当前位置: 仪器信息网 > 行业主题 > >

红外分析仪测量原理

仪器信息网红外分析仪测量原理专题为您提供2024年最新红外分析仪测量原理价格报价、厂家品牌的相关信息, 包括红外分析仪测量原理参数、型号等,不管是国产,还是进口品牌的红外分析仪测量原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外分析仪测量原理相关的耗材配件、试剂标物,还有红外分析仪测量原理相关的最新资讯、资料,以及红外分析仪测量原理相关的解决方案。

红外分析仪测量原理相关的论坛

  • 红外线气休分析仪的基本原理

    红外线气休分析仪的基本原理是基于某些气体对红外线的选择性吸收。红外线分析仪常用的红外线波长为2^12Hm。简单说就是将待测气体连续不断的通过-定长度和容积的容器,从容器可以透光的两个端面的中的一一个端面一侧入射一束红外光,然后在另-个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。本项目中采用的是ABBA02000系列仪表,配以URAR26红外模块。朗伯一比尔定律一其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时其吸光度与吸光物质的浓度及吸收层厚度成正比。这就是红外线气体分析仪的测量依据。红外线气体分析仪的特点1、能测量多种气体:除了单原子的惰性气体和具有对称结构无极性的双原子分子气体外,CO、C02、NO、N02、NH3等无机物、CH4、C2H4等烷烃、烯烃和其他烃类及有机物都可用红外分析仪器进行测量 2、测量范围宽:可分析气体的。上限达100%,下限达几个ppm的浓度。进行精细化处理后,还可以进行痕量分析 3、灵敏度高:具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来 4、测量精度高:一般都在+/-2%FS,不少产品达到+/-1%FS。与其他分析手段相比,它的精度较高且稳定性好 5、反应快:响应时间一般在10S以内6、有良好的选择性:红外分析仪器有很高的选择性系數,因此它特别适合于对多组分混合气体中某--待分析组分的测量,而且当混合气体中-种或几种组分的浓度发生变化时,并不影响对待分析组分的测量。[b][color=#ffffff]更多参考:分析仪http://www.china-endress.com[/color][/b]

  • 【原创】红外气体分析仪工作原理

    红外气体分析仪是基于不同气体对红外线有选择性吸收这一原理进行设计的。采用国外先进的相关滤波技术(GFC)。仪器内置两路红外线吸收的信号光谱气路,一路作为参比信号,一路为需要测量气体的信号,通过数字逻辑电路使其相减,得到测量气体的光谱信号,此时信号浓度的大小变化就是气体浓度的变化,将信号转换为电压信号,加以增益放大后,并通过8段线性化电路,最终通过显示屏显示气体准确浓度。 仪器光学部件采用特殊光学器材制造,微量级量程时还增加了一套多次反射装置的光学气室,它通过多次反射光学镜片使得光路信号加长,便可精确检测出最小气体的变化量。

  • 【原创】西门子ULTRAMAT6型红外分析仪的工作原理

    西门子ULTRAMAT6型红外分析仪采用不分光红外吸收原理,由交替双光路系统和微流量检测器测量气体组成,并使用双层接收气室和光耦合器件。测量原理基于分子特定的红外光波段。对于不同气体,虽然其吸收波长各不相同,但也可能有部分重叠,这会导致产生交叉干扰。西门子ULTRAMAT6型红外分析仪采用以下措施来最大限度地降低这种交叉干扰:1、滤波气室;2、带有光耦合室的双层接收气室;3、必要时可使用滤光片。

  • 【分享】高频红外碳硫分析仪原理

    高频红外碳硫仪的分析原理是经过高频感应燃烧使碳、硫元素转化为CO2和SO2气体,再根据CO2和SO2气体对红外光线的特定吸收波长来探测其浓度的。 红外碳硫分析仪与高频感应燃烧炉配套使用,能快速、准确地测定钢、铁、合金、有色金属、水泥、矿石、玻璃及其它材料中碳、硫两元素的质量分数。是集光、机、电、计算机、分析技术等于一体的高新技术产品,具有测量范围宽、分析结果准确可靠等特点。由于采用了计算机技术,仪器的智能化、屏幕显示的图、文及数据的采集、处理等都达到了目前国内先进水平,是诸多行业测定碳、硫两元素理想的分析设备。

