当前位置: 仪器信息网 > 行业主题 > >

铝基光谱仪校验标准

仪器信息网铝基光谱仪校验标准专题为您提供2024年最新铝基光谱仪校验标准价格报价、厂家品牌的相关信息, 包括铝基光谱仪校验标准参数、型号等,不管是国产,还是进口品牌的铝基光谱仪校验标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铝基光谱仪校验标准相关的耗材配件、试剂标物,还有铝基光谱仪校验标准相关的最新资讯、资料,以及铝基光谱仪校验标准相关的解决方案。

铝基光谱仪校验标准相关的资讯

  • 广电计量获颁国内安全阀校验机构资质
    3月24日,广州无线电集团成员企业广电计量(002967)(SZ 002967)经过严格审查,获广东省市场监督管理局颁发特种设备检验检测机构核准证,成为国内安全阀校验机构,可从事整定压力小于10MPa的安全阀定期校验工作,实现了公司在特种设备检验检测领域的突破。 检验检测机构核准证   安全阀属于国家特种设备,是锅炉、压力容器和其他受压力设备上重要的安全附件,在石化、炼油、火电、核电、供热、船舶等行业都有广泛使用。其可靠性和性能好坏直接关系设备运行与人员财产安全。根据监管部门《特种设备安全法》《特种设备安全监察条例》等有关规定,安全阀要求每年至少校验一次,特殊情况按相应的技术规范规定执行,否则将责令限期改正;逾期未改正的,将责令停止使用有关特种设备并处以罚款。   目前,广电计量技术能力覆盖各类安全阀的校验、现场校验、安全阀解体、清洗及维修等服务,并可提供安全阀校验、计量校准等一站式服务,确保安全阀使用安全。实验室拥有比较先进的仪器设备,可校验公称通径为DN6mm~300mm、整定压力小于 10MPa 的法兰式、螺纹式等多种安全阀;实现校验自动化、数字化,数据处理智能化、网络化,确保安全阀校验精准高效,助力企业单位安全阀校验管理更加科学规范。
  • 浙江省计量院完成互感器校验仪国家计量比对任务
    近日,在浙江省市场监督管理局统一部署下,省计量院作为主导实验室克服疫情期间计量比对工作时间紧、任务重的困难,圆满完成2021年度全国互感器校验计量比对项目。这是全国首次由省级计量技术机构主导承担的互感器校验仪领域计量比对,全国各省(市)、地市级计量技术机构20家参加比对。   互感器校验仪是互感器检定装置的重要组成部分,是互感器检定或校准过程中的唯一信息窗口,对互感器校验仪的定期检定校准是保障互感器检定装置准确度的重要环节。通过开展互感器校验仪检定装置计量比对,考核各计量技术机构计量标准的可靠性和人员操作的规范性,科学评估互感器校验仪的计量溯源体系,可以全面掌握全国各省(市)计量技术机构的互感器校验仪检定装置对JJG169-2010《互感器校验仪》执行情况和检定人员的技术能力水平,确保全国互感器校验仪量值传递的准确、可靠和统一。   目前,互感器校验仪检定装置分为电工型检定装置和电子型检定装置两种类型,由于电工型和电子型检定装置不同的设计原理,作为主导实验室,省计量院高度重视、精心筹划,科学设计比对路线,充分讨论比对实施方案,克服不同参比实验室检定装置在比对过程中的兼容问题,确保高质量完成比对工作。   值得一提的是,本次计量比对采用的传递标准是经过特殊设计,适合对整检装置进行区间核查的1级互感器校验仪,其实际误差小于0.1%,分辨率是普通校验仪同量程的10倍。因此,每家参比实验室提供的原始数据,基本上反映了其校验仪检定装置的实际误差情况,使得满意度与原始数据有着非常清晰的对应关系。通过各参比实验室提供的比对报告中测量结果、测量不确定度比对结果的分析和判定,所有21家参比实验室|En|1,比对结果均为满意。   在项目验收会上,由中国计量科学研究院、国家高电压计量站和上海市计量测试技术研究院组成的专家组就项目完成情况、比对实施情况和比对总结报告等方面展开讨论,大家一致认为主导实验室高效完成合同规定的各项事项,同意通过验收,并给予较好的评审分数。在比对总结会上,省计量院作为主导实验室介绍比对项目从方案制定到具体实施的整体情况,总结比对过程中发现的问题。国家市场监管总局计量司领导发表致辞,对主导实验室和参比实验室的付出和通力合作表示充分肯定。   本次比对旨在考核计量技术机构在互感器校验仪量值传递过程中,标准器配置的合理性和相关人员的技术能力,客观反映互感器校验仪量传体系的完整性,为支持社会经济高质量发展贡献力量。
  • 学习《讲话》,提升NGI撞击器校验与检测业务能力
    2024年6月24日,习近平总书记在在全国科技大会、国家科学技术奖励大会、两院院士大会上发表重要讲话。北京元森凯德生物技术有限公司(YSKD)号召全员学习《习近平总书记在全国科技大会、国家科学技术奖励大会、两院院士大会上的讲话》,全体员工深感责任重大,使命光荣。这篇讲话不仅是对我国科技事业发展的全面总结,更是对未来科技工作的明确指引。全体员工仔细阅读了全文,深受启发,对我国的科技发展和创新之路有了更深刻的理解。讲话开篇就指出,这次大会是在以中国式现代化全面推进强国建设、民族复兴伟业的关键时期召开的一次科技盛会。这让全体员工深刻感受到,科技不仅是国家发展的强大动力,更是实现中华民族伟大复兴的关键因素。习近平总书记的讲话,无疑为我们指明了前进的方向,也为我们每一位在民营企业的科技工作者赋予了重大的历史使命。回顾过去,我国科技事业取得了历史性成就、发生历史性变革。从基础前沿研究的新突破,到战略高技术领域的新跨越,再到创新驱动引领高质量发展的新成效,每一项成就都凝聚着无数科技工作者的智慧和汗水。这些成就不仅提升了我国的国际地位,也为人民的生活带来了实实在在的改变。作为在民营企业的科技工作者,全体员工深感自豪和骄傲。同时,讲话也深刻分析了当前科技发展的新形势、新任务和新要求。随着新一轮科技ge'ming和产业变革的深入发展,科学研究和技术创新正以前所未有的速度向前推进。人工智能、量子技术、生物技术等前沿技术的不断涌现,正在深刻改变着人类的生产方式和生活方式。与此同时,国际竞争也日益激烈,高技术领域成为国际竞争的前沿和主战场。这要求我们北京元森凯德生物技术有限公司全体员工必须进一步增强紧迫感,加大科技创新力度,抢占科技竞争和未来发展的制高点。习近平总书记在讲话中提出了“八个坚持”的重要经验,这些经验不仅是对过去科技工作的总结,更是对未来科技工作的指导。坚持党的全面领导,加强党中央对科技工作的集中统一领导,这是确保科技事业始终沿着正确方向前进的根本保证。北京元森凯德生物技术有限公司(YSKD)积极提升在NGI新一代药用撞击器和ACI 安德森撞击器的年度校验与检测业务能力,确保校验与检测技术路线的先进性和可靠性,以满足客户需求和行业标准。《中国药典》2020年版将吸入制剂划分为气雾剂、吸入粉雾剂、吸入喷雾剂、吸入液体制剂和可转变蒸汽的制剂。应用领域广泛,主要用于呼吸系统疾病的治疗,如哮喘、慢性阻塞性肺病等,同时也在非呼吸系统疾病领域有所应用。预计到2025年,中国呼吸系统疾病吸入制剂市场规模将达到239亿人民币,年复合增长率为5.2%。全球市场上,阿斯利康、葛兰素史克、勃林格殷格翰等跨国企业占据主要市场份额。中国市场长期以来也以跨国企业为主,但近年来国产化率有所提升,国内企业如健康元等开始取得突破。行业正经历转型期,研发趋势包括建立生物等效性的替代方法、向全球低升温值(LGWP)的给药方式过渡等。美国食品药品监督管理局(FDA)也发布了新的特定产品指南(PSG),允许采用节省时间和成本的替代BE方法。国内方面,首个过评的吸入粉雾剂——沙美特罗替卡松吸入粉雾剂的出现,标志着国内吸入制剂市场的一个里程碑。仿制药开发的监管问题是行业面临的一个挑战,但FDA等机构也在积极寻求解决方案。随着呼吸系统疾病发病率的上升以及人们对健康问题的日益关注,吸入制剂市场具有巨大的发展空间和机遇。吸入制剂药物研发市场正处于持续增长和转型期,市场规模不断扩大,产品类型和应用领域不断拓展,市场竞争也日益激烈。同时,行业也面临着一些挑战和机遇,需要不断创新和进步以应对市场变化。NGI新一代撞击器和ACI安德森撞击器作为重要的药物吸入剂研究设备,需要进行检测校验以确保其准确性、可靠性和稳定性。检测校验可以验证撞击器的设计和制造的准确性,评估其性能和稳定性,发现和排除潜在问题,并提高实验的可比性和可重复性。通过检测校验,可以确保实验结果的准确性和可靠性,为药物吸入剂研究提供可靠的实验数据。 附:北京元森凯德生物技术有限公司(BEIJING YSKD BIO-TECHNOLOGY CO.,LTD),简称元森凯德(YSKD),2013年成立于北京中关村科技园,是一家专业从事生命科学类实验仪器研制、生产与销售的科技创新型企业。服务毒理学、药理学、免疫学、生物安全、大气污染物、化学物质毒性鉴定、临床前药物开发与安全性评价、呼吸系统、环境与健康等领域。YSKD可开展NGI新一代撞击器和ACI安德森撞击器校验检测项目:密封性,L型连接管尺寸,预分离器尺寸,喷嘴与密封部件间距,每级喷嘴孔数量,每级喷嘴直径,收集杯粗糙度,收集杯深度值
  • 岛津积极参与“溶出度研究和溶出仪器校验研讨会”
    日前,由广东省药学会制药工程专业委员会(以下简称“专委会”)和广州市药物一致性评价产学研技术创新联盟(以下简称“联盟”)主办的溶出度研究和溶出仪器校验研讨会在广州市远洋新三板孵化基地热烈召开。研讨会吸引了来自联盟内部成员单位和广州周边制药企业的相关技术人员41人参加。仿制药一致性评价工作时不我待,如何将国家食品药品监督总局有关溶出度仪机械验证指导原则的文件精神落地,指导实际工作的开展,成为广大药企亟待解决的问题。专委会和联盟作为广东省内有影响力的行业协会,率先开始了相关工作。希望结合中国药典2015版以及欧美日先进国家相关法规的要求,形成一个具有行业共识的、可操作的操作规程供同行参考执行。岛津公司作为联盟的专家单位,从始至终积极参与其中。 研讨会现场传真 在上午的讨论中,广州医药研究总院有限公司高级工程师梁超峰先生率先做了题为“溶出仪器校验标准操作规程”的报告。 岛津公司医药行业拓展高级经理梁炳焕先生和与会专家深入探讨了日本药典中有关溶出度仪的校验技术,着重介绍了溶出度仪对溶出度试验的影响因素,并说明了岛津的溶出度仪是如何通过卓越的工业设计和优异的机械加工技术来解决上述的影响因素。梁经理的报告吸引了参会代表的极大兴趣,并且纷纷提问参与互动,现场气氛十分热烈。 经过上午全面深入的讨论之后,下午进入到溶出度仪机械验证的实际操作培训。岛津公司此次提供了SNTR-6400A和SNTR-8400AT两台溶出度仪作为现场培训的教学仪器,受到了学员们的踊跃关注。岛津公司技术部的资深工程师李峥先生和吉小强先生分别在两台仪器上向学员们演示了机械验证的全部流程,并且指导学员亲自操作。整个下午的培训在与学员的深入沟通交流,和对细节的充分讨论中进行。 每一个因素对于溶出测定结果的影响有多大、如何获得准确的机械验证数据、如何通过精密的机械加工和细节设计最大限度保证各溶出杯状态的一致性,岛津工程师们倾囊相授。而学员们也通过翔实的数据和亲身体验,感受到一款看似寻常的溶出度仪,每一个细节都融合了岛津工程师的经验和心血。 通过本次培训,岛津公司向珠三角地区的制药企业充分展示了岛津溶出度仪产品的细节及技术特点,并且获得了学员们的高度认可。在切实参与到企业一致性评价工作的过程中,岛津作为医药行业的可靠伙伴,将长期未我们的客户提供更加专业的产品和服务。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 873项标准废止 含大量色谱、光谱等仪器方法标准
    12月15日,国标委、国家质检总局联合发布“关于废止《发文稿纸格式》等873项推荐性国家标准的公告”。通知显示,被废止的标准涉及钢铁、船舶、电子电器、通讯、化工、饲料、烟草、汽车等行业。  统计发现,本批废止的标准中约有200项仪器方法,主要为色谱、光谱、气质联用分析方法,且以汽车行业车间空气检测为主。汇总如下:国家标准编号国家标准名称GB/T223.16-1991钢铁及合金化学分析方法变色酸光度法测定钛量GB/T223.48-1985钢铁及合金化学分析方法半二甲酚橙光度法测定铋量GB/T223.55-2008钢铁及合金碲含量的测定示波极谱法GB/T223.57-1987钢铁及合金化学分析方法萃取分离-吸附催化极谱法测定镉量GB/T257-1964发动机燃料饱和蒸气压测定法(雷德法)GB/T2900.82-2008电工术语核仪器仪器、系统、设备和探测器GB/T4298-1984半导体硅材料中杂质元素的活化分析方法GB/T6098.2-1985棉纤维长度试验方法光电长度仪法GB/T6155-2008炭素材料真密度和真气孔率测定方法GB/T6014-1999工业用丁二烯中不挥发残留物质的测定GB/T6276.1-2008工业用碳酸氢铵的测定方法第1部分:碳酸氢铵含量酸碱滴定法GB/T6276.2-2010工业用碳酸氢铵的测定方法第2部分:氯化物含量电位滴定法GB/T6276.3-2010工业用碳酸氢铵的测定方法第3部分:硫化物含量目视比浊法GB/T6276.4-2010工业用碳酸氢铵的测定方法第4部分:硫酸盐含量目视比浊法GB/T6276.5-2010工业用碳酸氢铵的测定方法第5部分:灰分含量重量法GB/T6276.6-2010工业用碳酸氢铵的测定方法第6部分:铁含量邻菲啰啉分光光度法GB/T6276.7-2010工业用碳酸氢铵的测定方法第7部分:砷含量二乙基二硫代氨基甲酸银分光光度法GB/T6276.8-2010工业用碳酸氢铵的测定方法第8部分:砷含量砷斑法GB/T6276.9-2010工业用碳酸氢铵的测定方法第9部分:重金属含量目视比浊法GB/T8156.10-1987工业用氟化铝中硫量的测定X射线荧光光谱分析法GB/T8156.1-1987工业用氟化铝化学分析方法重量法测定湿存水量GB/T8156.2-1987工业用氟化铝化学分析方法电量法测定水分含量GB/T8156.3-1987工业用氟化铝化学分析方法蒸馏-硝酸钍容量法测定氟量GB/T8156.4-1987工业用氟化铝化学分析方法EDTA容量法测定铝量GB/T8156.5-1987工业用氟化铝化学分析方法火焰发射光度法测定钠量GB/T8156.6-1987工业用氟化铝化学分析方法钼蓝光度法测定硅量GB/T8156.7-1987工业用氟化铝化学分析方法邻二氮杂菲光度法测定铁量GB/T8156.8-1987工业用氟化铝化学分析方法硫酸钡重量法测定硫酸根量GB/T8156.9-1987工业用氟化铝化学分析方法钼蓝光度法测定磷量GB/T8381-2008饲料中黄曲霉毒素B1的测定半定量薄层色谱法GB/T8381.5-2005饲料中北里霉素的测定GB/T8381.8-2005饲料中多氯联苯的测定气相色谱法GB/T8432-1987耐光色牢度试验仪用湿度控制标样GB/T10470-2008速冻水果和蔬菜矿物杂质测定方法GB/T11113-1989人造石英晶体中杂质的分析方法GB/T11114-1989人造石英晶体位错的X射线形貌检测方法GB/T12688.6-1990工业用苯乙烯中微量硫的测定氧化微库仑法GB/T12700-1990石油产品和烃类化合物硫含量的测定Wickbold燃烧法GB/T13080.2-2005饲料添加剂蛋氨酸铁(铜、锰、锌)螯合率的测定凝胶过滤色谱法GB/T13595-2004烟草及烟草制品拟除虫菊酯杀虫剂、有机磷杀虫剂、含氮农药残留量的测定GB/T13596-2004烟草和烟草制品有机氯农药残留量的测定气相色谱法GB/T13780-1992棉纤维长度试验方法自动光电长度仪法GB/T13784-2008棉花颜色试验方法测色仪法GB/T14454.15-2008黄樟油黄樟素和异黄樟素含量的测定填充柱气相色谱法GB/T14634.4-2002灯用稀土三基色荧光粉试验方法电传感法粒度分布测定GB/T15000.5-1994标准样品工作导则(5)化学成分标准样品技术通则GB/T15245-2002稀土氧化物的电子探针定量分析方法GB/T15555.2-1995固体废物铜、锌、铅、镉的测定原子吸收分光光度法GB/T15555.6-1995固体废物总铬的测定直接吸入火焰原子吸收分光光度法GB/T15555.9-1995固体废物镍的测定直接吸入火焰原子吸收分光光度法GB/T15679.1-1995钐钴永磁合金粉化学分析方法钐、钴量的测定GB/T15679.2-1995钐钴永磁合金粉化学分析方法铁量的测定GB/T15679.3-1995钐钴永磁合金粉化学分析方法钙量的测定GB/T15679.4-1995钐钴永磁合金粉化学分析方法氧量的测定GB/T16008-1995车间空气中铅的石墨炉原子吸收光谱测定方法GB/T16009-1995车间空气中铅的双硫腙分光光度测定方法GB/T16010-1995车间空气中铅的火焰原子吸收光谱测定方法GB/T16011-1995车间空气中硫化铅的火焰原子吸收光谱测定方法GB/T16012-1995车间空气中汞的冷原子吸收光谱测定方法GB/T16013-1995车间空气中汞的双硫腙分光光度测定方法GB/T16014-1995车间空气中氧化锌的双硫腙分光光度测定方法GB/T16015-1995车间空气中氧化锌的火焰原子吸收光谱测定方法GB/T16016-1995车间空气中氧化镉的火焰原子吸收光谱测定方法GB/T16017-1995车间空气中锰及其化合物的磷酸-高碘酸钾分光光度测定方法GB/T16018-1995车间空气中锰及其化合物的火焰原子吸收光谱测定方法GB/T16019-1995车间空气中三氧化铬、铬酸盐、重铬酸盐的二苯碳酰二肼分光光度测定方法GB/T16020-1995车间空气中三氧化铬的火焰原子吸收光谱测定方法GB/T16021-1995车间空气中镍及其化合物的火焰原子吸收光谱测定方法GB/T16022-1995车间空气中钴及其化合物的火焰原子吸收光谱测定方法GB/T16023-1995车间空气中铍的桑色素荧光光度测定方法GB/T16024-1995车间空气中臭氧的丁子香酚-盐酸副玫瑰苯胺分光光度测定方法GB/T16025-1995车间空气中二氧化硫的盐酸副玫瑰苯胺分光光度测定方法GB/T16026-1995车间空气中硫酸及三氧化硫的氯化钡比浊测定方法GB/T16027-1995车间空气中硫化氢的硝酸银比色测定方法GB/T16028-1995车间空气中二硫化碳的二乙胺分光光度测定方法GB/T16029-1995车间空气中氯的甲基橙分光光度测定方法GB/T16030-1995车间空气中氟化氢及氟化物的离子选择电极测定方法GB/T16031-1995车间空气中氨的纳氏试剂分光光度测定方法GB/T16032-1995车间空气中氧化氮的盐酸萘乙二胺分光光度测定方法GB/T16033-1995车间空气中氰化氢及氢氰酸盐的异菸酸钠-巴比妥酸钠分光光度测定方法GB/T16034-1995车间空气中三氧化二砷及五氧化二砷的二乙氨基二硫代甲酸银分光光度测定方法GB/T16035-1995车间空气中砷化氢的二乙氨基二硫代甲酸银分光光度测定方法GB/T16036-1995车间空气中五氧化二磷的钼酸铵分光光度测定方法GB/T16037-1995车间空气中磷化氢的钼酸铵分光光度测定方法GB/T16038-1995车间空气中溶剂汽油的直接进样气相色谱测定方法GB/T16039-1995车间空气中溶剂汽油的热解吸气相色谱测定方法GB/T16040-1995车间空气中丁二烯的直接进样气相色谱测定方法GB/T16041-1995车间空气中环己烷的直接进样气相色谱测定方法GB/T16042-1995车间空气中环己烷的溶剂解吸气相色谱测定方法GB/T16043-1995车间空气中苯的直接进样气相色谱测定方法GB/T16044-1995车间空气中苯的溶剂解吸气相色谱测定方法GB/T16045-1995车间空气中苯的