当前位置: 仪器信息网 > 行业主题 > >

红外吸收光谱仪原理

仪器信息网红外吸收光谱仪原理专题为您提供2024年最新红外吸收光谱仪原理价格报价、厂家品牌的相关信息, 包括红外吸收光谱仪原理参数、型号等,不管是国产,还是进口品牌的红外吸收光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外吸收光谱仪原理相关的耗材配件、试剂标物,还有红外吸收光谱仪原理相关的最新资讯、资料,以及红外吸收光谱仪原理相关的解决方案。

红外吸收光谱仪原理相关的资讯

  • 近红外吸收染料的吸收光谱
    |前言近红外吸收染料通常在700~1200nm范围内有最大吸收波长,因其重要的光学性能而应用广泛,如隔热玻璃、激光防护、热写显示、等离子显示器等。为了获取性能优异的近红外吸收染料,需要确定其吸收性能。因此具有近红外波长测定范围的紫外分光光度计必不可少。日立新型紫外分光光度计产品UH5700,检测波长范围190~3300nm波长,同时,标配操作软件UV Solutions Plus具有峰检测功能,可以轻松测定不同近红外吸收染料的吸收光谱。日立紫外可见近红外分光光度计UH5700|应用数据样品制备:将近红外吸收染料粉末溶解于甲苯溶液中,获得待测样品。光谱测定:以甲苯溶液为参比,使用UH5700测定样品的吸收光谱图1 五种近红外吸收染料的吸收光谱1 1纵轴是以每个样品的最大峰值波长归一化后的值UH5700采用连续可变狭缝功能,根据光量大小自动调节狭缝,即使在能量较低的检测器切换波长附近仍然可获得平缓的光谱。如图所示样品约在800~1100nm范围内有最大吸收峰,包含了UH5700的检测器切换波长。 图2 峰检测软件界面2峰高是以每个样品的最大峰值波长归一化后的值图3 峰检测结果UH5700操作软件UV Solutions Plus具有峰检测功能,同时对五种近红外吸收染料进行了峰检测,结果如表所示,可以轻松获取不同样品吸收峰的位置、面积、起始波长等信息。 |总结日立UH5700在近红外波长处获得的数据噪声小,非常适合检测和近红外波长有关的样品。软件中的峰检测功能可以快速分析多个样品的光谱性能,提高工作效率。
  • 创锐光谱中标东南大学显微红外瞬态吸收光谱仪项目
    一、项目编号:JTCC-2202AW1385(SEU-ZB-220146)(招标文件编号:JTCC-2202AW1385(SEU-ZB-220146))二、项目名称:东南大学物理学院显微红外瞬态吸收光谱仪采购项目三、中标(成交)信息供应商名称:大连创锐光谱科技有限公司供应商地址:大连高新技术产业园区会汇贤园7号1层#01-02室中标(成交)金额:69.8000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 大连创锐光谱科技有限公司 显微红外瞬态吸收光谱仪 创锐光谱 TA100-1030nm-NIR-MIC 1 690000.00 五、评审专家(单一来源采购人员)名单:赵伟杰(采购人代表)、雷文(组长)、陈黎来、杨洋、杨培红六、代理服务收费标准及金额:本项目代理费收费标准:中标供应商在领取中标通知书时需按《招标代理服务收费管理暂行办法》(国家发展计划委员会计价格[2002]1980号)招标收费基准费率的69%向招标代理机构支付招标代理服务费。费用一次付清。本项目代理费总金额:0.7224300 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜本中标公告期限为1个工作日。各有关当事人对中标公告结果有异议的,可以在中标公告期限届满之日起7个工作日内,以书面原件形式提出明确的请求并提供必要的证明材料,一次性向采购代理机构提出质疑,逾期将不再受理。九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:东南大学     地址:江苏省南京市玄武区四牌楼2号        联系方式:物理学院:赵老师 18115881316; 实验室与设备管理处:刘老师 025-83792693      2.采购代理机构信息名 称:江苏省招标中心有限公司            地 址:江苏省南京市鼓楼区郑和中路118号D座16楼1612室            联系方式:徐凌云、顾建钧,025-83307682、83249924            3.项目联系方式项目联系人:顾建钧电 话:  025-83249924
  • 气相分子吸收光谱仪的计量校准方法
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。/span/pp  气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。/pp  气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。/pp  1.气相分子吸收光谱仪工作原理及特点/pp  气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。/pp  2.校准用主要仪器与试剂/pp  气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /pp  盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /pp  柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /pp  磷酸:10%水溶液 /pp  过氧化氢:30% /pp  实验所用试剂均为分析纯 /pp  实验用水为高纯水 /pp  校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。/pp  /pp style="TEXT-ALIGN: center"img title="01.png" src="http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg"/ /pp  3.校准条件/pp  3.1环境条件/pp  环境温度:15~35℃ 环境相对湿度:≤85%。/pp  室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。/pp  3.2仪器安装及工作条件/pp  仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。/pp  工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。/pp  /pp style="TEXT-ALIGN: center"img title="02.png" src="http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg"//pp  4.校准项目和校准方法/pp  每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。/pp  参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。/pp /pp /pp style="TEXT-ALIGN: center"img title="03.png" src="http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg"//pp  4.1检出限/pp  将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。/pp  检出限按式(1)计算:/pp  cL=3s/b(1)/pp  式中:b——工作曲线的斜率 /pp  s——空白样测定值的标准偏差,mg/L /pp  cL——测量检出限,mg/L。/pp  4.2校准曲线绘制/pp  4.2.1亚硝酸盐氮的测定/pp  用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.2硫化物的测定/pp  用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.3氨氮的测定/pp  用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度/pp  x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。/pp  4.3定量重复性/pp  将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。/pp  /pp style="TEXT-ALIGN: center"img title="04.png" src="http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg"/ /pp  5.不确定度评定/pp  气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。/pp  5.1实验数据/pp  3种标准物质的实验数据列于表4、表5。/pp style="TEXT-ALIGN: center"img title="05.png" src="http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg"//pp  5.2不确定度评定/pp  仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。/pp  5.2.1重复性测量引入的标准不确定度u(s)/pp  输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度:/pp  /pp style="TEXT-ALIGN: center"img title="06.png" src="http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg"//pp /pp /pp  5.2.2校准曲线引入的标准不确定度u(b)/pp  校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。/pp  /pp style="TEXT-ALIGN: center"img title="07.png" src="http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg"//pp /pp /pp  式中2%为标准物质的定值不确定度。/pp  /pp style="TEXT-ALIGN: center"img title="08.png" src="http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg"/ /pp  5.2.3合成标准不确定度的评定/pp  由式(2)求得s的灵敏度系数:/pp  c1=3/b=3/0.0625=48(mg/L)/pp  同样斜率b的灵敏度系数:/pp  c2=–3s/b2=–0.0819(mg/L)/pp  根据式(2)求得检出限测量的不确定度:/pp style="TEXT-ALIGN: center"img title="09.png" src="http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg"//pp  5.2.4扩展不确定度的评定/pp  取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度:/pp  U=kuc=2× 0.0032=0.0064(mg/L)/pp  参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。/pp style="TEXT-ALIGN: center"img title="10.png" src="http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg"//pp  6结语/pp  结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。/pp  参考文献/pp  [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999./pp  [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4./pp  [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20./pp  [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57./pp  [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367./pp  [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33./pp  [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002./pp  [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]./pp  [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]./pp  [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]./pp  [11]JJF1094–2002测量仪器特性评定[S]./pp style="TEXT-ALIGN: right"  施江焕,李蓓蓓/pp style="TEXT-ALIGN: right"  (宁波市计量测试研究院,浙江宁波315103)/p
  • 160万!中国科学院宁波材料技术与工程研究所采购中红外纳秒瞬态吸收光谱仪项目
    项目编号:CBNB-20232021G项目名称:中国科学院宁波材料技术与工程研究所采购中红外纳秒瞬态吸收光谱仪项目预算金额(元):1,600,000.00最高限价(元):1,600,000.00采购需求:标项号采购内容数量简要技术需求是否允许采购进口产品一中红外纳秒瞬态吸收光谱仪1套检测模式:透射模式。否合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。
  • 安光所在虚像相位阵列光谱仪研制及吸收光谱应用方面取得新进展
    近日,中国科学院合肥物质院安徽光机所张为俊研究员团队在虚像相位阵列光谱仪装置研制及其吸收光谱应用方面取得新进展,相关研究成果以《基于虚像相位阵列的可见光波段皮米分辨宽带CCD光谱仪》和《基于虚像相位阵列光谱仪的宽带高分辨CO2吸收光谱测量技术研究》为题分别发表在学术期刊Analyst(SCI二区, IF=4.20)上和光学学报(ESCI)上。   宽带、高分辨光谱可同时精准识别多种物质成分,获取相关的理化特性,在精密测量等众多科学研究与应用领域具有重要的应用价值。然而传统光谱仪难以兼顾高光谱分辨率与宽光谱检测范围,近年来发展的新型色散元件虚像相位阵列为解决该问题提供了新的紧凑型方案。   团队赵卫雄研究员和周昊博士设计并建立了可见光和近红外波段两台虚像相位阵列光谱仪(分别工作于可见光660 nm和近红外1.4 μm波段)。使用近红外光谱仪于1.42 ~ 1.45 μm波段测量了CO2气体的吸收光谱,并利用HITRAN数据库实现了一维光谱信息的高精度提取,测量结果与数据库模拟光谱吻合,证明了研制的虚像相位阵列光谱仪的测量准确性及相关光谱反演算法的可靠性。该装置在大气痕量探测、精密测量及基础物理化学研究等领域有着重要的应用前景。   本研究工作得到国家自然科学基金(42022051, U21A2028)、中国科学院青年创新促进会(Y202089)、中国科学院合肥物质科学研究院院长基金(YZJJ202101)项目的资助。VIPA 光谱仪示意图。(a)结构示意图;(b)二维光谱图像示意图宽带 CO2吸收光谱测量装置示意图
  • 汞检测利器|冷原子吸收光谱技术
    在日常生活中,汞与砷会以各种化学形态侵入到环境中,会污染空气,污染水质及土壤,同时也会造成食品污染,直接间接地对人体造成极大的伤害。检测技术中原子荧光检测技术则可以用来检测饮用水中汞和砷的含量,土壤中砷含量及食用大米中汞含量是否超出国家标准,用以保障人们的正常生活与身体健康。本文主要介绍对冷原子吸收光谱检测技术及原理,以期对相关人员有一定的参考意义。元素原子的原子化一般是在一定温度下完成的。汞是一种唯一在常温下就可以气化成为单原子状态的元素。在0-30℃,空气饱和蒸气浓度在2.54-35.6mg/Nm3之间,可以实现常温原子光谱测定。冷原子吸收测汞,在我们国家是在20世纪七十年代末期开始使用,这是环境汞检测划时代的进步。冷原子吸收测汞仪工作原理如下图所示:分析注意事项:保持室内温度,确保仪器光学系统不结水汽。保持室内温度相对稳定,提高灵敏度。如果在正常状态仪器灵敏度下降,可能是汞灯老化发黑,或者是光电转化原件老化,可以开机目测检查,及时更换。不能将消解后仍发热的样品进行分析,那样的话水汽进入洗手池会影响测定。 按不同消解方式,采用不同的汞还原办法:普通酸性氧化处理样液,可以取酸性氯化亚锡还原;处于强络合状态的消解液、有机汞,要用碱性氯化亚锡或碱性抗坏血酸还原,再测定。
  • 德国耶拿3月28日将在上海举办原子吸收光谱仪用户培训班
    德国耶拿分析仪器股份公司定于2006年3月28日-31日在上海举办ZEEnit700原子吸收光谱仪EPA用户培训班。本次培训的主要内容包括:1、原子吸收光谱仪的基本原理、仪器结构等基础知识的介绍。2、ZEEnit700原子吸收光谱仪的软件操作及应用技巧介绍。3、ZEEnit700原子吸收光谱仪日常维护保养计划和常见故障分析及排除的介绍。4、ZEEnit700原子吸收光谱仪在环保监测领域中的具体应用及独特优势介绍。4、上机操作培训。电话: 010-65543849、021-54261978 传 真: 010-65543265、021-54261976电子信箱: info@analytik-jena.com.cn
  • 耶拿公司连续光源原子吸收光谱仪培训班圆满闭幕
    德国耶拿公司于2009年8月17日至23日在美丽的内蒙古呼和浩特市举行了2009年夏季连续光源原子吸收光谱仪培训班。连续光源原子吸收是德国耶拿公司的拳头产品,也是专利产品。  来自全国各地的50余名用户参加了培训,包括环保,农业,质检,食品,中石油,高校,医疗等行业。  培训内容很丰富:由行内的资深专家汪素萍女士介绍了连续光源原子吸收的原理和应用 由德国耶拿公司高级维修工程师刘学文和徐向阳介绍了软件的操作技巧和日常维护保养,以及常见故障的排除。还安排了来自中国农科院及中国CDC的用户介绍仪器的使用经验。最后,还对学员进行了考核,对于成绩优秀者给予了奖励,成绩达标的颁发证书。理论课后,还进行了两天的实践操作培训,每个学员都可以上机操作,并在现场对用户答疑。  通过这次培训,给用户解决了不少实际应用中的问题,也使用户更全面的了解仪器的性能,并更加体会到了连续光源原子吸收光谱仪优于普通原子吸收光谱仪的先进技术。而且也为各个用户建立了一个互相交流,沟通的平台。学员都反应,这次培训对今后仪器的使用及分析工作帮助很大,以后会最大程度地发挥这款仪器的作用,不但自己用好,还要给其他同行宣传和推荐德国耶拿公司的专利产品----连续光源原子吸收光谱仪!