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 选择红外气体分析仪或红外烟气分析仪的几点理由

    选择红外气体分析仪或红外烟气分析仪的几点理由

    在选择气体分析仪或烟气分析仪,要选择红外原理的仪器,理由如下:http://ng1.17img.cn/bbsfiles/images/2012/12/201212061335_409951_1668260_3.jpg****全红外气体分析仪 ,型号***,其所有的参数测量如一氧化氮,二氧化氮,二氧化硫等都是采用目前最先进的非分散红外法,也是目前**品牌中少见的便携式的红外气体分析仪

  • 【资料】气体检测仪与分析仪的原理和区别

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式的,相对比较简易。常用的传感器原理有催化燃烧、电化学、PID光离子化、半导体技术。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

  • 【分享】红外线气体分析仪

    红外气体分析仪原理红外线气体分析仪,是利用红外线进行气体分析。它基于待分析组分的浓度不同,吸收的辐射能不同.剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号。这样,就可间接测量出待分析组分的浓度。1.比尔定律 红外线气体分析仪是根据比尔定律制成的。假定被测气体为一个无限薄的平面.强度为k的红外线垂直穿透它,则能量衰减的量为:I=I0e-KCL(比尔定律) 式中:I--被介质吸收的辐射强度; I0--红外线通过介质前的辐射强度; K--待分析组分对辐射波段的吸收系数; C--待分析组分的气体浓度; L--气室长度(赦测气体层的厚度) 对于一台制造好了的红外线气体分析仪,其测量组分已定,即待分析组分对辐射波段的吸收系数k一定;红外光源已定,即红外线通过介质前的辐射强度I0一定;气室长度L一定。从比尔定律可以看出:通过测量辐射能量的衰减I,就可确定待分析组分的浓度C了。2.分析检测原理 红外线气体分析仪由两个独立的光源分别产生两束红外线 该射线束分别经过调制器,成为5Hz的射线。根据实际需要,射线可通过一滤光镜减少背景气体中其它吸收红外线的气体组分的干扰。红外线通过两个气室,一个是充以不断流过的被测气体的测量室,另一个是充以无吸收性质的背景气体的参比室。工作时,当测量室内被测气体浓度变化时,吸收的红外线光量发生相应的变化,而基准光束(参比室光束)的光量不发生变化。从二室出来的光量差通过检测器,使检测器产生压力差,并变成电容检测器的电信号。此信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示。该输 出信号的大小与被渊组分浓度成比例。  我们所用的检测器是薄膜微音器。接收室内充以样气中的待渊组分,两个接收室中间用一个薄的金属膜隔开,在两测压力不同时膜片可以变形产生位移,膜片的一侧放一个固定的圆盘型电极。可动膜片与固定电极构成了一个电容变进器的两极。整个结构保持严格的密封,两接收气室内的气体为动片薄膜隔开,但在结构上安置一个大小为百分之几毫米的小孔,以使两边的气体静态平衡。辐射光束通过参比室、测量室后,进入检测器的接收室。被接收室里的气体吸收,气体温度升高,气体分子的热运动加强,产生的热膨胀形成的压力增大。当测量室内通入零点气(N2)时,来自两气室的光能平衡,两边的压力相等,动片薄膜维持在平衡位置,检测器输出为零。当测量室内通入样气时,测量边进入接收室的光能低于参比边的,使测量边的压力减小,于是薄膜发生位移,故改变了两极板问的距离,也改变了电容量C。 红外线气体分析仪可以用来分析各种多原子气体,如:C2H2、C2H4、C2H5OH、C3H6、C2H6、C3H8、NH3、CO2、CO、CH4、SO2等。不能用来分析同一种原子构成的多原子气体以及惰性气体,如:N2、Cl2、H2、O2以及He、Ne、Ar等。[~189240~]

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

  • 天研|牛奶蛋白质分析仪的原理是什么

    牛奶蛋白质分析仪的原理主要基于光学测量技术,特别是光谱分析法。具体地说,它采用红外光谱法来测量牛奶中乳清蛋白和酪蛋白的含量。首先,将牛奶样品制成透明薄片,然后使用近红外光电传感器和光源对其进行扫描。牛奶中的蛋白质对特定波长的红外光有特定的吸收特性,通过测量这些吸收特性,可以分析出牛奶中蛋白质的种类和含量。此外,仪器会将牛奶光谱与事先建立的标准光谱进行比较,通过复杂的算法处理,从而得出各种蛋白质形态的含量。这种比较和计算过程确保了测量结果的准确性和可靠性。总的来说,牛奶蛋白质分析仪通过光学测量和光谱分析技术,能够快速、准确地测定牛奶中蛋白质的含量和种类,为乳制品生产、质量控制和科学研究提供了有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291701212298_2595_6238082_3.jpg!w690x690.jpg[/img]