热解吸气相色谱测定方法GB/T16046-1995车间空气中甲苯的直接进样气相色谱测定方法GB/T16047-1995车间空气中甲苯的溶剂解吸气相色谱测定方法GB/T16048-1995车间空气中甲苯的热解吸气相色谱测定方法GB/T16049-1995车间空气中二甲苯的直接进样气相色谱测定方法GB/T16050-1995车间空气中二甲苯的溶剂解吸气相色谱测定方法GB/T16051-1995车间空气中二甲苯的热解吸气相色谱测定方法GB/T16052-1995车间空气中苯乙烯的直接进样气相色谱测定方法GB/T16053-1995车间空气中苯乙烯的溶剂解吸气相色谱测定方法GB/T16054-1995车间空气中苯乙烯的热解吸气相色谱测定方法GB/T16055-1995车间空气中联苯-苯醚的紫外分光光度测定方法GB/T16056-1995车间空气中萘的溶剂解吸气相色谱测定方法GB/T16057-1995车间空气中甲醛的酚试剂(MBTH)分光光度测定方法GB/T16058-1995车间空气中丙酮的直接进样气相色谱测定方法GB/T16059-1995车间空气中丙酮的溶剂解吸气相色谱测定方法GB/T16060-1995车间空气中丁酮的直接进样气相色谱测定方法GB/T16062-1995车间空气中甲醇的直接进样气相色谱测定方法GB/T16063-1995车间空气中甲醇的热解吸气相色谱测定方法GB/T16064-1995车间空气中丙醇的直接进样气相色谱测定方法GB/T16065-1995车间空气中丁醇的直接进样气相色谱测定方法GB/T16066-1995车间空气中乙酸甲酯的直接进样气相色谱测定方法GB/T16067-1995车间空气中乙酸乙酯的直接进样气相色谱测定方法GB/T16068-1995车间空气中乙酸丙酯的直接进样气相色谱测定方法GB/T16069-1995车间空气中乙酸丁酯的直接进样气相色谱测定方法GB/T16070-1995车间空气中乙酸戊酯的直接进样气相色谱测定方法GB/T16071-1995车间空气中乙醚的直接进样气相色谱测定方法GB/T16072-1995车间空气中酚的4-氨基安替比林分光光度测定方法GB/T16073-1995车间空气中酚的溶剂解吸气相色谱测定方法GB/T16074-1995车间空气中环氧乙烷的直接进样气相色谱测定方法GB/T16075-1995车间空气中环氧乙烷的热解吸气相色谱测定方法GB/T16076-1995车间空气中环氧氯丙烷的直接进样气相色谱测定方法GB/T16077-1995车间空气中光气的紫外分光光度测定方法GB/T16078-1995车间空气中氯甲烷的直接进样气相色谱测定方法GB/T16079-1995车间空气中二氯甲烷的直接进样气相色谱测定方法GB/T16080-1995车间空气中三氯甲烷的直接进样气相色谱测定方法GB/T16081-1995车间空气中三氯甲烷的溶剂解吸气相色谱测定方法GB/T16082-1995车间空气中四氯化碳的直接进样气相色谱测定方法GB/T16083-1995车间空气中四氯化碳的溶剂解吸气相色谱测定方法GB/T16084-1995车间空气中溴甲烷的直接进样气相色谱测定方法GB/T16085-1995车间空气中二氯乙烷的直接进样气相色谱测定方法(ApiezonL)GB/T16086-1995车间空气中二氯乙烷的直接进样气相色谱测定方法(PEG20M)GB/T16087-1995车间空气中氯乙烯的直接进样气相色谱测定方法(DNP)GB/T16088-1995车间空气中氯乙烯的直接进样气相色谱测定方法(PEG6000)GB/T16089-1995车间空气中氯乙烯的热解吸气相色谱测定方法(DNP)GB/T16090-1995车间空气中氯丙烯的直接进样气相色谱测定方法GB/T16091-1995车间空气中氯丁二烯的直接进样气相色谱测定方法GB/T16092-1995车间空气中滴滴涕的气相色谱测定方法GB/T16093-1995车间空气中六六六的气相色谱测定方法GB/T16094-1995车间空气中四氟乙烯的直接进样气相色谱测定方法GB/T16095-1995车间空气中乙腈的直接进样气相色谱测定方法GB/T16096-1995车间空气中乙腈的溶剂解吸气相色谱测定方法GB/T16097-1995车间空气中丙烯腈的溶剂解吸气相色谱测定方法GB/T16098-1995车间空气中丙烯腈的直接进样气相色谱测定方法GB/T16099-1995车间空气中丙烯腈的热解吸气相色谱测定方法GB/T16100-1995车间空气中苯胺的盐酸萘乙二胺分光光度测定方法GB/T16101-1995车间空气中氯化苦的盐酸萘乙二胺分光光度测定方法GB/T16102-1995车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法GB/T16103-1995车间空气中钼及其化合物的硫氰酸盐分光光度测定方法GB/T16104-1995车间空气中钨或碳化钨的硫氰酸钾-三氯化钛分光光度测定方法GB/T16105-1995车间空气中五氧化二钒的N-肉桂酰-邻-甲苯羟胺分光光度测定方法GB/T16106-1995车间空气中氢氧化钠的酸碱滴定测定方法GB/T16107-1995车间空气中氢氧化钠的火焰光度测定方法GB/T16108-1995车间空气中锆及其化合物的二甲酚橙分光光度测定方法GB/T16109-1995车间空气中氯化氢及盐酸的硫氰酸汞分光光度测定方法GB/T16110-1995车间空气中黄磷的气相色谱测定方法GB/T16111-1995车间空气中二甲基甲酰胺的气相色谱测定方法GB/T16112-1995车间空气中二硝基苯的气相色谱测定方法GB/T16113-1995车间空气中三硝基甲苯的气相色谱测定方法GB/T16114-1995车间空气中一硝基氯苯的盐酸萘乙二胺分光光度测定方法GB/T16115-1995车间空气中二硝基氯苯的盐酸萘乙二胺分光光度测定方法GB/T16116-1995车间空气中吡啶的巴比妥酸分光光度测定方法GB/T16117-1995车间空气中甲基对硫磷的气相色谱测定方法GB/T16118-1995车间空气中乐果的气相色谱测定方法GB/T16119-1995车间空气中乐果的盐酸萘乙二胺分光光度测定方法GB/T16120-1995车间空气中敌敌畏的溶剂解吸气相色谱测定方法GB/T16121-1995车间空气中对硫磷的溶剂解吸气相色谱测定方法GB/T16122-1995车间空气中甲拌磷的溶剂解吸气相色谱测定方法GB/T16123-1995车间空气中碘甲烷的1,2-萘醌-4-磺酸钠分光光度测定方法GB/T16480.3-1996金属钇及氧化钇化学分析方法氟量的测定GB/T16481-1996稀土元素微波等离子体炬发射光谱(MPT-AES)标准谱表GB/T17062-1997车间空气中锡及其无机化合物的火焰原子吸收光谱测定方法GB/T17063-1997车间空气中锑及其化合物的火焰原子吸收光谱测定方法GB/T17064-1997车间空气中甲硫醇的气相色谱测定方法GB/T17065-1997车间空气中偏二甲基肼的气相色谱测定方法GB/T17066-1997车间空气中二乙胺的气相色谱测定方法GB/T17067-1997车间空气中三氧化二砷原子吸收光谱测定方法GB/T17068-1997车间空气中甲酸的气相色谱测定方法GB/T17069-1997车间空气中丙酸的气相色谱测定方法GB/T17070-1997车间空气中苄基氯的气相色谱测定方法GB/T17071-1997车间空气中苄基氰的气相色谱测定方法GB/T17072-1997车间空气中对硝基苯胺的溶剂解吸气相色谱测定方法GB/T17073-1997车间空气中环己酮的溶剂解吸气相色谱测定方法GB/T17074-1997车间空气中乙醛的溶剂解吸气相色谱测定方法GB/T17075-1997车间空气中丁醇的溶剂解吸气相色谱测定方法GB/T17076-1997车间空气中异丁醇的溶剂解吸气相色谱测定方法GB/T17077-1997车间空气中硫酸二甲酯的溶剂解吸液相色谱测定方法GB/T17078-1997车间空气中三硝基苯酚的高效液相色谱测定方法GB/T17079-1997车间空气中乙酸甲酯的溶剂解吸气相色谱测定方法GB/T17080-1997车间空气中乙酸乙酯的溶剂解吸气相色谱测定方法GB/T17081-1997车间空气中乙酸丙酯的溶剂解吸气相色谱测定方法GB/T17082-1997车间空气中乙酸丁酯的溶剂解吸气相色谱测定方法GB/T17083-1997车间空气中乙酸戊酯的溶剂解吸气相色谱测定方法GB/T17084-1997车间空气中2-甲氧基乙醇的溶剂解吸气相色谱测定方法GB/T17086-1997车间空气中2-丁氧基乙醇的溶剂解吸气相色谱测定方法GB/T17087-1997车间空气中钼的等离子体发射光谱测定方法GB/T17088-1997车间空气中N-甲基苯胺的溶剂解吸气相色谱测定方法GB/T17089-1997车间空气中N,N-二甲基苯胺的溶剂解吸气相色谱测定方法GB/T17090-1997车间空气中三氯乙烯的气相色谱测定方法GB/T17092-1997车间空气中丙烯酸乙酯的溶剂解吸气相色谱测定方法GB/T19611-2004烟草及烟草制品抑芽丹残留量的测定紫外分光光度法GB/T20127.6-2006钢铁及合金痕量元素的测定第6部分:没食子酸-示波极谱法测定锗含量GB/T20127.7-2006钢铁及合金痕量元素的测定第7部分:示波极谱法测定铅含量GB/Z20288-2006电子电气产品中有害物质检测样品拆分通用要求GB/T20396-2006三系杂交水稻及亲本真实性和品种纯度鉴定DNA分析方法GB/T20899.11-2007金矿石化学分析方法第11部分:砷量和铋量的测定GB/T21131-2007环境烟草烟气可吸入悬浮颗粒物的估测用紫外吸收法和荧光法测定粒相物GB/T21132-2007烟草及烟草制品二硫代氨基甲酸酯农药残留量的测定分子吸收光度法GB/T21133-2007环境烟草烟气可吸入悬浮颗粒物的估测茄呢醇法GB/T21134-2007烟草及烟草制品不溶于盐酸的硅酸盐残留物的测定GB/T21135-2007烟草及烟草制品空气中气相烟碱的测定气相色谱法GB/T21198.2-2007贵金属合金首饰中贵金属含量的测定ICP光谱法第2部分:铂合金首饰铂含量的测定采用所有微量元素与铂强度比值法GB/Z21274-2007电子电气产品中限用物质铅、汞、镉检测方法GB/Z21275-2007电子电气产品中限用物质六价铬检测方法GB/Z21276-2007电子电气产品中限用物质多溴联苯(PBBs)、多溴二苯醚(PBDEs)检测方法GB/Z21277-2007电子电气产品中限用物质铅、汞、铬、镉和溴的快速筛选X射线荧光光谱法GB/T23203.2-2008卷烟总粒相物中水分的测定第2部分:卡尔.费休法GB/T23225-2008烟草及烟草制品总植物碱的测定光度法GB/T23226-2008卷烟总粒相物中总植物碱的测定光度法GB/T23241-2009灌溉用塑料管材和管件基本参数及技术条件GB/T23354-2009卷烟滤嘴总植物碱截留量的测定光度法GB/T23357-2009烟草及烟草制品水分的测定卡尔费休法GB/T23358-2009卷烟主流烟气总粒相物中主要芳香胺的测定气相色谱-质谱联用法GB/T27410-2010消费类产品中有毒有害物质检测实验室技术规范GB/T27523-2011卷烟主流烟气中挥发性有机化合物(1,3-丁二烯、异戊二烯、丙烯腈、苯、甲苯)的测定气相色谱-质谱联用法GB/T27524-2011卷烟主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定气相色谱-质谱联用法GB/T27525-2011卷烟侧流烟气中苯并[a]芘的测定气相色谱-质谱联用法GB/T28971-2012卷烟侧流烟气中烟草特有N-亚硝胺的测定气相色谱-热能分析仪法GB/T29566-2013蚊类对杀虫剂抗药性的生物学测定方法GB/T29567-2013蝇类对杀虫剂抗药性的生物学测定方法微量点滴法GB/T29592-2013建筑胶粘剂挥发性有机化合物(VOC)及醛类化合物释放量的测定方法
  • 拉曼光谱仪地方标准及国家标准研究进展及应用意义
    pstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  起草单位:厦门大学、福建省计量院、厦门市普识纳米科技有限公司/span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  起草人:刘国坤、罗峰等/span/strong/pp  拉曼光谱具有明显的优势,主要包括:水的拉曼散射很微弱,是研究水溶液中的生物样品和化学化合物的理想工具;波数范围广,可对有机物及无机物进行分析;拉曼光谱具有指纹图谱特点,谱峰分辨率高、清晰尖锐,适合进行不定项检测等 抗干扰能力强,无需进行复杂的样品准备,可进行快速分析;对测试样品的量要求少,只需要少量的样品就可以实现检测。/pp  同时,随着纳米增强试剂和光源技术的发展与应用,使基于拉曼光谱的检测技术得到了广泛的发展和应用。目前,这一技术已被广泛用于食品安全、环境科学,公共安全、生物医药等领域,成为检测市场中一个热点。/pp  然而,由于目前没有拉曼光谱仪产品的统一评价标准,市场上的拉曼光谱仪的技术性能和产品质量良莠不齐,甚至出现了仪器标称指标和实际情况相去甚远的情况,这给拉曼光谱仪的生产、使用和市场秩序带来了不利影响,对其进一步的推广和应用造成了阻碍。为此,亟需建立拉曼光谱仪的统一评价标准,规范其产品仪器,从而促进该行业的有序、健康发展。/pp  对拉曼分析系统在不同领域中的应用来说,很重要是要有解决方案,如在毒化检测上,常规拉曼需要完善谱库,精准的算法结合性能优良的光谱仪才能为基层公安干警解决问题;食安领域中的应用,在所需的谱库、算法和硬件基础上更需要有解决方案去检测复杂体系的痕量物质,所以这里就需要拉曼增强模块。/pp  而现有的纳米增强技术合成技术难度大,不少企业简易合成的产品保质期短,检出限不能达到应用要求,同时对于实际体系没有进行针对化开发,只能检测标准品。现在不少企业为了迎合市场需求,在没有完整研制算法、建立完善谱库,及检测解决方案,简易拼凑仪器就推向市场,使得一线使用业主难以开展检测,也有极个别的虚假宣传企业,因为虚假宣传自己,拉曼被列入政府采购中心黑名单,从而导致部分地区对拉曼技术存在偏见,对国产的拉曼更有排斥态度。/pp  2015年12月30日,福建省质监局在福州组织召开了由福建计量院、厦门大学、厦门市普识纳米科技有限公司共同起草的福建省地方标准《便携式拉曼光谱快速检测仪》专家审定会,该标准的通过进一步规范了拉曼光谱快速检测仪的检测要求,推进了拉曼光谱技术的发展,与会专家一致通过了对该标准的审定。/pp  越来越多的专家意见认为,该标准为首个针对拉曼光谱快速检测仪的标准,规范了便携式拉曼光谱快速检测仪的要求、试验方法、检验规则、标志、包装、运输及贮存等,为便携式拉曼光谱快速检测仪的生产、使用和检验提供技术依据,性能指标合理,可操作性强,达到国内领先水平。/pp  该标准的实施,将有效推进拉曼光谱技术在食品安全、环境保护、公共与国防安全、生命健康等领域的应用开发,对提升拉曼光谱技术及仪器制造的水平、促进市场规范和行业健康发展,具有重要意义。/pp  在福建省地方标准《便携式拉曼光谱快速检测仪》基础上,福建计量院、厦门大学、厦门市普识纳米科技有限公司再接再厉牵头起草了《拉曼光谱仪》国家标准,并于2016年1月成立了国家标准起草工作组,该标准属于首次制定。《拉曼光谱仪》国家标准经过标准起草工作组多轮的讨论和修改将于2018年完成编订,该标准编订的完成将为拉曼光谱仪的生产、使用和检验提供技术依据,推动拉曼光谱技术的发展,也规范拉曼市场应用。/pp style="TEXT-ALIGN: right"(供稿:厦门谱识科仪)/p
  • 云锡无铅锡基焊料光谱标准样品获得批准
    4月9日,云锡研究设计院分析检测中心收到了全国标准样品委员会核发的有证标准样品证书《国家质量监督检验检疫总局、国家标准化管理委员会联合发布中华人民共和国国家标准公告〔2015年第7号〕》:批准云锡研究设计院研制的无铅锡基焊料光谱标准样品,编号为GSB 04-3225-2014,有效期自2014年7月至2029年6月。  无铅锡基焊料光谱标准样品是2014年7月3日,经全国标准样品技术委员会有色分委会组织由26家单位33位代表组成的专家通过鉴定的。鉴定专家与会专家听取了研制的技术报告、审查了相关资料。通过质询和讨论,专家组一致认为:该标准样品成分设计合理,研制工艺科学;具有良好的均匀性和稳定性;结果准确、可靠;该标准样品的研制填补了国内空白,该技术指标达到了国内先进水平。  该证书的取得,标志着由云锡研究设计院经过一年多研制的无铅锡基焊料光标准样品获得了国家质量监督检验检疫总局及国家标准化管理委员会的批准,将面向全国客户销售。
  • 光谱相关国家标准盘点 这些仪器方法是主力
    作为一项重要的分析手段,光谱分析方法已经应用到了各大行业和领域,光谱仪器市场不断攀升。随着应用需求的提升和应用场景的拓展,相关仪器和检测标准也在不断制修订过程中。标准是推动仪器技术市场拓展的重要因素,同时,相关标准数量的多少也在一定程度上反映了该类仪器应用的发展阶段。据全国标准信息公共服务平台数据的不完全统计,在国家标准目录中,以“光谱”词条搜索现行标准625项,以“分光光度”词条搜索现行标准528项。通过筛选与分类,目前现行标准相对较多的主要是紫外/可见分光光度法、原子吸收荧光光谱法/分光光度法和电感耦合等离子体发射光谱法等。分类现行正在征求意见/审查/批准即将实施紫外/可见分光光度法42095原子吸收光谱法29273电感耦合等离子体原子发射光谱法16217原子荧光光谱法5021X射线荧光光谱法3643其他原子发射光谱法(光电直读、直流电弧、辉光放电等)281红外光谱法2623拉曼光谱法101近红外光谱法71(以上为小编整理的带有明确标签的光谱仪器品类,并未覆盖已搜的全部标准)原子吸收光谱法(AAS)作为一项相对成熟又实用的分析方法,所涉及的已有国标共有292项,2006年-2010年是该方法标准发布的爆发期,5年时间发布了115项;2021年实施的标准共有7项,火焰原子吸收光谱法占据6项,是铅精矿和铝及铝合金化学分析中铅、锌、钾、钠、锂、银元素的测定;到目前为止,今年将实施的原子吸收光谱法标准共有9项,具体如下表所示:标准号标准名称实施日期GB/T 7728-2021冶金产品化学分析 火焰原子吸收光谱法通则2022/3/1GB/T 14949.2-2021锰矿石 镍含量的测定 火焰原子吸收光谱法2022/3/1GB/T 14636-2021工业循环冷却水及水垢中钙、镁的测定 原子吸收光谱法2022/3/1GB/T 14637-2021工业循环冷却水及水垢中铜、铁、锌的测定 原子吸收光谱法2022/3/1GB/T 5195.11-2021萤石 锰含量的测定 高碘酸盐分光光度法和火焰原子吸收光谱法2022/3/1GB/T 40374-2021硬质合金化学分析方法 铅量和镉量的测定 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2022/3/1GB/T 14949.6-2021锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法2022/5/1GB/T 4333.8-2022硅铁 钙含量的测定 火焰原子吸收光谱法2022/10/1GB/T 8152.16-2022铅精矿化学分析方法 第16部分:氧化钙含量的测定 火焰原子吸收光谱法2022/10/1随着分光及检测器等关键元件的快速发展,电感耦合等离子体发射光谱技术也不断完善,已在地质、环保、化工、生物、医药、食品、冶金、农业等领域发挥着至关重要的作用。据统计,涉及电感耦合等离子体原子发射光谱法(ICP-AES)的国家标准有162项,2018年实施了33项之多,2020年实施了22项,2021年实施了14项;到目前为止,今年实施了2项,分别是《硬质合金化学分析方法 铅量和镉量的测定 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法》和《钢铁及合金 硅含量的测定 电感耦合等离子体原子发射光谱法》。另外,还有正在征求意见、审查和批准的共有17项。相关标准方法的推出势头在一定程度上也显示出, 电感耦合等离子体发射光谱仪器可观的市场前景。X射线荧光光谱(XRF)技术,因其非破坏性小、快速、操作简便等特点,广泛应用于RoHS、有害元素检查、工业现场成分分析、贵金属检测、废旧金属回收、地质勘探、环境监测、考古研究、镀层层厚分析、食品安全监测以及生物、化学、药物等众多领域中。在X射线荧光光谱法(XRF)的标准中,波长色散XRF标准有12项,能量色散XRF标准有4项,其余并未作明确说明。2022年,有3项XRF标准将实施,发展势头可期。标准号标准名称实施日期GB/T 40915-2021X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K2O、Na2O、CaO、MgO含量2022/6/1GB/T 3286.11-2022石灰石及白云石化学分析方法 第11部分:氧化钙、氧化镁、二氧化硅、氧化铝及氧化铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2022/10/1GB/T 6609.30-2022氧化铝化学分析方法和物理性能测定方法 第30部分:微量元素含量的测定 波长色散X射线荧光光谱法2022/10/1紫外/可见分光光度(光谱)法标准共有420项,不过部分标准发布时间较早,2000年以前的标准有121项,2020年至今实施的标准仅27项。虽然传统的紫外可见分光光度法并未有很大的技术突破和革新,但一直是分析检测的主力和重要手段。当然,超微量紫外等一些新的技术也在蓬勃发展中,期待新的标准及标准计划的发布。除此之外,随着技术的发展和应用需求的提升,涉及拉曼、近红外等分析方法的标准也在抓紧制定中。小编仅是通过查到的国家标准进行了简单的分析,未来,仪器信息网还将从地方标准、行业标准等很多维度对光谱分析方法标准进行梳理分享,敬请期待!