  • 国内原子吸收光谱仪行业现状
    原子吸收光谱仪的可应用于冶金、地质、采矿、石油、轻工业、农业、医药、卫生、食品以及环境监测等。  经过一代科学技术工作者的努力,目前,我国已经成功地掌握了原子吸收光谱仪的设计、生产技术。在火焰分析方面,与国外同类型仪器相比,国产仪器的典型元素检出极限达到相同水平,甚至超过国外。但由于我国在新产品研究开发方面投入不足,使国产仪器在自动化程度和长期工作可靠性方面还有不少差距,尤其是石墨炉分析技术差别更大。为了改变这一落后面貌,北京、上海等地的企业及研究所着重投入资金用于无火焰石墨炉技术的研究开发,在分析重复性与元素检出限等方面取得不少进展,并有新产品推出。  2014年1-5月,我国原子吸收光谱仪行业市场规模达到了8.7亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业市场规模达到了17亿元,同比增长了5.6%。  2011-2014年我国原子吸收光谱仪行业市场规模及增长情况    数据来源:国家统计局  2014年1-5月,我国原子吸收光谱仪行业产值达到了6.3亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业产值达到了12.1亿元,同比增长了3.4%。  2014年1-5月,我国原子吸收光谱仪行业出口达到了1130万美元,同比增长了5.1%。2013年,我国原子吸收光谱仪行业出口达到了1960万美元,同比减少了19.4%。  2014年1-5月,我国原子吸收光谱仪行业进口达到了4620万美元,同比增长了10.2%。2013年,我国原子吸收光谱仪行业进口达到了9220万美元,同比增长了4%。  分销渠道在市场营销策略中起着关键作用,它们提供了将产品从生产高商转移到工业用户手中的手段,原子吸收光谱仪作为一种特殊的工业品,客户资源相对消费品而言较少。分销渠道以直销营销为主,渠道多为扁平化。  仪器企业一般采用以下几种类型:从生产商到最终用户 从生产商到代理商到最终用户 从生产商到代理商到批发商再到最终用户。  由于教育,政府,科研院所等行业相对集中,采取第一种方式较好。厂矿企业由于分散广,信息难以收集,采用后两种方式相对较好。  分析仪器属于高新技术、集成化较高的产品,在国外高精尖产品闯入中国市场时,国内企业必将面临冲击,实力不足的中国企业在未来的市场竞争中将会被淘汰出局。其实国内很多产品并不弱,但缺乏各个专业化企业间的联合,才造成终端产品与国外产品差距的拉大。  此外,大多国产仪器还不能实现模具化生产,阻碍了其水平的提高。民营企业由于资金不足,相对国企来说,还缺乏国家的支持,又要把生产利润的很大部分投入到研发中去,因此只能是有心无力。要想和国外产品竞争,并且最终胜出,国家的支持很重要。另外,国内众多企业还可以联袂出手。注:以上文中所列观点、数据不代表本网立场,仅供读者参考。
  • 天美应邀参加原子吸收光谱仪鉴定规程宣贯会
    中国计量科学院受全国物理化学计量技术委员会的委托于2012年9月24-28日在黑龙江省哈尔滨市举办&ldquo 原子吸收分光光度计鉴定规程和原子荧光光度计鉴定规程宣贯暨分析技术交流会&rdquo 。来自全国各省市质检院所的一线鉴定员约60人参加了这次宣贯会。天美(中国)科学仪器有限公司的夏奕生副总裁应邀参加了这次会议;天美公司资深专家李梅介绍了原子吸收光谱的基本原理、背景校正技术、原子吸收光谱发展的新技术及应用原子吸收光谱的直接进样分析技术。参会的鉴定员们分组在Z-2010原子吸收分光光度计上完成了仪器计量鉴定指标的实际操作、火焰和石墨炉分析的全过程,并就分析中的各种常见问题进行了充分的讨论,使鉴定员们更加准确的理解和执行规程内容,促进规程及时得到推广和应用起到了很好的作用,到达了会议的预期目标。公司介绍:天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 石墨炉原子吸收光谱仪检测空心胶囊中铬含量
    自4月9日爆出老酸奶和果冻产品中可能含有工业明胶后,4月15日央视《每周质量报告》爆出药用空心胶囊也可能采用工业明胶作为生产原料。   根据CCTV13新闻频道《每周质量报告》栏目调查,记者走访了河北、江西、浙江等地的多家明胶厂和药用胶囊厂,发现部分明胶生产企业,采用铬超标的&ldquo 蓝矾皮&rdquo 为原料,生产工业明胶,然后通过一些隐秘的销售链条,把工业明胶卖到一部分胶囊厂买作为原料,生产加工药用胶囊。  由于工业明胶主要原料是皮革制品,而鞣制是制革生产中最为关键的工序,铬鞣法(主要有效成分为氧化铬,12%左右)自问世以来由于其优越的鞣制性能一直占据着鞣剂的统治地位。因此,目前认为铬(Cr)元素含量超标是识别工业明胶和食用明胶的主要区别。  铬是一种多价态的金属离子,有二价、三价和六价。人们认为:三价铬是生物和人体必需的一种微量金属元素,人如果缺乏它,会出现遗传不正常,葡萄糖代谢紊乱等症状,但如果长期大量的摄入三价铬,那么一方面是影响身体的抗氧化系统,容易得一些慢性的氧化性的这种疾病,比如说像糖尿病、高血压这一类的疾病,那么另外一方面,由于抗氧化系统受到了损伤,又容易发生肿瘤等这种异常增生的疾病。而六价铬却是强烈的致癌和致突变的诱发因子,它更易被人体吸收,其毒性比三价铬大100倍。六价铬可以影响细胞的氧化、还原,能与核酸结合,对呼吸道、消化道有刺激、致癌、诱变作用。对于空心胶囊,2010版中国药典中所规定的限量值为2mg/Kg。原理主要测试仪器检出限加标回收重现性原子吸收光谱法南京科捷4520A原子吸收光谱仪1.9pg 95%-110% 2.0%按照上述方案,分别对7种不同来源和品牌的药物胶囊进行测试,所得结果如下表:样品名称胶囊1胶囊2胶囊3胶囊4胶囊5胶囊6胶囊7样品含量(mg/Kg)3.3610.83.651.4248.51.976.30下图为铬检测的标准曲线可以看出,通过这一方法,药用胶囊中的微量铬能被准确检出。   南京科捷分析仪器有限公司参考2010年版《中国药典》,采用微波消解石墨炉原子吸收法,开发了药用空心胶囊中的铬含量的检测方法。原子吸收光谱法法具有操作简便,检测限低,重复性好,线性范围宽,回收率高等特点;完全满足空心胶囊中铬含量的测定,为药用胶囊中工业明胶的检验提供了良好的解决方案。欢迎来电咨询空心胶囊中铬含量检测原子吸收光谱仪!联系电话:尹先生13951792301 李经理18974821899 郑经理13951691728
  • 651万!江苏省环境监测中心气相分子吸收光谱仪等采购项目
    1、项目编号:2240SUMEC/ZWHD21462、项目名称:2022年江苏省省级环境监测仪器设备能力达标建设项目3、预算金额:共计651元。超过对应的预算金额作无效投标处理4、最高限价(如有):/5、采购需求:分包号品目号设备名称数量预算金额(万元)单包预算金额(万元)是否接受进口产品分包一:海水营养盐、硫化物、COD分析仪器1海水型连续流动分析仪1套95160接受2气相分子吸收光谱仪1套25不接受3COD智能分析仪1套40不接受分包二:激光扫描红外显微成像系统1激光扫描红外显微成像系统1套206206接受分包三:海水重金属富集、消解及检测系统1海水重金属实验室在线富集系统1套65285不接受2微波消解仪1套25不接受3电感耦合等离子体串联质谱仪(海水型)1套195接受注:本次招标项目共分为三个分包,本次采购按分包号顺序评标,为保证服务质量,每个分包确定不同的供应商中标(兼投不兼中),具体详见第二章供应商须知。6、合同履行期限:合同签订之日起90日内。7、本项目(是/否)接受联合体投标:否。
  • 《气相分子吸收光谱仪》国家标准2023年正式实施
    2022年10月,《GB/T 42027-2022 气相分子吸收光谱仪》国家标准正式发布,2023年5月1日正式实施。本文件规定了气相分子吸收光谱仪的要求、试验方法、检验规则、标志、包装、运输和贮存,适用于基于特定的化学反应机理将被测物中的测定成分转化为气态分子,并根据气态分子的特征吸收光谱进行定量检测的气相分子吸收光谱仪。气相分子吸收光谱仪是我国自主研发的一种光谱类分析仪器,广泛应用于我国环境、食品、农业、海洋等水质质量检测领域。目前国内已经有不少关于气相分子吸收光谱法的检测标准,但是一直没有关于产品的标准出台。而正因为此,各厂家产品性能各异、差异性较大,缺少设备评价的统一标准,因此出台相关国家标准是非常必要的,可以有效规范仪器生产及使用,确保仪器的质量,同时由于气相分子吸收光谱仪是我国自主研发的科学仪器,加强标准建立工作尤其重要,在此基础上还可以进行国际标准的申请工作。鉴于此,《气相分子吸收光谱仪》的产品标准在2019年底被正式列为国家标准制定项目。该标准由TC124(全国工业过程测量控制和自动化标准化技术委员会)归口,TC124SC6(全国工业过程测量控制和自动化标准化技术委员会分析仪器分会)执行 ,主管部门为中国机械工业联合会。标准起草单位包括:由上海安杰环保科技股份有限公司、中国环境监测总站、上海市计量测试技术研究院、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、上海北裕分析仪器股份有限公司等企业、浙江省计量科学研究院、青岛佳明测控科技股份有限公司。相比于传统分光光度计,气相分子吸收光谱仪具有精度高、检测下限低,不受水中杂质、颜色的干扰,采用少量常规试剂,耗材少,检测成本低,检测速度快等优点,满足现代仪器行业智能化和低成本的发展趋势,将在我国环境监测及保护中发挥重要的作用。据了解,本标准发布后两年内进行宣贯,宣贯对象是气相分子吸收光谱仪生产企业、各级环境监测站、水利水文机构、石油化工等行业大型企业、海洋监测部门、第三方检测机构、农林单位、高校、科研院所等相关单位。
  • 气相分子吸收光谱技术的行业贡献