  • 【原创】奥氏与红外气体分析仪对比

    气体分析仪广泛应用于汽车尾气检测;石油化工生产过程中气体成份在线分析和监测; 冶金工业中,高炉、转炉、焦炉工业炉窑等气体分析和监测 ;科学实验、环境保护、医疗卫生等行业气体分析和监测;生物医药、食品发酵、污水处理、垃圾填埋等过程气体测量;仓储、温室、室内等场所气体检测;烟道气在线连续检测(CEMS)等。对经济发展和社会进步具有重要用途。传统气体分析仪器奥氏气体分析仪,常用于CO2、O2、CO、H2、烃类等的含量测定。奥氏气体分析仪工作原理是:是利用不同的溶液来相继吸收气体试样中的不同组分:用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。然后根据吸收前后试样体积的变化来计算各组分的含量。CH4和H2用爆炸燃烧法测定,剩余气体为N2。奥氏气体分析仪的优点是结构简单、价格便宜、维修容易。奥氏气体分析仪缺点是:虽一次购置成本低但长期运行成本高,除去分析人员的成本,仅每年买试剂和玻璃器皿至少要1万多元,而且必须对气体进行人工取样,在实验室进行分析,其中分析人员的操作技能和“态度”对分析的精确度有很大影响。奥氏气体分析仪只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作烦琐,响应速度慢,效率低,难以实时地分析生产工况。由于奥氏气体分析仪的的以上缺点,难以适应生产发展的需要,例如在化工、石油化工的生产过程中,为了控制化学反应和确保安全生产,一般都需要在线分析,并要求它连续、准确、经济、耐用。随着科学技术和全球经济的迅猛发展,工业废气的排放成为大气污染的一大杀手。因此,工业废气连续监控系统(CEMS)的开发应用亦成为趋势。所以奥氏气体分析仪逐渐被全自动分析仪器替代,例如红外线气体分析仪。红外线分析仪常用来连续测定各种混合气体中的CO、CO2、CH4 、SO2、NOX和CH等的含量,是在线分析仪中非常重要的一类仪器。 红外线分析仪工作原理是:当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯--比尔(Lambert-Beer)吸收定律,即某些气体对红外光进行有选择性吸收,其吸收强度变化取决于被测气体的浓度。 相对于奥氏气体分析仪,红外线气体分析仪的优点是精度和灵敏度高、测量范围宽、响应速度快、良好的选择性、稳定性和可靠性好、可实现多组分气体同时测量、能够连续分析和自动控制。缺点是不能分析对称结构无极性双原子分子及单原子分子气体。这一点可配合电化学检测器使用克服。 在国内红外线气体分析仪里,GASBOARD红外气体分析仪采用国际上最新的非分光红外吸收光谱法(NDIR)技术,如电调制红外光源、进口高灵敏度滤光传感一体化红外传感器、高精度前置放大电路、可拆卸式镀膜气室等,并结合嵌入式的硬件和软件技术,可实现不同浓度、不同气体(SO2、NOX、CO2、CO、CH等)的高精度连续检测。是一类优良的红外气体分析仪 随着国民经济的飞速发展和加入WTO,对生产工艺和过程控制的要求越来越高,对生态环境的保护也越来越重视,红外在线成分分析仪作为必要的配套设备已成为企业全面质量管理的一个重要发展趋势,也是取代传统的化学式手动实验室分析仪——奥氏气体分析仪的必然趋势。[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 崂应3026型 红外烟气综合分析仪讨论