  • 最新公布的光谱仪器相关标准(含下载链接)
    4月15日,国家市场监督管理总局 国家标准化管理委员会公布了245项推荐性国家标准,其中与光谱技术相关的共有5项。标准将于2022年11月1日正式已于近日上线,标准全文已于近日公布,点击下方标准名称可直接查看标准全文。注:GB/T 6730.60-2022采用了ISO、IEC等国际国外组织的标准,由于涉及版权保护问题,系统暂不提供在线阅读服务。标准号标准名称GB/T 6730.60-2022铁矿石 镍含量的测定 火焰原子吸收光谱法GB/T 41456-2022纳米技术 生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法 GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法 GB/T 14571.4-2022工业用乙二醇试验方法 第4部分:紫外透光率的测定 紫外分光光度法 GB/T 41497-2022钒铁 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 以下重点展示标准中涉及仪器的部分:GB/T 41456-2022 纳米技术 生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法GB/T 41442-2022 山羊绒净绒率试验方法 近红外光谱法GB/T 14571.4-2022 工业用乙二醇试验方法 第4部分:紫外透光率的测定 紫外分光光度法GB/T 41497-2022 钒铁 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法在线预览|GB/T 16597-2019 冶金产品分析方法 X射线荧光光谱法通则
  • 盘点! 2024年63项光谱新标准已正式实施
    7月1日,作为全国标准发布实施的重要节点,仪器信息网特地对2024年正式实施的光谱国家标准、行业标准及地方标准进行梳理,共63项。这些标准覆盖了近红外光谱、拉曼光谱、电感耦合等离子体原子发射光谱、X射线荧光光谱法、原子吸收光谱、傅立叶变换红外光谱、红外吸收光谱、原子荧光光谱法等等分析方法。这些标准的实施,旨在提升我国光谱分析技术的准确性和可靠性,进一步保障和促进社会各领域的发展。并且他们的应用范围极为广泛,涉及食品、环境、材料、石油、制造业、农业、林业、牧业、渔业、水利、公共设施管理、科学研究和技术服务业等重要领域。具体新实施的标准整理如下:近红外光谱相关标准标准号标准名称实施日期NY/T 4427-2023饲料近红外光谱测定应用指南2024-05-01DB37/T 4708—2024沉积物中有机碳含量的测定 可见-近红外光谱法2024-05-11FZ/T 01057.10-2023纺织纤维鉴别试验方法 第10部分:近红外光谱法2024-07-01DB15/T 3461—2024毛绒纤维回潮率试验方法 近红外光谱法2024-07-14拉曼光谱相关标准标准号标准名称实施日期SN/T 5643.2-2023出口食品中化学污染物的快速检测方法 第2部分:碱性嫩黄O的测定 拉曼光谱法2024-05-01SN/T 5643.3-2023出口食品中化学污染物的快速检测方法 第3部分:苋菜红的测定 拉曼光谱法2024-05-01SN/T 5643.4-2023出口食品中化学污染物的快速检测方法 第4部分:西布曲明的测定 拉曼光谱法2024-05-01GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-01SN/T 5644.1-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-07-01SN/T 5644.2-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-07-01SN/T 5644.3-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-07-01SN/T 5644.4-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-07-01SN/T 5644.5-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-07-01SN/T 5644.6-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-07-01SN/T 5644.7-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-07-01SN/T 5644.8-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-07-01SN/T 5644.9-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-07-01SN/T 5644.10-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-07-01原子发射光谱法相关标准标准号标准名称实施日期DZ/T 0452.1-2023稀土矿石化学分析方法 第1部分:二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化镁、氧化钾、氧化钠、二氧化钛、氧化锰、五氧化二磷、锶和钡含量的测定 偏硼酸锂熔融—电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0452.2-2023稀土矿石化学分析方法 第2部分:铝、铁、钙、镁、钾、钠、钛、锰、磷及15个稀土元素含量测定 混合酸分解―电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.1-2023铌钽矿石化学分析方法 第1部分:铌、钽和钨含量的测定 封闭酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.3-2023铌钽矿石化学分析方法 第3部分:铌、钽、铁、锰和钨含量的测定 酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0454.3-2023钛铁矿化学分析方法 第3部分:铝、钙、镁、钾、钠、钛、锰、铬、锶、钒和锌含量的测定 混合酸分解-电感耦合等离子体原子发射光谱法2024-01-01GB/T 11064.16-2023碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第16部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 6730.84-2023铁矿石 稀土总量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42906-2023石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 3884.18-2023铜精矿化学分析方法 第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42794-2023镍铁 碳、硫、硅、磷、镍、钴、铬和铜含量的测定 火花源原子发射光谱法2024-03-01GB/T 43861-2024微波等离子体原子发射光谱方法通则2024-04-25GB/T 3260.11-2023锡化学分析方法 第11部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-01GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法2024-06-01YB/T 6157.1-2023铌铁分析方法 第1部分:钽、磷、铝和钛含量的测定 电感耦合等离子体原子发射光谱法2024-07-01YB/T 4174.2-2023硅钙合金分析方法 第2部分:磷含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43607-2023钯锭分析方法 银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法2024-07-01GB/T 43603.1-2023镍铂靶材合金化学分析方法 第1部分:铂含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43574-2023化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法2024-07-01X射线荧光光谱相关标准标准号标准名称实施日期GB/T 6730.87-2023铁矿石 全铁及其他多元素含量的测定 波长色散X射线荧光光谱法(钴内标法)2024-03-01SN/T 5643.1-2023出口食品中化学污染物的快速检测方法 第1部分:砷、镉、汞、铅含量的测定 X射线荧光光谱法2024-05-01NY/T 4435-2023土壤中铜、锌、铅、铬和砷含量的测定 能量色散X射线荧光光谱法2024-05-01GB/T 43309-2023玻璃纤维及原料化学元素的测定 X射线荧光光谱法2024-06-01GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2024-06-01DB36/T 1919-2023水质 无机元素的现场快速测定 便携式单波长激发-能量色散X射线荧光光谱法2024-07-01HG/T 6227-2023催化裂化催化剂化学成分分析方法 X射线荧光光谱法2024-07-01原子吸收光谱相关标准标准号标准名称实施日期GB/T 8151.26-2023锌精矿化学分析方法 第 26 部分:银含量的测定 酸溶解-火焰原子吸收光谱法2024-03-01GB/T 6150.10-2023钨精矿化学分析方法 第10部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01GB/T 6150.15-2023钨精矿化学分析方法 第15部分:铋含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01NY/T 4433-2023农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法2024-05-01NY/T 4434-2023土壤调理剂中汞的测定 催化热解-金汞齐富集原子吸收光谱法2024-05-01GB/T 3286.12-2023石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-01GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-01GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01其他光谱相关标准标准号标准名称实施日期DB42/T 2120-2023土壤中氨氮、亚硝酸盐氮和硝酸盐氮的测定 气相分子吸收光谱法2024-01-29GB/T 20150-2023红斑基准作用光谱及标准红斑剂量2024-03-01GB/T 35306-2023硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法2024-03-01GB/T 29057-2023用区熔拉晶法和光谱分析法评价多晶硅棒的规程2024-03-01YY/T 1896-2023光谱辐射治疗设备波长范围界定方法2024-05-01GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法2024-06-01GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第3部分:原子荧光光谱法2024-06-01GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-01GB/T 19502-2023表面化学分析 辉光放电发射光谱方法通则2024-07-01为了展现最新的光谱仪器技术及相关的应用,促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2024年7月16-19日举办“第十三届光谱网络会议, 简称iCS2024)”。点击报名》》》报名后,再成功邀请3人报名,即可领取纸质书《光电光谱分析技术与应用》一本或《近红外光谱实战宝典》一本,数量仅限20本,每人仅限参加一次,先到先得!(领取方式:联系助教微信13260310733)福利活动时间:6月25日-7月15日24:00会议地址:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 277项行业标准征集意见 色谱/光谱等28项仪器方法在列
    p  根据行业标准制修订计划,工信部等单位对《漂浮型橡胶护舷》等277项行业标准征集意见,覆盖化工、建材、冶金、有色、稀土、轻工等行业。气相色谱、热分析、ICP光谱、电位滴定等28项仪器分析方法在列。清单如下:/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="124" rowspan="2"p style="text-align:center "strong标准编号 /strong/p/tdtd width="189" rowspan="2"p style="text-align:center "strong标准名称 /strong/p/tdtd width="474" rowspan="2"p style="text-align:center "strong标准主要内容 /strong/p/tdtd width="112" rowspan="2"p style="text-align:center "strong代替标准 /strong/p/td/trtr/trtrtd width="124" rowspan="2"pHG/T 5404-2018/p/tdtd width="189" rowspan="2"p烯烃聚合催化剂中邻苯二甲酸酯的测定 气相色谱法/p/tdtd width="474" rowspan="2"p style="text-align:left " 本标准规定了用气相色谱法测定烯烃聚合催化剂中邻苯二甲酸酯含量的方法。本标准适用于烯烃聚合催化剂中邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二正丁酯(DNBP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二辛酯(DOP)含量的测定。/p/tdtd width="112" rowspan="2"p /p/td/trtr/trtrtd width="124" rowspan="2"pJC/T 2392.2-2018/p/tdtd width="189" rowspan="2"p石英玻璃碇 第2部分:氢氧焰化学气相沉积法/p/tdtd width="474" rowspan="2"p style="text-align:left " 本标准规定了氢氧焰化学气相沉积法石英玻璃碇的术语和定义、分级、要求、试验方法、检验规则、标志、包装、运输和贮存。br/ 本标准适用于以含硅化合物为原料,在氢氧焰中利用化学气相沉积法生产而成的石英玻璃碇。/p/tdtd width="112" rowspan="2"p /p/td/trtr/trtrtd width="124" rowspan="2"pYS/T 1257-2018/p/tdtd width="189" rowspan="2"p有色金属材料 熔化和结晶热焓试验 差示扫描量热法/p/tdtd width="474" rowspan="2"p style="text-align:left " 本标准规定了采用差示扫描量热法(DSC)测定有色金属材料熔化和结晶热焓的方法。 br/ 本标准适用于测定有色金属材料熔化(熔融)热焓和结晶热焓,温度范围为室温~1500℃。/p/tdtd width="112" rowspan="2"p /p/td/trtr/trtrtd width="124" rowspan="2"pYS/T 1258-2018/p/tdtd width="189" rowspan="2"p有色金属材料 熔融和结晶温度试验 热分析方法/p/tdtd width="474" rowspan="2"p style="text-align:left " 本标准规定了采用差示扫描量热法(DSC)或差热分析(DTA)测定有色金属材料熔融(熔化)和结晶温度的方法。