当前位置: 仪器信息网 > 行业主题 > >

陀螺仪测量角度原理

仪器信息网陀螺仪测量角度原理专题为您提供2024年最新陀螺仪测量角度原理价格报价、厂家品牌的相关信息, 包括陀螺仪测量角度原理参数、型号等,不管是国产,还是进口品牌的陀螺仪测量角度原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陀螺仪测量角度原理相关的耗材配件、试剂标物,还有陀螺仪测量角度原理相关的最新资讯、资料,以及陀螺仪测量角度原理相关的解决方案。

陀螺仪测量角度原理相关的资讯

  • 量子导航领域又一突破:原子自旋陀螺仪原理样机研制成功
    全空域、全时域的无缝定位导航是未来定位导航产业的技术制高点。随着量子精密测量技术的快速发展,基于量子精密测量的陀螺及惯性导航系统具有高精度、小体积、低成本等优势,将对无缝定位导航领域提供颠覆性新技术。  “十二五”863计划地球观测与导航技术领域主题项目“基于磁共振的微小型原子自旋陀螺仪关键技术”由北京自动化控制设备研究所承担,项目研究开展一年半取得突破性进展。项目组攻克了核自旋-电子自旋耦合极化与检测等精密量子操控技术,完成了小型化磁共振气室、高效磁屏蔽等元件的精密设计与制造,并研制成功我国首个基于磁共振的原子自旋陀螺仪原理样机。样机零偏稳定性优于2° /h,成为世界上第二个掌握该技术的国家,与美国技术差距从10年缩小到7年。  项目所取得的研究成果为进一步提高基于磁共振的微小型原子自旋陀螺仪的精度与集成度,为支撑我国量子导航领域的发展打下了坚实的技术基础。原子陀螺仪的技术突破使现有应用于高端装备的无缝定位导航系统的体积、质量、功耗、成本等下降约两个数量级,将应用于大众定位导航市场,可在微小体积、低成本条件下实现米级定位精度,提供不依赖卫星的全空域、全时域无缝定位导航新能力。
  • 全球首枚集成光子陀螺仪成功面世
    由中国科协“科创中国”平台指导,北京市科学技术协会创新服务中心、“科创中国”投资联合体主办的“光领智造 芯引未来”——“光纤陀螺仪行业中国智造的突破与挑战”研讨会26日在中国科技会堂举行。会上,由深圳市同昇光电有限公司(以下简称“同昇光电”)自主研发的集成光子陀螺仪在全球首次亮相,标志着我国在该领域取得重大突破。同昇光电是专研光子晶体光纤、光传感技术的创新企业,也是国内较早研发光子晶体光纤和集成光器件产品的企业之一。经过近10年的技术积累,同昇光电最终突破了光子晶体光纤拉制关键工艺、高性能小型化光纤环绕制技术、集成光器件设计和加工技术、光纤陀螺仪噪声分析及抑制技术,成功研发全球首个集成光子陀螺仪。作为下一代高性能微结构光纤,光子晶体光纤属于我国贸易保护类的技术及产品。与传统熊猫光纤相比,光子晶体光纤抗弯性能更强、温度稳定性更好,低温应力、地磁应力影响大幅降低。同昇光电攻克了光子晶体光纤拉制工艺诸多难题,如设计、损耗、强度、尺寸、熔接等等,彻底解决了采用光子晶体光纤绕制光纤化的小型化问题,已经实现小于直径20mm的光纤环环径。与同昇光电集成光子陀螺仪的技术相比,美国Emcore公司光纤陀螺(2014年研发)虽亦实现低成本和小型化的目标,但其仍采用多次焊接和粘接方式,闭环陀螺需另外增加调制器,集成度不高;美国KVH公司集成芯片陀螺仪(2020年研发)和俄罗斯Fizoptika 公司微小型光纤陀螺VG221(2022年研发)的传感头为开环陀螺,精度、温度稳定性、标度因数均与闭环陀螺差距较大。此外,上述三种技术光纤陀螺均未集成Y分支电光调制器,与同昇光电的集成光子陀螺仪相比,集成度较低,同昇光电的产品具有明显优势。与会专家认为,同昇光电在研发集成光子陀螺仪的过程中,突破了多个技术难关,为我国在光纤陀螺仪相关领域的领先地位做出了贡献。国家重大技术装备委员会专家、机械工业经济管理研究院院长徐东华,中国科协“科创中国”投资联合体副理事长赵京城,中船航海光学惯导部刘俊成主任,惯性MEMS传感器专家、北京大学微电子学研究院闫桂珍教授,浙江大学先进技术研究院杨功流教授,南开大学现代光学研究所刘艳格教授,中国航天九院光纤惯性研究室李超研究员等业内资深专家出席会议。