    崂应14年3月份推出 崂应3026型 红外烟气综合分析仪,该台仪器使用情况如何,邀请你来讨论。一、产品概述 仪器是以非分散红外吸收法(NDIR)为核心的产品,主要用于污染源排放管道中有害气体成分的测量,广泛应用于环境监测以及热工参数测量等部门。分析仪用于测量SO2、NOx等有害气体的浓度,与使用电化学传感器测量方法的仪器相比,具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。分析仪研制过程中广泛征求专家及广大用户的意见,采用进口长光程多组分检测器件、创新抗干扰算法、传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质仪器。二、采用标准◆ JJG968-2002 《烟气分析仪》◆ HJ/T397-2007 《固定源废气监测技术规范》◆ HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法》◆ HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法》三、产品优势◆ 采用长光程吸收气室,检测精度高,并可同时测量多种气体;◆ 独创温度、压力和水汽综合补偿算法,有效降低水汽干扰;◆ 采用通用便携式烟气预处理器,体积小、重量轻,提高整机便携性。四、产品特点◆ 采用多组分高精度NDIR(非分散红外吸收法)测量原理,可测量SO2、NO、CO、 CO2和O2(电化学法)等,最多可同时测量7种气体;◆ 分析模块不含任何运动器件,可靠性好;◆ 内置温度、压力和水汽补偿算法,工况适应力强;◆ 内置参比探测器,采用差分算法,消除光源非一致性的影响;◆ 内置精准控温模块,可在严寒地区工作;◆ 高效粉尘过滤功能,滤芯可重复使用,拆卸清洗方便;◆ 配备便携式烟气预处理器,具有体积小、重量轻、方便携带的特点;

  • 【原创】FTIR-傅立叶变换红外分析仪的工作原理及基本结构

    本人目前接触了一些FTIR的分析仪,特将其基本工作原理总结如下: FTIR-傅立叶变换红外分析仪于上世纪70年代研制成功。FTIR-傅立叶变换红外分析仪不使用色散元件,由光学探测器和计算机两部分组成。光学探测器部分为麦克尔逊干涉仪,它将光源系统送来的干涉信号变为电信号,以干涉图形式送往计算机,由计算机进行快速傅立叶变换数学处理计算,将干涉图转变成红外光谱图。 傅立叶变换红外分析仪由光源(硅碳棒、高压汞灯)、麦克尔逊干涉仪、样品室、检测器(热电量热计、汞镉碲光检测器)、计算机系统和记录显示装置组成。

  • 谈红外、紫外差分光学烟气分析仪,如何高效、准确的进行污染源烟气现场监测与分析!

    形势分析:目前在线烟气连续监测系统(CEMS)一般都采用红外、紫外原理等高精度的分析系统,做比对测试的便携式烟气分析仪基本采用定电位电解原理,测量精度比较低,低精度便携仪器比对高精度系统,无法给出令人信服的数据。 近几年我国火电厂上了大量的脱硫和脱硝工程,但还有一些电厂没有建脱硫脱硝工程,做为环保监测仪器,应能适应高浓度和低浓度气体测量要求,需要测量仪器具有双量程,能够做到高低量程切换,两个量程都能达到高精度;这对于传统定电位电解原理的仪器是很难实现的,但是红外、紫外差分烟气分析仪就可以同时满足高、低浓度双量程精确测试。 所以非分散红外分析技术(NDIR)和紫外差分技术(DOAS)在污染源烟气成分测试中的应用解决了测试不准和量程受限的问题,崂应3023紫外差分、3026红外型-烟气综合分析仪正是基于此形势下,经过多次验证试验分析和现场工况测试,测量数据与在线的仪器比对数据相吻合,深受广大客户好评,希望了解这类仪器的小伙伴们参与讨论。 或者您觉得目前光学烟气分析仪与传统电化学烟气分析仪相比是否有优势?您更喜欢哪种类型的烟气分析仪?或您正使用的是哪一款仪器?也可以推荐更成熟的先进烟气分析技术供大家讨论。

  • 【讨论】红外、紫外差分光学烟气分析仪在污染源废气监测中的应用及优势!

    形势分析:目前在线烟气连续监测系统(CEMS)一般都采用红外、紫外原理等高精度的分析系统,做比对测试的便携式烟气分析仪基本采用定电位电解原理,测量精度比较低,低精度便携仪器比对高精度系统,无法给出令人信服的数据。 近几年我国火电厂上了大量的脱硫和脱硝工程,但还有一些电厂没有建脱硫脱硝工程,做为环保监测仪器,应能适应高浓度和低浓度气体测量要求,需要测量仪器具有双量程,能够做到高低量程切换,两个量程都能达到高精度;这对于传统定电位电解原理的仪器是很难实现的,但是红外、紫外差分烟气分析仪就可以同时满足高、低浓度双量程精确测试。 所以非分散红外分析技术(NDIR)和紫外差分技术(DOAS)在污染源烟气成分测试中的应用解决了测试不准和量程受限的问题,崂应3023紫外差分、3026红外型-烟气综合分析仪正是基于此形势下,经过多次验证试验分析和现场工况测试,测量数据与在线的仪器比对数据相吻合,深受广大客户好评,希望了解这类仪器的小伙伴们参与讨论。或者您觉得目前光学烟气分析仪与传统电化学烟气分析仪相比是否有优势?您更喜欢哪种类型的烟气分析仪?或您正使用的是哪一款仪器?也可以推荐更成熟的先进烟气分析技术供大家讨论。