br/ 本标准适用于测定有色金属材料熔融(熔化)和结晶温度,温度范围为室温~1500℃。/p/tdtd width="112" rowspan="2"p /p/td/trtr/trtrtd width="124" rowspan="2"pYS/T 1259-2018/p/tdtd width="189" rowspan="2"p锆合金管材表面氟离子含量的测定 分光光度法/p/tdtd width="474" rowspan="2"p style="text-align:left " 本标准规定了锆合金管材表面氟离子含量的测定方法。br/ 本标准适用于锆合金管材表面氟离子含量的测定。测定范围为: 0.10μg/cm2~1.10μg/cm2。/p/tdtd width="112" rowspan="2"p /p/td/trtr/trtrtd width="124" rowspan="2"pYS/T 1261-2018/p/tdtd width="189" rowspan="2"p铪化学分析方法 杂质元素含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本标准规定了铪中的铝、钴、铬、铜、铁、镁、锰、铌、镍、硅、钛、钒、锆含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于铪中的铝、钴、铬、铜、铁、镁、锰、铌、镍、硅、钛、钒、锆含量的测定。/p/td/trtrtd width="124" rowspan="2"pYS/T 1262-2018/p/tdtd width="189" rowspan="2"p海绵钛、钛及钛合金化学分析方法 多元素含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本标准规定了海绵钛、钛及钛合金中铝、硼、铋、钴、铬、铜、铁、铪、镁、锰、钼、铌、镍、铅、钯、钌、硅、锡、钽、钒、钨、钇、锌、锆含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于海绵钛、钛及钛合金中铝、硼、铋、钴、铬、铜、铁、铪、镁、锰、钼、铌、镍、铅、钯、钌、硅、锡、钽、钒、钨、钇、锌、锆含量的测定。/p/td/trtrtd width="124" rowspan="2"pYS/T 1263.1-2018/p/tdtd width="189" rowspan="2"p镍钴铝酸锂化学分析方法 第1部分:镍量的测定 丁二酮肟重量法/p/tdtd width="474"p 本部分规定了镍钴铝酸锂中镍含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于镍钴铝酸锂中镍含量的测定。测定范围:40.00%~60.00%。/p/td/trtrtd width="124" rowspan="2"pYS/T 1263.2-2018/p/tdtd width="189" rowspan="2"p镍钴铝酸锂化学分析方法 第2部分:钴量的测定 电位滴定法/p/tdtd width="474"p 本部分规定了镍钴铝酸锂中钴含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于镍钴铝酸锂中钴含量的测定。测定范围:4%~15%。/p/td/trtrtd width="124" rowspan="2"pYS/T 1263.3-2018/p/tdtd width="189" rowspan="2"p镍钴铝酸锂化学分析方法 第3部分:锂量的测定 火焰原子吸收光谱法/p/tdtd width="474"p 本部分规定了镍钴铝酸锂中锂含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于镍钴铝酸锂中锂含量的测定,测定范围:6.00%~8.00%。/p/td/trtrtd width="124" rowspan="2"pYS/T 1263.4-2018/p/tdtd width="189" rowspan="2"p镍钴铝酸锂化学分析方法 第4部分:铝、铁、钙、镁、铜、锌、硅、钠、锰量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本部分规定了镍钴铝酸锂中的铝、铁、钙、镁、铜、锌、硅、钠、锰含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于镍钴铝酸锂中的铝、铁、钙、镁、铜、锌、硅、钠、锰含量的测定,铝的测定范围为0.20%~2.00%,铁、钙、镁、铜、锌、硅、钠、锰的测定范围为0.002%~0.10%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.1-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第1部分:钒量的测定 高锰酸钾-硫酸亚铁铵滴定法/p/tdtd width="474"p 本部分规定了钒中钒含量的测定方法。/p/tdtd width="112" rowspan="2"pYS/T 540.1-2006/p/td/trtrtd width="474"p 本部分适用于钒中钒含量的测定。测定范围:90.00%~99.80%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.2-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第2部分:铬量的测定 二苯基碳酰二肼分光光度法/p/tdtd width="474"p 本部分规定了钒中铬含量的测定方法。/p/tdtd width="112" rowspan="2"pYS/T 540.2-2006/p/td/trtrtd width="474"p 本部分适用于钒中铬含量的测定。测定范围:0.004%~0.40%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.3-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第3部分:碳量的测定 高频燃烧红外吸收法/p/tdtd width="474"p 本部分规定了钒中碳含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于钒中碳含量的测定。测定范围:0.001%~1.00%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.4-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第4部分:铁量的测定 1,10-二氮杂菲分光光度法/p/tdtd width="474"p 本部分规定了钒中铁含量的测定方法。/p/tdtd width="112" rowspan="2"pYS/T 540.4-2006/p/td/trtrtd width="474"p 本部分适用于钒中铁含量的测定,测定范围:0.003%~0.50%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.5-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第5部分:杂质元素测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本部分规定了钒中铁、铬、钛、铝、铜和硅含量的测定方法。/p/tdtd width="112" rowspan="2"pYS/T 540.3-2006 YS/T 540.5-2006 YS/T 540.6-2006/p/td/trtrtd width="474"p 本部分适用于钒中铁、铬、钛、铝、铜和硅含量的测定。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.6-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第6部分:硅量的测定 钼蓝分光光度法/p/tdtd width="474"p 本部分规定了钒中硅含量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于钒中硅含量的测定。测定范围:0.002%~0.50%。/p/td/trtrtd width="124" rowspan="2"pYS/T 540.7-2018/p/tdtd width="189" rowspan="2"p钒化学分析方法 第7部分:氧量的测定 惰气熔融红外吸收法/p/tdtd width="474"p 本部分规定了钒中氧含量的测定方法。/p/tdtd width="112" rowspan="2"pYS/T 540.7-2006/p/td/trtrtd width="474"p 本部分适用于钒中氧含量的测定。测定范围:0.010%~0.30%。/p/td/trtrtd width="124" rowspan="2"pXB/T 623.1-2018/p/tdtd width="189" rowspan="2"p铈铁合金化学分析方法 第1部分:稀土杂质量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本部分规定了铈铁合金中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于铈铁合金中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇量的测定。/p/td/trtrtd width="124" rowspan="2"pXB/T 623.2-2018/p/tdtd width="189" rowspan="2"p铈铁合金化学分析方法 第2部分:铝、硅、镍量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本部分规定了铈铁合金中铝、硅、镍量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于铈铁合金中铝、硅、镍量的测定。测定范围为硅、镍:0.010%~0.20%,铝:0.020%~0.20%。/p/td/trtrtd width="124" rowspan="2"pXB/T 624.1-2018/p/tdtd width="189" rowspan="2"p钇铁合金化学分析方法 第1部分:稀土杂质量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本部分规定了钇铁合金中稀土杂质量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于钇铁合金中稀土杂质量的测定。测定范围为0.0040%~0.20%。/p/td/trtrtd width="124" rowspan="2"pXB/T 624.2-2018/p/tdtd width="189" rowspan="2"p钇铁合金化学分析方法 第2部分:钙、镁、铝、锰量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="474"p 本标准规定了钇铁合金中钙、镁、铝、锰量的测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本部分适用于钇铁合金中钙、镁、铝、锰量的测定。测定范围为0.0050%~0.10%。/p/td/trtrtd width="124" rowspan="2"pQB/T 5291-2018/p/tdtd width="189" rowspan="2"p化妆品中六价铬含量的测定/p/tdtd width="474"p 本标准规定了用二苯碳酰二肼分光光度法、离子色谱-电感耦合等离子体质谱法测定化妆品中六价铬含量的方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于化妆品中六价铬含量的测定。当称样量为2 g时,二苯碳酰二肼分光光度法的检出限为0.25 mg/kg,定量限为0.83 mg/kg;离子色谱-电感耦合等离子体质谱法检出限为0.010 mg/kg,定量限为0.033 mg/kg。/p/td/trtrtd width="124" rowspan="2"pQB/T 5292-2018/p/tdtd width="189" rowspan="2"p化妆品中禁用物质维生素K1的测定 高效液相色谱法/p/tdtd width="474"p 本标准规定了化妆品中维生素K1的高效液相色谱测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于化妆品中维生素K1的测定。 本标准方法对维生素K1的检出限为1.5 mg/kg,定量限为4.0 mg/kg。/p/td/trtrtd width="124" rowspan="3"pQB/T 5293-2018/p/tdtd width="189" rowspan="3"p化妆品中禁用物质磷酸三丁酯、磷酸三(2-氯乙)酯和磷酸三甲酚酯的测定 气相色谱-质谱法/p/tdtd width="474"p 本标准规定了化妆品中禁用物质磷酸三丁酯、磷酸三(2-氯乙)酯和磷酸三甲酚酯的气相色谱-质谱测定方法。/p/tdtd width="112" rowspan="3"p /p/td/trtrtd width="474"p 本标准适用于化妆品中禁用物质磷酸三丁酯、磷酸三(2-氯乙)酯和磷酸三甲酚酯的测定。/p/td/trtrtd width="474"p 本标准方法对所有待测物的检出限均为1.0 mg/kg,定量限均为3.5 mg/kg。/p/td/trtrtd width="124" rowspan="2"pQB/T 5294-2018/p/tdtd width="189" rowspan="2"p化妆品中溴代和氯代水杨酰苯胺的测定 高效液相色谱法/p/tdtd width="474"p 本标准规定了化妆品中3,4' ,5-三溴水杨酰苯胺、4' ,5-二溴水杨酰苯胺、3,5-二溴水杨酰苯胺、3' ,4' ,5-三氯水杨酰苯胺、3' ,4' -二氯水杨酰苯胺、4' ,5-二氯水杨酰苯胺等6种溴代和氯代水杨酰苯胺的高效液相色谱测定方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于膏霜类、水剂类、唇膏类、散粉类和香波类化妆品中3,4' ,5-三溴水杨酰苯胺、4' ,5-二溴水杨酰苯胺、3,5-二溴水杨酰苯胺、3' ,4' ,5-三氯水杨酰苯胺、3' ,4' -二氯水杨酰苯胺、4' ,5-二氯水杨/p/td/trtrtd width="124" rowspan="2"pQB/T 5295-2018/p/tdtd width="189" rowspan="2"p美白化妆品中鞣花酸的测定 高效液相色谱法/p/tdtd width="474"p 本标准规定了用高效液相色谱法测定化妆品中鞣花酸的含量。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于水类、乳液类、膏霜类美白化妆品中鞣花酸的测定。 本方法鞣花酸的检出限、定量下限分别为4.0 mg/kg、15 mg/kg。/p/td/trtrtd width="124" rowspan="2"pQB/T 5299-2018/p/tdtd width="189" rowspan="2"p葡萄酒中甘油稳定碳同位素比值(13C/12C)测定方法 液相色谱联用稳定同位素比值质谱法/p/tdtd width="474"p 本标准规定了应用液相色谱-稳定同位素比值质谱法测定甘油稳定碳同位素比值(13C/12C)的方法。/p/tdtd width="112" rowspan="2"p /p/td/trtrtd width="474"p 本标准适用于葡萄酒中甘油(13C/12C)的测定。/p/td/tr/tbody/tablep  附件:a href="http://img1.17img.cn/17img/files/201805/ueattachment/725a2b4e-9725-4e80-a76d-75f2c3a1a7b1.doc" style="line-height: 16px color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "277项行业标准名称及主要内容.doc/span/a/ppbr//p
  • 浙江标准《光谱照度计》正在有序推进中
    p  近期,有消息透露,根据浙江省“浙江制造品牌建设促进会”发布的2016年第三批“浙江制造”标准制订计划的部署,由浙江省标准化研究院牵头、远方光电信息股份有限公司负责起草的《光谱照度计》浙江标准正在有序推进中。/pp  2017年7月中旬,《光谱照度计》浙江标准相关工作组研讨会召开,来自浙江省内政府主管部门、科研机构、知名企业的专家代表,和远方光电工程师深入交流,一道为标准制定出谋划策。/pp  光谱照度计以准确、轻便和测量功能丰富受到照明领域的青睐,近年来广泛应用于照明研发设计和工程验收中。但关于光谱照度计相应标准却一直处于缺失状态,有必要进行相关标准的完善,促进光谱照度计产品的规范化。/pp  而此次《光谱照度计》浙江制造标准的制定,将填补国际、国内的光谱照度计领域标准化工作空白,为高品质的检测产品认证提供了基础保障。/pp  “浙江制造”团体标准是浙江省标准强省战略的重要环节,也是“浙江制造”品牌认证的基础。远方光电承担此次标准起草工作,也是从我国的实际情况出发,结合自身在光电检测领域的先进经验和领先优势,提出了高要求的检测设备标准方案。专家们对标准草案进行了热烈讨论,对标准的进一步完善提出建议和意见。/pp/p
  • 中国药典《药品红外光谱集》标准谱图采集全攻略