    气相分子吸收光谱技术的行业贡献 北裕仪器在气相分子细分行业发展中敢于创新,勇于进取,为该细分行业的发展作出了重大贡献:重大贡献一: 北裕仪器首次将流动注射进样技术引入到气相分子吸收光谱仪中,实现了气相分子吸收光谱仪由原来手动进样变成仪器完全自动进样,实现了仪器全自动化分析。该技术北裕仪器申请并获得中华人民共和国国家知识产权局颁发的专利证书:《一种气相分子吸收光谱仪》发明专利号为200910049514.5、《一种流动注射-气相分子吸收光谱仪》专利号为ZL200920070613.7。重大贡献二: 北裕仪器成功研发出利用半导体制冷技术的除水装置,改变了十几年来一直采用无水高氯酸镁作为干燥剂干燥技术,由于干燥材料在做完20个左右的样品时就需要更换,干燥剂更换起来非常不方便,更换后会影响仪器气路的气密性,因此半导体制冷技术的应用,大大提高了仪器操作的方便、简单、快速、自动化等优点。该技术北裕仪器申请并获得中华人民共和国国家知识产权局颁发的专利证书:《一种用于气相分子吸收光谱仪中的除水装置》专利号为ZL201220124293.0。重大贡献三: 北裕仪器获得发明专利的氨氮快速在线氧化技术,氧化时间由原来的半小时变成了瞬间,极大提高了样品分析效率;该技术的应用极大推动了气相分子吸收光谱仪在环保行业的推广使用。该项贡献意义深远,大部分用户购置气相分子主要还是用来测定氨氮,以前的设备氨氮测定过于麻烦,一个样需要30分钟以上,而选用快速氧化技术,可以将单个样品的测定时间缩短为3~4min,效率提升了10倍左右,可以说这个贡献挽救了摇摇欲坠的气相分子细分行业,并发扬光大。北裕仪器申请并获得中华人民共和国国家知识产权局颁发的发明专利证书:《一种氨氮快速氧化方法及其装置》发明专利号为201210086892.2。重大贡献四: 北裕仪器联合上海市计量院、浙江省计量院等单位,建立了《气相分子吸收光谱仪校准规范》,从此该仪器在计量时可以出具《校准证书》,这个意义对于专业实验室影响很大,专业实验室都要求计量仪器在使用前必须得到第三方机构出具检定报告或者校准证书。而在此之前,要么不能出具《校准证书》,要么只能出具效力不高的《检测报告》。该项标准的推出,使得气相分子吸收光谱仪在环保监测、第三方检测等行业迅被速推广。重大贡献五: 全国近20个省级环境监测中心(站)采购使用了北裕仪器生产的气相分子吸收光谱仪,省级监测中心(站)的普及使用极大推动了气相分子吸收光谱仪在全国地级市、县级市环境监测站的推广使用,并带动在水文水利局等行业推广使用。在气相分子行业,北裕仪器引领气相分子行业向前快速发展;自己也在发展中得到很多受益,根据公开招标信息,市场占有率约90%;同时北裕仪器在本行业中也是唯一至今保持零退货记录的气相分子吸收光谱仪生产兼研发公司。
  • 气相分子吸收光谱仪的自主创新及产业化的30年
    p strong 一、气相分子吸收光谱法的起源及发展/strong/pp  气相分子吸收光谱法(Gas-Phase Molecular Absorption Spectrometry)是基于被测成分所分解成的气体对光的吸收强度与被测成分浓度的关系遵守光吸收定律这一原则来进行定量测定样品的。在国际上,自1976年Cresser等人首先提出该方法至今40多年间,GMPAS在水质分析方面研究了许多测定项目,如对Brsup-/sup 、Isup- /sup、NOsub2/subsup-/sup、NHsub3/sub-N 、Clsup-/sup 、硫化物和SOsub2/subsup3-/sup的测定。Syty最先应用该法测定了SOsub2/sub,Rechikov等人测定了用于半导体工艺的惰性气体混合的氢化物气体中的B、N、P、As、Sb、Si、Ge、Sn的氢化物,关于该方法的研究几乎每年都有文章的发表。但是这些方法中都是为了配合每一个研究课题而为之,因此在国外该技术一直未产业化。/pp style="TEXT-ALIGN: center"img title="QQ截图20171107135701.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/c04ede4a-148f-4df8-87d5-37e5c317ced8.jpg"//pp style="TEXT-ALIGN: center"strong图1 国外已发表论文/strong/pp  我国自80 年代开始研究该分析手段,如张寒奇等研究的氯离子测定法具有实用性,原上海宝山钢铁总厂环境监测站的臧平安先生(现任上海安杰环保科技股份有限公司总工程师)于1987年对GMPAS进行了研究,他发现了瞬间即能加速分解亚硝酸盐的催化剂和快速将硝酸盐分解成一氧化氮气体的还原剂,并结合原子吸收光谱仪于1990年和1992年先后发明了亚硝酸根离子和硝酸盐氮的专利方法,专利号为ZL 90102835.5和ZL 92108475.7,其中亚硝酸根离子的专利方法在1991年的第六届全国发明展览会上荣获铜奖。/pp style="TEXT-ALIGN: center"img title="02.jpg" style="HEIGHT: 360px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/96fa95c3-dd54-4102-a8a8-b6d5702c5201.jpg" width="450" height="360"//pp style="TEXT-ALIGN: center"strong图2 “亚硝酸根离子的测定方法”发明专利证书/strong/pp style="TEXT-ALIGN: center"img title="03.jpg" style="HEIGHT: 310px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/2521ba95-afc8-4e11-b334-873a944b7cc3.jpg" width="450" height="310"//pp style="TEXT-ALIGN: center"strong图3 “硝酸盐氮的测定方法”发明专利证书/strong/pp style="TEXT-ALIGN: center"img title="04.jpg" style="HEIGHT: 319px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/48cd3478-875c-48eb-98c5-6330e872d5cf.jpg" width="450" height="319"//pp style="TEXT-ALIGN: center"strong图4 第六届全国发明展览会铜奖/strong/pp  该方法经过臧平安先生的不断摸索改进,最终使亚硝酸盐氮和硝酸盐氮测定的检出限低至0.6µ g/ L,使测定水样中该两个项目的时间缩短至2min之内出结果, 1995年国家环境保护局(环境保护部前身)委托中国环境监测总站组织研究和验证,并发「环检测[1995]079号文」颁布试行该两方法, 1996年获得中国分析测试协会颁发的科学技术二等奖。/pp style="TEXT-ALIGN: center"img title="05.jpg" style="HEIGHT: 533px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/eff57ae1-93a1-4a5e-838c-49f959dfa0b7.jpg" width="400" height="533"//pp style="TEXT-ALIGN: center"strong图5 国家环境保护局司发文 环检测[1995]079号/strong/pp style="TEXT-ALIGN: center"img title="06.jpg" style="HEIGHT: 326px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/7416b629-3fab-4bed-813a-ee407bce0919.jpg" width="450" height="326"//pp style="TEXT-ALIGN: center"strong图6 中国分析测试协会二等奖/strong/pp  在以上两种方法的基础上,臧平安先生又相继发现了氨氮、凯氏氮、总氮的测定方法,而后又在前人工作的基础上研究出了可在2min左右即能准确测定出水和废水中硫化物的方法,并于1998年被国家环境监测总站列为国家标准方法进行申报,同年由于该方法获得行业广泛认可,臧平安先生入选《科学中国人· 中国专家人才库》。/pp style="TEXT-ALIGN: center"img title="07.jpg" style="HEIGHT: 476px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/8b8db655-e303-4909-bb10-097e7306b7cf.jpg" width="300" height="476"//pp style="TEXT-ALIGN: center"strong图7 中国环监总站出具的列入国家标准方法的证明/strong/pp style="TEXT-ALIGN: center"img title="08.png" style="HEIGHT: 324px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/d139980c-5905-4ef5-b3ad-fbce9e04ebcf.jpg" width="450" height="324"//pp style="TEXT-ALIGN: center"strong图8 《科学中国人· 中国专家人才库》荣誉证书/strong/ppstrong  二、气相分子吸收光谱仪的研发及进一步发展/strong/pp  研究初期的气相分子吸收光谱仪,其样品化学反应为人工操作,再利用原子吸收光谱仪进行检测,对操作人员的操作技术要求较高,臧平安先生于1998年在积累了10年使用经验的工作基础上成功制造出了国内外首台气相分子吸收光谱仪原型机,后来通过对仪器的不断改进和完善,2000年与上海分析仪器总厂下属的上海自立仪器厂合作,研制生产了三台型号为GMA-2000 的气相分子吸收光谱仪样机,并将该研究成果发表在当年的全国光谱仪器与分析监测学术研讨会会刊上。/pp style="TEXT-ALIGN: center"img title="09.jpg" style="HEIGHT: 324px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/38f97d86-9b83-4e57-9501-95f5801b641a.jpg" width="450" height="324"//pp style="TEXT-ALIGN: center"strong图9 样机原型设计图/strong/pp style="TEXT-ALIGN: center"img title="10.jpg" style="HEIGHT: 402px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/12f22814-c097-47e3-9b37-627dd0f39fc7.jpg" width="450" height="402"//pp style="TEXT-ALIGN: center"strong图10 《专利产品GMA2000气相分子吸收光谱仪》/strong/pp  为了更好的对此方法进行推广,臧平安先生于2001年成立了上海安杰环保科技有限公司,进行公司化运营, 2002年在GMA-2000型样机基础上推出了第一台商品化的专用型气相分子吸收光谱仪AJ-2100,随后起草编写了氨氮等六个项目的环监方法标准稿,经由国家环监总站审阅,2005年7月由国家环境保护总局(环境保护部前身)科技标准司组织全国省级以上监测站进行使用鉴定,并组织相关专家共8人审定通过此标准内容。