  • 惯性寻北仪专用光纤陀螺关键技术及制作
    成果名称惯性寻北仪专用光纤陀螺关键技术及制作单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 □原理样机 □通过小试 □通过中试 &radic 可以量产成果简介:采用光纤陀螺作为核心部件的惯性寻北仪是一种自主指示方位的高精度惯性仪器,利用它可以测得的地球自转角速率值及加速度计测得的陀螺仪与水平面夹角,从而得到载体的基线与真北方向的夹角。光纤陀螺仪是陀螺仪家族中的新星,它是全固态系统,没有任何运动部件,因此具有耐冲击、抗振动、工作寿命长、维护成本低等一系列优点。这些都是其它传统陀螺仪无法比拟的。光纤寻北陀螺测斜仪是一种新型的测量井斜的数字化仪器,可广泛应用于工程、水文、水电、煤矿、冶金、油田、地质等测井领域。主要针对磁性矿地区及在钢铁管类钻管中测量钻孔斜度和方位而设计。本项目的主要研究内容是:采用全光纤结构研制高精度的寻北陀螺仪,这项技术填补了国内的空白,具有国际领先水平。研究与开发内容包括:1)光纤陀螺仪总体设计;2)光路设计及制作;3)电路设计及制作;4)DSP系统设计及调试;5)软件开发及调试;6)光纤陀螺仪系统联调;7)光纤陀螺仪性能指标测试评估、优化。目前项目已成功制得多个样机,并在国内7家单位以及英国、挪威的石油、地质勘探仪器制造企业得到应用,产生了良好的经济效益和社会效益。应用前景:光纤陀螺仪是陀螺仪家族中的新星,它是全固态系统,没有任何运动部件,因此具有耐冲击、抗振动、工作寿命长、维护成本低等一系列优点。本项目采用全光纤结构研制高精度的寻北陀螺仪,这项技术填补了国内的空白,具有国际领先水平。
  • 以色列研制世界上最小的陀螺追踪仪
    该陀螺仪基本的技术原理是:通过对每分钟的物理变化进行比较,无需外部参考点便可计算出一个新的位置,与飞机飞行和轮船航海船位置的计算原理一样。   从本质上讲,很多物体(无论是航母或者是更小的物体)都可以检测本身的移动位置。这个陀螺仪也是这样的,一切的微小变化都能了如指掌。一个小小的智能手机,就可以查到你在公寓或者一个山洞里的所有动作。不过可悲的是,陀螺仪仍然需要GPS,因为陀螺仪需要知道他们的确切位置之前,得先自己测出自己的位置。  这一突破将意味着有朝一日GPS重要性会变到最小,使用率会逐渐降低。这绝对是好消息,只要得到这个小小的微型陀螺仪就相当于得到了个小卫星,就算你追踪的目标在世界上的任何地方都可以让你了如指掌。
  • 欧仕科技发布RSM400陀螺稳定平台新品
    Somag陀螺稳定平台RSM 400是德国SOMAG AG Jena公司研发的一款高精度稳定平台。RSM 400采用电子平衡系统和数字控制系统,保证平台上搭载的测绘测量、扫描、摄像等等仪器设备获得最稳定的高精度数据或图像。RSM 400具有三防设计,适合恶劣的使用环境,特别适用于海洋船载设备及陆地平台的应用,可搭载的最大重量为15kg(可升级到35kg)。系统配有加固型稳定安装支架,可搭载各种类型的海洋或地面热成像扫描仪、热成像摄像机、红外相机、激光雷达等高精度设备。OSM4000是升级版高性能陀螺稳定平台,采用大功率发动机及液压平衡系统,平台负载能力升级到160kg,同时具有更精确的平衡控制能力。产品特点:l 高精度:水平稳定偏差≤ 0.5°/s rms;垂直稳定偏差≤0.2° rmsl 高稳定性:专利的Mount补偿机制可消除由波浪或其他情况引起的设备的横摇和纵摇运动l 广泛的适用性:定制的适配组件,可根据需求提供各种设备的连接德国品质: 坚如磐石的材质以及IP67防护等级,适用于各种恶劣的使用环境创新点:RSM400陀螺稳定平台,适用于激光雷达、热成像相机等船载仪器,为其提供稳定的工作环境,具有更大的承重能力,更精细的平衡角度。RSM400陀螺稳定平台
