研制出我国第一台动目标检测器和自适应天线旁瓣相消系统,1986年研制出可编程动目标检测器。这两项成果当时属于国内首创。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "作为中国雷达界的专家,保铮参与了大量重要雷达装备的技术咨询、方案论证和技术把关工作,他始终本着实事求是、求真务实和对国家高度负责的精神,不回避问题,对国家雷达研究或装备方面提出了大量宝贵的意见和建议,受到了雷达界同行的高度赞誉,被称为最值得尊敬和信赖的“裁判长”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong六十余载育人生涯/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在六十余载的科教生涯中,治学严谨,学术造诣深厚,非常注重理论与实践相结合,为国家培养了一大批优秀科技人才。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1984~1992年,保铮出任西安电子科技大学校长,他勇于担当,真抓实干,狠抓学科建设,调整和拓宽专业结构,加强高层次办学基础,倡导从细微之处体现精神,提出“管理从严,学术搞活”的治校方针,强调科研对培养高层次人才的重要性,调整科研体制,建立了一系列专职科研机构。他根据雷达信号处理发展的新动向,先后选定了一系列新的研究领域,为雷达信号领域培养了一百多名博士研究生和硕士研究生。他总是放手让学生工作,又亲自作细致指导并严格要求。在保铮的博士生中,有3位曾获得全国百篇优秀论文提名奖,4位曾获得过全国百篇优秀论文奖。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“2017年增选的两院院士中,西电78级校友、中国空间技术研究院‘嫦娥五号’总指挥、总设计师杨孟飞当选为中国科学院技术科学部院士,西电2000级(博士)校友、中国工程物理研究院副总工程师范国滨当选为中国工程院工程管理学部院士。现在,西电的院士校友数量已经增加到20位,这些人才的成长是保铮等老前辈、老专家当年潜心培育打下坚实基础的结果。”中国科学院院士、西安电子科技大学党委书记郑晓静介绍说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong期望将雷达创新推向新高度/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "西电校长杨宗凯认为,保铮是学校的一面“旗帜”,深刻诠释着“西电精神”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“‘能有机会用自己掌握的知识为社会作贡献,这种满足感是平常人难以体验的。’保铮这句话激励着我在西电努力前行,也激励着西电人在加快建设一流高校的奋进之路上,开拓创新,在新时代作出西电人的新贡献,继续打造‘西军电’传奇!”郑晓静如是说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“希望我们的师生能够真正做到‘顶天立地’!”保铮话语笃定,“近来学校发展势头强劲,西电人共同努力,学校一定会越来越好!”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“前天我们开学术委员会,保院士还坐着轮椅参加了会议,保院士说他很想去实验室看一看。”谈及保铮与雷达的不解情缘,雷达信号处理国家级重点实验室主任刘宏伟教授感动地说,“在保院士的带领下,几代西电人不懈努力,让这个专门从事新体制雷达和雷达信号处理基础理论研究及关键技术攻关的实验室,成为我国首批建设的国家级重点实验室,跻身雷达信号处理领域世界一流的研究机构。这些都有赖于保院士当年提出的‘顶天立地’思想。”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong来源:《中国科学报》 2018年1月19日3版 /strong/span/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong记者:张行勇 通讯员:吴华/strong/spanbr/br//pp style="text-align: center text-indent: 0em "strong讣 告/strong/pp style="text-align: left text-indent: 2em "strongbr//strongbr/ 中国共产党优秀党员、我国雷达技术领域著名科学家、教育家、中国科学院院士、西安电子科技大学原校长保铮同志,因病医治无效,于2020年10月21日18时45分在西安逝世,享年93岁。br/br/ 保铮同志,江苏南通人,1927年12月出生于江苏南通,1978年9月加入中国共产党,1953年7月毕业于解放军通信工程学院(现西安电子科技大学)雷达系并留校任教,历任西北电讯工程学院(现西安电子科技大学)讲师、副教授、教授、副院长,1984年10月至1992年2月担任西安电子科技大学校长。1991年当选为中国科学院学部委员(院士)。曾任国务院学位委员会学科评议组成员、国家自然科学基金委员会评审组成员、国家杰出青年科学基金委员会委员、陕西省科学技术协会副主席、雷达信号处理国防重点实验室学术委员会主任、信息产业部电子科技委员会顾问、解放军总装备部科技委员会顾问、空军科技发展与人才培养顾问。先后荣获国家级有突出贡献的科技专家、电子部优秀教师、陕西省优秀教师、全国先进教育工作者、五一劳动奖章、全国高校先进科技工作者、光华科技基金特等奖、何梁何利基金科学与技术进步奖、陕西省教学成果特等奖,2019年被授予“庆祝中华人民共和国成立70周年纪念章”。br/br/ 保铮同志丧事从简,遗体告别仪式定于2020年10月25日上午9点在西安殡仪馆咸宁厅举行。/ppbr/br//pp style="text-align: right text-indent: 0em "span style="font-size: 14px "西安电子科技大学保铮院士治丧工作小组br/br/二〇二〇年十月二十一日br/br/联系地址:西安电子科技大学党政办公室 710126br/br/联系电话:029—81891820,联系人:李明/span/p
  • 区域颗粒物时空立体分布雷达组网监测
    p■ 系统概述/pp 近年来,对于环境质量检测的联网综合监测系统的需求越来越迫切,这一类联网综合测量系统的特点是利用分布在区域内相关的多个单点测量设备的数据,再结合相关气象及环境信息数据,使用一定的算法分析模型计算出区域内各空间位置的环境数据从而对区域内总体的环境质量情况有一个明确的掌握和了解,进而还可以预算出未来一段时间内的区域环境质量情况变化做到对环境质量的提前预警预报。激光雷达设备由于其能向一定程度的高空探测环境数据,所以如果使用相关算法分析模型利用激光雷达测量的高度空间的环境测量数据作为基础数据来进行计算繁衍,就可以在很大程度上进行区域内空间立体环境质量数据的监测和预测,对于整个区域的立体空间环境监测和预报有着很大的现实意义,比如一个城市区域或一个工业园区空间立体监测等。/ppimg title="640.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/53deeae0-078b-4d52-a0a2-cc8b1303ed58.jpg"//pp■ 系统功能说明/pp(1) 雷达组网解决的问题/pp※ 空间立体评价区域环境空气质量:区域污染的时空立体演变情况、区域污染的生消过程、典型区域污染过程的解析、区域污染的主要来源等;/pp※ 区域污染贡献率问题:区域污染输送通量计算,本地污染及外来污染所占的贡献率;/pp※ 区域环境空气质量预警预测:通过相应的计算模型结合环境气象信息来预测未来一段时间内空间立体区域的环境空气质量变化;/pp(2)雷达组网系统主要有四个部分的功能/pp※ 区域内联网的雷达设备信息及状态监视/pp※ 区域内联网的各雷达单点设备数据收集与显示/pp※ 区域立体空间雷达数据的由点到面的同化繁衍计算/pp※ 区域立体空间雷达数据的未来发展预测数据的计算/pp /pp(3) 雷达组网系统中实时雷达测量数据主要有以下类型/pp※ 355消光系数/pp※ 532消光系数/pp※ 退偏振度/pp※ 波长指数/pp※ 颗粒物浓度空间分布/pp※ 边界层/pp※ 能见度/pp※ 光学厚度/pp※ 污染物分布/pp※ 污染物输送通量/pp(4) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的同化繁衍计算,可以在系统中进行立体空间雷达数据的展示/pp style="TEXT-ALIGN: center"img title="6401.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/f30a694d-a87f-4f6b-b39e-6c3efec20b9b.jpg"//pp※ 各高度水平层面的雷达数据繁衍计算/pp※ 各垂直剖面的的雷达数据数据繁衍计算/pp(5) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的未来一段时间的预测计算,可以对未来的空气质量的变化趋势进行提前预警预测/ppbr//pp 安徽蓝盾LGJ-01激光雷达系统以激光为光源,运用空间遥感技术原理,利用其发射的激光与大气的相互作用,产生包含气体分子和气溶胶粒子有关信息的辐射信号,再结合相关反演算法就可以从中得到关于气体分子和气溶胶粒子的信息。