随即国家环境保护总局科技标准司于2005年11月批准公布了HJ/T 195~200(2005)的环保行业标准, 于2006年1月正式实施。AJ-2100作为方法验证用机参与了标准方法验证的全过程。/pp style="TEXT-ALIGN: center"img title="11.jpg" style="HEIGHT: 195px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/c598e65a-823e-4e59-b071-e376c65b29e5.jpg" width="450" height="195"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img title="12.jpg" style="HEIGHT: 506px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/e3ffe17f-a853-4ceb-9a8f-1a21f6e5d9a1.jpg" width="450" height="506"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"strong图12 HJ/ T195~200(2005)的标准评审专家名录/strong/pp  气相分子吸收光谱法已经广泛应用在38项国家及地方标准中:/pp style="TEXT-ALIGN: center"img title="01.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/a1f2a95f-d307-4679-bd0d-37fba719f76c.jpg"//pp style="TEXT-ALIGN: center"img title="02.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/44bc612d-f84e-402d-b35d-c3ea3544a7dd.jpg"//pp style="TEXT-ALIGN: center"strong表1 GPMAS已应用的行业标准目录/strong/pp  随着技术水平的不断发展,经过16年,臧平安先生带领的技术团队陆续推出了AJ-2500、AJ-3000、AJ-3000plus等多个型号的第二代及第三代气相分子吸收光谱仪;逐步确立和完善了仪器的研发方向、技术思路、技术框架、技术路线以及要突破的关键技术等,在保证分析准确性的基础上,满足水环境监测工作的要求,实现整机自动化程度、检测流程优化、检测精度、可靠性等方面的进步作为总体研发目标,研发和建立拥有自主知识产权的、更加智能化、更加自动化的快速检测仪器,对前处理系统、进样系统、配液系统、气液分离系统、光学系统和检测系统进行集中技术攻关,满足气相分子吸收光谱仪对样品进行完全自动化检测的需求;同时制定符合水环境监测工作实际要求的检测标准。 /pp style="TEXT-ALIGN: center"img title="QQ截图20171107142210.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/0af2abe4-d615-427a-acd4-cd2bc2e8ce7b.jpg"//pp style="TEXT-ALIGN: center"strong表2 气相分子吸收光谱仪系列产品/strong/pp  臧平安先生带领的团队研制的第三代气相分子吸收光谱仪AJ-3000 plus先后荣获“2015年科学仪器行业优秀新产品奖”、“2017 CISILE自主创新金奖”、“2017 BCEIA金奖”,这个方法和仪器已经获得分析行业及使用客户的广泛认可。同时作为由我国自主研发创新的科学仪器,以及其对水质检测分析的影响,国家水利部欲将其列为水利行业标准,在水利部门广泛使用。于2015年底,中国水利学会作为国家标准委办公室团体标准试点单位,将“气相分子吸收光谱法”作为第一批中国水利学会团体标准立项,安杰科技作为此系列标准的主要起草单位参与了从立项到成稿的过程。至2017年6月29日,《水质 氨氮的测定 气相分子吸收光谱法》(T/CHES 12~16-2007)等5项标准颁布,并于2017年9月1日起实施。/pp style="TEXT-ALIGN: center"img title="13.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/42f8f23a-11ef-4211-a7a9-eba40bf0cbdc.jpg"//pp style="TEXT-ALIGN: center"strong图13 水利标准发布公告/strong/pp style="TEXT-ALIGN: center"img title="14.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/6a0249f9-7879-44b5-ab7f-77b6f328e6ad.jpg"//pp style="TEXT-ALIGN: center"strong图14 获得行业多项荣誉奖励/strong/pp  气相分子吸收光谱仪随着技术的突破和创新,其检测限已能覆盖低浓度的范围,能针对更多复杂环境水质进行检测,同时也突破了在高海拔区域使用的困境。2017年10月25日“AJ-3000 PLUS气相分子吸收光谱仪”在海拔约3700米的西藏拉萨调试完成并成功验收,标志着气相分子吸收光谱仪作为一种能够适应高原地区环境监测的分析仪器通过实用检验。/pp  气相分子吸收光谱仪在环境、水利、海洋、农业、化工、石油等行业的广泛应用,以及其使用便捷、高效、快速的优点,已逐渐成为市场的潜力军,引起了各个行业的关注,凸显了其巨大的市场前景。作为该方法和仪器的原创单位,臧平安先生带领的技术团队秉承着“源于传承、勇于创新、精于技术、重于服务”的理念,进一步强化技术创新,提升产品质量,将气相分子吸收光谱技术发扬光大。/pp style="TEXT-ALIGN: right"(作者:臧平安)/p
  • 气相分子吸收光谱技术应用交流会
    会议报到时间:10月29日会议开始时间:10月30日会议地点:北京辉腾商务酒店工体店主办单位:中国仪器仪表行业协会分析仪器分会承办单位:上海安杰环保科技有限公司一、会议主题:气相分子吸收光谱应用技术交流会二、会议背景: 目前我国工业、农业和生活污染排放负荷大,全国化学需氧量排放总量为2294.6万吨,氨氮排放总量为238.5万吨,远超环境容量。全国地表水国控断面中,仍有近十分之一(9.2%)丧失水体使用功能(劣于Ⅴ类),24.6%的重点湖泊(水库)呈富营养状态;不少流经城镇的河流沟渠黑臭,饮用水污染事件时有发生。全国4778个地下水水质监测点中,较差的监测点比例为43.9%,极差的比例为15.7%。全国9个重要海湾中,6个水质为差或极差。全国水环境的形势非常严峻,2015年4月国家环保部出台《水污染防治行动计划》,对污水处理、工业废水、全面控制污染物排放等方面进行强力监管并启动严格问责制,铁腕治污将进入新常态。 国家对水质监测非常重视,可用于水质检测的仪器及方法繁多,气相分子吸收光谱仪即是其中之一,目前可检测氨氮、凯氏氮、亚硝酸盐氮、硝酸盐氮、总氮、硫化物、有机汞等,广泛应用于环境监测、水文监测、农业检测等各种领域的水质分析。由中国仪器仪表行业协会分析仪器分会主办、上海安杰环保科技有限公司承办本次气相分子吸收光谱仪应用交流会,希望通过学术交流探讨在水质监测领域新仪器、新方法的应用,汇集科学仪器行业的智慧,更好地服务国家环境监测事业。三、会议议程: 2015年10月30日上午 9:30-10:00 开幕式、领导致辞 国家水利部水资源司领导致辞 国家农业部农业环境重点实验室领导致辞 中国仪器仪表行业协会领导致辞 10:00-12:00 会场主题报告 水质监测新方法探讨——气相分子吸收光谱仪的应用 齐文启(中国环境监测总站) 气相分子吸收光谱仪的应用方法扩展 陈舜琮(北京理化测试中心) 气相分子吸收光谱仪的十四年发展历程 臧平安(安杰科技总工程师) 气相分子吸收光谱仪新产品介绍 孙璐(安杰科技总经理) 2015年10月30日下午 拟参观上海安杰(北京)生产基地四、会议费用标准 此次会议会务费全免,为了保证参会代表的住房安排,请与10月20日前电话联系我们。五、会议联系方式 联系人:曾祥丽 联系电话:13357726798 邮箱:13357726798@163.com 传真:010-53028853 中国仪器仪表行业协会分析仪器分会上海安杰环保科技有限公司
  • 荧光、吸收光谱合二为一——HORIBA慕尼黑展推出Duetta光谱仪