    红外光谱仪是药物研究及生产必备的分析仪器之一,而粉末压片几乎是每个测试人员的必备技能。尽管压片工作看起来简单重复且没有太多的技术含量,但是想要采集到一张能够与药典标准红外谱图相媲美的谱图数据却并不是一件轻松的事情。2023 年 10 月,中国药典《药品红外光谱集》(2023 年版)正式发布。安捷伦技术人员经过多年的工作经验的积累,将通过红外谱图评价标准、红外实验室基本要求、仪器准备、粉末压片标准工作流程、粉末压片制样过程注意事项以及谱图常见问题解析等六个方面对标准红外谱图采集流程进行详细介绍。红外谱图评价标准高质量红外光谱图通常需要满足以下条件:基线平直且纵坐标在 85-100%T 之间最强吸收峰纵坐标在 5-15%T 之间在 2200-2400 cm-1 处没有 CO2 吸收峰干扰在 3400 cm-1 及 1600 cm-1 附近区域没有水峰干扰光谱信噪比好且谱线平滑下图为使用 Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图。图 1. Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图红外实验室基本要求使用红外光谱仪的用户实验室应具备以下条件:实验室温度控制在 25℃ 左右,湿度控制在 50% 以下,并保证日常恒温恒湿要求用于仪器波数准确度及光度精度验证的标准聚苯乙烯(PS)薄膜储备溴化钾、氯化钾及石蜡油等常规试剂,并放置在干燥皿内备用用于样品压片制备过程中的红外烘烤灯红外压片机、模具及配套的压片工具仪器准备安捷伦 Cary630 FTIR 光谱仪体积小巧、性能稳定,且满足《中国药典》对红外光谱仪的所有指标要求。仪器采用主机与附件分体式的设计,用户可根据测试需求及样品类型选择合适的附件。药物粉末压片测试时,可选择主机搭配透射样品仓附件实现 400-4000 cm-1 范围内红外谱图的采集。仪器软件为符合 21 CFR Part11 法规要求的 MicroLab PC 软件,为药物研发及药物质控实验室提供最安全的数据完整性保证。粉末压片时,测试条件如下:仪器分辨率:2 cm-1波长范围:400-4000 cm-1扫描次数:32 次药物粉末压片标准工作流程取 1-2 mg 样品与 100-200 mg 干燥后的溴化钾粉末(取决于药物红外吸收的强弱特性,二者比例可适当调整)放入玛瑙研钵中混合研磨,直至得到均匀、超细的颗粒。组装压片磨具,将底部压头光面朝上放入模具中。将样品缓慢加入模具中并使其均匀地散布在底面压头上。把上压头光面向下放入模具,压上压杆。将模具放入压片机中压制,压力调整到 20 MPa 左右,保持 1-2 min。转动卸压阀,缓慢卸掉压力并取出模具。用压头反向取出片子并检查片子的均匀程度和透明度。将样品放入样品支架并置于样品仓内进行测量。粉末压片制样过程注意事项为了能够获得效果良好的谱图,注意事项总结如下:1溴化钾及氯化钾粉末易吸水,日常应放置在干燥皿中保存。使用前须在 120℃(或 150℃)干燥箱中恒温干燥 2 小时以上。2为避免颗粒散射造成的基线倾斜问题,样品及试剂颗粒应进行充分研磨至 2.5um 以下,以研磨过程中粉末不再有颗粒感为宜。3如样品和试剂在研磨过程中发生离子交换,则需要更换试剂类型或改用糊法进行测试。4如果压出的片子易碎,请确认是否与加入粉末太少、压力过大或压力保持时间太长有关,可通过增加粉末体积或降低压力等方式来避免这种情况。5如果片子与模具粘合在一起、脱模困难,需要确认是否由样品易吸水或比较粘稠的特性引起。若是样品特性原因,可适当减少样品加入量;若是室内湿度过大或模具未清洗干净引起,可降低室内湿度或在红外烘烤灯下制备样品以及深度清洗模具等来优化。谱图常见问题解析获得红外谱图后,分析谱图可发现制样过程中存在的问题并优化制样过程。经常遇到的几种情况分别为:1加入样品量不合适谱图吸收峰的强弱,可判断加入的样品量的多少。如图 2 所示,光谱 1 中所有峰为尖峰,但吸收峰强度较弱,可判定为加入样品量不足;光谱 2 中多个峰平顶饱和,可判定为加入样品量过多。根据峰强度的强与弱,可通过减少或者增加样品加入量来优化。图 2. 光谱 1 中加入样品量太少,吸收较弱;光谱 2 中加入样品量太多,峰饱和2基线倾斜透过率光谱越高波数越向下倾斜,如图 3 所示。通常是样品与试剂研磨不充分,光在样品上发生散射造成的。图 3. 研磨不充分样品谱图对比如图 4 所示,分别制备不同颗粒粒度样品的溴化钾压片并采集红外谱图。从图中可以看出,随着颗粒粒径减小,透射谱图基线的倾斜问题得到明显改善。图 4. 不同颗粒粒度样品的溴化钾压片谱图3样品与试剂发生离子交换在样品压片过程中,试剂与样品可能发生离子交换。如一些有机盐,可选择更换试剂类型或者采用糊法的方式来避免。以盐酸氯酯醒为例,如使用 KBr 作为研磨试剂,则会发生离子交换导致谱图发生变化,此时可选用 KCl 为研磨试剂进行压片。如图 5 所示,可以看到分别使用两种试剂压片后的谱图差异。图 5. 分别使用 KBr 及 KCl 作为研磨试剂进行盐酸氯酯醒压片后采集的红外谱图4二氧化碳干扰峰影响用户经常会发现在 2200-2400 cm-1 处出现杂峰,这主要是因为空气中二氧化碳浓度变化引起的,如图 6 所示。从图中可见,此特征峰有时为正峰,有时候为倒峰,造成这种差异的原因是扫描背景谱图与扫描样品谱图时环境中二氧化碳的浓度发生了变化。所以在进行红外谱图采集的过程中,工作人员应尽量避免对着样品仓的位置呼气,同时要尽量降低背景与样品扫描的时间差。图 6. 二氧化碳对光谱影响示意图结 语以上经验总结,希望能够对日常工作中需要使用红外光谱仪的用户带来一些启发。通过对工作细节的优化,能够轻松获得一张可与药典中标准红外谱图相媲美的结果。如果您对安捷伦 Cary630 FTIR 红外光谱仪感兴趣的话,可通过点击以下链接获取相关资料。https://www.agilent.com/cs/library/technicaloverviews/public/te-cary630-material-id-5994-4992zh-cn-agilent.pdf
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 陕西省市场监督管理局征集2024年陕西省《气相分子吸收光谱仪校准规范》等地方计量技术规范制修订项目立项意见建议
    为深入贯彻落实国务院《计量发展规划(2021—2035 年)》和《陕西省人民政府关于贯彻落实计量发展规划(2021—2035年)的实施意见》,提升我省计量服务能力水平,夯实高质量发展的计量基础,根据《中华人民共和国计量法》《陕西省计量监督管理条例》《国家计量技术规范管理办法》《陕西省地方计量检定规程和计量校准规范管理办法》等有关法律规定,结合我省计量工作实际,经各省级专业计量技术委员会论证推荐、专家立项评审和省局研究,拟对由陕西省计量科学研究院、西安计量技术研究院、中电科瑞测(西安)有限公司等14家单位起草申报的《交流电能表现场校验仪校准规范》等19项陕西省地方计量技术规范制修订项目予以立项,现向社会公开征求意见建议。相关意见建议,请于公示发布之日起7个工作日内反馈至陕西省市场监督管理局计量处。联系人:魏俊南 联系电话:029-86138608电子邮箱:sxsscjgjlc@163.com附件:2024年度陕西省地方计量技术规范制修订拟立项项目表陕西省市场监督管理局2024年5月27日附件2024年度陕西省地方计量技术规范制修订拟立项项目表序号项 目 名 称制定/修订起草单位1交流电能表现场校验仪校准规范制定陕西省计量科学研究院2地质雷达校准规范制定西安计量技术研究院3电缆故障测试仪校准规范制定陕西省计量科学研究院4数字LCR测试仪校准规范制定中电科瑞测(西安)科技服务有限公司5移动式C形臂X射线辐射源检定规程制定陕西省计量科学研究院62πLED总光通量标准灯校准规范制定陕西省计量科学研究院7氧化还原电位(ORP)测定仪校准规范制定陕西省计量科学研究院 陕西国华现代测控技术有限公司8气相分子吸收光谱仪校准规范制定陕西省计量科学研究院9液相色谱仪电喷雾检测器校准规范制定陕西省计量科学研究院10尺寸法巴歇尔槽明渠流量计在线校准规范制定陕西省计量科学研究院11工业内窥镜校准规范制定陕西省计量科学研究院12太阳模拟器I-V试仪校准规范制定西安计量技术研究院13小麦硬度指数测定仪校准规范制定汉中市质量技术监督检验检测中心 汉中市粮油质量检测中心14矿用压力传感器校准规范制定榆林市计量技术研究院 铜川市计量测试所15李氏密度(比重)瓶校准规范制定渭南市检验检测研究院 陕西力源仪器设备检测有限公司16亚甲蓝搅拌器校准规范制定咸阳市计量测试所 陕西省建筑科学研究院有限公司17经皮黄疸测试仪校准规范制定商洛市计量测试所18哈氏可磨性指数测定仪校准规范制定中检西北计量检测有限公司19矿用温湿度传感器校准规范制定西安西自仪检测技术有限公司 咸阳市计量测试所
  • 葡萄酒原料成隐忧 标准细则亟待出台
    俗话说,“七分原料,三分工艺”,葡萄酒原酒与基地,一直是葡萄酒企业争夺的焦点。  日前,有消息称,张裕在2009年出资1亿元收购了位于新疆天山北麓的天珠酒业,此举使得长城、威龙等企业失去了一条在新疆采购原酒的渠道。  天珠酒业原董事长奚基武很清楚自己的优势,“葡萄酒对葡萄含糖量和酸度的要求很高,内地一些省区葡萄的糖分不足150克/升,病虫害比较严重,烂果较多,而石河子葡萄的糖度平均为240克/升。内地企业到石河子来购买原酒,不仅为生产优质成品酒提供了原料,还大大降低了生产成本。”  由于“病虫害比较严重”,内地一些葡萄产区在葡萄生长期间大量使用农药,如今,这一“农残悬疑”正悄然成为影响葡萄酒质量的隐忧。  农药“催熟”葡萄  从中国经济时报记者获得的一份资料上可以看出,在东部某些酿酒葡萄产区,一亩地的葡萄一年至少要“吃”20多公斤农药。  竖立在田间地头的“葡萄病虫害关键防治时期及防治方案”公告栏上明确标示着:第一次,花前3—4叶期,劲彪1000倍+世高2000倍,预防绿盲蝽、炭疽、白腐、黑痘、白粉、穗轴褐枯病……第七次,生长中后期,秀特3000倍,预防炭疽、白腐病等。以上用药是生长期关键用药时期,并不代表全部用药。整个生长期至少喷药13次以上,每次喷药间隔期不超过15天。雨后及时喷药也很重要!  曾在某葡萄园打过工的葛大妈告诉本报记者,“每年6—9月是葡萄的‘药季’,从花期一直到成熟采摘,防治得当就能换来好收成。葡萄一旦发病并引起落叶掉果,就得使用‘敌敌畏’、‘乐果’等厉害药抢救,而波尔多液主要是防病。”  “波尔多液是从国外引进的,现在国外早就不用了,西方国家更强调靠天收。”尊赢(广州)市场研究机构首席顾问朱玉增在接受本报记者采访时表示,“中国葡萄酒产业还刚刚起步,目前主要采取公司+农户这一产销分离的模式。很多果农为了提高产量,往往喷洒很多农药,这种现象在山东产区特别明显。”  曾任蓬莱市委书记、现任烟台市委常委、副市长的刘树琪,今年就在博客上自曝家丑:“蓬莱市除几个企业紧密型基地能达到无公害标准外,其他松散型基地远远达不到要求。特别是在农药使用、采摘时间上的问题尤为突出。有的使用化学农药,农药残留时间可达1年,严重影响了葡萄及葡萄酒的品质。”  “除了果农片面追求产量导致大规模使用化学农药外,当地的气候也是很大因素。”朱玉增解释。  充沛的雨水,适宜的土壤,为东部产区葡萄的生长速度提供了保障。可是,雨量充足,也带来了问题:葡萄的根、茎、叶、果实易生病害。  中国农业大学烟台研究院葡萄酒博士孔维府分析说,东部产区在葡萄生长的中后期,即七八月,降雨量较多,夏季雨水占全年的一半以上,是一个易发霜霉病、白粉病、褐斑病的病害期。因此,生长的葡萄需要依赖农药。  “葡萄还是生长在干旱或半干旱的区域好。”朱玉增表示,“在西部,雨水稀少,日照充足,昼夜温差大,不仅保证了葡萄的糖份,而且降低了病虫害发生概率,几乎能做到不打农药。葡萄好,葡萄酒才好。”  这也使得国内多家葡萄酒企业将目光转向了西部。在收购天珠酒业之后,张裕的西部原料计划已在新疆、宁夏和陕西布点。到2010年底,张裕在全国的葡萄基地将达到25万亩,占国家规划的酿酒葡萄种植面积的1/4。除了张裕,王朝、长城也在宁夏、新疆等产区大面积圈地自建葡萄基地。  “农残” 标准亟待出台  从葡萄酒生产的流水作业上看,克杀病害的农药,并没有在一层层的检测中被彻底隔离。  在葡萄种植区,每到9月份的采摘期,酒企就会上门收购。专业人士告诉本报记者,在葡萄酒的酿制过程中,几乎不对原料作任何处理,果梗与葡萄皮也都不能去除,因为它们里面所含的多酚类化合物单宁及色素成分,在葡萄酒的发酵中可以发挥关键作用。“如果清洗就会带进水份冲稀原汁。不过尘土一般可在后期通过自然沉淀过滤掉。”  那么,农残哪里去了?  烟台一家国有葡萄酒厂的负责人表示,在后期工艺中,不会也无法再针对葡萄的农残进行处理,“很难保证这些农药残留成分不会进入葡萄酒中”。  “在国外,关于农药残留的标准有严格的法律规定,但在国内,目前还没有办法去处理。长期饮用带有农残的葡萄酒一定会对人体有影响。”朱玉增表示,“我国葡萄酒产业起步太晚,技术、法律等相关标准跟不上,出现目前的状况是必然的。”  2008年1月1日,国家标准“葡萄酒GB15037-2006”(简称“新国标”)正式实施。这是在1994年“旧国标”基础之上,对葡萄酒行业标准的又一次升级。“新国标”内容包括从葡萄种植、葡萄酒生产到贮存、运输各过程的管理标准,对葡萄酒概念的内涵和外延的要求更加严谨。可是,一个关键的问题是,对“农残标准”方面并未提及。  此前有消息称“葡萄酒农残检测标准有望在2013年之前出台”,但是农业部农产品质量监督检测中心主任潘灿平接受本报记者采访时却予以了否认,“没有明确的时间表。”  “目前,葡萄酒在我国整个酿酒行业饮料酒总产量中只占到很小的份额,但未来发展潜力巨大,所以一定要把好原料关。”朱玉增说。
  • 安徽省计量院互感器校验仪检定装置计量比对获得满意结果
    近日,安徽省计量院收到互感器校验检定装置计量比对结果通知,电子与电气计量技术研究所参加的全国互感器校验仪检定装置比对获得满意结果。   互感器校验仪是互感器检定装置的误差测量装置,是测量用电流互感器、测量用电压互感器、电力互感器等计量设备的检定或校准过程的唯一信息窗口,对互感器校验仪的定期检定或校准是保障互感器检定装置准确度的重要环节。省计量院电子所接到比对任务后,按照规定要求认真开展计量比对工作,在规定时间内真实客观报送了比对结果。   计量比对是保障量值准确一致,支撑计量事中事后监管和提升计量技术机构能力的有效手段,在计量工作中具有重要作用。通过参加本次比对,证明安徽省计量院互感器校验仪检定装置在计量标准、环境条件、人员水平、检定方法、数据处理等方面的实际水平和能力满足量值传递要求,能够为地市计量所、各级供电公司的互感器校验仪提供准确可靠的溯源保障。
  • 《傅立叶变换近红外光谱仪技术通则》团体标准工作组成立暨第一次讨论会在京召开
    仪器信息网讯 2021年6月30日,《傅立叶变换近红外光谱仪技术通则》团体标准工作组成立大会暨第一次讨论会在北京召开,来自各个工作组成员单位的20余位代表出席。标准工作的重要性不言而喻,作为我国标准化改革创新的重要发展阶段,团体标准近年来得到了迅速的发展。中国仪器仪表学会标准化工作委员会(SCIS)秘书长郭晓维在致辞中介绍说,从2014年,中国仪器仪表学会就决定做标准化工作。2015年,作为团体标准制定首批试点单位,正式立项开始首批学会标准制定。到现在,不仅建立了标准化工作的规范和工作流程,还建立标准化工作委员会、标准专业技术委员会和超过130人的标准化工作专家库,一直走在标准建设的前列。目前为止,中国仪器仪表学会标准化工作委员会已经发布10项标准,其中3项学会标准转化为国际标准的制修订项目,1个ASTM的新提案正在起草。《傅立叶变换近红外光谱仪技术通则》团体标准于2020年12月正式立项,项目申报单位为北京北分瑞利分析仪器(集团)有限责任公司。2021年2月25日,成立《傅立叶变换近红外光谱仪技术通则》标准工作组,并开始相关的工作。而本次会议的其中一项重要日程就是《傅立叶变换近红外光谱仪技术通则》团体标准工作组的线下成立仪式。工作组涉及的14家单位包括北京北分瑞利分析仪器(集团)有限责任公司、江苏大学、天津九光科技发展有限责任公司、南开大学、天津大学、中国食品药品检定研究院、贵州中烟工业有限责任公司、新希望六和股份有限公司、海军军医大学、西安近代化学研究所、上海医药集团股份有限公司、无锡迅杰光远科技有限公司、中国农业大学、浙江中烟工业有限责任公司。经过几次线上与线下的会议,《傅立叶变换近红外光谱仪技术通则》团体标准的制定工作已经取得了一系列的进展。目前,标准起草小组按照工作组各单位对标准初稿(草案)的返回意见对标准初稿(草案)进行了调整和完善,形成了《傅立叶变换变换近红外光谱仪技术通则》团体标准初稿。本次会议中,工作组组长、北分瑞利高级工程师高学军等分别对标准编写的前期工作和标准初稿内容进行了介绍。基于此,与会代表对标准初稿内容进行了讨论。鉴于标准的简洁性,与会代表建议将术语定义描述进一步简化,并对关键的术语进行补充完善;再次明确技术通则的定位,对部分技术指标的设定进行了取舍;确保标准的专业性和权威性,大家对本底光谱能量分布、100%线噪声、光谱分辨率等关键技术指标的计算方法、数值设置的合理性等进行了深入的分析;考虑到标准的普适性,大家对标准物质的选择进行了多方意见征集,并对水蒸气、聚苯乙烯和“GBW(E)130550可见-近红外波长标准物质”的可行性方案进行了深入的讨论;此外,大家还对仪器工作条件及使用安全性的描述,相关标准的引用等问题也进行了详细的讨论。为保证标准制定后续工作的有序进行,标准初稿讨论之后,大家也对下一步的工作计划进行了详细的部署。郭晓维指出,“我们的目的是做出高质量、高水平的标准,并用标准化相关工作助推行业发展。下一步要开启多种合作,将本项目标准效益最大化。”基于此,标准牵头单位北分瑞利总工程师武慧忠也再次明确了项目的分工和进度。按照计划,预计9月份进行征求意见稿的讨论,12月底前完成项目的所有工作。后记一直以来,标准都是仪器技术及应用拓展重要的推动力。对近红外光谱技术而言,近年来已经在多个领域得到了广泛的应用,相关的应用标准也在不断的完善中。据国家标准信息查询系统,相关的应用标准(国家标准、行业标准、地方标准)一共有69条,但迄今国内还没有近红外光谱仪器的性能测试与检定的国家标准方法。虽然美国材料与试验协会针对傅立叶变换近红外光谱仪的性能测定专门制定了《ASTM E 1994 General principles for technology of fourier transform near infrared spectrometer》,规定了两个不同水平的性能测试方法,以衡量实验室傅立叶变换近红外光谱仪的性能,但是该标准没有对仪器具体的性能指标、标志、包装和贮存等作出要求。长期以来,各家近红外光谱仪器厂商的测试方法均只针对自己生产的仪器性能,采用的方法和标准也不尽相同,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。《傅立叶变换近红外光谱仪技术通则》团体标准结合国内近红外仪器的实际情况,规定了傅立叶变换近红外光谱仪器的要求、试验方法、检验规则、标志、包装和贮存。该仪器标准制定发布后,不仅可以规范傅立叶变换近红外光谱仪生产厂家的生产检验标准,让各种检测方法的标准具备了可操作性,对仪器实际应用和行业发展提供更加完善的标准支撑,也为实验室的认证奠定了基础。而且,还可以促使国内外仪器评价指标标准的统一,特别是可以为相关的仪器招标项目提供切实的评价依据,在一定程度上提高与国际同类产品的整体竞争水平。
  • 28项教育行业仪器标准征集意见 涉及光谱/色谱