/pp 本激光雷达同时发射出355nm和532nm激光,利用接收望远镜收集气溶胶、沙尘暴粒子等对激光的后向散射信号,通过接收355nm信号以及532nm的2路消偏信号,分析其回波强度和消偏振特性,可解析出大气中粒子的属性,识别沙尘暴粒子(非球形)及气溶胶粒子的垂直廓线信息。/pp 该款雷达可置于室内、室外环境(配置箱体)。/pp 适用于:环境监测、气象探测、相关研究单位。/pp style="TEXT-ALIGN: center"img style="WIDTH: 1px HEIGHT: 1px" title="6402.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/04c46d7b-7571-4eba-acc3-91b50e2c18ac.jpg"/img style="WIDTH: 357px HEIGHT: 327px" title="6402.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/22393891-a47c-4092-b5ef-91ac27bb9f77.jpg"//ppbr//pp关注微信公众号“蓝盾环保”请扫描以下二维码,为您提供及时的环保行业动态信息和解决方案!/pp style="TEXT-ALIGN: center"img style="WIDTH: 307px HEIGHT: 244px" title="6403.webp.jpg" src="http://img1.17img.cn/17img/images/201601/uepic/3f91991c-3402-4a9a-92a0-fdc9f5958ad4.jpg"//p
  • 北京是卓科技发布激光雷达监测无人机新品
    无人机自动分析识别检测系统方案一、方案背景低空无人机(Unmanned Aerial Vehicle缩写 UAV )也称为无人航空器或遥控驾驶航空器,是一种由无线电遥控设备控制,或由预编程序操纵的非载人飞行器。无人机具有机动灵活的特点,它体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。除了具有广阔的军事应用前景外,用无人机替代有人飞机执行高风险任务,也是当今国际航天领域一个重要发展方向。特别是在近几年国际局部战争中无人机被大量地使用。对无人机的监管存在盲区,无人机的大量使用更是给公共安全带来隐患。本来是为合法用途使用的无人机越来越多的被用于犯罪目的。公众已经日渐强烈的意识到了无人机可能造成的危害。无人机能窥探隐私/技术;无人机能影响民航 – 接近撞机;无人机可能会出现在敏感地区、关键位置和政府设施区域;无人机甚至能自动射击… … 最近两年,全国已发生多起无人机空中逼停飞机事件,成为民航飞行的“隐形杀shou”。2013年底,北京一家公司在没航拍资质、未申请空域的情况下航空测绘,造成多架次民航飞机避让延误。2017年浙江萧山机场、绵阳机场,此次成都机场都是由于不明无人机,导致了数百架飞机延误,数万人滞留,给国家和人民带来的损失是数以亿计的。二、无人机监测与反制现状2.1无人机控制链路介绍无人机如何控制呢?无人机使用无线链路进行远程控制和视频数据回传,超过90% 的无人机使用ISM频段 (2.4GHz) 操作,包括跳频, Wi-Fi等, 其中控制链路采用:常用的频率为 ISM 频段: 2.4 GHz, 5.8 GHz很少使用: 433 MHz, 比2.4GHz传播距离更远少量使用过时的遥控频段: 27 MHz, 35 MHz, 72 MHz (使用 PCM 或模拟编码),这类无人机逐步消失了。无人机根据价格水平有不同的控制方式,比如一些低成本的无人机采用蓝牙技术(ISM2.4GHz);大部分无人机采用Wi-Fi或跳频(ISM2.4GHz);也有部分高端无人机采用基于预设路径的卫星导航。 2.2无人机主要监控方式各国对无人机的监控主要的手段分为两种方式:行政监管、技术防范。2.2.1行政监管:日本为了加强无人机管理,实施了新的《航空法》,规定人口集中的地区一律禁止飞无人机,防止无人机引发事故或被用于犯罪,违者将处以50万日元的罚款;英国对无人机使用也作出规定,航空法第166条第三款规定,小型无人机操作员必须保持时时刻刻能看见无人机,对无人机能够完全掌控,在飞行时应与其它飞行器、人群、车辆以及建筑保持一定的距离,以免发生碰撞事故。2.2.2技术防范从技术角度来说。目前,国外无人机反制技术大致有信号干扰、雷达探测、激光炮击落、综合型技术等几大类。(1)信号干扰:无人机工作时需要知道自己的精确位置,但无人机自身无法获得足够精确坐标数据,因此,无人机上通过安装GPS信号接收机,采用GPS卫星导航系统与惯性导航系统相结合的方式进行飞行控制。信号干扰技术是通过影响无人机的GPS信号接收机,使其只能依靠基于陀螺仪的惯性导航系统,而无法获得足够精确的自身坐标数据。美国DroneDefender电波枪打击技术美国俄亥俄州非盈利开发机构“巴特尔”(Batfeoe)最近推出了一种DroneDefender反无人机设备。DroneDefender设备前端上部安装了一根白色的杆状天线。这种设备采用非破坏性技术,是首款能移动、精准、快速阻止可疑无人机靠近的专用设备。用户只需将其指向空中的无人机,扣下扳机,就可以将目标“击落”。该设备只对实时遥控型无人机或依靠GPS导航的无人机有效(如常见的四轴飞行器和六轴飞行器),打击范围约400米;欧洲空客集团反无人机系统,空中客车防务及航天公司研发了一种反无人机系统,采用干扰技术对目标信号的频率进行干扰,而不会影响到周围其他频率的信号。该系统可远距离侦察在争议地区飞行的非法无人机并实施打击,同时又能尽可能地减少对其他物体的影响。该系统具备信号分析技术和干扰功能,并配有雷达、红外相机和定向仪,可以侦察到5至10公里范围内的无人机,还可对无人机的威胁性做出判断。基于庞大的信息库信息,该系统还可以对无人机的信号进行分析,一旦发现问题,系统就会通过干扰台切断无人机与其操作人员之间的联系,然后定向仪会追踪到无人机操作人员的具体位置,便于实施抓捕行动。(2)雷达探测:瑞典“长颈鹿”雷达系统,据美国H JS Jane’s国防、安全情报网站2015年9月1 6日报道,瑞典萨博公司在苏格兰的西弗瑞格(WestFreuqh)靶场演示验证了其“长颈鹿”捷变多波束(AMB)雷达系统对低空、低速小型目标的探测能力。此次试验名为“布里斯托15”,显示了该雷达对低空、低速小型目标强大的探测能力(ELSS),该雷达在执行全部空中监视任务的同时,能够执行反无人飞机系统(UAS)作战任务。在“布里斯托15”试验中,雷达散射截面精确到0.001平方米,增强了对低空、低速小型目标的探测能力,可自动识别低空、低速小型目标并对其进行跟踪,业余爱好者操作低速、小型四轴无人飞机系统。“长颈鹿”捷变多波束雷达系统属于地面和海洋的二维或三维G/H波段被动电子扫描阵列雷达家族系列,可在提供海岸监视能力的同时,对固定翼飞机、直升机、地面目标、干扰机和弹道目标进行分类与跟踪;意大利“猎鹰盾”系统2015年9月15日,在英国伦敦举办的英国军警装备展DSEI上,意大利芬梅卡尼卡集团SeIex ES公司展示了其研发的“猎鹰盾”无人机系统。该系统能够定位、辨识和控制对公共安全或是私人构成威胁的远程微型或者小型无人机,即所谓的“流氓无人机”。该公司称,这种设备的市场价值可能达数亿英镑;“猎鹰盾”系统利用摄像机、雷达和先进的电子设备监控无人机接收和传输的信号,从而对其进行追踪并确定其类型。一旦锁定目标,“猎鹰盾”就会利用其专有技术控制无人机,甚至将其坠毁。与其他企业利用电子战击毁无人机的系统相比,“猎鹰盾”优势在于,在精准击落“流氓”无人机的同时,可以有效避免对周边建筑物等环境造成伤害。此外,发送无线电信号控制无人机时,还不会妨碍紧急救援服务甚至移动通讯等其他重要信号的传输;墨西哥JAMMER公司防卫系统墨西哥JAMMER公司开发了Tamce Bloqueador Direccional Anti-Drone防卫系统,用于家庭防空。系统的干扰功率为20瓦,可压制几百毫瓦的无人机。启动开关后,干扰器可以干扰2.4G和5.8G信号,这对于大部分消费级无人机来说,遥控信号和图传信号都会丢失,丢失了信号后无人机只能返航或者原地降落;美国Drone Shield公司监测系统美国无人机探测系统制造商Drone Shield研发出了利用雷达或麦克风来监测无人机的技术。它内置了Raspberry Pi、信号处理器、麦克风、分析软件、无人机声音特性的数据库,通过监听周围环境的声音,通过声音对比确定是否有无人机。当有无人机在附近时,通过邮件或者短信发出警报。从原理上来看,预警技术并不难,因此监控的准确性和低误报率就非常关键,在这方面,Drone Shield拥有自己的专利技术。据悉,美国当局已经利用这种系统来为监狱、体育赛事和政府大楼提供安保。(3)综合型技术:英国反无人机防御系统AUDS,2015年10月,英国广播公司、美国国土安全新闻网、俄罗斯卫星网等网站分别对英国完全集成的“反无人机防御系统(AUDS)”进行报道。