  • 海能旋光仪全面升级广角度测量技术
    海能仪器一贯秉承&ldquo 专注科学仪器事业· 制造高品质仪器&rdquo 这一原则,经过上海海能物理光学开发团队的不懈努力,再次攻克技术难点,在国内运用最新的广角度测量技术,使旋光仪样品测量范围实现了巨大突破,测量角度从± 45° (旋光度)扩大到± 89.99° (旋光度),改写了旋光仪测量样品的局限性,大大提高了测量样品的可选范围,为广角度测量找到了最佳答案!  此次突破性技术将在原产品基础上进行全面整合升级,并应用到海能 P系列全自动旋光仪系列产品中,此项技术将会让更多的用户体验到广角度测量技术的优势,从而提高实验室整体测量水平。海能仪器为感谢、回馈新老用户,增加广角度测量技术的P系列全自动旋光仪系列产品目前已完成全面升级,市场价格保持不变!
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  基本工作原理及应用领域  光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。  光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:  1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。  2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。  在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。  光纤传感器助力物联网发展市场容量将近万亿  自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。  我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。  传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。  光纤传感技术在物联网中的应用  通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。  目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 建筑外墙脱落伤亡事故频发?FLIR热像仪带你提前规避风险
    近些年,外墙保温层、瓷砖等脱落事件频频发生,有的伤了人,有的伤了车,有的甚至殃及路人的性命!防不胜防的安全事故,到底该如何破解?图片源于网络,侵删✦ ++外墙脱落频发的原因外墙外保温装饰面层开裂是目前建筑物的常见问题,不仅影响建筑物外观质量,且随着裂缝发展,雨水渗入,外墙装饰面层或保温层就会出现空鼓甚至脱落。同时外墙裂缝也是雨水渗入室内,造成内墙面发霉、脱落的主要原因。如何从非接触、远距离、实时快速地对建筑外墙空鼓渗漏进行判断是一门新颖的课题。菲力尔近几年在红外热像仪检测外墙饰面砖粘结、渗漏的方面开展研究及现场操作,并利用红外热像仪检测建筑外墙所得的热像图(温度场分布图)及变化值,进行空鼓渗漏分析和判断,并为下一步的外墙治理提供依据。✦ ++为何选择热像仪治理外墙脱落?红外热成像检测法是运用红外热像仪探测物体各部分辐射红外线能量,根据物体表面的温度场分布状况所形成的热像图,直观地显示材料、结构物及其结合面上存在不连续缺陷的检测技术并发现空鼓渗漏区域。它不需要脚手架,避免危险作业,而且可以快速非接触、大面积无损排查建筑饰面缺陷及渗漏情况。使用红外热像仪检测建筑外墙的优势是可以针对外墙进行非接触的扫描,快速大面积的发现外墙饰面的红外辐射异常,从而达到快速寻找外墙饰面质量病害区位置的目的。