    p  各省、自治区、直辖市教育厅(教委)技术装备处(中心、办、站、馆),各计划单列市教育局技术装备办公室(中心、馆),新疆生产建设兵团教育局教育技术装备管理中心,各有关高等学校:/pp  为加强高校实验室计量认证基础能力建设,全国教育装备标准化技术委员会会同国家计量认证高校评审组组织有关高校教学、科研人员制修订了《激光拉曼光谱分析方法通则》等28项教育行业标准,现将征求意见稿印发你们征求意见。/pp  请各地和有关高校高度重视此项工作,组织相关实验室教学、科研人员对征求意见稿进行讨论、提出意见,并将意见汇总后于6月12日前将征求意见表(附件29)反馈至全国教育装备标准化技术委员会秘书处。相关征求意见稿及编制说明电子版将通过电子邮件的方式发送,也可以在教育部教育装备研究与发展中心门户网站(www.zbzx.edu.cn)下载。/pp  附件:/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/03efdf55-1220-4c8a-b707-503d48fbc0b9.doc"附件1 激光拉曼光谱分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/4b6e5448-9951-4f7f-8a13-e08a50573a30.doc"附件1 激光拉曼光谱分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/677c69c7-e950-44ea-a723-aa98c9f5f406.doc"附件2 电子顺磁共振谱方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/8b01e15e-0854-4419-b48b-00de70ad0a0e.doc"附件2 电子顺磁共振谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/34d0b27d-7dc4-4e0b-8cec-b548153d1675.docx"附件3 超导脉冲傅里叶变换核磁共振波谱方法通则-编制说明.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/5cab24ab-abb8-4492-99cf-0d8b64531dd7.doc"附件3 超导脉冲傅里叶变换核磁共振波谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/3556521a-72a9-4792-882b-ab3ff5d7a4a8.doc"附件4 单晶X射线衍射仪测定小分子化合物的晶体及分子结构分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/b3e8e7ae-76f5-474d-b342-411354138a8c.doc"附件4 单晶X射线衍射仪测定小分子化合物的晶体及分子结构分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/56e20eab-e67c-4367-9aeb-318de9b89757.docx"附件5 多晶体X射线衍射方法通则-编制说明.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/dd1c850a-e2ae-4598-a720-990bf726e48f.doc"附件5 多晶体X射线衍射方法通则-征求意见稿.docbr//a/pp style="line-height: 16px "a href="http://img1.17img.cn/17img/files/201605/ueattachment/dd1c850a-e2ae-4598-a720-990bf726e48f.doc"/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/42bbada3-7872-4027-ad0c-f244821e2cbf.doc"附件6 分析型扫描电子显微镜方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/24eb8828-cee2-4de0-8137-d1349c6fbaae.doc"附件6 分析型扫描电子显微镜方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/d65320e0-8029-4412-b54b-5205ca09457a.doc"附件7 透射电子显微镜方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/16b79edd-9ef2-4cef-a909-9e1ceb29dac3.doc"附件7 透射电子显微镜方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/3d6e928b-3a68-4b25-aa22-fd6236657094.doc"附件8 金相显微镜分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/aff68927-c017-46d3-83da-6bd8be674e46.doc"附件8 金相显微镜分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/c4083c08-6b58-4ac6-bf7c-dbd7584cf3f3.doc"附件9 热分析方法通则差热分析(DTA)、差示扫描量热法(DSC)及热重法(TG)-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/ed51e7ea-95d4-4b40-a771-ad7676bec4f9.doc"附件9 热分析方法通则差热分析(DTA)、差示扫描量热法(DSC)及热重法(TG)-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/6784e3ef-ea76-4363-9f8e-071c140bbf8b.doc"附件10 电感耦合等离子发射光谱方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/d2be34d0-b26a-438d-92c9-86de033a8332.doc"附件10 电感耦合等离子体发射光谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/93ca959a-b058-467e-aad4-6cccfa8d3268.docx"附件11 波长色散型X射线荧光光谱法通则-编制说明.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/2849fc37-603d-4d43-97b7-0beba18332fe.docx"附件11 波长色散型X射线荧光光谱方法通则-征求意见稿.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/83e00fc7-f5b8-42c4-859d-fdcbfce07219.doc"附件12 元素分析仪方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/8eed7eca-f056-4e92-87d3-c89ac39e4a33.doc"附件12 元素分析仪方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/2c697ef0-56af-4b85-a09b-e64011c448ec.doc"附件13 氨基酸分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/3d39f320-a1d1-408a-9c8a-921a8d382fab.doc"附件13 氨基酸分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/690762df-49d7-4309-af32-76a014759842.doc"附件14 离子色谱分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/ac000562-fb6d-46c0-8cd2-a932180f8045.doc"附件14 离子色谱分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/b53d9d57-de91-4e7e-8171-2891947eb0cf.doc"附件15 分析型气相色谱方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/126e8d30-750e-491b-9143-0b5869d52d16.doc"附件15 分析型气相色谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/866162c4-4b18-4f98-ae45-8f6aee33a524.doc"附件16 紫外和可见吸收光谱方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/05a968a9-148c-4a23-99ab-8ea76d0cd6ba.doc"附件16 紫外和可见吸收光谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/90bec069-072b-4c2a-b4a4-c3c5a2e5bb56.doc"附件17 电热原子吸收光谱分析法通则-修编说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/08ef9a86-600a-4295-8568-1fcc1558018a.doc"附件17 电热原子吸收光谱分析法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/7f3ce86c-b2fd-428b-9b1d-386374be649b.doc"附件18 分子荧光光谱分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/449e8603-40b2-4770-85f7-59396a0f6e68.doc"附件18 分子荧光光谱分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/6f098a1e-8747-4990-a9fa-5d7fc7b2937e.doc"附件19 圆二色光谱方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/8469cd02-924d-4a93-8895-34b9387dce31.doc"附件19 圆二色光谱方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/b29635a1-2872-4b91-8932-609ed819f3e9.doc"附件20 电感耦合等离子体质谱分析方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/e0d8a999-8e07-4c76-a07b-be2f449274f9.doc"附件20 电感耦合等离子体质谱分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/be65b1f5-afd4-4525-9a2d-fc038725ec1f.doc"附件21 毛细管电泳法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/4ae4d518-21cc-4887-976f-d65e2b4e6907.doc"附件21 毛细管电泳法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/cc1174bd-7bd6-4c25-b357-4f99f60f7955.docx"附件22 激光测量粒度分析方法通则-编制说明.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/0f25a152-98f5-4799-a7c1-a824bf16aeab.doc"附件22 激光测量粒度分析方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/4cd3a6fa-8d2b-4c53-88ef-2324032951ec.doc"附件23 旋转流变仪测量方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/a5d425db-dc6b-420b-afe6-f281210aae39.doc"附件23 旋转流变仪测量方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/baa759e7-7ae5-4a2a-8401-21f249a929e6.docx"附件24 激光扫描共聚焦显微镜方法通则-编制说明.docx/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/8c044314-b207-460d-b080-9b0a2107f30c.doc"附件24 激光扫描共聚焦显微镜方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/3de69b8d-7020-4e59-b467-05da4b5b4c7e.doc"附件25 扫描探针显微镜仪器通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/2048043b-a5cd-4ecc-994e-4040a03e5385.doc"附件25 扫描探针显微镜仪器通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/854d8ecd-978c-4c28-a89a-4490d3458607.doc"附件26 物性测量系统直流磁性测量方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/6dd6adc8-eac0-4f73-930a-15a8cfd5d934.doc"附件26 物性测量系统直流磁性测量方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/067ec846-3c4e-4252-9196-d34570fb71f2.doc"附件27 原子荧光光谱分析法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/076df31d-422b-4009-9fbe-817320fc5688.doc"附件27 原子荧光光谱分析法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/ed412fb7-b1f2-4ef4-bfe3-1fb263d25463.doc"附件28 聚焦离子束系统方法通则-编制说明.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/24030f33-f691-4eed-b326-f7c0c0ce2aaa.doc"附件28 聚焦离子束系统方法通则-征求意见稿.doc/a/pp style="line-height: 16px "img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201605/ueattachment/a8eebb2c-f46c-4328-914c-d6bae145e873.doc"附件29 征求意见表.doc/a/pp  联系人:朱晓翠/pp  单 位:教育部教育装备研究与发展中心/pp  地 址:北京市海淀区中关村大街35号/pp  电 话:(010)62514728 传 真:(010)62514733/pp  邮件地址:icysouth@126.com/pp style="text-align: right "全国教育装备标准化技术委员会/pp style="text-align: right "2016年5月11日/p
  • 《近红外光谱分析技术术语》团体标准工作组成立暨标准内容讨论会召开
    仪器信息网讯 2024年1月13日,《近红外光谱分析技术术语》团体标准工作组成立暨标准内容讨论会在常州召开,此次出席会议的共有20余位来自各个工作组成员单位的代表。会议现场近红外分析仪器种类众多,在多种行业或领域有程度不同的应用。当前近红外相关技术、仪器及应用名词术语标准欠缺,极大影响近红外光谱分析技术的推广应用,进而制约我国国产近红外仪器产业的发展。为了规范近红外光谱仪器制造及应用,为近红外光谱技术的健康发展提供帮助,中国仪器仪表学会标准化工作委员会经过评审,决定立项制定《近红外光谱分析技术术语》团体标准,成立标准制定起草工作组。目前,根据中国仪器仪表学会标准化工作委员会工作规范和项目准备,CIS团体标准《近红外光谱分析技术术语》已经进入编制阶段。为保证标准编制工作的有序进行,此次会议主要讨论标准大纲及内容,确定分工与编制安排,并就标准制定相关问题进行讨论交流。此次会议由天津大学副教授李晨曦主持。江苏大学陈斌教授对参会人员进行了介绍,对各单位大力支持近红外标准制定事业表达了感谢。常州工学院校长张兵向大家介绍了常州工学院发展概况及学院建设情况,希望可以与行业内各位专家积极开展项目合作,并向学院推荐相关人才等。天津大学副教授 李晨曦江苏大学教授 陈斌常州工学院校长 张兵接下来,中国仪器仪表学会标准化工作委员会秘书长郭晓维、中石化石油化工科学研究院教授级高工褚小立、云南中烟工业公司技术中心正高级工程师王家俊及四川启睿克科技有限公司高级工程师闫晓剑分别进行了报告分享。中国仪器仪表学会标准化工作委员会秘书长 郭晓维报告题目:《团体标准及国际化》郭晓维认为标准编制工作应向国际化发展,视野放在全球,方向性和战略性的正确十分重要。在报告中,他首先强调了团体标准制定的重要性,通过数据显示,全国有35~36万个社团,截至2023年12月31日,有8445家社团注册制定团体标准,发布了74240项团体标准。当前团体标准工作机遇和挑战并存,中国仪器仪表学会要做什么样的标准化工作?他认为要从战略的层面作出规划和实施。其次,郭晓维向大家介绍了中国仪器仪表学会标准工作组在国际标准组织推进的项目,截至2023年7月,学会制定发布的标准有21项23版,已经国际化或正在国家推进的学会标准占学会已经发布标准总数的28%。最后,对于本次项目工作,郭晓维分享了会议的主要任务、目的、项目的经费原则等,以及感谢会员及非会员对学会标准化工作的支持。中石化石油化工科学研究院教授级高工 褚小立报告题目:《近红外光谱分析技术术语一些建议和想法》褚小立针对近红外光谱分析技术术语提出了一些建议和想法。在会议中,他向大家积极推荐相关的专著、文献、标准和药典等,希望对标准制定有所启发。他建议术语内容要新旧结合、广度和深度结合,更加立体和系统化,使一线用户、科研人员、研究生等都能有所应用。他希望通过本次术语的标准制定工作,可以对之后的辞典/术语条目、光谱史的编撰、近红外光谱分析方法标准制定等有所帮助。云南中烟工业公司技术中心正高级工程师 王家俊报告题目:《近红外光谱分析技术术语》编写意见王家俊在会议中提出此次标准的制定要便于将来标准的升级和国际化,把不同学科专家提出的定义概念统一起来,向国际上有名的标准靠拢以及术语标准制定要结合实际应用的场景,编写出新名词、新定义、新术语,要结合近红外技术特点形成行业规范等一系列建议。四川启睿克科技有限公司高级工程师 闫晓剑报告题目:《近红外光谱分析方法标准努力的方向》闫晓剑对近红外相关产品进行了介绍,他分析了当前行业痛点与市场发展趋势,从MEMS技术、传感器芯片到光谱仪系列产品,进行了不同产品性能的比对,同时,他对长虹便携近红外检测、大型光谱仪检测、传统检测进行了优势比较,向大家分享了其公司产品在酿酒、粮食、烟草等行业的应用案例。会议讨论报告分享之后,李晨曦向术语标准工作组介绍了标准编制大纲及内容,工作组成员对初稿展开讨论。大家对关键的术语进行了补充完善,对部分技术指标的设定进行了纠正和取舍。为了确保标准的专业性和权威性,考虑到标准的普适性,大家对术语的概念内容进行了多方探讨。此外,各位专家对术语的结构、框架和范围,术语的应用场景,相关材料的引用等问题也进行了详细的讨论。为保证标准制定后续工作的有序进行,标准初稿讨论之后,术语标准工作组也对后续工作计划进行了详细的部署。按照计划,术语标准工作组分为3个小组,分别为近红外光谱原理术语编制小组、近红外仪器术语编制小组和近红外分析方法术语编制小组,经过讨论确定、内部汇总、审阅、评审等系列工作后,预计2025年8月底前标准发布。参会人员合影留念附:标准工作组名单如下:
  • 中关村材料试验技术联盟立项《辉光放电质谱仪校准规范》等25项CSTM标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)审查,CSTM标准化委员会批准CSTM标准立项(详情见下表),特此公告。如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。立项公告详情请跳转至CSTM官网查看http://www.cstm.com.cn/channel/details/3-2-CSTMgonggao序号标准名称标准立项号1辉光放电质谱仪校准规范CSTM LX 0000 01319—20232止血材料用高岭土CSTM LX 0312 01320—20233石墨矿浮选柱CSTM LX 0312 01321—20234微晶玻璃生产用垃圾焚烧炉渣技术要求CSTM LX 0324 01322—20235空间材料原子氧、紫外辐照和热循环综合环境模拟试验方法CSTM LX 0404 01323—20236金属材料蠕变性能数据处理方法CSTM LX 5500 01324—20237锅炉热交换器用中温双牌号不锈钢无缝钢管CSTM LX 5500 01325—20238流体输送用中温双牌号不锈钢无缝钢管CSTM LX 5500 01326—20239承压设备用中温双牌号不锈钢钢板和钢带CSTM LX 5500 01327—202310承压设备用中温用双牌号不锈钢锻件CSTM LX 5500 01328—202311承压设备材料圆片氢脆试验方法 第1部分:通用要求CSTM LX 5500 01329.1—202312涂覆材料派瑞林C技术标准CSTM LX 5700 01330—202313航天器用均苯型聚酰亚胺薄膜技术要求CSTM LX 5700 01331—202314水泥生产企业碳排放数据信息化存证规范CSTM LX 9500 01332—202315高温合金 合金贫化层定量检测方法 能谱法和波谱法CSTM LX 9802 01333—202316内氧化深度或晶间腐蚀深度测定 金相法CSTM LX 9802 01334—202317锂电池正极材料 磁性异物含量测定 电感耦合等离子体发射光谱法CSTM LX 9803 01335—202318基于走航在线实时监测的大气重金属污染源解析技术指南CSTM LX 9803 01336—202319生物基塑料中PEF树脂含量的测定 核磁共振波谱法CSTM LX 9803 01337—202320海水电解制氢阳极 法拉第效率测定 在线-气相色谱法CSTM LX 9803 01338—202321碳材料 不同物相的含量测定 X射线粉末衍射法CSTM LX 9803 01339—202322石墨烯膜 导热系数的测定 激光闪射法CSTM LX 9803 01340—202323单晶高温合金 结构取向测试 电子背散射衍射法CSTM LX 9803 01341—202324钛铝合金 铝含量的测定 电感耦合等离子体发射光谱法CSTM LX 9803 01342—202325高温合金 铋含量的测定 电感耦合等离子体质谱法CSTM LX 9803 01343—2023
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p strong 各有关单位:/strong/pp  由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。/pp  拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。/pp  为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。/pp  同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。/pp  会议事项通知如下:/pp strong 一、时间和地点/strong/pp  会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议/pp  会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室/pp  地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内)/ppstrong  二、宣贯内容/strong/pp  1、拉曼光谱的基本原理与应用介绍 /pp  2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /pp  3、拉曼光谱仪的校准与溯源 /pp  4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。/pp strong 三、考核与发证/strong/pp  培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。/pp strong 四、培训费用/strong/pp  培训费:1500 元/人,包括讲义、标准复印件、培训证书。/pp  请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款/pp  信息如下:/pp  账户名:中国计量科学研究院/pp  开户行:交通银行北京分行和平里支行/pp  账号:110060224018010008693/pp  行号:301100000074/pp  电话:010-64524304/pp  银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填span style="TEXT-ALIGN: center"写参会回执(附件2)中的开票信息。/span/pp style="TEXT-ALIGN: center"img title="QQ截图20180906104247.jpg" style="HEIGHT: 701px WIDTH: 600px" border="0" alt="QQ截图20180906104247.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width="600" height="701"//ppstrong  附件:/stronga title="附件2. 宣贯会参会回执(1).docx" style="FONT-SIZE: 12px COLOR: rgb(0,102,204)" href="https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx"br/strong  /strong/astrong/stronga title="附件1. CSTM-FC00领域委员会简介(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf"strong附件1. CSTM-FC00领域委员会简介.pdfbr/  附件2. 宣贯会参会回执.docxbr/  /strong/astrong/stronga title="附件3. 酒店交通(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf"strong附件3. 酒店交通.pdf/strongbr//a/p
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 标准进程再进一步 两项拉曼光谱相关国家标准即将宣贯
    p  拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。对拉曼光谱而言,相关标准的滞后也在一定程度上限制了该类仪器的推广应用,不过现在情况已经有了一定的改观,一系列的标准制定工作正在加紧进行中。/pp  比如,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2018年7月26日,国家标准委发文征求意见,拟立项685个国家标准项目中,《拉曼光谱仪通用规范》在列。/pp  日前,中国计量院发布国家推荐性标准宣贯会的通知,将对GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》及GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》两项国家标准进行宣贯。/pp  据悉,由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。/pp  详细内容请见会议通知:/pp  a href="https://www.instrument.com.cn/news/20180906/470823.shtml" target="_blank"strong关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知/strong/a/pp /p
  • 全面解读ICP光谱测汽油中硅氯国标——访标准主要起草人SMQ赵彦
    GB/T 33465-2016《电感耦合等离子体发射光谱法测定汽油中的氯和硅》于2016年12月30 日由国家质检总局、国家标准化管理委员会批准发布;并将于2017年7月1日开始正式实施。针对此标准的情况,仪器信息网编辑采访了标准主要起草人——深圳市计量质量检测研究院(简称“SMQ”)赵彦,交流了该标准制定的背景以及意义、解决的技术难点、应用前景,以及对ICP-OES未来市场的影响等。深圳市计量质量检测研究院 赵彦  仪器信息网:制定GB/T 33465-2016的背景以及意义是什么?  赵彦:汽油中的氯在高温下会形成氯离子,对金属的腐蚀非常严重,形成的铵盐会堵塞管道,导致发动机故障。汽油中硅含量即使很低也会导致氧气传感器失效,同时产生大量沉积物,使催化系统失效。近年来国内外媒体报道了因燃油中氯或硅污染而导致的群体性汽车故障,造成很大损失。  我国车用汽油国家产品标准GB 17930-2016已经明确规定汽油中不能人为添加铅、铁、锰、卤素以及含硅、磷的化合物,但我国国家标准与石油化工行业标准中缺乏汽油中氯和硅含量的测定方法。为此,建立汽油中氯和硅快速准确的检测方法将有助于强化成品油市场的质量监督,有效的保障汽油产品的质量安全和消费者的切身利益。  仪器信息网:国外该方面标准的情况如何?   赵彦:ASTM D7757规定采用单色波长色散X射线荧光光谱仪测量汽油和相关石油产品中硅的含量,此方法检出限在3-100 mg/kg,对于低含量硅的测试,准确度较低。  对于石油产品中有机氯的检测主要是采用将有机氯转化成无机氯的方法进行检测的,包括微库仑法、电位滴定法、离子色谱法等,但这些方法存在前处理繁琐,样品易损失,易污染等缺点。  而ICP-OES具有分析速度快、可同时测定多种元素、操作简单等特点,目前在石油产品中元素含量检测方面得到了广泛的应用,已建立了多个石油产品中元素含量简便、快速、灵敏的ICP-OES检测方法。ASTM D7111中间馏分燃料中元素检测和ASTM D5185使用过的润滑油中元素的检测均是采用有机溶剂稀释、试样溶液直接导入ICP-OES中进行测量的方法,试验周期短、方法简单、试剂用量少。  但由于汽油具有高挥发性,直接稀释进样容易造成ICP-OES等离子体不稳定、炬管积碳等问题,尚无相关标准发布。  仪器信息网:GB/T 33465-2016采用了ICP-OES法,其优势是哪些?其难点是哪些?  赵彦:GB/T 33465-2016采用样品稀释后ICP-OES直接进样检测的简便方式,一次进样就可以快速读出所有可测元素数据,提供了一种更简便、高效、准确的分析方法。  用户群体使用GB/T33465-2016,相比较一般应用中采用ICP-OES检测,需要满足以下几个方面:首先,氯元素的主要发射线在130-140 nm之间,仪器的测定波长范围需要涵盖被测元素。另外,由于汽油具有高挥发性,直接稀释进样容易导致ICP-OES等离子体不稳定、炬管积碳等问题,因此对使用操作参数的调控和仪器设备具有较高要求,如需要较高的输出功率以维持等离子体火炬的稳定、加入氧气防止积碳等。同时,标准的应用需要具备能够提供精确温度进行加热和冷却的循环控温装置。  仪器信息网:ICP-OES法检测汽油中氯元素,目前好像只有斯派克和利曼的仪器能做,而作为一个标准方法需要具有广适性,那么在制定GB/T 33465-2016时,是如何考虑这个问题的呢?  赵彦:首先,目前石油产品中氯含量的检测方法有微库仑法、电位滴定法、离子色谱法等,这些方法存在有一定的优势,也存在前处理复杂、易受干扰等缺点。GB/T 33465-2016采用样品稀释后直接进样检测的简便方式,ICP-OES检测氯元素的同时还可以测量其他元素,为广大用户群体提供了一种更简便、高效、准确的分析方法选择。  目前确实是斯派克、利曼等仪器公司的商品化ICP-OES可以实现远紫外区谱线的检测。其实,之前众多的ICP-OES公司是能够做到含有紫外区谱线测试的,只是前期可能是没有得到有效的开发应用,一些公司最终将此功能舍弃。  相关仪器技术的提升给用户群体带来了开展简便、高效检测方法应用的可能性和趋势,我们看到,与GB/T33465-2016同期发布实施的NB/SH/T0929-2016标准《润滑油中氯元素含量的测定电感耦合等离子体发射光谱法》也将ICP-OES在润滑油中元素检测的应用拓展到了氯元素。同样的,新检测方法的发布实施和实际应用的需求也应该能够反过来带动仪器企业拓展或革新相关方面的技术能力,促进仪器行业的共同发展。  而且,在其他方法标准中也存在类似的方法,在此就不特别指出,有很多方法实际上能提供仪器的也只有一家公司。  综合以上,我们通过扩大ICP-OES的应用范围,给相关机构提供了一种更多的选择,也能推动相关行业的发展。  仪器信息网:GB/T 33465-2016的应用前景如何?  赵彦:由于车用汽油国家产品标准中对规定了汽油中不能人为添加相关元素,GB/T33465-2016作为专门针对汽油样品中氯和硅含量检测的方法标准,有效解决了汽油样品采用ICP-OES直接进样检测的关键问题,为氯和硅元素的检测提供了更加简便、准确、高效的分析方法,很大程度上提高了操作的简便性,降低了检测成本,在生产环节的质量监控、贸易过程的质量评价和相关职能部门对成品油市场的质量监督中都会广泛采用。  同时,在车用汽油中实现对硅和氯的测试后,解决了车用汽油元素测量最难解决的问题,对于其他元素如:铅、铁和锰等元素的研究和应用铺平了道路,也开阔了大家的思路,相信随着对标准理解的深入,用户会最终做出符合自己需求的选择。  仪器信息网:GB/T 33465-2016,主要是哪些用户单位会使用?该标准的实施,是否会促进ICP-AES的销售的增长?其增长的规模会有多大?  赵彦:作为专门针对汽油中氯和硅含量检测的国家标准,GB/T33465-2016的用户单位主要集中在相关质检单位、第三方检测机构和石油产品企业。该标准的实施很大程度上会进一步增加检测行业对ICP-OES仪器的需求,但鉴于ICP-OES技术在石油产品如润滑油中的应用,大部分相关企业单位已配备设备。所以,对于该仪器是否会因此获得增长我们不能确定。但是,由于ICP-OES本身测量具有快速,多元素同时检测的优点,作为我们技术机构本身,也是认为ICP-OES日后的应用会越来越广泛,需求也将是相应增长的。
  • 《气相分子吸收光谱仪》国家标准2023年正式实施
    2022年10月,《GB/T 42027-2022 气相分子吸收光谱仪》国家标准正式发布,2023年5月1日正式实施。本文件规定了气相分子吸收光谱仪的要求、试验方法、检验规则、标志、包装、运输和贮存,适用于基于特定的化学反应机理将被测物中的测定成分转化为气态分子,并根据气态分子的特征吸收光谱进行定量检测的气相分子吸收光谱仪。气相分子吸收光谱仪是我国自主研发的一种光谱类分析仪器,广泛应用于我国环境、食品、农业、海洋等水质质量检测领域。目前国内已经有不少关于气相分子吸收光谱法的检测标准,但是一直没有关于产品的标准出台。而正因为此,各厂家产品性能各异、差异性较大,缺少设备评价的统一标准,因此出台相关国家标准是非常必要的,可以有效规范仪器生产及使用,确保仪器的质量,同时由于气相分子吸收光谱仪是我国自主研发的科学仪器,加强标准建立工作尤其重要,在此基础上还可以进行国际标准的申请工作。鉴于此,《气相分子吸收光谱仪》的产品标准在2019年底被正式列为国家标准制定项目。该标准由TC124(全国工业过程测量控制和自动化标准化技术委员会)归口,TC124SC6(全国工业过程测量控制和自动化标准化技术委员会分析仪器分会)执行 ,主管部门为中国机械工业联合会。标准起草单位包括:由上海安杰环保科技股份有限公司、中国环境监测总站、上海市计量测试技术研究院、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、上海北裕分析仪器股份有限公司等企业、浙江省计量科学研究院、青岛佳明测控科技股份有限公司。相比于传统分光光度计,气相分子吸收光谱仪具有精度高、检测下限低,不受水中杂质、颜色的干扰,采用少量常规试剂,耗材少,检测成本低,检测速度快等优点,满足现代仪器行业智能化和低成本的发展趋势,将在我国环境监测及保护中发挥重要的作用。据了解,本标准发布后两年内进行宣贯,宣贯对象是气相分子吸收光谱仪生产企业、各级环境监测站、水利水文机构、石油化工等行业大型企业、海洋监测部门、第三方检测机构、农林单位、高校、科研院所等相关单位。
  • 中国土壤学会公开征求团体标准《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》意见
    根据团体标准制修订计划和标准起草有关规定,经制订《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》标准项目起草组认真研究、讨论,并开展调研,现已完成征求意见稿编制工作。现在网上公开征求意见,请于2024年5月8日前将修改意见填写在《意见反馈表》中,并将反馈表电子版(PDF签字扫描件和word版)发至联系人邮箱。逾期视为无意见。联系人:王艳华联系电话:13991828224联系邮箱:yhwang930@foxmail.com附件下载:附件.zip附件1 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》征求意见稿.pdf附件2 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》编制说明.pdf附件3 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》意见反馈表.docx中国土壤学会2024年4月8日
  • 这些光谱分析相关国家标准即将实施