该系统俗称电磁干扰射线枪,由英国的三家防务技术公司(Blighter Surveillance Systems,Chess Dynamics和Enterprise Control Systems公司)联合研发,可以探测、跟踪并摧毁小型和大型无人机。该系统可以全天24小时开机,全自动运行。首先使用雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪,随后定向射频干扰系统开始工作,发射定向的大功率干扰射频,干扰无人机自控系统,切断无人机与后方控制中心之间的数据联接或无线电通讯,致使无人机无法自主飞行,导致坠毁、迫降或者返航。AUDS系统的售价约为100万美元,可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。该系统由三个子系统和一套总控设备组成。三个子系统分别是雷达探测系统、动态定位和视频追踪系统、定向射频干扰装置。雷达探测系统由Blighter公司研制,据称可探测反射面积0.01平方米大小的目标,最远探测距离可达8公里,并通过选配不同的天线来实现俯仰角度和水平旋转角度的变化;动态定位和视频追踪系统由CHESS dynamic公司开发,由一个可以旋转的机械平台加上高分辨的摄像机和热成像相机组成,以实现视频追踪,可以选装光学干扰装置发出高密度光束;定向射频干扰装置由Enterprise Control Systems公司研发,它使用高增益四频段天线来对准目标发出电波,可以使在C2频道下工作的无线遥控装置失灵,无法接收到指令的无人机只能盘旋不动,直到电力耗尽坠毁。报道称,该系统于2015年5月首次公开亮相,并在欧洲(如英国、法国)和北美(如美国)野外与城市等不同地形环境中进行了测试;泰利斯公司组合装备泰利斯公司正在推出一种由雷达、声像探测器、定向仪、射频和视频定位器和激光扫描装置组成的组合设备。对非法无人机的压制任务由动能杀伤武器完成,也可以通过激光干扰、选择性干扰、GPS电子欺骗、电磁脉冲来完成,还可以用另外一架装备干扰设备的无人机进行拦截。泰利斯公司已经针对4旋翼无人机和其他小型无人机进行过反无人机的技术试验。(4)其他技术:无线电控制采用接收器追踪并确定无人机,使用足够强大的电子信号照射无人机,夺取其无线电控制权。操作过程中,一旦无人机不能接收信号,就会坠毁,通过借助阻截无人机使用的传输代码,进而控制无人机,令其返航。美国联邦航空管理局(FAA) 与信息技术公司CACI推出了SkyTracker系统,该系统可在敏感地带如机场周围构建电子边界线。CACI表示,该系统可利用无人机无线电线路来识别和定位在禁飞或受保护空域内飞行的无人机,还可定位无人机的操纵人员。CACI网站提到:“CACI系统可精确定位黑飞无人机,并可将同一空域内其它无人机与此区别出来。”CACI称,SkyTracker还可有效地阻止指定无人机;微波干扰,微波武器又叫射频武器,这种武器可利用高能量的电磁波辐射去攻击和毁伤目标。与激光武器相比,微波武器作用距离远,受气候影响小,火力控制方便。军事专家们预测,随着新技术、新材料的不断发展,微波武器将会发挥越来越多的作用。俄罗斯联合仪表制造集团已制成超高频率微波炮,可用于帮助地对空导弹“山毛榉”攻击无人机及高精度武器电子设备。微波炮射程超过10公里,将其安装在特殊平台上可实现360度全方位防御。该款武器除了可搭配“山毛榉”地对空导弹用于防空外,还可检测俄军电子系统抗微波辐射能力;声波干扰,声波干扰技术就是利用声波使陀螺仪发生共振,输出错误信息,从而导致无人机坠落。研究人员发现,如果声音足够强(例如达到140分贝),声波可以击落40米外的无人机。韩国2015年8月公开了一种利用声波干扰陀螺仪击落无人机的技术。研究人员给无人机接上非常小的商用扬声器,扬声器距离陀螺仪4英寸(约10厘米)左右,然后通过笔记本电脑无线控制扬声器发声。当发出与陀螺仪匹配的噪声时,一架本来正常飞行的无人机会忽然从空中坠落。当然,在真实的攻击场景中是不可能把扬声器接到无人机上的,这种方法还不是真正有效的反无人机措施。目前存在的难点在于瞄准和跟踪,未来可能与跟踪雷达配合使用。三、系统实现 目前国内低慢小目标探测需求突现,其中蕴藏的巨大市场需求。本系统依托激光雷达技术,多无人机进行实时在线监测。该系统可以全天24小时开机,全自动运行。首先使用激光雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪。 整套系统由三部分组成:激光雷达探测系统、旋转云台、动态定位和视频追踪系统、定向射频干扰系统。光电设备,先由激光雷达,最远探测距离可达20公里,最小分辨率可达0.01m2大小的目标,发现目标后,动态视频追踪系统根据目标距离自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,提高系统检测的准确性及无人机的移动趋势;定向射频干扰系统根据无人机运行轨迹及距离,定向发射射频干扰或捕捉网等手段,对无人机进行干扰及捕捉。系统可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。四、优势比较到目前为止,大多数雷达都是所谓的脉冲雷达。例如,这适用于几乎所有用于空中交通管制的雷达。脉冲雷达以固定的间隔发射短而强大的脉冲,并且该脉冲的一些被物体反射。通过测量发送和接收反射信号之间的时间,可以计算到物体的距离。脉冲雷达系统擅长检测大面积天空内的物体,并确定与物体的距离。另一方面,它们不太适合确定物体的速度和方向。多普勒雷达系统传输恒定信号。利用多普勒效应,当发射它的物体远离观察者时,信号的波长增加,而当物体向观察者移动时,信号的波长减小。正是这种效应导致救护车警报器在驶过后发出不同的声音。物体移动得越快,效果越强。因此,多普勒雷达可以基于从物体反弹回来的信号波长的变化以非常高的精度确定物体的速度。还可以以非常高的精度确定物体的运动方向。多普勒雷达系统提供了有关被检测物体的更多信息。另一方面,教科书会说多普勒雷达在覆盖大片天空和确定物体距离方面不如脉冲雷达。无人机的飞行速度非常慢。这使得它们难以使用脉冲雷达进行检测,也不适用于多普勒雷达系统。因为即使整个无人机移动缓慢,转子也会快速移动,并在多普勒雷达中产生独特的信号。“除了它们的小尺寸以及它们可以飞得极低的事实之外,无人机还带来了其他一些挑战。无人机尤其具有极强的机动性。熟练的操作员可以利用它来将无人机隐藏在不相关的物体之间,如树木,建筑物,鸟类等。这需要雷达集成的光学系统。通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时更加可行。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360°全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。五、系统结构图 创新点:通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时进行区分。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360° 全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。
  • 上海光机所合成孔径激光成像雷达技术研究取得突破性进展
    中科院上海光机所空间激光通信及检验技术重点实验室在重大项目的支持下,自2008年开始合成孔径激光成像雷达技术的研究,目前已经取得阶段性突破进展。已实现实验室尺度缩小合成孔径激光成像雷达装置的二维目标的同时距离向和方位向的成像,实现了合成孔径激光雷达的光学、光电子学和计算机处理的全过程贯通。这是世界上第三个成功的实验报道。合成孔径激光成像雷达(也称光学SAR)是在远距离达到厘米量级成像分辨率的唯一光学手段,在空间领域有着重大应用前景。其特点包括:1. 激光主动成像,适合全天时使用,具有接近光学可见成像的高视觉性,成像速度快;2. 雷达应用范围广泛,适合于空间对地超分辨率观察,空间远程活动目标超分辨率成像等应用。美国已于2002年取得了合成孔径激光成像雷达的核心关键技术突破,实现了实验室尺度缩小装置的合成孔径激光二维成像,并在此基础上,2006年,由雷声公司和诺格公司分别研制成功机载合成孔径激光成像雷达样机,进行了多种野外试验,目前已向应用拓展。与美国实验采用的光纤光学结构不同,上海光机所实验系统采用了空间光学结构,虽然增加了实验难度,但将更具有实用化前景。同时,由于光学合成孔径成像雷达与微波合成孔径雷达在实施方法上的根本不同,无法直接移植微波雷达的概念和原理,这也使得光学合成孔径成像雷达的研究具有很高的挑战性。上海光机所空间激光通信及检验技术重点实验室在研究过程中,创造性地提出并解决了一系列的空间域光学科学问题,时间域光学科学问题和统计光学科学问题,也相应系统性地发展了总体设计、光学天线、接收/发射光电子系统和图像处理等关键技术,为实现实验室尺度缩小合成孔径激光成像雷达,以及未来的样机装置奠定了坚实基础。本项目成果目前在国内起着引领作用,项目的基础研究成果特别是空间域光学问题上的研究具有高度创新性,填补了国际研究的空白,并迅速得到了国际同行的肯定。
  • 机载双频激光雷达重大仪器专项启动