  • 煤气在线分析仪的工作原理图

    监测目的:冶炼产生的烟气中含CO,CO2,N2,O2等成分,通过煤气分析仪将烟气中的CO,CO2,O2等含量分析出来,再选择C0含量、02含量合格的烟气进行回收利用,将大大降低冶炼的成本。 分析仪组成:煤气分析仪系统一般由取样单元、气体处理单元、气体分析仪、标校单元、反吹单元、PLC控制单元组成。 工作原理:样气从采样探头进来后分2个支管,一支到放散管路,另一支经过采样泵、过滤器、冷却器,然后分两路分别进人氧气分析仪及红外分析仪,出来的气体经过缓冲罐后进行放散。 红外分析仪用来分析C0、C02的成分。氧分析仪采用磁力机械式原理。 煤气分析仪维护要点:1) 排水:每天检查冷凝器、汽水分离器、排水蠕动泵的状态,确保流量计内无积水,如有积水应查明原因并排除;2) 流量调整:进人分析仪的流量确保在1L/min,放散流量计的流量等于泵的额定流量减去进人分析仪的流量;3) 探头:每2个月对探头不锈钢烧结滤芯进行清洗,并对采集管进行清灰除尘;4) 滤芯、滤纸更换:雾过滤器滤芯应2月更换一次,高分子薄膜过滤器滤纸每周更换一次;5) 标定:每3个月对氧分析仪和红外线分析仪进行一次标定。

  • 【原创】样品处理过程可能对红外分析仪器造成的测量误差

    红外线气体分析仪的样品处理系统承担着除尘、除水和温度、压力、流量调节等任务,处理后应使样品满足仪器长期稳定运行要求。除应保证送入分析仪的样品温度、压力、流量恒定和无尘外,特别应注意的是样品的除水问题。当样气中含水量较大时,主要危害有以下几点:1、样气中存在的水分会吸收红外辐射,从而给测量造成干扰;2、当水分冷凝在晶片上时,会产生较大的测量误差;3、水分存在会增强样气中腐蚀性组分的腐蚀作用;4、样气除水后可能造成样气的组成发生变化。高含水的气样温度降至室温,过饱和的水析出后,各组分的浓度均会发生变化。若气样中有一些易溶于水的组分,这些组分被水部分溶解,会使各组分的浓度变化更大。 工艺要求检测的浓度指标一般是不含水分的“干气”中的含量,而经预处理后的气样中水分不可能完全除掉,仍将占有一定的比例。随着预处理运行状况的变化,环境温度、压力的变化,气样中的水含量亦随之变化。一些极性极强的组分如CO2、SO2、NO等,随着水温、气样压力及水气接触时间长短的不同而有不同的溶解度。 经过预处理后,气样的组成及各组分的浓度变化是十分复杂的,由此造成的示值偏离对微量组分检测尤为严重。但这种偏离并不都是附加误差,其中一部分往往反映了浓度变化的真实情况,对此,应通过样品组成分析及预处理运行条件测试等,从系统误差角度加以消除。而对预处理运行状态变化引起的附加误差则需创造条件,使之降至最低。 为了降低样气汗水的危害,在样气进入仪器之前,应先通过冷却器降温除水(最好降至5摄氏度以下),降低其露点,然后伴热保温,使其温度升高之40摄氏度左右,送入分析器进行分析,由于红外分析器恒温在50至60摄氏度下工作,远高于样气的露点温度,样气中的水分就不会冷凝析出了。