    p  strong仪器信息网讯/strong 2018年10月31日,第九届慕尼黑上海分析生化展(analytica China 2018)于上海新国际博览中心盛大召开。本届展会规模空前,近1,000家行业先锋企业齐聚一堂,展示尖端科技,解析热点话题,引领行业新高度。同时也吸引近30000名实验室研究和应用领域的专业观众云聚于此,共享分析生化领域两年一度的饕餮盛宴。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/dde426f5-5205-4f7e-b60f-9ef505564899.jpg" title="000.jpg" alt="000.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "视频采访现场(从左至右:HORIBA科学仪器事业部部的全球荧光产品经理Cary Joseph Davies、中国区总经理濮玉梅、技术支持工程师周延民)/span/pp  作为具有世界先进水平的分析仪器系统及系列产品供应商,HORIBA集团再次亮相analytica China 2018,并在展会发布多款重磅仪器新品。仪器信息网编辑在HORIBA展位现场,有幸视频采访了HORIBA科学仪器事业部的全球荧光产品经理Cary Joseph Davies、中国区总经理濮玉梅、技术支持工程师周延民,分别请三位对发布的Duetta荧光及吸收光谱仪、X射线荧光分析仪XGT-9000等新品特点、市场定位、荧光光谱仪的技术发展趋势等进行了一一介绍。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/4060b5ee-359d-4b85-8599-14eb553f56d9.jpg" title="0001.png" alt="0001.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "此次发布的新品:Duetta荧光及吸收光谱仪(左),X射线荧光分析仪 XGT-9000(右)/span/pp  首先,Cary Joseph Davies介绍了新品Duetta荧光及吸收光谱仪的产品特点,该产品实现了更佳的光谱仪理念,实现荧光与吸收光谱“合二为一”,具有一台光谱同时完成荧光和吸收光谱采集、瞬间获得荧光光谱、高灵敏度、智能触屏操作等特点。至2018年年初上市以来,已经获得业内人士和用户的广泛关注和咨询。同时,还介绍了该产品的产品定位、“二合一”设计契机、应用领域等。/pscript src="https://p.bokecc.com/player?vid=78E1F62B1D13B6A69C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptp  接着,濮玉梅补充道,由于Duetta标配的超快先进CCD技术,大大改进了以往荧光光谱单道PMT测谱慢的弊病,一次取谱测试时间缩减至100毫秒以下。同时,CCD技术也使得近红外测试可以一次取谱,这些新的改进都极大促进了研究应用的快速、便捷。同时,HORIBA以往产品技术更加专注和擅长于高端科学研究领域,而此次Duetta更快捷测试技术、外观更小巧设计等也使该产品从科学研究领域向分析测试、工业应用市场的拓展成为可能,分析测试、工业领域等未来潜力市场也将得到HORIBA的重点关注。/pp  最后,周延民还介绍了另外一款新品——X射线荧光分析仪XGT-9000,该产品延续了HORIBA产品分析微小部的优势,非常适用于胶片、食品、药品、电池隔膜等异物分析以及电子元件和电路板中包含的异物及故障分析。可同时取得清晰的光学图像, X射线荧光图像和X射线透视图像 且通过提高X射线光束的强度提高了XGT-9000的灵敏度和成像速度 另外利用图像解析功能分析异物,XGT-9000可以检测出原始数据所得不到的异物的位置。/p
  • 探究AR玻璃的奥秘——吸收光谱的测定
    探究AR玻璃的奥秘———吸收光谱的测定引言 据报道,肖特发布了新系列光学玻璃产品,该公司为了保证高品质,光学玻璃材料的熔炼在肖特德国工厂进行。晶圆制造和光学镀膜则在中国完成。这里的镀膜就是指的AR涂层,即抗反射增透膜,其利用光干涉原理降低玻璃反射率。AR玻璃便是涂敷了AR涂层的玻璃,经常用于手机屏幕,眼镜,电视显示屏等,可以增加屏幕的亮度,提高影像清晰度。也常用于太阳能电池中,增加透过率,提高太阳能电池的效率。日立UH4150由于先进的光学性能,配备5° 绝 对反射附件无需移动样品便可同时获得AR玻璃同一点的反射率和透过率,将助力于智能显示产品的快速发展。测试附件测定实例测定了一种AR玻璃样品的可见光区光谱,设定扫描速度为60nm/min,测定波长范围为350-700nm。 为了进一步验证AR涂层的有效性,进行了对照实验,样品如图3所示 图3 实验所用样品 详细数据请参考:https://www.instrument.com.cn/netshow/sh102446/s911073.htm总结AR玻璃也可称为减反射玻璃,在可见光区的反射率极低。而人在可见光的视觉范围一般是在555nm左右,因此经过AR处理后的玻璃在该波长处透过率高达99%,能够确保人眼看到的图像颜色更鲜艳,形象更逼真。随着现代人们对生活品质的要求越来越高,AR玻璃也得到更加广泛的应用。日立集团以“高科技解决方案创造价值”这一基本理念,使用自主研发技术,为智能眼镜、手机显示屏等产业的迅速发展做出贡献。参考文献: [1]王子涛. 新一代肖特RealViewTM高折射率玻璃晶圆拓宽AR/MR视场角. http://www.sh.chinanews.com/chanjing/2019-05- 13/56493.shtml,2019-05-13/2019-05-15.[2]增透膜能有效的提高玻璃的透光率.金亿胜玻璃官网.2013-4-25 [引用日期2019-05-15]
  • 会议活动|安杰科技2024年气相分子吸收光谱仪技术培训班圆满落幕
    2024.4-25-4.28安杰科技举办2024年气相分子吸收光谱仪技术培训班,全国各地环保、水利等行业专家参加此次培训。公司介绍:上海安杰智创科技股份有限公司是国内全自动分析检测仪器的制造厂商,在世界上率先发明并制造出气相分子吸收光谱仪,以分析化学、物理光学、光谱学、人工智能为核心技术,推出了系列全自动分析检测仪器,在全国的环保、水文、给排水、科研院所、石油炼化、第三方检测等行业得到广泛的应用。1、 安杰科技领导刘向东博士欢迎致辞此次培训班旨在为了安杰科技广大用户能够了解气相分子吸收光谱仪原理、熟练掌握该仪器使用方法、能够解决一些出现的突发应急情况。希望来参加培训班的用户们可以在安杰科技的四天之中获得较多经验、不虚此行。2、 安杰科技首席科学家臧平安先生致辞 安杰科技创始人,总工程师臧平安先生详细介绍了气相分子吸收光谱法的原理,详细讲解了仪器可检测的指标以及仪器使用过程中的注意事项,希望所有安杰仪器的用户可以享有良好的使用感受。3、 参观安杰科技生产线 安杰科技生产车间负责人带领各位老师参观了安杰科技的生产车间,参观过程中,大家对安杰科技的生产流程有了更加直观的了解,从仪器的组装到调试,安杰科技坚持倡导的“让分析检测更简单”理念也给各位老师们留下了深刻印象。AJ-3700气相分子吸收光谱仪优势特点:全自动检测:样品放置后无须人工干预,全自动测量并出具结果报告;测量速度快:根据不同测定项目,实现2-5min出具测定结果;抗干扰性强:具有一定色度浊度的样品可直接进样测定,无需前处理;绿色环保:无高氯汞等可对人体、环境造成二次污染的化学试剂。4、 安杰科技售后工程师指导上机操作安杰科技售后工程师为用户讲解了气相分子吸收光谱仪日常维护和保养。逐一讲解了“仪器需求条件及使用”、“仪器的常见故障及解决”、“仪器的日常维护”、“仪器售后服务”等内容,并在安杰科技自动化仪器体验馆进行实际的上机操作指导。注意事项1.仪器使用前的常规检查;2.仪器常见故障及其排除。上机实操,规避问题上机实际操作是培训课程必不可少的环节。在上机实操中用户可以更加直观了解仪器的工作原理,走出日常操作误区,解决工作中遇到的问题。仪器操作流程1. 测前准备与检查;2. 标准曲线的绘制与合格性判断;3. 待检测试样的预处理与测定;4. 数据的保存与导出;5. 关机清洗与实验台整理。2024首期安杰科技技术培训班圆满结束。未来,我们将继续努力,深耕专业技术,为行业人员提供更多优质的学习交流机会和专业服务,安杰科技期待与大家下次再相聚!
  • 喜讯喜报|安杰科技AJ-3700气相分子吸收光谱仪荣获“2023年度科学仪器行业绿色仪器”奖
    近年来,我国在制造业领域持续深入推进节能降耗、积极推进绿色制造、加快绿色低碳技术变革。科学仪器是现代科学技术的“眼睛”和高端制造业“皇冠上耀眼的明珠”,重视节能、环保方面的设计,对于促进我国制造业绿色转型有重要意义。近日,“大规模设备更新”成为仪器圈一大热点。国务院于2024年3月13日印发的《推动大规模设备更新和消费品以旧换新行动方案》中提到“加快推广能效达到先进水平和节能水平的用能设备,分行业分领域实施节能降碳改造”。面对5万亿元设备更新市场,在节能、环保方面有突出设计的仪器产品无疑更能抓住这场“泼天富贵”。2024年1月3日起,仪器信息网启动了“2023年度科学仪器行业绿色仪器”评选,至申报截止日期,共有31家厂商申报了48台产品。经过层层筛选后,最终安杰科技AJ-3700气相分子吸收光谱仪成功入围,获得“2023年度科学仪器行业绿色仪器”奖项。气相分子吸收光谱仪安杰科技自主研发的AJ-3700 气相分子吸收光谱仪是基于气相分子吸收光谱法原理,检测水中氨氮、总氮、硫化物、硝酸盐氮、亚硝酸盐氮、凯氏氮等指标浓度的自动化仪器;可应用于生态环境监测、水文水资源监测、城市排水监测、石油化工环境监测、第三方监测等水质分析。优势特点:全自动检测:样品放置后无须人工干预,全自动测量并出具结果报告;测量速度快:根据不同测定项目,实现2-5分钟出具测定结果;抗干扰性强:具有一定色度浊度的样品可直接进样测定,无需前处理;绿色环保:无高氯汞等可对人体、环境造成二次污染的化学试剂。气相分子吸收光谱法 (Gas Phase Molecular Absorption Spectrometry) 是把水体的氮、硫化合物通过化学反应转化成气态的NO2、NO 或者H2S, 根据朗伯-比尔定律,通过气体浓度与吸光度的比例关系,测定气体浓度,并最终计算出水体中氮、硫化物浓度的方法。独特理念及曾获奖项1.气相分子吸收光谱法作为绿色高效的检测方法,在氨氮检测中可替代传统纳氏试剂法,完全摒弃对汞试剂的使用;2.AJ-3700气相分子吸收光谱仪能有效提高检测工作效率、降低实验人员劳动强度,同时显著减少了样品前处理过程中相关试剂耗材的使用量,并大大降低了废液的排放;3.市场同类仪器均使用氮气作为载气,需要氮气钢瓶或者氮气管道作为配套设备。本仪器使用空气作为载气,只需小型空气发生器、空压机或者空气泵作为载气,而无需额外的配套装置,符合绿色低碳环保理念。曾获奖项:1.2023年,“安杰AJ-3700气相分子吸收光谱仪”入选科技部《国家绿色低碳先进技术成果目录》;2.2023年,“安杰AJ-3700气相分子吸收光谱仪”获得上海市节能产品评审委员会评选的“上海市绿色低碳技术产品”称号。
  • 大气痕量气体差分吸收光谱仪随高光谱综合观测卫星成功发射
    12月9日,高光谱综合观测卫星在太原卫星发射中心由长征二号丁运载火箭成功发射。卫星上装载了中科院合肥研究院安光所自主研制的大气痕量气体差分吸收光谱仪EMI-II。高光谱综合观测卫星是由国家生态环境部牵头、中国航天科技集团有限公司八院抓总研制的综合性观测卫星。该卫星探测谱段涵盖了从紫外到长波红外的光学波段,具有高光谱分辨率、高精度、高灵敏度的观测能力,服务于国家生态环境监测、国土资源勘查、防灾减灾和气象用户需求。其搭载的大气痕量气体差分吸收光谱仪EMI-II主要用于获取紫外到可见波段的超光谱遥感数据,实现对全球大气痕量成分(二氧化硫、二氧化氮、臭氧、甲醛等)分布和变化的定量监测,为全球/区域痕量污染气体成分的分布和变化提供科学数据;未来将面向国家污染减排、环境质量监管、大气成分与气候变化监测,开展污染气体、区域环境空气质量、大气成分、气候变化等超光谱遥感监测应用示范。EMI-II载荷于2020年10月立项,2021年10月完成系统调试、测试,2022年1月上旬完成出所质量评审,2022年1月中旬交付航天八院验收评审。载荷开机运行后,将与2021年9月发射的“高光谱观测卫星”、2022年4月发射的“大气环境监测卫星”上的EMI-II载荷组网运行,增加我国大气环境卫星观测频次,提高重访能力和全球覆盖能力,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。大气痕量气体差分吸收光谱仪EMI-II