    2月28日,国家重大科学仪器设备开发专项――机载双频激光雷达产品研发和应用项目启动会在上海光机所溢智厅举行。会议由陈卫标副所长主持。  该项目由上海大恒光学精密机械有限公司牵头组织,上海光机所提供技术支持并承担激光探测组件开发,杭州中科天维科技有限公司负责整机集成和开发,合作单位还包括:国家海洋局第二海洋研究所、北京林业大学、中科院遥感与数字地球研究所及山东科技大学等。为保证项目的顺利进行,项目成立了以李德仁院士和潘德炉院士为首的技术委员会,同时还成立了用户委员会。  与会专家听取了陈卫标的项目介绍,牵头单位及各合作单位对技术方案的介绍,并重点围绕项目开展、产品的市场化与推广等方面展开了热烈的讨论,提出了建议与意见。最后,项目技术委员会专家一致认为:该项目已具备启动和实施的条件,希望项目承担单位尽快完善项目的总体设计方案,以推动项目的顺利开展。希望瞄准激光雷达的国产化目标,以激光雷达系列产品的研发和市场推广为主线,推动新产品的示范应用及产业化工作。(
  • 国内首台激光雷达能见度仪研制成功
    6月12日下午,中科院合肥技术转移中心在安徽循环经济技术工程院向省交通厅、省交通投资集团、高速公路总公司、省公路勘察设计院、皖通科技等相关部门领导和专家,专题报告高速公路团雾全天候实时监测预警系统核心装备激光雷达能见度仪。  随着我国经济的持续增长,高速公路建设得到空前的发展。截止2009年,我国高速公路通车总里程已达到6.03万公里,居世界第二位。然而高速公路上的交通事故也极大地威胁着人民的生命财产安全,影响着社会经济的和谐发展。特别是高速公路上的突发性团雾引起多车连续追尾、群死群伤重特大交通事故,在近几年来尤为突出。  安徽循环经济技术工程院依托中科院安徽光机所,在多年科研积淀的基础上,瞄准公共安全的重大需求,在国内开发成功的首台激光雷达能见度仪,是为交通行业安全生产和人民群众的安全出行,提供了有效技术支撑的重大突破。该仪器的能见度监控范围可达50米到5000米,可实现每1~10分钟输出一组能见度值 可与高速公路现有的通讯系统实现无线和有线方式互联互通,达到全天候实时监测、预警。具有体积小、精度高、结构紧凑、使用方便,性价比高的特点。  会上,交通行业与会各位领导和专家对激光雷达能见度仪的技术先进性、应用价值和前景给予了高度评价。省交通厅有关部门负责人指出,激光雷达能见度仪及安全预警系统的研制成功,对我省乃至全国交通行业产生重大影响,希望该仪器能为省交通厅正在联合气象、安检、公安等部门计划筹建的交通安全气象监测预警系统和应急指挥中心作出贡献。他表示,将尽快协调有关单位在安徽省多雾、团雾易发地带的路段进行实地试验运行,为高速公路团雾全天候实时监测预警系统建立和应用,提供经验。  省科技厅任鸣副厅长指出,一项科技成果是否具有生命力取决于市场的需求和社会的需求。激光雷达能见度仪正是满足了高速公路安全预警系统的重大需求,具有非常的应用前景。希望安徽循环经济技术工程院加强与交通行业有关部门的配合,做好产业化的前期工作,并紧紧抓住合肥公共安全产业发展的良好机遇,强力推进该项高科技成果的产业化,省科技厅将与交通厅共同推进这项具有自主知识产权和全省自主创新特色的好项目,为道路交通安全提供有力科技支撑。  (安徽省科技厅)
  • 刘文清院士谈激光雷达在环境监测中的应用——访中科院安徽光学精密机械研究所所长刘文清院士
    激光雷达的研究起源于上世纪60年代末,起初主要用于军用领域,自1995年正式实现商业化之后,在测绘、资源勘探等领域发挥了越来越多的作用,在最近盛行的“黑科技”无人驾驶技术的开发上,激光雷达更是核心技术之一。随着技术的发展和完善,激光雷达的应用范围也越来越广,其中环境监测领域就是很重要的一个方面,可以用来测量颗粒物、臭氧、温度和湿度的变化等等。  中科院安徽光学精密机械研究所于1991年建立了当时我国最大L625激光雷达系统,用于探测平流层气溶胶分布,该激光雷达系统被美国国家宇航局选为全球10个激光雷达站之一。后来又陆续开发出了探测平流层臭氧的紫外差分吸收激光雷达、可移动式双波长米散射L300激光雷达、车载式拉曼-米散射激光雷达等等,受到了广泛的关注。  近日,仪器信息网编辑专门针对激光雷达在环境监测领域的应用采访了中科院安徽光学精密机械研究所所长刘文清院士。刘院士为我们详细介绍了激光雷达在我国环境监测领域的应用、技术发展以及未来的技术需求。中科院安徽光学精密机械研究所所长刘文清院士  Instrument: 我们知道刘院士在环境光学领域有很多研究成果,今天我们把目光聚焦在空气质量监测上,空气质量监测仪器和技术种类众多,如常规六参数、VOCs监测仪、激光雷达、卫星遥感等等。首先请刘院士谈一谈目前我国空气质量监测仪器的整体情况?国产环境监测仪器与同类进口产品相比有何不同?  刘文清:我国大气环境监测技术现阶段主要还是以点式监测方式为主,如AQI六参数、VOCs等。这些监测设备组成了我国现阶段的地面空气质量监测网,为我国空气质量监测做出了巨大的贡献,逐步形成了具有中国特色的环境监测技术规范、环境监测分析方法、环境质量标准体系。目前采用的标准方法,主要以人体健康为关注重点,测量的是人们日常生活和工作活动范围内的空气质量,可以较为准确的监测空气中气溶胶和污染气体的含量,但它的局限性主要是获得局部低层、较小地域范围内的污染物浓度变化信息,缺乏污染物区域性变化、时空演变等指标的数据演变信息。近年来随着分析仪器的快速发展,结合卫星遥感,探空气球和高塔能够测量一些气溶胶、气体成分的垂直分布特征,但是卫星遥感直接获取的是整层大气污染,反演近地面污染有一定误差,而探空气球及飞机受时间空间影响,此类探空设备仍然存在着不足之处。  对于区域性复合污染监测,需要快速有效的技术手段进行区域范围内时间和空间上的监测。与以上传统点式监测方法相比,激光雷达等光学遥感监测技术的发展改变了传统的由点到线再到面的演绎方法,为大气环境研究提供了一个新的技术手段,克服了传统大气环境研究中的诸多局限性,实现了大空间、长时间、多尺度、多参数的遥感遥测。此类技术已达到了国际先进水平,尤其在业务化应用方面,我们已根据中国环境监测现阶段的需求进行了深入的研发,这是国外进口设备所不能做到的。目前,国产环境监测仪器已基本打破了进口产品的国际垄断地位,全面实现了中国造。  Instrument:颗粒物激光雷达技术被越来越多的用户所接受,请刘院士重点谈一谈颗粒物激光雷达技术。颗粒物激光雷达的核心技术要点是什么?在我国大气环境领域的应用情况?此技术在空气质量监测系统中的独特作用?  刘文清:激光雷达主要由激光器、发射和接受光学系统、探测器、高速数据采集卡和数据分析软件等部件组成,其核心技术在于稳定可靠的激光器和性能优良的反演算法。激光器单脉冲能量大小直接决定了激光雷达的探测高度。保证激光器单脉冲能量,能够有效保证系统信噪比,实现理想高度的探测。国内外不同厂家的激光雷达反演算法存在一定的差异性,应用最为广泛的是Fernald方法,也是我们安光所选择的反演算法。应用该算法,参考点的选择尤为重要,一般须假定一个近乎不含大气气溶胶的清洁大气层所在高度来视作参考点,为保证反演结果的有效性,必须通过明显气溶胶层或者云层的剔除方法来确认合适的参考高度。  随着“说清环境质量、改善环境质量”重大管理需求的发展和监测事权上收等管理机制的改革,地方政府动态精准管理能力支撑成为越来越迫切的要求,尤其是快速说清空气质量监测点数据变化原因、重污染应对、事故应急监测与快速评估等。针对区域性大气污染问题,及监测管理的迫切需求,作为一种成熟的主动遥感手段,颗粒物激光雷达在大气环境监测方面具有重要的意义。其在大气环境监测中的应用可分为以下几点:1)垂直监测:监测边界层变化特征,了解污染来源和变化趋势 2)水平扫描监测:可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献 3)车载移动监测:对污染源进行快速溯源,应对污染突发事件,并对污染气团进行跟踪 4)雷达组网监测:说清区域间污染跨界传输,为短时间空气质量预警预报提供及时、有效、准确的数据支撑。  Instrument:安徽光机所可以说是我国激光大气探测研究领域的先行者,在激光雷达技术的研发上,刘院士主要做过哪些工作?您认为未来还有哪些技术需要突破?  刘文清:激光雷达按照监测方法和监测种类可分为米散射激光雷达、大气成分差分吸收激光雷达、拉曼激光雷达等。我所在颗粒物激光雷达和大气差分吸收激光雷达方面已取得了阶段性进展。在北京奥运会、上海世博会、广州亚运会、北京APEC会议、北京九三阅兵式、南京青奥会、福州青运会、郑州上合首脑会议、乌镇物联网大会的联合环境空气保障工作中交上了令人满意的答卷,相应成果也证实了我们激光雷达在稳定性、有效性方面取得了一定的成绩。但在某些方面还是存在一定的不足,需要我们进一步完善,如:1)拉曼激光雷达方面。由于其监测原理的限制,拉曼激光雷达白天会受到天空背景噪声的严重影响,如何有效提高其信噪比,将拉曼激光雷达成功的应用于环境监测日常业务中,为环境污染的扩散、大气化学过程的演变提供有效的气象数据。2)颗粒物激光雷达方面。雨水消光系数大,颗粒物雷达在降雨天气条件下应用效果不佳,如何去除降雨对颗粒物监测的影响,也是接下来的研究重点。3)细粒子质量浓度空间分布。我们已在无锡中科光电成功产业化了双波长三通道颗粒物激光雷达,应用532nm波长我们已可以反演PM10质量浓度的时空分布。对于细粒子质量浓度的时空分布也是迫在眉急的管理需求,目前我们已加大投入,研究开发应用355nm反演PM2.5质量浓度的时空分布的相应工作。4)大气差分吸收激光雷达方面。应用大气差分吸收原理监测臭氧的时空分布,已被成功运用,为证实其监测准确性,我们也参与了由上海环境监测中心举办的探空联盟比对实验。