一般在无干扰情况下,质量良好的外墙其红外照片温度色彩较为均匀,没有明显的相对色差区,而对存在质量缺陷问题的外墙(如空鼓),红外照图像上通常就会表现出明显的色差异常区。在红外图像中,空鼓位置明显✦ ++FLIR Exx热像仪:检测空鼓好助手红外热像仪是目前用于检测建筑外墙的较先进、有效的无损检测手段,该方法是快速地对大规模住宅小区及建筑群进行红外直观热图像与量化分析相结合的检测。那么,该如何挑选一台适合自己的红外热像仪呢?操作简便外墙巡检工作,一般比较繁重且复杂,因此要选择一款操作简单、携带方便、无需繁琐设置的热像仪。图像清晰受外界环境的影响,当使用热像仪扫描墙体时,需要选择一款热灵敏度高、成像分辨率佳的工具。后期处理方便为了更好地对比墙体状况,检测过程中会拍摄大量的热图像,如何规划巡检和处理图片是关键。幸好,FLIR Exx系列热像仪能满足上面的全部条件。Exx系列热像仪符合人体工程学设计,单手操作大尺寸按钮,搭配智能激光辅助自动对焦和3个区域测量框等功能,让您可以快速识别故障区域。FLIR E98/E86/E76还配备UltraMax 高清图像增强技术,集成一键式水平和跨度区域调节功能,拥有更高的对比度,可以查看更多图像细节。此外,可互换的AutoCal镜头可完全覆盖近距离和远距离目标,既可以大面积扫描建筑墙体,也可以针对性的检测关键区域。FLIR Exx系列热像仪,将FLIR巡检选项(FLIR Inspection Route)功能设为标准配置。建筑检修员们可以提前规划巡检路线,让巡检工作更有序地进行。搭配FLIR专业报告和分析软件,还能批量处理热图像,一键生成专业报告,大大提升了后期处理的工作效率。通过检测查明外墙装饰层空鼓情况从而进行针对性的修缮可以有效的预防建筑外墙饰面层坠落事故选择FLIR Exx系列热像仪能帮助建筑检修人员轻松有效检测故障
  • 光纤陀螺仪将向集成化、小型化、低成本化发展——访北京世维通赵乐
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了北京世维通科技股份有限公司销售总监赵乐。以下为现场采访视频:
  • 2020珠峰高程测量启动,国产测绘仪器担主角
    p  5月初,中国2020珠峰高程测量正式启动。测量登山队由国测一大队和中国登山队组成。高程测量即海拔测量。今年是人类首次从北坡成功登顶珠峰60周年、中国首次精确测定并公布珠峰高程45周年,开展此次珠峰高程测量具有重要的历史意义。自然资源部组织了中国测绘科学研究院、陕西测绘地理信息局及中国地质调查局等单位编制珠峰高程测量技术设计书和实施方案。根据方案,本次测量将综合运用GNSS卫星测量、精密水准测量、光电测距、雪深雷达测量、重力测量、天文测量、卫星遥感、似大地水准面精化等多种传统和现代测绘技术,精确测定珠峰高程。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/cfa49acc-84f4-4ef8-abfc-58a378b57f74.jpg" title="0506news pic2.jpg" alt="0506news pic2.jpg"//pp style="text-align: center "strong珠穆朗玛峰/strong/pp  据了解,本次珠峰高程测量工作将重点在以下几方面实现技术创新和突破:一是依托北斗卫星导航系统,开展测量工作 strong二是国产测绘仪器装备全面担纲本次测量任务 /strong三是应用航空重力技术,提升测量精度 四是利用实景三维技术,直观展示珠峰自然资源状况 五是测绘队员登顶观测,获取可靠测量数据。