  • 从BCEIA 2013看原子吸收光谱技术进展
    仪器信息网讯 2013年10月23-26日,由中华人民共和国科技部批准、中国分析测试协会主办&ldquo 第十五届北京分析测试学术报告会及展览会&rdquo (BCEIA 2013)在北京展览馆顺利召开。从1985年开始,BCEIA每两年举办一次,已经连续成功举办了十五届,在国内外享有较高声誉。很多国内外分析仪器厂商把BCEIA作为新产品新技术发布的最佳平台。  从BCEIA 2013展会我们可以看到,有赛默飞、耶拿、日立、岛津等外国公司和北京瑞利、东西分析、普析、北京海光、华洋仪器、瀚时、上海光谱、沈阳华光、浙江福立、安徽皖仪、华夏科创等中国公司展出了原子吸收光谱仪器(AAS)。  AAS分析自理论诞生之日至今的近60年时间里,方法、仪器与应用三者之间相互依存、相互促进,都获得了长足的发展。目前,AAS商品仪器处于高水平技术发展阶段:仪器各系统功能不断提高和完善 仪器自动化、智能化水平不断提高 各大公司AAS仪器主要技术指标相互接近。  随着我国环境、食品等方面污染问题的加剧,原子吸收光谱仪的应用范围不断扩展,市场需求持续增加,使它成为一种量大面广的产品。因而加入原子吸收仪器制造的企业仍在增加,例如2013BCEIA展会,就有安徽皖仪与华夏科创的AAS亮相。  北京瑞利分析仪器公司技术顾问章诒学老师,调研了BCEIA 2013上展出的AAS,并从参展的仪器中总结出AAS一些技术发展动向。北京瑞利分析仪器公司技术顾问章诒学老师  章诒学老师研制原子吸收分光光度计已有32年历史,亲身经历、参与和见证了中国的原子吸收光谱仪器怎样从无到有,从简单到复杂,从低端到高端,产量和市场从少到多,成为一种量大面广、可以和国外仪器一比高下的科学仪器。  一、空心阴极灯竖直放置  岛津、上海光谱、安徽皖仪也向赛默飞学习,将空心阴极灯竖直放置,求得灯放置状态的稳定性。  二、光束传导系统采用双光束  赛默飞iCE3500、岛津AA-6880系列和AA-7000系列、沈阳华光的光束传导系统采用双光束,目的是提高仪器基线稳定性。赛默飞iCE3500光学系统岛津AA-7000系列光学系统  三、燃烧器工艺结构变化  赛默飞的iCE3500和沈阳华光LAB600仪器,燃烧器采用散热片式结构,以利燃烧器散热。华洋、瀚时等公司采用可拆卸缝片,便于清洗。赛默飞iCE3500散热片式结构燃烧器  四、采用可调式喷雾器  普析由其英国公司工程师设计了新的可调式喷雾器,用户可调节优化喷雾状态以提高雾化效率及火焰稳定性、减少进样量。普析AAS的可调式喷雾器  五、双加样位石墨管  日立Z3000仪器采用一种有两个加样位置的石墨管,使样品量增加一倍,有利于低含量样品分析。  六、磁极间隙加大  上海光谱的新恒磁场塞曼仪器中,石墨炉磁钢的磁极间隙增加,使其退至石墨炉外,缩小炉内空间,有利于石墨管升温和磁极保护。上海光谱石墨炉磁钢磁极间隙增加  七、仪器多功能化  沈阳华光LAB600仪器在有氘灯的基础上,增加钨丝灯,使仪器具有紫外分光光度计功能。华夏科创将原子吸收和原子荧光组合成一台仪器,称之为原子吸收-原子荧光联用仪。  八、石墨炉直接固体(粉末)进样技术  固体(粉末)直接进样技术可以提高石墨炉法测定的灵敏度,已为国外高端仪器所采用。耶拿公司展出具有石墨炉直接固体进样的仪器novAA-400P型。采用SSA61Z型固体进样器, 能直接分析原始样品,样品无需作消解和溶剂桸释,降低污染,用样量小,灵敏度高达pg和fg级的检出水平, 可与ICP-MS相比, 其省时、快速、适用真实微量元素分析。  九、石墨炉配置可视系统(GFTV) 和在线自动溶液稀释功能  赛默飞iCE3000GF型的石墨炉原子化系统,增加可视系统,观察进样针位置及管内样品变化,精确调控石墨炉进样重复性和原子化过程,以提高检测精密度。  十、仪器小型化和专用化发展  近年来研发适用于现场分析的小型化原子光谱分析仪器引起国内外分析工作者关注。随着采用CCD检测器的便携式和小型台式原子发射光谱仪商品化进程,小型化原子吸收仪器的研究受到更多关注。  北京瑞利展出了WFX-910型便携式原子吸收光谱仪,WFX-910采用电热原子化和CCD检测系统,电热丝原子化器,节能省电,功耗仅为石墨炉原子化器的6%,可在无电网供电环境下使用。  另外,值得一提的是光纤技术应用。AAS著名厂商珀金埃尔默没有参展BCEIA 2013,但其在 BCEIA 2011上展出的PinAAcle900,首先在光路系统中采用光纤传输光信号,而不再用机械结构移动调整原子化系统,实现光路弯曲,可使仪器内部结构更紧凑,为仪器小型化打下基础。PinAAcle900光纤传导光束摘录:刘丰秋
  • AJ-3000 plus气相分子吸收光谱仪通过中国分析测试协会组织的技术鉴定
    p  2017年5月23日,中国分析测试协会在北京组织有关专家对上海安杰环保科技股份有限公司的“气相分子吸收光谱仪”进行了技术鉴定。出席本次鉴定会的专家有:中国环境监测总站齐文启研究员、北京大学刘虎威教授、国家环境分析测试中心董亮研究员、北京市理化分析测试中心张经华研究员、中国分析测试协会张渝英研究员和汪正范研究员。/pp style="TEXT-ALIGN: center"img title="图1.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/fd4d8a7d-1b75-4192-9568-fae02f306559.jpg"//pp  鉴定会上,专家们听取了安杰科技工程师刘丰奎先生所作的“气相分子吸收光谱仪AJ-3000 plus”研制报告,审查了测试报告、查新报告、用户报告和相关技术文件及成果证明资料,并且现场观看了仪器装置和实验演示后,专家一致认为:“AJ-3000 plus 气相分子吸收光谱仪”仅用一个内置的单紫外光源即可实现氨氮、硝酸盐氮、凯氏氮、总氮、硫化物的测定,检测结果准确可靠。该仪器为安杰科技自主研发,拥有全部的知识产权,共计取得发明专利2项(实审),实用新型专利11项,软件著作权1项,软件产品登记1项,软件分析测试报告1份。专家组一致认为:国际尚无此类仪器,该仪器技术上达到国内领先水平,具有显著的市场应用前景。/pp  该方法和仪器的发明人臧平安先生带领团队从2001年开始研制气相分子吸收光谱仪,经过15年的潜心研究,攻克了各项技术难关,针对气相分子吸收光谱法的工作原理,研发出了最新一代AJ-3000 plus 全自动智能化气相分子吸收光谱仪。该仪器填补了无机物气相检测的空白,为水环境监测提供了新方法和新仪器,与传统国标检测方法相比节约了大量的人力、物力成本,其推广应用产生了较显著的经济效益和社会效益。/pp  安杰科技的每一次创新,都是一种超越,每一个新产品的推出,都凝聚了众多人的力量。未来,安杰科技会以气相分子吸收光谱为核心,拓展便携式、在线式仪器等各类产品线。公司将在光谱领域广泛开展应用,为客户提供全面的环保监测解决方案。同时秉承“源于传承,勇于创新,精于技术,重于服务”的信念,为国产仪器制造和环保监测行业做出自己的贡献。/pp style="TEXT-ALIGN: center"img title="图2.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/2bf47319-736b-4623-9ff1-1640196dee1b.jpg"//p
  • 【赛纳斯】厦大李剑锋课题组综述:原位拉曼光谱与X射线吸收光谱研究能源电化学反应与过程
    01前言近日,《催化学报》在线发表了厦门大学李剑锋教授团队在能源电化学原位表征领域的最新综述文章。该论文综述了原位拉曼光谱及X射线吸收光谱在能源转换电化学反应中的应用与进展。论文第 一作者为:陈亨权,论文共同通讯作者为:李剑锋教授和郑灵灵助理教授。02背景介绍电解水、氧气/二氧化碳的还原等重要能源电化学过程对于提高能源转换效率、减少环境污染、实现社会可持续发展具有重要意义。因此,近年来,开发针对这些过程的高效、稳定电催化剂引起了研究者的广泛关注。催化剂的设计与开发极其依赖于对反应机理、活性位点以及构效关系的深层次认识与理解。尽管传统的非原位表征技术以及理论计算在一定程度上加深了对这些反应的理解,但是其难以提供反应条件下的实时变化信息,这就促使了原位表征技术的发展。通过原位表征技术可以追踪催化剂表面的反应过程,捕获反应中间体,揭示反应活性位点的结构变化。目前常见的包括原位红外光谱、原位拉曼光谱以及基于同步辐射光源的原位X射线吸收光谱等。本文主要总结了原位拉曼光谱以及X射线吸收光谱在一些重要能源电化学反应中的应用,进一步讨论了其存在的不足,并对未来可能的发展进行了展望。03本文亮点1. 基于目前的研究现状,系统地总结了原位拉曼光谱与X射线吸收光谱的发展以及在原位表征能源电化学过程中的优势;2. 按照电催化反应进行分类,梳理了各类反应目前存在的难点,以及原位表征技术在解决这些难点上作出的贡献;3. 讨论了目前原位拉曼光谱与X射线吸收光谱技术存在的挑战,并对其未来发展进行了展望。04图文解析▲图文摘要拉曼光谱,尤其是表面增强拉曼光谱 (SERS),已被证明是一种强有力的表征技术,可以提供电催化反应中表面氧物种、羟基及金属氧键等重要关键中间物种的丰富信息。同时,基于同步加速器的X射线吸收光谱(XAS)是探测催化剂电子结构、价态和配位环境的有力工具,从而可提供催化剂的精细结构信息。基于此,本文主要综述了这两项技术在原位研究各类能源电化学反应中的应用。ORR中的应用:图1. ORR反应原位电化学拉曼光谱图 (a) Pt (111), (b) Pt (100), (c) Pt (110), (d) Pt (311), (e) Pt (211), 氧气饱和的0.1 M HClO4溶液。(f) 0.8 V (vs. RHE)时,不同单晶表面ORR的电化学拉曼光谱图比较。(文中出现的Figure 2)05全文小结1. 本文综述了原位拉曼光谱与X射线吸收光谱的发展,以及它们在原位研究能源电化学反应过程中的优势;2. 本文针对一系列重要的电催化反应,详细阐述了目前存在的研究难点,同时通过代表性的研究案例,揭示了原位拉曼光谱以及X射线吸收光谱在各电催化反应中的具体应用以及其解决的难题;3. 针对目前原位拉曼光谱和X射线吸收光谱存在的缺点与不足,进行了详细的讨论,并对其未来的发展方向以及关键性技术进行了展望。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统