实验中监测臭氧的差分吸收激光雷达与探空气球、无人飞机等监测技术进行了廓线比对,比对结果令人非常满意。对于差分吸收激光雷达只能监测臭氧不是我们的目的,我们希望应用一种技术可以进行多参数测量,如同时监测二氧化硫、二氧化氮等,此类设想我们已取得了阶段性的成果。  Instrument: 安徽光机所的产业化公司——中科光电最近推出了高能扫描系列的大气颗粒物监测激光雷达,此台仪器的主要特点是什么?其研发目的是什么?其市场竞争力主要体现在哪?  刘文清:高能扫描颗粒物激光雷达是基于快速扫描振镜的激光雷达技术,该技术使激光雷达在保留原有垂直探测的功能上,还可以实现快速多角度扫描功能。如此针对固定安装的激光雷达,高能扫描激光雷达不仅可以监控5KM半径范围内的污染源(本地源以及外来源)变化过程,还可以同时获取垂直的颗粒物时空演变数据、边界层高度变化数据。使一台雷达可以同时获取区域内垂直与水平立体空间数据,为说清区域污染变化提供了更有力的数据支撑。同时,在产品设计中,我们也考虑了车载走航监测获取线源数据的技术要求,在固定加走航监测结合的模式下,可以全面获取“点面域、地空天”一体化数据。  我所张天舒研究员率领的激光雷达团队联合中科光电,组织技术骨干进行技术攻坚,经过近两年的不懈努力,攻克了快速扫描振镜技术、高重复频率激光器技术、多姿态雷达扫描数据分析技术、车载雷达减震避震技术和快速走航观测技术等一系列关键问题。其中,快速扫描振镜技术其核心竞争力在于,可以使扫描及成图时间分辨率达到3分钟,确保了监测数据的时效性(目前国内外采用3D支架扫描方式,完成扫描及成图时间需要2小时,没有时效性保证,无法动态说清变化过程)。  Instrument:在环保领域,标准被认为是一类仪器推广的“利器”,对于激光雷达,有没有正在制定的标准?或者说您认为需要哪些方面来规范此类仪器的生产和应用?  刘文清:激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。实际上,为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,我们联合合作企业已经编制了相关的企业技术规范标准,希望能够逐步发展为行业和国家标准。  激光雷达标准规范的建立目的是为了保证雷达数据的有效性和一致性,科学的系统测试和校验方法是其重要的技术支撑。完整的系统测试即包括仪器组成部分的性能测试,如激光器的功率、脉冲能量、发散角,光学发射和接受系统与激光准直系统的匹配性,数据采集系统本身的采集速率、电子学噪声,以及雷达数据处理和分析软件性能 也包括功能指标,包括探测成分、探测距离、距离分辨率以及信噪比等。对于激光雷达这样一个复杂的光电探测系统的校验也可以与其他观测设备进行一致性的对比分析。使用激光雷达与能见度仪、太阳光度计等观测仪器进行数据一致性对比分析,采用探空气球数据对激光雷达观测数据产品的准确性进行校验等。  后记:随着我国大气环境治理工作的深入,大气环境质量监测的项目、时间要求和空间要求都在提升,随之而来的是监测手段的多样化。除激光雷达之外,卫星遥感、无人机、探空气球等技术不断被引入大气环境质量监测领域,不同的手段为我们多维度了解大气污染过程提供了依据,也为我们更精准的治理大气环境提供了技术支持。(编辑:李学雷)
  • 空军高精度激光成像雷达入选国家重大仪器专项(图)
    资料图:激光雷达成像图  资料图:激光雷达样机  近日,空军装备研究院某所领衔的高精度激光扫描设备研发获得科技部“国家重大科学仪器设备开发项目”立项批复,成为该国家级重大项目设立两年来空军唯一入选项目。  据了解,该项技术通过高速激光扫描测量的方法,可大面积、高分辨率地快速获取被测对象表面的高精度三维数据,是测量技术的一次里程碑式革命,对于实现军事工程和工业测量的精细化管理具有重大意义。  “军民融合协作科研、联合攻关是成功立项的重要原因。”该所所长、中国工程院院士陈志杰表示。  据了解,这次项目申报工作由陈志杰领衔,副所长李光伟作为技术负责人牵头整体工作,一方面充分发挥院士领衔专家团队的人才优势和核心技术优势,另一方面与技术支撑单位中国科学院某研究所、联合产业化单位某地方光电技术公司通力合作,把合作从技术层面的项目协作提升为战略层面的联合攻关,从阶段性配合提升为全程式融合,充分发挥各家优势互补的特点,在技术开发、工程化和产业化上实现无缝对接,科研成果一旦出炉,马上投入产业化生产,迅速转化为军事价值和社会效益。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 中国科大实现综合性能最优的测风激光雷达
    p /pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/318b981e-2228-459f-9191-905c9b9c37ec.jpg"//pp style="text-align: center "strongRaw lidar signals over 1 h/strong/pp  中国科学技术大学窦贤康课题组夏海云与潘建伟课题组张强合作,在国际上首次实现基于超导纳米线单光子探测器的双频多普勒测风激光雷达。采用最精简的光学结构实现了系统最高稳定性,提高了测风激光雷达的实用性和可靠性,更适合机载、星载平台运行。研究成果发表在《光学学报》上。9月6日,美国光学协会(OSA)、美国科学促进会(AAAS)官方网站以“新闻发布(News Release)”形式,首次对我国激光雷达研究进行了专题采访报道。/pp  测风激光雷达具有广泛的社会效益,如精确的大气风场数据可应用于大气污染溯源和扩散预报、航空气象保障、气象气候学研究、风电系统的管理和调配等,此外还可应用于军事。/pp  当采用更短激光脉冲提高多普勒激光雷达的距离分辨率时,传统相干探测激光雷达的相干效率就会下降,实时数据采集和处理均面临挑战。相干激光雷达本质是单模探测,需要大气回波和本振信号波前匹配,增加了制造和运行难度。直接探测激光雷达则可以避免这些问题。由于直接探测测风激光雷达可以利用大气分子、气溶胶的回波信号反演风场,其工作波长可以覆盖紫外到红外。/pp  该直接探测激光雷达工作在1548.1纳米,该红外波长人眼允许曝光功率最高、大气透过率最优、太阳和天空辐射背景低。该工作波长属于光纤通信C波段,光电集成器件成熟。全光纤构造的系统采用了单个双频光纤激光器、单个单通道光学鉴频器、单个单模探测器,不需要重复校准。这种最精简的构造提高了系统稳定性,并可以模块分离式安装。因此,该系统更适合在机载、舰载、星载等大温差、强震动平台上运行。该系统采用双频激光器替代传统的多通道鉴频器,实现了激光器和光学鉴频器的高精度锁频(误差小于0.08米/秒)。该激光雷达采用超导纳米线单光子探测器:其理想的高量子效率和低暗计数噪声保证了最高的探测信噪比;其100兆/秒的最大计数率避免了激光雷达的信号饱和现象。该激光雷达采用时分复用技术,基于集成光电子学器件实现不同方向的径向风探测,无机械扫描器件。/pp  在实验室内,该系统10天重复测量误差小于0.2米/秒。在比对试验中,将激光雷达测量的水平风速数据与超声波风速传感器的数据进行了比对,风速和风向的平均误差分别小于0.1米/秒和1度。在外场试验中,采用弱激光光源(脉冲能量50微焦)、小望远镜(口径80毫米),在10米高度分辨率、10秒时间分辨率条件下,实现了2.7km高度以下大气的风切变探测。/pp原文:Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector/pp /p
  • 我国科学家在激光雷达系统研制上获突破
    记者获悉,中国科学技术大学地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据了解,米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。据介绍,薛向辉团队雷达样机工作波长为1550.1纳米,通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。为进一步测试雷达观测性能和环境适应性,薛向辉团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。相关成果发表于国际光学期刊《光学快报》。审稿人认为,“观测结果是引人注目和印象深刻的”“迄今为止首次实现连续观测的高分辨率结果”。中科大地球和空间科学学院博士研究生梁晨为该论文第一作者,王冲副研究员和薛向辉教授为论文共同通讯作者。
  • 中国环境监测总站联合中科院大气所开展雷达观测同化研究工作
    为加强中国环境监测总站(以下简称总站)科技创新水平,助力北京冬奥会空气质量保障顺利进行, 9月18日,中国科学院大气物理研究所杨婷博士一行赴总站预报中心开展专题研讨交流,针对雷达和大气颗粒物组分观测同化技术研究和应用工作进行深入交流。总站总工程师李健军、预报中心副主任刘冰和大气室、预报中心相关人员参加了此次研讨。会上,中科院大气所杨婷博士以冬奥会同期华北地区污染过程为个例,细致地介绍了地基激光雷达以及PM2.5组分同化技术在空气质量短临预报和污染溯源追因中的应用。结果表明,通过滚动式引入激光雷达观测网和组分监测数据,可以改进颗粒物组分和污染团垂直结构的模拟能力,16小时预报时效内改善效果尤为显著。此外,同化后的模拟结果可再现污染气团在三维空间内的传输过程,将其与高架源等排放清单相结合,可用于对突发污染过程的追因和溯源。预计此项技术的业务化将为区域污染过程的预报和分析提供针对性的精细化技术支持。按照站领导开展冬奥会空气质量保障技术支撑研究准备工作安排,总站预报中心将联合大气室,同中科院大气所研究团队一道持续推进相关大气污染物同化新技术的研究和应用,切实深化科研与业务相结合,为总站开展污染过程的回溯分析、走航观测等工作提供技术支持。此外,计划进一步拓展研发激光雷达走航数据应用模型同化方法,推进相关同化技术对冬奥会同期污染过程分析研究与应用试验,做好北京冬奥会空气质量保障的技术储备。