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/d225e173-285e-45dd-93d2-05c0dcccfde7.jpg" title="news0506.jpg" alt="news0506.jpg"//pp style="text-align: center "strong珠峰高程测量队员扛着仪器前往测量点/strong/pp style="text-align: right "span style="font-size: 14px "strong(图片来源:新华社)/strong/span/pp  测绘仪器,简单讲就是为测绘作业设计制造的数据采集、处理、输出等仪器和装置。一般包括各种定向、测距、测角、测高、测图以及摄影测量等方面的仪器。常见的测绘仪器有测量水平角和竖直角的经纬仪;测量两点间高差的水准仪;地面人工测绘大比例尺地形图的平板仪;用电磁波运载测距信号测量两点间距离的电磁波测距仪;快速进行测距、测角、计算、记录等多功能的全站仪;将陀螺仪和经纬仪组合在一起,用以测定真方位角的仪器陀螺经纬仪;装有激光发射器的各种激光测量仪器;利用连通管测定两点间微小高差的液体静力水准;由摄影机和经纬仪组装而成的供地面摄影测量野外作业用的摄影经纬仪;用于测定立体像对上同名点的像片平面直角坐标和坐标差(视差)的仪器立体坐标量测仪;用于地籍测量和空中三角测量,可获取数字地面模型、断面图、进行地面摄影测量以及修测更新地图立体测图仪和将具有倾斜和地面起伏的中心投影相片变换成正射影像图的正射投影仪等。/pp  此次珠峰高程测量的成果可用于地球动力学板块运动等领域研究。精确的峰顶雪深、气象和风速等数据,将为冰川监测、生态环境保护等方面的研究提供第一手资料。GNSS测量、水准测量、重力测量的成果结合以前相关资料,不仅可以准确地分析目前地壳运动变化影响情况,同时也可为后续的似大地水准面模型建立提供准确的重力异常数据。重力测量成果可用于珠峰地区区域地球重力场模型的建立和冰川变化、地震、地壳运动等问题的研究。/p
  • 还在发愁垫片脱落吗?月旭科技上新了!
    进样瓶盖垫脱落是难以避免的问题,目前市面上有很多种规格较为特殊的产品来进行有效地规避。常见的特殊盖垫有预切口、双层膜、一体式等,这些盖垫构成不同,所以各自的利弊也有所不同。预切口盖垫是其中z常用的一种,一般来讲它的价格比较便宜,因为它相较于普通盖垫仅仅是多了一道切口的工艺。但是相应的,这种预切口盖垫的气密性比较差,遇到挥发性样品则很可能对实验结果产生影响。双层膜盖垫是在普通盖垫的基础上增加了一层ptfe膜,形成ptfe双向覆盖硅胶的结构。这种设计的盖垫在物理结构上比普通盖垫要牢固许多,相对于普通盖垫具有更低的垫片脱落率,但由于增加了一些材料成本,其价格也会比普通盖垫贵一些。一体式盖垫是一种工艺水平较高的盖垫,它的生产成本也会高于双膜盖垫,但是它的防脱落能力是最强的,也明显优于双膜产品,但是这个产品常常伴随两个问题,一个是价格会较为昂贵,一个是可能存在其他物质析出的问题。月旭科技最近也推出了一款新的一体式盖垫,这里便向您特别推荐一下。针对上述提到的两点问题,您也大可不必担心,首先我们新推出的一体式盖垫为Doprah系列,大家都知道我们这个系列的价格都十分优惠,并且我们也已经对产品进行了检测。分别使用甲醇、乙腈试剂对样品盖垫浸泡并进行GC检测,前后都没有杂峰出现。后附甲醇检测过程中盖垫浸泡1小时的结果与甲醇直接进样的结果谱图。 从结果来看这款一体式盖垫是不需要担心析出问题的,如果各位老师感兴趣,那不妨来咨询下吧,如下是我们的产品。 DC1144、DC1359是月旭推出的新品,如果各位老师感兴趣的话,欢迎联系我们当地的销售同事,月旭科技竭诚为您服务。
  • 首届量子精密测量与传感技术大会在苏州召开