  • 《气相分子吸收光谱仪》产品标准制定完成!仪器生产及使用将得规范
    气相分子吸收光谱仪是我国自主研发的一种光谱类分析仪器,广泛应用于我国环境、食品、农业、海洋等水质质量检测领域。目前国内已经有不少关于气相分子吸收光谱法的检测标准,包括行业标准6项,团体标准5项,但是一直没有关于产品的标准出台。因一直没有气相分子吸收光谱仪的性能测试方法标准,各厂家产品性能各异、差异性较大,缺少设备评价的统一标准,因此出台相关国家标准是非常必要的,可以有效规范仪器生产及使用,确保仪器的质量,同时由于气相分子吸收光谱仪是我国自主研发的科学仪器,加强标准建立工作尤其重要,在此基础上可以进行国际标准的申请工作。2019年年底,国家标准化管理委员会发布了《关于下达2019年第四批推荐性国家标准计划的通知》,这批计划共计499项,其中制订305项、修订194项,推荐性标准491项、指导性技术文件8项。在这批计划中,就包括了《气相分子吸收光谱仪》的产品标准为国家标准制定项目。该标准起草工作组由中国环境监测总站、上海市计量测试技术研究院、北京市理化分析测试中心、青岛佳明测控科技股份有限公司、上海安杰环保科技股份有限公司、浙江省计量科学研究院、广东科鉴检测工程技术有限公司、上海北裕分析仪器股份有限公司等企业、检测机构和用户组成。目前该标准的征求意见稿已经完成。文件中规定了气相分子吸收光谱仪的要求、试验方法、检验规则、标志、包装、运输和贮存,适用于基于化学反应与气液分离功能,将氨氮,总氮,亚硝酸盐氮,硝酸盐氮和硫化物转变为气态分子的气相分子吸收光谱仪。气相分子吸收光谱仪相比于传统分光光度计具有精度高、检测下限低,不受水中杂质、颜色的干扰;采用少量常规试剂,耗材少,检测成本低,检测速度快等优点,满足现代仪器行业智能化和低成本的一个发展趋势。在我国“十四五”时期“改善环境质量”的核心目标下将发挥重要的作用。据了解,本标准发布后两年内进行宣贯,宣贯对象是气相分子吸收光谱仪生产企业、各级环境监测站、水利水文机构、石油化工等行业大型企业、海洋监测部门、第三方检测机构、农林单位、高校、科研院所等相关单位。附:《气相分子吸收光谱仪国家标准征求意见稿》.doc气相分子吸收光谱法行业标准:《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195-2005)《水质 凯氏氮的测定 气相分子吸收光谱法》(HJ/T 196-2005)《水质 亚硝酸盐氮的测定气相分子吸收光谱法》(HJ/T 197-2005)《水质 硝酸盐氮的测定 气相分子吸收光谱法》(HJ/T 198-2005)《水质总氮的测定 气相分子吸收光谱法》(HJ/T 199-2005)《水质 硫化物的测定气相分子吸收光谱法》(HJ/T 200-2005)气相分子吸收光谱法团体标准:《水质 氨氮的测定 气相分子吸收光谱法》(T/CHES 12-2017)《水质 硝酸盐氮的测定 气相分子吸收光谱法》(T/CHES 13-2017)《水质 亚硝酸盐氮的测定 气相分子吸收光谱法》(T/CHES 14-2017)《水质 总氮的测定 气相分子吸收光谱法》(T/CHES 15-2017)《水质 硫化物的测定 气相分子吸收光谱法》(T/CHES 16-2017)
  • 如何对气相分子吸收光谱仪检出限进行测定
    如何对气相分子吸收光谱仪检出限进行测定1. 检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。 检出限除了与分析中所用试剂和水的空白有关外,还与气相分子吸收光谱仪的稳定性及噪声水平有关。在气相分子吸收光谱仪灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。则: D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg,单位为mg/mlDv=2N / Sv,单位为ml/mlDt=2N / St,单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。他是分析方法的一个综合性的重要计量参数。2.检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。这里的零浓度样品是不含待测物质的样品。D.L = 4.6σ 式中:σ — 空白平行测定(批内)标准偏差(重复测定20次以上)。 2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。算出空白观测值的平均值Xb和标准偏差Sb。在一定置信概率下,被检出的最小测量值XL以下式确定: X L= Xb+ K’ Sb式中:Xb—— 空白多次测得信号的平均值; Sb—— 空白多次测得信息的标准偏差; K’ —— 根据一定置信水平确定的系数。 与XL-Xb(即K’ Sb)相应的浓度或量即为检出限:D.L = X L- Xb/ K = k’ Sb/ K式中:k——方法的灵敏度(即校准曲线的斜率)。 为了评估Xb和Sb,实验次数必须至少20次。1975年,IUPAC建议对光谱化学分析法取k’=3。由于低浓度水平的测量误差可能不遵从正态分布,且空白的测定次数有限,因而与k’=3相应的置信水平大约为90%。此外,尚有将 K’取为4、4.6、5及6的建议。3)美国EPASW-846中规定方法检出限:MDL=3.143δ (δ 重复测定7次)4)在某些分光光度法中,以扣除空白值后的与0.01吸光度相对应的浓度值为检出限。5)气相色谱分析的最小检测量系指检测器恰能产生与噪声相区别的响应信号时所需进入色谱柱的物质的最小量,一般认为恰能辨别的响应信号,最小应为噪声的两倍。 最小检测浓度系指最小检测量与进样量(体积)之比。6)某些离子选择电极法规定:当校准曲线的直线部分外延的延长线与通过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值及为该离子选择电极法的检出限。光度分析中,虽然吸光度最小测读值为0.001,灵敏度也以A=0.001所相应的被测物浓度表示,但实际上惯常以A=0.05相应的被测物浓度作为有充分置信度的测定限,即最小能够可靠测定的浓度。这是因为,在吸光度A接近零的情况下,测定值与真实值之比即相对误差趋向无限大。 其次,由于比色皿的成对性不易做到完全匹配,尤其是使用已久的比色皿的成对性不易保证,因此吸光度很小的测量值在不同操作者、不同试验室之间常会不一致,除非操作者很有经验,十分注意比色皿成对性对测量的影响,并在每次测量时予以试验校正。 转载内容如涉及版权问题,请版权所有者及时通知我们,我们会尽快删除相关内容。
  • 气相分子吸收光谱技术交流会成功召开
    pstrong  仪器信息网讯/strong 2015年10月30日,由中国仪器仪表行业协会分析仪器分会主办,上海安杰环保科技有限公司(以下简称:安杰科技)承办的“气相分子吸收光谱技术应用交流会”在北京召开。来自中国仪器仪表行业协会、中国环境监测总站、中国农业科学院、北京市理化分析测试中心的多位专家和安杰科技的用户参加了此次会议。安杰科技还在会议上发布了其新产品—AJ4000气相分子吸收光谱仪。/pp style="TEXT-ALIGN: center"img title="IMG_0746.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/58b46c34-2fa1-49db-8a59-70c8618aef64.jpg"//pp style="TEXT-ALIGN: center"strong会议现场/strong/pp style="TEXT-ALIGN: center"img title="IMG_0757.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/f33dd09a-3116-48ce-a1da-98184892c306.jpg"//pp style="TEXT-ALIGN: center"strong嘉宾致辞/strong/pp  中国农业科学院仝乘风教授、中国仪器仪表行业协会闫增序先生和安杰科技郝俊董事长分别致辞,希望安杰科技越来越好。闫增序先生表示,在BCEIA2015上看到我国仪器行业还是各大外国厂商占主体,感到很不安。但今天能看到像安杰科技这样可以在分子光谱领域取得自己独特进展的企业还是很高兴。同时也很高兴看到有一批老同志为国产仪器的技术进步在努力,同时有一批年轻人也开始致力于国产仪器的成长,希望安杰科技不断发展提升,踏踏实实地努力,产品能从环保领域向农业等其他领域扩展。最后,闫增序先生希望与会的用户多关注国产仪器,多给国产仪器机会。/pp  随后中国环境监测总站齐文启研究员与仝乘风教授、闫增序先生和郝俊董事长共同为安杰科技新产品AJ-4000气相分子吸收光谱仪揭幕。/pp style="TEXT-ALIGN: center"img title="IMG_0764.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/57e8b0a1-f5aa-48bb-ba55-758fc6a9821c.jpg"//pp style="TEXT-ALIGN: center"strongAJ-4000气相分子吸收光谱仪揭幕/strong/pp  安杰科技孙璐总经理为大家介绍了此款新产品。气相分子吸收光谱仪是将被测成分通过化学反应,定量分解成气体,利用气液分离装置将反应气体转入气相载入吸光管,依据气体分子对特征光谱的吸收来测定被测成分含量。目前,已经比较成熟的测定项目包括硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物。AJ-4000气相分子吸收光谱仪与前三代产品相比有以下特点:1)一体化设计,AJ-4000将样品综合处理模块和在线稀释模块内置,产品外形更简洁,试剂瓶五位一体,放置更加规范化;2)模块化设计,将样品综合处理、在线稀释、双气路、液位自动监测、电路液路光路气路、尾气回收、软件功能等都进行了模块化设计;3)功能升级,可以实现总氮在线消解、氨氮在线氧化、硝酸盐氮在线还原,一次设定多种检测项目等。