    p  作为应用最为广泛的一大类分析仪器,光谱分析方法已经应用到了各大行业和领域,仅就每年国家标准委等发布的标准制修订计划而言,光谱分析方法的重要性就不言而喻。/pp  根据全国标准信息公共服务平台以“光谱”搜索(国家标准)数据分析,目前现行的国家标准576条,废止的227条,即将实施的25条,涉及火焰原子吸收光谱法、火花放电原子发射光谱分析法、傅里叶变换红外光谱法、电感耦合等离子体原子发射光谱法、直流电弧原子发射光谱法等。另外,还有一系列光谱相关的国家标准计划正在起草、征求意见、审查,或者正在批准中。/pp  仪器信息网部分摘录如下:/ptable width="600" border="1" cellpadding="0" cellspacing="0" align="center"colgroupcol width="72"/col width="108"/col width="184"/col width="73"/col width="76"/col width="72"//colgrouptbodytr class="firstRow"td width="72" /tdtd width="108"标准号/tdtd width="184"标准中文名称/tdtd width="73"发布日期/tdtd width="76"实施日期/tdtd width="72"标准状态/td/trtrtd1/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE8572E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.9-2020/a/tdtd铝及铝合金化学分析方法 第9部分:锂含量的测定 火焰原子吸收光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd2/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FEA472E3E05397BE0A0A6CEB" target="_blank"GB/T 38939-2020/a/tdtd镍基合金 多元素含量的测定 火花放电原子发射光谱分析法(常规法)/tdtd2020/6/2/tdtd2020/12/1/tdtd即将实施/td/trtrtd3/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE0E0F87E05397BE0A0A747C" target="_blank"GB/T 38386-2019/a/tdtd气体分析 气体中氮氧化物的测定 光腔衰荡光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd4/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CED790F87E05397BE0A0A747C" target="_blank"GB/T 7739.2-2019/a/tdtd金精矿化学分析方法 第2部分:银量的测定 火焰原子吸收光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd5/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=996A838ABF868372E05397BE0A0AD949" target="_blank"GB/T 20899.2-2019/a/tdtd金矿石化学分析方法 第2部分:银量的测定 火焰原子吸收光谱法/tdtd2019/12/10/tdtd2020/11/1/tdtd即将实施/td/trtrtd6/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=95A47695C58F4F2CE05397BE0A0AB3E0" target="_blank"GB/T 38056-2019/a/tdtd液体硫磺中硫化氢和多硫化氢的测定 傅里叶变换红外光谱法/tdtd2019/10/18/tdtd2020/9/1/tdtd即将实施/td/trtrtd7/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE0972E3E05397BE0A0A6CEB" target="_blank"GB/T 5687.12-2020/a/tdtd铬铁 磷、铝、钛、铜、锰、钙含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/9/1/tdtd即将实施/td/trtrtd8/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE6572E3E05397BE0A0A6CEB" target="_blank"GB/T 8704.10-2020/a/tdtd钒铁 硅、锰、磷、铝、铜、铬、镍、钛含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/9/1/tdtd即将实施/td/trtrtd9/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FECB72E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.25-2020/a/tdtd铝及铝合金化学分析方法 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd10/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FED872E3E05397BE0A0A6CEB" target="_blank"GB/T 20975.36-2020/a/tdtd铝及铝合金化学分析方法 第36部分:银含量的测定 火焰原子吸收光谱法/tdtd2020/6/2/tdtd2021/4/1/tdtd即将实施/td/trtrtd11/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A47A713B765914ABE05397BE0A0ABB25" target="_blank"GB/T 38791-2020/a/tdtd口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/4/28/tdtd2020/11/1/tdtd即将实施/td/trtrtd12/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294932EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.6-2020/a/tdtd钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd13/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A0280129496EEBB4E05397BE0A0AB6FE" target="_blank"GB/T 13747.4-2020/a/tdtd锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd14/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294973EBB4E05397BE0A0AB6FE" target="_blank"GB/T 13747.3-2020/a/tdtd锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd15/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294974EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.11-2020/a/tdtd钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd16/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294978EBB4E05397BE0A0AB6FE" target="_blank"GB/T 38513-2020/a/tdtd铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd17/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEDB90F87E05397BE0A0A747C" target="_blank"GB/T 13747.2-2019/a/tdtd锆及锆合金化学分析方法 第2部分:铁量的测定 1,10-二氮杂菲分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd18/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE0D0F87E05397BE0A0A747C" target="_blank"GB/T 13747.7-2019/a/tdtd锆及锆合金化学分析方法 第7部分:锰量的测定 高碘酸钾分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd19/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE120F87E05397BE0A0A747C" target="_blank"GB/T 15076.2-2019/a/tdtd钽铌化学分析方法 第2部分:钽中铌量的测定 电感耦合等离子体原子发射光谱法和色层分离重量法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd20/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A73D6262FE1372E3E05397BE0A0A6CEB" target="_blank"GB/T 38812.3-2020/a/tdtd直接还原铁 硅、锰、磷、钒、钛、铜、铝、砷、镁、钙、钾、钠含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/6/2/tdtd2020/12/1/tdtd即将实施/td/trtrtd21/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A47A713B760914ABE05397BE0A0ABB25" target="_blank"GB/T 38744-2020/a/tdtd机动车尾气净化器中助剂元素化学分析方法 铈、镧、镨、钕、钡、锆含量的测定 电感耦合等离子体原子发射光谱法/tdtd2020/4/28/tdtd2021/3/1/tdtd即将实施/td/trtrtd22/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A0280129492DEBB4E05397BE0A0AB6FE" target="_blank"GB/T 4698.10-2020/a/tdtd海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd23/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294970EBB4E05397BE0A0AB6FE" target="_blank"GB/T 15076.7-2020/a/tdtd钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法/tdtd2020/3/6/tdtd2021/2/1/tdtd即将实施/td/trtrtd24/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9BFCCC5CEE080F87E05397BE0A0A747C" target="_blank"GB/T 15076.10-2019/a/tdtd钽铌化学分析方法 第10部分:铌中铁、镍、铬、钛、锆、铝和锰量的测定 直流电弧原子发射光谱法/tdtd2019/12/31/tdtd2020/11/1/tdtd即将实施/td/trtrtd25/tdtda href="http://std.samr.gov.cn/gb/search/gbDetailed?id=95A47695C58D4F2CE05397BE0A0AB3E0" target="_blank"GB/T 4698.6-2019/a/tdtd海绵钛、钛及钛合金化学分析方法 第6部分:硼量的测定 次甲基蓝分光光度法和电感耦合等离子体原子发射光谱法/tdtd2019/10/18/tdtd2020/9/1/tdtd即将实施/td/tr/tbody/tablepbr//ppbr//p
  • 安捷伦科技定义原子光谱技术前沿标准
    引领创新,谱写未来安捷伦科技定义原子光谱技术前沿标准 2014年2月25日,北京——今日,安捷伦科技(纽约证交所:A)在北京举办“2014光谱新技术研讨会”(以下简称“研讨会”)。来自安捷伦科技原子光谱领域的产品经理、资深技术专家分享了行业观点及安捷伦最新技术,客户、媒体及众多专业人士通过线上、线下两种方式参会。在现场嘉宾的共同见证下,安捷伦为2014年最新推出的两款原子光谱新品4200 MP-AES和7900 ICP-MS隆重揭幕,谱写原子光谱技术创新发展的未来篇章。 满足客户需求、应对行业挑战,一直以来是安捷伦科技创新的驱动力,也是安捷伦在原子光谱和元素检测技术领域保持领先地位的源动力。安捷伦科技光谱产品副总裁Philip Binns表示:“我们始终贯彻超越传统解决方案的理念,致力于推出创新的原子光谱平台技术,更好地满足客户对于多元素检测、更快速、高性能、低成本、安全性等方面的需求,在无机元素分析领域,提供领先、高效且完整的原子光谱解决方案。” 当前,诸多行业领域对无机元素检测的需求呈现增长态势。样品分析量大、基质复杂,对多元素分析的需求越来越多,对元素的检出限要求也更为严格,上述趋势对无机元素检测技术领域提出新的挑战和要求。面对无机元素检测领域日趋复杂的发展趋势,安捷伦原子光谱仪器研发和创新亦主要集中于两大方向:针对常规检测,在提高仪器性能的同时,为用户提供更为简便、实用、可靠且更低运行成本的专业技术;针对科研、行业的复杂难点分析,为用户打造全面、灵活和极致的解决方案。安捷伦完整的原子光谱解决方案成为行业用户常规分析和科研难题的得力助手。安捷伦引领光谱技术的革新,续写原子光谱创新之路的传奇 自上世纪50年代起,安捷伦即投身于原子光谱领域的创新研发。在超过半个世纪的创新历程中,无论从技术领先程度、应用解决方案,还是到市场占有比率,安捷伦科技已成为无机元素分析领域的重要参与者与领导者。安捷伦始终坚持引领光谱技术的革新,持续投入光谱市场,致力于为原子光谱领域提供最先进的技术与应用,不仅在原子吸收光谱(AAS)、电感耦合等离子体-发射光谱(ICP-OES)和电感耦合等离子体-质谱(ICP-MS)领域保持着不可撼动的领军地位,还推出了独有的创新产品,如微波等离子体-原子发射光谱(MP-AES)及电感耦合等离子体串联质谱(ICP-MS/MS),为用户提供完整、灵活的原子光谱解决方案,全面提升实验室的检测能力。 在全球范围内,安捷伦原子光谱产品被广泛用于多个行业领域的研发,涵盖能源矿产与燃料、环境分析、食品安全、材料检测、生物制药、临床研究、生命科学等各领域。针对上述行业用户所面临的挑战,安捷伦为用户的不同应用提供量身定制的解决方案。 今日研讨会上揭幕的两款原子光谱产品,是安捷伦于2014年推出的新品,续写了安捷伦在原子光谱创新之路的传奇,并为安捷伦原子光谱未来发展做出铺垫。其中,4200 MP-AES是安捷伦第二代的微波等离子体原子发射光谱产品,与火焰原子吸收光谱仪相比,它在安全性(由于无需使用可燃性气体和氧化性气体)、简便易用性、性价比等方面均具有明显优势,并且基质耐受性更佳;而7900 ICP-MS则拥有其它ICP-MS无可比拟的基体耐受性、更佳的痕量检出限以及更宽的动态范围,辅以功能更为强大、操作更简便的MassHunter软件,能够轻松应对从常规分析到复杂应用研究的各种工作,全面提升元素分析实验室的分析能力,为ICP-MS技术树立了集优异分析性能与简便易用于一身的新标准。安捷伦科技4200 MP-AES与7900 ICP-MS新产品揭幕仪式 依托于对原子光谱领域多年持续的投入,安捷伦始终保持着该技术领域的领导地位,定义出最前沿的标准。在保障原子光谱产品可靠品质的基本前提下,安捷伦原子光谱技术实现了更高的灵敏度、更佳的抗干扰能力、更简便易用的特性、更快的检测速度以及绿色、节能低运行成本。此外,在智能的仪器控制及数据控制处理软件方面、以及联机技术软硬件的无缝连接方面,安捷伦也始终处于领先。 借助领先的技术平台,安捷伦正积极地与国内外标准制定机构及重点客户共同合作,为行业检测标准的制定与建立提供方法开发等全方位的支持,致力于为用户提供简便易用、更低运行成本、环保绿色同时又具有卓越性能的原子光谱技术。7900 ICP-MS(左)和4200 MP-AES(右) 安捷伦科技副总裁、化学分析事业部大中华区总经理丁再福博士(Dr. Teng Chai Hock)对原子光谱在国内的应用和对无机元素检测发展的推动作用表示乐观。他讲到:“中国是安捷伦全球最重要的市场之一,中国的无机元素检测也处于该领域内的前沿水平;而国内无机元素检测的需求日趋复杂,用户也相应地对原子光谱产品技术提出更高的要求。我们将继续与国内用户紧密协作,通过聆听用户的建议来帮助我们更加准确地把握创新方向,并不断推出新品。我相信,安捷伦原子光谱能够为中国用户带来更多、更完美并更有针对性的无机元素检测解决方案,帮助中国用户更好地实现无机元素检测目标,提供前所未有的应用能力和研究机遇。”关于安捷伦原子光谱产品系列 作为全球领先的分析仪器供应商,安捷伦为您提供全方位、值得信赖的原子光谱家族仪器——原子吸收光谱仪(AAS)、电感耦合等离子体发射光谱仪(ICP-OES)和电感耦合等离子体质谱仪(ICP-MS)——可覆盖用户绝大部分的应用需求;而安捷伦独有的微波等离子体原子发射光谱仪(MP-AES)和电感耦合等离子体串联质谱仪(ICP-MS/MS)将为您的实验室带来无限可能。安捷伦近期推出的4200 微波等离子体原子发射光谱仪 (MP-AES)可提供更安全、更经济的元素分析手段,助您轻松应对广泛的样品类型和分析应用;7900 电感耦合等离子体质谱仪(ICP-MS)是迄今为止最耐基质、最灵敏、最易于操作的四极杆电感耦合等离子体质谱仪,出色性能超乎想象。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013财年,安捷伦的净收入达到 68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 一批光谱仪分析方法国家标准发布
    近日,由国家标准化管理委员会发布的国家标准实施通知中显示,一批光谱仪器分析方法国家标准发布,并将于2014年初实施。  这批分析方法主要集中于钼化学分析方法,所涉及仪器包括原子吸收、原子荧光和电感耦合等离子体原子发射光谱等,基本为替代1980年代的相关标准。编辑:刘玉兰
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制