    p  11月19日,在国家遥感中心、“地球观测与导航”重点专项管理办公室、苏州高新区管委会的支持下,第一届全国量子精密测量与传感技术大会在苏州召开。科技部高新司副巡视员梅建平、苏州市副市长徐美健、国家遥感中心总工程师张松梅、北京航空航天大学副校长房建成、地球观测与导航重点专项总体组专家和专项办代表,以及来自全国各大高校、科研院所的近百位专家学者参加了此次会议。/pp  量子精密测量作为量子信息领域的一个重要组成部分,通过量子操控实现对磁场、惯性、重力、时间等物理量的超高精度测量,突破传统测量方法的理论极限,已成为精密测量技术的一个重要发展方向,成为世界各强国高度关注的又一热点高技术领域。国家重点研发计划“地球观测与导航”重点专项部署了“原子陀螺仪”“原子磁强计”和“芯片原子钟”等项目对量子精密测量的发展提供支持。/pp  会议围绕我国量子精密测量与传感技术领域的前沿和热点问题进行了深入研讨,对于落实国家重点研发计划“地球观测与导航”重点专项和后续国家量子相关技术重要部署,推动整个量子信息技术领域引领全球,开启中国量子测量、量子导航的新征程、建设量子信息技术强国具有很强的指导和促进作用。/pp/p
  • 北京是卓科技发布激光雷达监测无人机新品
    无人机自动分析识别检测系统方案一、方案背景低空无人机(Unmanned Aerial Vehicle缩写 UAV )也称为无人航空器或遥控驾驶航空器,是一种由无线电遥控设备控制,或由预编程序操纵的非载人飞行器。无人机具有机动灵活的特点,它体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。除了具有广阔的军事应用前景外,用无人机替代有人飞机执行高风险任务,也是当今国际航天领域一个重要发展方向。特别是在近几年国际局部战争中无人机被大量地使用。对无人机的监管存在盲区,无人机的大量使用更是给公共安全带来隐患。本来是为合法用途使用的无人机越来越多的被用于犯罪目的。公众已经日渐强烈的意识到了无人机可能造成的危害。无人机能窥探隐私/技术;无人机能影响民航 – 接近撞机;无人机可能会出现在敏感地区、关键位置和政府设施区域;无人机甚至能自动射击… … 最近两年,全国已发生多起无人机空中逼停飞机事件,成为民航飞行的“隐形杀shou”。2013年底,北京一家公司在没航拍资质、未申请空域的情况下航空测绘,造成多架次民航飞机避让延误。2017年浙江萧山机场、绵阳机场,此次成都机场都是由于不明无人机,导致了数百架飞机延误,数万人滞留,给国家和人民带来的损失是数以亿计的。二、无人机监测与反制现状2.1无人机控制链路介绍无人机如何控制呢?无人机使用无线链路进行远程控制和视频数据回传,超过90% 的无人机使用ISM频段 (2.4GHz) 操作,包括跳频, Wi-Fi等, 其中控制链路采用:常用的频率为 ISM 频段: 2.4 GHz, 5.8 GHz很少使用: 433 MHz, 比2.4GHz传播距离更远少量使用过时的遥控频段: 27 MHz, 35 MHz, 72 MHz (使用 PCM 或模拟编码),这类无人机逐步消失了。无人机根据价格水平有不同的控制方式,比如一些低成本的无人机采用蓝牙技术(ISM2.4GHz);大部分无人机采用Wi-Fi或跳频(ISM2.4GHz);也有部分高端无人机采用基于预设路径的卫星导航。 2.2无人机主要监控方式各国对无人机的监控主要的手段分为两种方式:行政监管、技术防范。2.2.1行政监管:日本为了加强无人机管理,实施了新的《航空法》,规定人口集中的地区一律禁止飞无人机,防止无人机引发事故或被用于犯罪,违者将处以50万日元的罚款;英国对无人机使用也作出规定,航空法第166条第三款规定,小型无人机操作员必须保持时时刻刻能看见无人机,对无人机能够完全掌控,在飞行时应与其它飞行器、人群、车辆以及建筑保持一定的距离,以免发生碰撞事故。2.2.2技术防范从技术角度来说。目前,国外无人机反制技术大致有信号干扰、雷达探测、激光炮击落、综合型技术等几大类。(1)信号干扰:无人机工作时需要知道自己的精确位置,但无人机自身无法获得足够精确坐标数据,因此,无人机上通过安装GPS信号接收机,采用GPS卫星导航系统与惯性导航系统相结合的方式进行飞行控制。