  • 重大突破 | 国防科技大学实现反射层析激光雷达三维超分辨成像
    面对远距离小目标,常规探测手段往往只能对其定位,看到的目标只是一个点。而有些特殊需求下,需要掌握其面特征甚至体特征,实现运动目标认知,此时迫切需要发展超分辨成像手段。国防科技大学脉冲功率激光技术国家重点实验室主任胡以华教授团队,继2022年实现10千米距离上优于2厘米分辨率的国内外报道最高水平的反射层析激光雷达超分辨二维成像的基础上,近期实现了三维超分辨成像的重大突破。实现10千米距离2.0×2.0×3.5厘米分辨率的三维超分辨成像反射层析激光雷达实现二维成像的原理日趋成熟,国内外也开展了相关的实验研究,但是实现三维成像的原理和方法在国内外未见报道。团队创新性地提出了反射层析激光雷达三维成像技术架构,建立了激光探测的多角度多视场交叠取样、窄脉冲激光回波的高速高保真采集及图像重构融合处理方法,研制出反射层析激光雷达三维成像实验系统,在合肥紫蓬山地区开展了距离为10.38 km的外场实验,实现目标图像的三维超分辨重构。实验中,在山上(31°43′28″N, 116°59′55″E)的百米高实验塔上分别设置两类目标:1)高度75 cm、宽度30 cm的立体组合件,如图1 (a)所示;2)多块厚度1.7 cm、断面面积不同的块状体构成的从下到上间距9 cm到2 cm递减、面积渐小的60°倾斜角梯形立体分辨率测试靶,如图1 (b)所示。成像实验系统布置在该市华南城(31°46′20″N, 117°5′35″E)楼上,如图1 (c)所示。在多种实验环境和实验参数设置下,成功获得了如图2 (b)、图2 (d)所示的立体目标三维超分辨成像结果。图1 反射层析激光雷达三维成像实验实施图(a) 立体组合件;(b) 立体分辨率测试靶;(c) 反射层析激光雷达三维成像实验系统经第三方专家现场实测,在10.38 km距离上,环绕平面成像分辨率优于2 cm,环绕轴向分辨率优于3.5 cm。根据反射层析激光雷达成像的原理,只要激光脉冲回波信噪比足够,其三维成像分辨率与光学孔径、作用距离、激光发散角相对无关,因此,本实验为实现千千米超远距离微小目标的三维成像奠定了基础。该实验系统光学孔径为260 mm,相同孔径的光学成像系统衍射极限角约为5 μrad,对应10 km处常规光学成像的极限分辨率约为5 cm。本成果取得了超过同口径光学成像衍射极限的远距离小目标超分辨成像能力,其成像分辨率居激光成像领域国内外最优水平,特别是通过独创的技术手段和处理算法首次得到立体目标结构的十千米距离厘米级超分辨三维成像结果。图2 目标实物与成像结果(a) 立体组合件;(b) 立体组合件重构图像;(c) 立体分辨率测试靶;(d) 立体分辨率测试靶重构图像科研团队简介国防科技大学电子对抗学院胡以华教授科研团队长期致力于运动目标精确激光探测和光电对抗等领域方向理论与应用研究,围绕目标的激光三维成像、反射层析激光雷达成像、大气扰动激光探测、相干探测、光子探测以及量子纠缠探测方法,取得了一系列研究成果,为空天弱暗目标远距离探测、高精度定位和多维信息获取提供新型技术手段。团队先后出版专著《激光成像目标侦察》、《目标衍生属性光电侦察技术》、《Theory and Technology of Laser Imaging Based Target Detection》和《激光相干探测应用理论方法》,公开发表学术论文300余篇,授权发明专利70余项,获国家技术发明二等奖2项、国家教学成果二等奖2项、安徽省重大科技成就奖、省部级科技一等奖8项。团队带头人,国防科技大学电子对抗学院胡以华教授,脉冲功率激光技术国家重点实验室主任,光学工程学科首席专家,中国光学学会会士,安徽省科学技术协会兼职副主席。长期从事光电探测与对抗领域研究,取得多项系统性创新成果。
  • 测风激光雷达可“追捕”大气污染源
    p  中国科学技术大学窦贤康课题组夏海云与潘建伟课题组张强合作,在国际上首次实现基于超导纳米线单光子探测器的双频多普勒测风激光雷达。采用最精简的光学结构实现了系统最高稳定性,极大提高了测风激光雷达的实用性和可靠性,更适合机载、星载平台运行。成果日前发表在国际著名光学期刊《光学学报》上。/pp  传统相干探测激光雷达采用更短激光脉冲,相干效率会随时间下降,实时数据采集和处理均面临巨大挑战,需要大气回波和本振信号波前匹配,也增加了制造和运行难度。由于直接探测测风激光雷达可以利用大气分子、气溶胶的回波信号反演风场,其工作波长可以覆盖紫外到红外,因而直接探测激光雷达则可以避免这些问题。/pp  “该直接探测激光雷达工作在1548.1纳米,该红外波长人眼允许曝光功率最高、大气透过率最优、太阳和天空辐射背景低。”夏海云博士介绍说,该工作波长属于光纤通信C波段,光电集成器件成熟,全光纤构造的系统采用了单个双频光纤激光器、单个单通道光学鉴频器、单个单模探测器,不需要重复校准。/pp  据了解,这种最精简的构造提高了系统的稳定性,并可以模块分离式安装。因此,该系统更适合在机载、舰载、星载等大温差、强震动平台上运行。在外场试验中,采用弱激光光源、小望远镜,在10米高度分辨率、10秒时间分辨率条件下,实现了2.7千米高度以下大气的风切变探测。/pp  夏海云说,该系统可应用于大气污染溯源和扩散预报、航空气象保障、气象气候学研究、风电系统的管理和调配等。在军事应用上,包括弹道修订、航母作业、临近空间环境保障、精准空投和空中加油等都有很好的前景。/pp/p
  • 大气探测激光雷达、宽幅成像光谱仪成功升空
    作者:张双虎 黄辛 来源:中国科学报北京时间4月16日2点16分,大气环境监测卫星在我国山西太原卫星发射中心成功发射。中国科学院上海光机所研制的大气探测激光雷达、中国科学院上海技物所研制的宽幅成像光谱仪随大气环境监测卫星成功升空。大气环境监测卫星由中国航天科技集团八院抓总研制,是国际首颗具备二氧化碳激光探测能力的卫星,将进一步提升我国大气环境综合监测、全球气候变化和农作物估产及农业灾害等应用能力,推进卫星遥感数据在生态环境、气象、农业农村等方面应用,有效解决各行业部门对外国遥感数据的依赖。上海光机所研制的大气探测激光雷达在国际上首次采用激光路径差分吸收方法,可全天时、高精度测量全球范围的二氧化碳浓度分布;首次采用碘分子吸收池激光高光谱分辨探测技术实现全球气溶胶垂直剖面分布的精确测量。激光雷达载荷在轨后获取的全球数据,将服务于国家“碳达峰”和“碳中和”双碳国家战略的温室气体二氧化碳浓度高精度监测,同时为全球气候气象研究提供高精度的二氧化碳浓度以及气溶胶、云垂直廓线分布数据。上海技物所研制的宽幅成像光谱仪具备2300公里宽幅可见至热红外波段21通道成像能力,可获取全球、全时段多光谱遥感数据,将有效提升大气气溶胶、细颗粒物、雾霾分布、近海岸带等大气环境的连续检测、预警与评估能力。面对新冠疫情带来的重重困难,中科院上海团队全力以赴、顽强拼搏、协同攻关,充分体现新时代国家战略科技力量的使命担当。
  • 小雷达 大神通 菏泽“蓝天保卫战”拿下两个全省“第一”
    捷报  “蓝天保卫战”首年,山东菏泽市PM2.5平均浓度同比下降18.3%,国控站点优良率同比增加7.2%,一举拿下PM2.5下降幅度和空气质量优良率提升幅度两个全省第一,获得环境空气质量生态补偿资金4192万元。  战果的取得离不开各方的共同努力,聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)作为第三方专家团队,全力提供高效的装备和优质的服务,为支撑打赢“蓝天保卫战”竭尽所能!高效的装备  “根据智慧环保监控指挥中心雷达扫描数据,发现一处污染热点,请中部作战区域工作队长安排人员巡查……”一条条指令或建议从智慧环保监控指挥中心发送到各作战区域,监管人员马上出动,迅速处置污染事件。菏泽市智慧环保监控智慧中心  指令中,精准发现污染热点的利器就是中科光电研发的便携式颗粒物激光雷达,它向空中发射出一束激光,就能探测到颗粒物的种类和时空分布。 便携式颗粒物激光雷达  便携式颗粒物激光雷达具有便携性、易操作、零盲区的优点,能够实时预警,快速锁源;可以开展移动监测,与固定监测结合起来,能让污染源无处可藏,目前已经广泛应用于各地的蓝天保卫战中,是监测、执法的有效工具。优质的服务  为了更好地支持菏泽打赢“蓝天保卫战”,中科光电派出精干力量长期驻守菏泽,现场巡查追源溯源,开展雷达扫描数据分析,进行气象条件预测,提出整改建议,追踪改善效果......以高度的责任心和专业的优质服务和菏泽市的蓝天卫士们并肩战斗,用科技的力量支撑该市线上监测、线下监管的全时同步。 中科光电专家团队夜间调试设备  菏泽市基础较弱,虽然首战告捷,但是任重道远。该市今年将集中攻坚PM10,确保PM2.5、PM10等各项大气指标持续改善。中科光电一起为打赢“蓝天保卫战”全力以赴!