/pp  本次交流会还安排了四个专家报告,安杰科技臧平安总工程师介绍了安杰科技气相分子吸收光谱仪十四年的发展历程,齐文启研究员、北京市理化分析测试中心陈舜琮研究员和仝乘风教授分别就气相分子吸收光谱技术在环境监测、农业和饮用水监测方面的应用进行了探讨。/pp style="TEXT-ALIGN: center"img title="IMG_0784.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/aa5b796e-3ec9-405f-b27f-5065662e505d.jpg"//pp style="TEXT-ALIGN: center"strong上海安杰环保科技有限公司臧平安总工程师/strong/pp  气相分子吸收光谱技术兴起于20世纪70年代,臧工于1988年开始研究此技术,并于1990年和1992年先后获得“亚硝酸根离子的测定方法”和“硝酸盐氮的测定方法”两项发明专利。2001年,臧工成立安杰科技并推出第一代气相分子吸收光谱仪AJ2100,随后分别于2007年和2013年推出第二代AJ2200/2500和第三代AJ3000/PLUS产品,今天推出的AJ4000为安杰科技的第四代产品。而且在臧工的推动下,2005年环保部颁布了气相分子吸收光谱法测定水中硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物的六个环保标准。/pp style="TEXT-ALIGN: center"img title="IMG_0794.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2a281088-e889-4002-9730-5b3635a08627.jpg"//pp style="TEXT-ALIGN: center"strong中国环境监测总站齐文启研究员/strong/pp  齐文启研究员详细分析了气相分子吸收光谱法与其他方法测定硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物的优缺点,尤其是对水质检测中出现的氨氮大于总氮的现象给予了详细的解释。在纳氏试剂法测定氨氮过程中,由于空白样品在410nm处也有吸收,如果空白扣除不好,氨氮实际测定值很容易偏大;在碱性过硫酸钾紫外分光光度法测定总氮消解过程中,如果密封不好或者消解后太早或者太晚打开消解管,很容易使铵态氮溢出,造成总氮测定值偏小,因此就会出现氨氮大于总氮的现象。而采用气相分子吸收光谱法则会避免上述现象的发生。/pp style="TEXT-ALIGN: center"img title="IMG_0815.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fc32f98f-23ea-42bf-b2b2-14a7e9e72812.jpg"//pp style="TEXT-ALIGN: center"strong北京市理化分析测试中心陈舜琮研究员/strong/pp  陈舜琮研究员认为目前高锰酸盐指数的测定方法存在不易测定较高浊度和色度的样品、人工操作误差大、样品和试剂消耗量大、操作步骤繁多、难以实现高精度的自动化操作等缺点,而气相分子吸收光谱法可以有效解决上述问题。陈研究员将水样经过定量硫酸和高锰酸钾消解后,加入定量的亚硝酸钠溶液代替草酸钠溶液,之后使用气相分子吸收光谱法测定剩余亚硝酸钠的量。/pp style="TEXT-ALIGN: center"img title="IMG_0827.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/a42c3ba4-57d7-44e4-a231-1268a22f5157.jpg"//pp style="TEXT-ALIGN: center"strong中国农业科学院仝乘风教授/strong/pp  仝乘风教授为我们介绍了利用气相分子吸收光谱法测定土壤中氮元素含量的可能性。目前,农业领域土壤氮的测定主要存在的问题是浸提液较混浊,而分光光度法对样品浊度要求高,速测仪灵敏度和精度低,间断或流动注射仪设备昂贵。气相分子吸收光谱法测定样品可浑浊,过程简单,速度快,人员要求低,设备价格低,灵敏度和精度高,试剂便宜,因此是一种有效的测定土壤氮的方法。当然要想能在农业领域真正应用,此方法还需要验证和标准化。/pp  最后,安杰科技还热情地邀请了与会人员参观了其位于北京的生产基地。/pp style="TEXT-ALIGN: center"img title="IMG_0773.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/255c7e09-1979-4496-af5c-1474e2de6943.jpg"//pp style="TEXT-ALIGN: center"strong与会人员合影/strong/pp style="TEXT-ALIGN: right"strong撰稿:李学雷/strong/p
  • 北裕仪器首次开启了气相分子吸收光谱仪产品国际化服务
    北裕仪器首次开启了气相分子吸收光谱仪产品国际化服务 2019年1月1号,上海北裕成立了国际化服务团队,当天2名高级售后服务工程师踏上飞往文莱的航班,开始了为期2周的国际化服务行程。 气相分子吸收光谱仪作为中国拥有知识产权大型分析仪器,北裕仪器的产品销售到东南亚国家-文莱,也是首次将中国的特色仪器-气相分子吸收光谱仪推到国际市场,为今后气相分子吸收光谱仪走向国际化迈出了坚实的一步。文莱客户实验室(4台气相分子吸收光谱仪和1台机器人多参数分析仪)工程师给客户培训文莱客户实验室外景 北裕仪器作为细分行业领军企业,拥有强大的研发团队、优秀的售后服务团队,为生产出高质量的产品、提供高质量的服务、为走向国际市场提供有力的保障。
  • 安杰科技气相分子吸收光谱仪助力科研创新及水文监测
    助力科研,创新发展合肥工业大学资源与环境工程学院陈天虎教授团队利用安杰气相分子吸收光谱仪对厌氧发酵产气中硫化氢浓度、发酵液中硫化物含量以及发酵底物中酸可挥发性硫进行检测,检测重复性及加标回收率良好。该研究成果发表在国际知名学术期刊Analytical Methods,这是气相分子吸收光谱成套仪器在国际学术领域取得的重要突破。安杰科技作为本篇SCI期刊论文的设备供应商感到非常自豪,愿意在以后为更多高等科研院所提供性能更加优越的气相分子吸收光谱仪产品,助力科研领域的创新发展。助力水文,提升效率云南省水文水资源局红河分局陈金梦工程师在《云南水文水资源》杂志上系统比较了总氮测定过程中传统的紫外分光光度计法与安杰气相分子光谱仪的差异,阐述了气相分子吸收光谱仪的巨大优势,从而大大提升了水文系统水质检测的效率。上述两案例是近年来安杰科技在科研仪器及水文系统应用的典型案例,安杰科技气相分子光谱仪已经被上海交通大学、北京师范大学、华东师范大学等多所高等科研院校在样品分析及实验教学中所应用。同时,2016年安杰科技作为主要起草单位,起草制定了5项水利标准《T/CHES 12-2017 水质 氨氮的测定 气相分子吸收光谱法》、《T/CHES 13-2017 水质 硝酸盐氮的测定 气相分子吸收光谱法》、《T/CHES 14-2017 水质 亚硝酸盐氮的测定 气相分子吸收光谱法》、《T/CHES 15-2017 水质 总氮的测定 气相分子吸收光谱法》、《T/CHES 16-2017 水质 硫化物的测定 气相分子吸收光谱法》,并于2017年9月1日开始执行。2018年安杰科技气相分子吸收光谱技术被纳入国家《水利先进实用技术重点推广指导目录》,在水文系统得到了充分的推广应用。水文领域主要客户包括长江水利委员会、黄河水利委员会、松辽流域水环境监测中心、江西省赣州市水文局、湛江海洋与渔业环境监测站等等。AJ系列气相分子吸收光谱仪升级产品AJ-3700,已经通过中国仪器仪表行业协会的新产品鉴定,专家一致认为该仪器的综合技术指标达到同类产品的国际领先水平。该产品已经大规模投放市场,将以更加优质的软硬件条件继续助力科研创新及水文监测。安杰科技始终致力于气相分子吸收光谱仪的研究开发,力争将国产仪器做大做强!
  • 安光所在激光吸收光谱气体测量谱线解析方面取得新进展
    近日,中科院合肥研究院安光所张志荣研究员团队在激光吸收光谱技术(TDLAS)气体检测谱线混叠干扰与分离研究方面取得新进展,相关研究成果分别以《CO and CH4混叠吸收光谱解调方法研究》和《基于激光吸收光谱技术的多组分气体测量混叠光谱解调方法研究》为题发表在国际知名期刊Sensors and Actuators B: Chemical(IF=9.221,中科院一区)、Optics Express(IF=3.833,光学类Top期刊)上。博士生赵晓虎、王前进分别为文章的第一作者。   可调谐半导体激光吸收光谱技术(TDLAS)是最常用的气体检测方法,具有结构简单、响应速度快、操作容易等优点,已经被广泛应用于环境监测、医学诊断、工业过程监测等领域。但是,工业、煤矿、油气等特殊场景不仅包含非常复杂的气体组分,而且气体组分含量差别巨大,以至于激光吸收光谱技术检测时会遭遇气体谱线之间的混叠,产生交叉干扰的“共性”技术瓶颈,为TDLAS技术的应用增加了难度,限制了该技术在某些行业的应用发展。   张志荣团队孙鹏帅副研究员、赵晓虎、王前进两位博士研究生,对煤矿中甲烷(CH4)和微量一氧化碳(CO)气体进行分析,分别利用偏最小二乘和非负最小二乘方法,解决了含量为百分量级的CH4和百万分量级的CO气体的混叠光谱干扰的解调问题。从吸收光谱机理上提出了“光谱分离度”的概念,并进行了详实的仿真模拟和复杂的实验验证。经过实验分析,两种方法均表现出了良好的解调效果,能够在两种气体浓度相差3-4个数量级(光谱特征严重混叠干扰)的特殊情况下仍然能够准确解调其中的微量气体成分,极大的提高了系统的选择性和可靠性。因此,该方法能够在不增加压力控制等硬件设备的基础之上,利用软件算法解调混叠光谱,为利用单支DFB激光器完成两种或多种混合气体浓度的准确测量提供了方向,拓宽了激光吸收光谱气体传感系统的环境适用性和应用前景。   该研究获得了国家重点研发计划(2021YFB3201904)、国家自然科学基金(11874364,41877311,42005107),安徽省重点研发计划(202104i07020009),中科院合肥研究院“火花”基金(YZJJ2022QN02)、中科蚌埠技术转移中心重点专项等项目(ZKBB202002)支持。CO和CH4分别测量和混合气测量的二次谐波信号情况不同浓度的CH4气体对CO测量结果的影响处理
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制