信号干扰技术是通过影响无人机的GPS信号接收机,使其只能依靠基于陀螺仪的惯性导航系统,而无法获得足够精确的自身坐标数据。美国DroneDefender电波枪打击技术美国俄亥俄州非盈利开发机构“巴特尔”(Batfeoe)最近推出了一种DroneDefender反无人机设备。DroneDefender设备前端上部安装了一根白色的杆状天线。这种设备采用非破坏性技术,是首款能移动、精准、快速阻止可疑无人机靠近的专用设备。用户只需将其指向空中的无人机,扣下扳机,就可以将目标“击落”。该设备只对实时遥控型无人机或依靠GPS导航的无人机有效(如常见的四轴飞行器和六轴飞行器),打击范围约400米;欧洲空客集团反无人机系统,空中客车防务及航天公司研发了一种反无人机系统,采用干扰技术对目标信号的频率进行干扰,而不会影响到周围其他频率的信号。该系统可远距离侦察在争议地区飞行的非法无人机并实施打击,同时又能尽可能地减少对其他物体的影响。该系统具备信号分析技术和干扰功能,并配有雷达、红外相机和定向仪,可以侦察到5至10公里范围内的无人机,还可对无人机的威胁性做出判断。基于庞大的信息库信息,该系统还可以对无人机的信号进行分析,一旦发现问题,系统就会通过干扰台切断无人机与其操作人员之间的联系,然后定向仪会追踪到无人机操作人员的具体位置,便于实施抓捕行动。(2)雷达探测:瑞典“长颈鹿”雷达系统,据美国H JS Jane’s国防、安全情报网站2015年9月1 6日报道,瑞典萨博公司在苏格兰的西弗瑞格(WestFreuqh)靶场演示验证了其“长颈鹿”捷变多波束(AMB)雷达系统对低空、低速小型目标的探测能力。此次试验名为“布里斯托15”,显示了该雷达对低空、低速小型目标强大的探测能力(ELSS),该雷达在执行全部空中监视任务的同时,能够执行反无人飞机系统(UAS)作战任务。在“布里斯托15”试验中,雷达散射截面精确到0.001平方米,增强了对低空、低速小型目标的探测能力,可自动识别低空、低速小型目标并对其进行跟踪,业余爱好者操作低速、小型四轴无人飞机系统。“长颈鹿”捷变多波束雷达系统属于地面和海洋的二维或三维G/H波段被动电子扫描阵列雷达家族系列,可在提供海岸监视能力的同时,对固定翼飞机、直升机、地面目标、干扰机和弹道目标进行分类与跟踪;意大利“猎鹰盾”系统2015年9月15日,在英国伦敦举办的英国军警装备展DSEI上,意大利芬梅卡尼卡集团SeIex ES公司展示了其研发的“猎鹰盾”无人机系统。该系统能够定位、辨识和控制对公共安全或是私人构成威胁的远程微型或者小型无人机,即所谓的“流氓无人机”。该公司称,这种设备的市场价值可能达数亿英镑;“猎鹰盾”系统利用摄像机、雷达和先进的电子设备监控无人机接收和传输的信号,从而对其进行追踪并确定其类型。一旦锁定目标,“猎鹰盾”就会利用其专有技术控制无人机,甚至将其坠毁。与其他企业利用电子战击毁无人机的系统相比,“猎鹰盾”优势在于,在精准击落“流氓”无人机的同时,可以有效避免对周边建筑物等环境造成伤害。此外,发送无线电信号控制无人机时,还不会妨碍紧急救援服务甚至移动通讯等其他重要信号的传输;墨西哥JAMMER公司防卫系统墨西哥JAMMER公司开发了Tamce Bloqueador Direccional Anti-Drone防卫系统,用于家庭防空。系统的干扰功率为20瓦,可压制几百毫瓦的无人机。启动开关后,干扰器可以干扰2.4G和5.8G信号,这对于大部分消费级无人机来说,遥控信号和图传信号都会丢失,丢失了信号后无人机只能返航或者原地降落;美国Drone Shield公司监测系统美国无人机探测系统制造商Drone Shield研发出了利用雷达或麦克风来监测无人机的技术。它内置了Raspberry Pi、信号处理器、麦克风、分析软件、无人机声音特性的数据库,通过监听周围环境的声音,通过声音对比确定是否有无人机。当有无人机在附近时,通过邮件或者短信发出警报。