  • 国内首家煤矿雷达技术研发中心在哈尔滨成立
    国内首家煤矿雷达技术研发中心日前在哈尔滨成立。该研发中心是由中国电波传播研究所、黑龙江共友公司、黑龙江龙煤集团联合组建。其研制的煤矿专用雷达将用于对煤矿透水、瓦斯突出等灾害进行超前预报和预警,这将是探地雷达技术在煤矿安全生产领域的创新性运用。  这个煤矿雷达技术研发中心将通过产学研结合,研发先进可靠的煤矿超前预报专用探地雷达产品。探地雷达技术是当前国际上最先进的地球物理勘探手段之一,先进的信息技术在传统产业的运用,将为煤矿安全生产带来最先进的技术,这项技术将在1~2年时间进入实际应用阶段。
  • 禾赛科技登陆纳斯达克,中国“激光雷达第一股”诞生
    当地时间2月9日,中国激光雷达厂商——上海禾赛科技股份有限公司(简称“禾赛科技”)正式在美国纳斯达克上市,成为了中国激光雷达第一股。同时也是过去18个月以来,中企赴美上市的最大IPO。据招股书披露,截至目前,禾赛科技累计交付了超10万台激光雷达。图片来源:禾赛科技禾赛科技股票代码为“HSAI”,发行价为每ADS(美国存托股份)19.00美元,公开发行1000万股ADS,募资总额约为1.9亿美元。上市首日,禾赛科技股价表现亮眼,开盘大涨25%,报23.75美元,盘中股价一度达24.44美元,最终收于21.05美元,上涨10.79%,市值达到26.21亿美元。值得注意的是,禾赛科技曾于2021年向科创板递交招股书,但是两个月后主动撤回申报材料,并于2023年1月17日正式向美国证监会提交招股书。资料显示,禾赛科技成立于2014年,是一家全球化的激光雷达研发与制造企业,其最早专注于研发激光气体传感器,2016年开始探索无人驾驶激光雷达产品。目前,公司产品广泛应用于支持高级辅助驾驶系统(ADAS)的乘用车和商用车,以及自动驾驶汽车。根据招股书数据,2019年到2021年,禾赛科技的激光雷达销量分别为2900台、4200台、1.4万台,2022年,随着半固态激光雷达AT128和补盲激光雷达FT120落地应用,禾赛科技的激光雷达销量飙升至8.04万台。由此,禾赛科技也累计完成了超10万台激光雷达的交付,并成为全球首家月交付过万的车载激光雷达公司。招股书显示,禾赛科技的激光雷达,获得了理想、集度、路特斯、高合、长安、上汽等10家主流车企累计数百万台的量产定点。蔚来ET7、理想L9、小鹏P5、小鹏G9、广汽AION LX等车型搭载了禾赛科技激光雷达;自动驾驶客户则包括Aurora、Zoox、TuSimple、NVIDIA、Nuro、美团、百度、文远知行等。随着禾赛科技激光雷达出货量的爆发,其营收也呈现高速增长态势。招股书显示,禾赛科技在2019年、2020年、2021年营收分别为3.48亿元、4.16亿元、7.21亿元,营收增长率分别为162%、19%、73%。2022年前三季度的营收达到7.93亿元,同比增长73%,超过了2021年全年营收。不过,由于禾赛科技近两年产品逐步多元化,这也使得禾赛科技的毛利率出现下滑。禾赛科技2019年、2020年、2021年的产品毛利率分别为70.3%、57.5%、53.0%,2022年前三季度的毛利率又进一步下滑至44%。净利润方面,禾赛科技2019年、2020年、2021年的净亏损分别为1.2亿元、1.07亿元、2.45亿元,2022年前三季度净亏损为1.65亿元,同比收窄5%。从营收数据来看,禾赛科技目前的营收规模已经超过Velodyne、Ouster、Luminar、Innoviz(这四家企业2021年营收分别为6190万美元、3400万美元、3200万美元、984万美元)等全球主要激光雷达公司总营收营收之和。在毛利率方面,禾赛科技也远高于前述四家厂商(2022年1-9月,仅Ouster的毛利为正30%,其余厂商均为负值)。凭借此次成功登陆纳斯达克并拿到1.9亿美元融资,有望进一步提升禾赛科技在技术、产品竞争力、业务规模上的优势,并推动禾赛科技尽早实现盈利。在股权结构方面,此次IPO前,禾赛科技的创始人孙恺、李一帆、向少卿为共同控股股东、实际控制人,合计直接持股比例为30.03%,此外他们还通过员工持股平台上海乐以科技合伙企业(有限合伙)控制了禾赛科技7.13%的股份,因此,合计共同控制了禾赛科技37.16%的股份。根据招股书显示,此次IPO前,禾赛科技累计融资超过5.36亿美元。投资机构包括光速中国、高瓴、小米集团、美团、CPE源峰、光速中国、启明创投等知名机构。其中,光速中国(包括光速创投、光速中国两只基金),为禾赛科技最大的外部股东,上市前持股比例达17.5%。据悉,光速中国自2018年起连续参与了禾赛科技5轮融资,累计投资额超过1亿美元。按照禾赛科技上市首日收盘价计算,光速中国持有市值已达4.25亿美元,投资回报率高达325%。此外,禾赛科技最后一轮D轮融资发生在撤回科创板IPO申报材料后。在小米集团追加7000万美元后,禾赛科技D轮融资额度高达3.7亿美元。根据招股书披露,禾赛科技D轮融资每股价格约16.5美元,按照上市首日收盘价21.05美元计算,禾赛科技最后一轮投资者投资回报率已达28%。
  • 量子激光雷达水下获取3D图像
    英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。相关研究论文刊发于4日出版的《光学快报》杂志。  在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。  激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3米距离的受控高散射场景中,3D成像取得了成功。
  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 英国新型激光雷达系统,使超快的低光检测成为可能
    近日,英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。 在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3 m距离的受控高散射场景中,3D成像取得了成功。量子检测技术在陆地上的应用,较多见诸报道。其实这种技术在水下的应用,同样空间广阔。例如,利用它进行海底地形勘测、水下考古、海底设备检测等等。不过,将这种技术应用于水下,绝对不意味着将其直接“照搬”。以在海洋中的应用为例,需要考虑海水的腐蚀性、洋流的运动、海底光照条件等多种特殊因素。因此需要使用特殊的耐腐蚀材料,进行特殊的设计,以更加适应水下环境的应用。
  • 高能扫描颗粒物激光雷达告诉你:你离污染有多远?