  • 溶解氧在线分析仪的测量原理

    (1)膜电极法   膜电极法是一个目前最常用的一种溶解氧连续测定方法,膜电极又名Clark氧电极,这种电极利用膜可渗透氧但不能渗透水和有机及无机溶质的原理,保护电极不与这类还原物质紧密接触,从而使传感器的灵敏度不受影响。这种半透膜通常采用聚四氟乙烯纤维、聚乙烯等材料组成。   膜电极法溶解氧传感器是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:   阳极反应:4Ag 4Cl-→4AgCl 4e-   阴极反应:O2 2H2O 4e-→4OH-   根据法拉第定律:当电极结构固定时,在一定温度下,扩散电流的大小只与样品氧浓度成正比例线性关系,测得电流值大小,便可知待测试样中氧的浓度。   (2)无膜电极法   传感器由特殊的银合金电极(阴极)和铁电极(阳极)组成,没有覆盖膜和特制的电解液,两极之间也没有极化电压。它是将被测溶液作为电解液,两极形成一个原电池,并产生一个电流,反应式如下:   阳极反应:2Fe→2Fe2 4e-   阴极反应:O2 2H2O 4e-→4OH-   该电流的大小与溶液中的被测氧分子的多少成正比。该信号连同传感器上热电阻测出的温度信号送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。   (3)荧光法   溶解氧在线分析仪   溶解氧变送器的特点:   1.系统具有密码保护、输出保持、输出延时、模拟量输出、继电器输出(需选配)和实时模拟功能。   2.具有两种标定方法:1点标定法(在线)及空气(离线)标定法。为了提高传感器的精确度,系统在接受标定数据之前,将对温度等重要参数进行自动检测。   3.系统具有完整的自诊断信息:当测量电极损坏,传感器密封损坏,温度传感器损坏时都会自动报警。   4.变送器可以自定义刻度。   5.可靠性高、稳定性好、操作简单,方便。   6.完全电气隔离。   7.溶解氧是测量水溶液中氧气的含量,它的测量范围是0~40ppm,并采用两线制直流24V电源输入,可输出4~20mA模拟量,电源线电缆长度可经达到914米,变送器到传感器的距离可以达305米。溶解氧传感器特点:

  • 单人操作分析仪

    多元素分析仪测量范围:(因该仪器可检测的元素较多,现以钢中C、S、Mn、P、Si、Cr、Ni等常见元素为单人操作分析仪广州天成牌具小王13794444058,采用先进的数字处理技术例) C:0.010~6.000% S:0.0030~2.000% Mn:0.010~20.500% P:0.0005~1.0000% Si:0.010~18.000% Cr:0.010~38.000% Ni:0.010~48.000% Mo:0.010~7.00% ΣRE:0.0100~0.500% Mg:0.0100~0.800% Cu:0.010~8.000% Ti:0.010~5.000% 如多元素分析仪改变测试条件,该范围可相应扩大。  测量精度  符合GB223.3-5-1988、GB223.68~69-1997等国标标准。  主要特点  多元素分析仪,一台仪器可检测钢铁等材料中所有常规元素C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、Al、W、V、Zn、Fe等;多元素分析仪采用品牌电脑微机控制,电子天平称量,台式打印机打印检测结果;多元素分析仪测试软件功能齐全,能完全替代传统化验室的各项手工书写工作,并可根据各单位实际需求,任意设置检测报告格式;检测功能庞大,具备检测108个元素的通道空间,储存n 条曲线。  折叠编辑本段红外分析  折叠工作原理  该仪器属于不分光式红外线气体分析器,其工作原理是基于某些气体对红外线的选择性吸收。仪器采用单光源、单管隔半气室及先进的检测器,工艺精湛、分析精度高、稳定性好。采用先进的数字处理技术,全新的液晶显示画面。