    近年来灰霾现象频发,颗粒物区域污染现象受到社会及政府部门的高度重视。针对区域性大气污染问题,作为一种成熟的主动遥感手段,颗粒物激光雷达为掌握区域大气污染分布和输送规律,解析颗粒物污染特征、污染来源、污染变化趋势,提供了有力支撑。颗粒物激光雷达按工作方式可分为:垂直探测激光雷达和扫描探测激光雷达。其中扫描探测激光雷达是对固定站点监测空白区域、天气突发区域监测的有力补充,对重点污染区域中污染物进行3D扫描和移动观测,可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献,为环境规划与管理、环境监督与执法及政府宏观决策提供科学依据;并可对污染气团进行走航追踪观测,为短时间空气质量预测提供了及时、有效、准确的数据支撑。 大气颗粒物监测激光雷达大气环境监测激光雷达检测车  中科光电大气颗粒物监测激光雷达(高能扫描系列),采用波长532 nm线偏振激光对大气颗粒物进行遥感探测。雷达通过对532 nm垂直和水平偏振信号的探测,解析大气消光系数、退偏振比廓线、边界层高度、光学厚度等参数,进而可获取大气颗粒物时空分布特征、污染层时空变化、颗粒物输送和沉降等信息。产品特点  采用振镜扫描,避免雷达主体光机及探测器电子学系统振动;  扫描振镜具备自动除尘、除湿、除雪功能,可适用于各种天气状况;  采用单脉冲能量毫焦级固体激光器,重度污染条件下,具有较好的探测能力;  系统拥有GIS地理信息系统,可图形化显示扫描区域颗粒物分布情况,排查污染排放源;  系统具有停电自动关机,来电自动开机功能;  激光器使用寿命长,可达16000小时。产品软件  中科光电扫描激光雷达数据采集分析软件具有固定垂直探测、固定斜程探测、车载垂直探测、车载斜程探测、垂直扫描探测、水平扫描探测六种工作模式。软件通过对激光雷达原始数据进行深数据处理,可得到包括消光系数、退偏振比、光学厚度、能见度、边界层、污染物判别、PM10质量浓度时空分布等基本环境监测数据。 流程图采控软件分析软件产品应用  垂直扫描监测  激光雷达发射脉冲处于天顶方向,望远镜垂直接收来自天顶方向的后向散射信号。能够反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征。可应用于雾霾判识、污染过程捕获分析、高空大气光化学过程探测、大气边界层结构特征分析、沙尘暴预警、局地污染预警等环境监测。 垂直扫描监测  区域点源排放监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对烟囱、锅炉、化工厂、电厂、水泥厂等重要的点源实现定点定位扫描,监测污染源烟羽排放的轮廓及强度分布,实时把握污染超标动态,结合当地实际情况建立报警体系,有效实现污染源排查、偷排漏排违法取证工作。 区域点源排放监测  区域线源扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达进行定点定位扫描,结合GIS地理信息,图形化展示交通主干道上空颗粒物的空间分布特征,有效监测区域内若干条交道主干道的排放强度。区域无组织排放扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对建筑工地、餐饮服务区、汽车修理厂、畜禽养殖场等区域,进行实时在线扫描监测,描绘污染物的水平分布规律,确定污染物的空间分布规律。 区域无组织排放扫描监测  区域污染物分布扫描监测  区域污染物分布扫描监测可手动设置水平扫描(针对区域内)、垂直断面扫描(针对区域边界)等不同扫描方式,实现对工业园区、居民生活区、厂区等敏感地带进行定量评估。结合GIS地理信息,图形化显示区域内污染物时空分布及演变特征。 区域污染物分布扫描监测  走航扫描监测  走航扫描监测,是通过在移动平台上搭载激光雷达系统,采用“驻车扫描”或“边走边测”的工作方式,对区域上空污染团的输入、过境、沉降过程进行实时、在线、连续扫描监测,分析污染物的类型、强度以及演变过程。走航扫描监测结合GIS地理信息,可绘制污染团的运动轨迹,追踪污染团动向,结合大气混合层及气象条件,提供典型污染过程的预警建议。走航扫描监测走航扫描监测  高能扫描颗粒物监测激光雷达系统轻便、易于移动,可实现多种扫描方式,方位角与仰角的扫描角度和探测时间都可自行设置,可实现大范围不同方位的连续自动观测,能够探测到同一仰角不同方位角处及同一方位角不同仰角处的颗粒物的变化,对实时环境监测具有较好的帮助。
  • 中国复眼成功“开眼” 拍摄世界首张基于分布式雷达的三维月面图
    位于重庆市两江新区的超大分布孔径雷达高分辨率深空域主动观测设施,也就是中国复眼,近日完成一期工程的安装调试和开机观测工作,成功拍摄出世界首张基于分布式雷达的三维成像月面图。据了解,超大分布孔径雷达类似于很多小天线合成一个大天线,虽然单一雷达功率有限,但是由于雷达和雷达之间的功率叠加,因此可以实现超远程探测功能。据介绍,与中国天眼不同的是,中国复眼可以自己发射电磁波,并能接收回波,从而对太阳系内的小行星和类地行星进行观测。中国复眼项目由北京理工大学重庆创新中心牵头建设,一期工程通过实现对月的高分辨率成像观测,验证了大系统分布式的工作模式,为后续的二期和三期工程奠定了基础。计划三期工程建成后,由上百台雷达组成的大科学装置探测距离能达到1.5亿公里,实现我国在深空探测雷达领域保持50年的领先优势。
  • 【001-液(水)位计-东润80G雷达】| 在农药生产反应釜的应用
    【时 间】2021年9月【地 点】山东.青岛【应用现场】某医药化工生产企业反应釜液位测量。【主要产品】东润80G雷达【现场工况】01反应釜液位测量02高转速搅拌,可达120r/min03150°高温04多泡沫,厚度1米左右,高时可达2米。05强腐蚀【应用效果】替换了进口雷达,在现场恶劣工况下,雷达测量准确、回波曲线信号良好,得到客户好评。东润80G雷达安装现场现场回波曲线图东润80G雷达工作频率更高,波长更短,故尤其适合固体应用,通过透镜发射接收电磁波的工作方式,在高粉尘,恶劣温度环境下具有独特的优势。产品量程可以达120m, 盲区最小做到8cm,仪表提供法兰或者螺纹的固定方式,安装便捷简易。批量走货质感精良 包装细致 多工况 多参数方案可选 01穿透性强雷达天线发射超高频雷达信号(76~81GHz),信噪比更高,几乎不受物位波动影响;能有效测量反射性比较小的物料,介电常数较小的油、粉料等也可以完美测量;02计量级精度:测量精度可达±1mm03盲区小:盲区小于5cm04波束角小---3° 能量更聚焦,适用于狭长的安装空间,不受虚假回波干扰;可成功避开搅拌、加热盘管等,实现准确测量;即使量程高达100m,信号也不会衰减太多。05抗干扰性强 更高的信噪比,使得雷达测量几乎不受物位波动影响;天线采用PTFE材质,能有效防腐、防挂料;穿透性更强,当测量罐/仓内有粉尘、蒸汽凝结、附着物等,雷达波可穿透,直达物位表面。06支持算法升级 支持远程调试与远程升级,基于特有的软件算法,根据现场测量工况,对雷达物位计进行调试或升级,以满足现场应用要求,减少等待时间,提高工作效率。
  • 中国科学技术大学在相干测风激光雷达系统研制方面取得重大突破
    日前记者从中国科学技术大学获悉,该校地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面取得重大突破,首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据悉,这是迄今为止有报道的全球最高精度的风场连续探测。相关成果发表在国际知名光学期刊《光学快报》。测风激光雷达的封装样机 课题组供图 米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。比如,为获取3米和0.1秒时空分辨率的风场观测结果,需要将现有激光雷达信号检测灵敏度提高2个数量级以上。 为了实现“看的远、看的细,测的快、测的准”的高时空分辨测风激光雷达,团队通过在激光光源、光学收发系统、高速数据采集电路和数据处理算法上对激光雷达进行全面优化,并在时频分析、脉冲编码基础上提出一种新的反演算法,大大提高了风场反演精度和稳健性,最终实现了一套全国产化的“产品级”测试样机。图1 3米距离分辨率相干测风雷达实验装置:(a)实验装置实物;(b)白天观测;(c)夜间观测;(d)光学系统及电路控制示意图;(e)连续5分钟观测的阵风结构图(时间分辨率为1秒)。图2 高铁尾流风场结构观测及模拟结果:(a)雷达观测的0.1秒分辨率尾流中风场结构图;(b)基于CCM+模拟的300km/h运行列车的尾流风场结构。 据介绍,雷达样机工作波长为1550.1纳米,具有人眼安全、设备轻便(整装设备40公斤)、工作稳定、环境适应性强等特点。通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。 为进一步测试雷达观测性能和环境适应性,团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。 审稿人认为,“观测结果是引人注目和印象深刻的”、“迄今为止首次实现连续观测的高分辨率结果”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制