  • 工业分析仪基本工作原理

    工业分析仪基本工作原理工业分析仪主要用于测定煤等有机物中的水分、灰分和挥发分的含量,其主要特点是整个测试过程由计算机控制自动完成,分析时间短,测试精度高。并且,该仪器通过采用先进采集和传输数据控制系统,使得该仪器具有很高的可靠性。该仪器自投放市场后深受广大用户和专家的好评。为了使有关人员能更好地掌握该仪器的使用和维护,我们编制了这本《自动工业分析仪使用说明书》,对如何正确使用和维护该仪器作了全面的介绍。工业分析仪基本工作原理 仪器检测原理为热重分析法它将远红外加热设备与称量用的电子天平结合在一起,在特定的气氛条件、规定的温度、规定的时间内称量受热过程中的试样质量,以此计算出试样的水分、灰分和挥发分等工业分析指标。 仪器工作过程通过计算机控制测试主机来测定试样的水分、挥发分和灰分。 测定流程 工业分析仪运行仪器的测试程序,进入工作测试菜单,输入相关的试样信息后仪器自动称量空坩埚,空坩埚称量完毕,系统自动打开上盖,提示放入试样,然后系统称量试样质量并开始加热。升温到145℃左右恒温30分钟(指按国标方法,温度与恒温时间可自定义设置)后开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0006克)时水分分析结束,系统报出水分测定结果,此时系统会自动打开上盖,提示加坩埚盖,仪器自动称量加坩埚盖质量,然后系统控制高温炉继续升温,目标温度900℃(系统自动打开氮气阀,向高温炉内通氮气,气体流量控制在4~5L/min),高温炉温度升到900℃,恒温规定的时间后,系统会自动打开上盖开始降温,当高温炉温度降到设定值时,仪器自动称量各坩埚质量,系统报出挥发分测定结果。此时系统再次升温至845℃恒温(系统会打开氧气阀,向高温炉内通氧气,气体流量控制在4~5L/min),之后系统开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0006克)时灰分分析结束,系统报出灰分测定结果,并打印结果或报表(如果在系统设置中设置了打印)。

  • 在线溶解氧(DO)分析仪的测量原理及维护

    核心提示:  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。一、溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极Ag Cl→AgCl 2e-阴极O2 2H2O 4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二、溶解氧含量的表示方法溶解氧含量有3种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L或10-6),这3种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry定律可得,P=(Po2 PH2O)×0.209,其中,P为总压;Po2为氧分压(mmHg);PH2O为水蒸气分压;0.209为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C为氧浓度(mg/L);Po2为氧分压(mmHg);a为溶解度系数(mg/mmHg·L)。溶解度系数a不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三、影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1.温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a的影响可以根据Henry定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T的关系为:C=KPo2·exp(-β/T),其中假定K、Po2为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2.大气压的影响根据Henry定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3.溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4.样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1.日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3月应重新校验一次零点和量程。(3)电极的再生大约1年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2.仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。3.使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。

  • 30万左右便携红外烟气分析仪求推荐?

    最近单位想买一个便携的红外烟气分析仪,使用场合主要是燃烧和气化,测量的组分有O2,CO,NO,NO2,SO2,CO2,CH4,H2,H2S,此外可能还有少量的HCl。价格希望在30万左右,红外的(H2、O2、HCl可以不用红外)。初步调研了一下,能同时测HCl的好像比较少,不知道各位大神有没有推荐的?我们想的另一种方案是单独买一个测量HCl的分析仪,其余气体采用烟气分析仪测,不知道这个方案可行吗,普通的HCl分析仪精度能达到烟气分析仪的效果吗? 另外发现一般烟气分析仪的通道比较少,只能同时测四五个,不知道有没有能同时测八九种的烟气分析仪?这样的话以后更换场合可以采用同一个烟气分析仪。谢谢大家了。

  • 【分享】在线溶解氧(DO)分析仪的测量原理及维护

    在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。 一 溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V 的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极 Ag+Cl→AgCl+2e-阴极 O2+2H2O+4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二 溶解氧含量的表示方法溶解氧含量有3 种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L 或10-6),这3 种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry 定律可得,P=(Po2+P H2O )×0.209,其中,P 为总压;Po2 为氧分压(mmHg);P H2O为水蒸气分压;0.209 为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry 定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C 为氧浓度(mg/L);Po2 为氧分压(mmHg);a 为溶解度系数(mg/mmHgL)。溶解度系数a 不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三 影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1. 温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为:C=KPo2exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2. 大气压的影响根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3. 溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4. 样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四 注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1. 日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2 周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3 月应重新校验一次零点和量程。(3)电极的再生大约1 年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2. 仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3 溶液。量程标定溶液可根据仪表测量量程选择4M 的KCl 溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler 法):在实际使用中,多采用Winkler 方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A 即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1 MA ×M2。3. 使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。此文章由 http://www.3017.com.cn 转发文章连接: http://www.31517.cn/jishuwenzhang/wenzhang.asp?wenzhang_id=150&ta=3&tb=4 我站诚邀友情连接:QQ 84424693

  • 关于红外分析仪的传感器的类型

    请问各位资深人士,关于目前所使用的红外分析仪(NDIR非分光红外)的探测器大部分都是基于什么原理的,是薄膜微音式的吗,还是热释电式的,抑或是其它新开发的类型??谢谢!~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制