从原理上来看,预警技术并不难,因此监控的准确性和低误报率就非常关键,在这方面,Drone Shield拥有自己的专利技术。据悉,美国当局已经利用这种系统来为监狱、体育赛事和政府大楼提供安保。(3)综合型技术:英国反无人机防御系统AUDS,2015年10月,英国广播公司、美国国土安全新闻网、俄罗斯卫星网等网站分别对英国完全集成的“反无人机防御系统(AUDS)”进行报道。该系统俗称电磁干扰射线枪,由英国的三家防务技术公司(Blighter Surveillance Systems,Chess Dynamics和Enterprise Control Systems公司)联合研发,可以探测、跟踪并摧毁小型和大型无人机。该系统可以全天24小时开机,全自动运行。首先使用雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪,随后定向射频干扰系统开始工作,发射定向的大功率干扰射频,干扰无人机自控系统,切断无人机与后方控制中心之间的数据联接或无线电通讯,致使无人机无法自主飞行,导致坠毁、迫降或者返航。AUDS系统的售价约为100万美元,可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。该系统由三个子系统和一套总控设备组成。三个子系统分别是雷达探测系统、动态定位和视频追踪系统、定向射频干扰装置。雷达探测系统由Blighter公司研制,据称可探测反射面积0.01平方米大小的目标,最远探测距离可达8公里,并通过选配不同的天线来实现俯仰角度和水平旋转角度的变化;动态定位和视频追踪系统由CHESS dynamic公司开发,由一个可以旋转的机械平台加上高分辨的摄像机和热成像相机组成,以实现视频追踪,可以选装光学干扰装置发出高密度光束;定向射频干扰装置由Enterprise Control Systems公司研发,它使用高增益四频段天线来对准目标发出电波,可以使在C2频道下工作的无线遥控装置失灵,无法接收到指令的无人机只能盘旋不动,直到电力耗尽坠毁。报道称,该系统于2015年5月首次公开亮相,并在欧洲(如英国、法国)和北美(如美国)野外与城市等不同地形环境中进行了测试;泰利斯公司组合装备泰利斯公司正在推出一种由雷达、声像探测器、定向仪、射频和视频定位器和激光扫描装置组成的组合设备。对非法无人机的压制任务由动能杀伤武器完成,也可以通过激光干扰、选择性干扰、GPS电子欺骗、电磁脉冲来完成,还可以用另外一架装备干扰设备的无人机进行拦截。泰利斯公司已经针对4旋翼无人机和其他小型无人机进行过反无人机的技术试验。(4)其他技术:无线电控制采用接收器追踪并确定无人机,使用足够强大的电子信号照射无人机,夺取其无线电控制权。操作过程中,一旦无人机不能接收信号,就会坠毁,通过借助阻截无人机使用的传输代码,进而控制无人机,令其返航。美国联邦航空管理局(FAA) 与信息技术公司CACI推出了SkyTracker系统,该系统可在敏感地带如机场周围构建电子边界线。CACI表示,该系统可利用无人机无线电线路来识别和定位在禁飞或受保护空域内飞行的无人机,还可定位无人机的操纵人员。CACI网站提到:“CACI系统可精确定位黑飞无人机,并可将同一空域内其它无人机与此区别出来。”CACI称,SkyTracker还可有效地阻止指定无人机;微波干扰,微波武器又叫射频武器,这种武器可利用高能量的电磁波辐射去攻击和毁伤目标。与激光武器相比,微波武器作用距离远,受气候影响小,火力控制方便。军事专家们预测,随着新技术、新材料的不断发展,微波武器将会发挥越来越多的作用。俄罗斯联合仪表制造集团已制成超高频率微波炮,可用于帮助地对空导弹“山毛榉”攻击无人机及高精度武器电子设备。微波炮射程超过10公里,将其安装在特殊平台上可实现360度全方位防御。该款武器除了可搭配“山毛榉”地对空导弹用于防空外,还可检测俄军电子系统抗微波辐射能力;声波干扰,声波干扰技术就是利用声波使陀螺仪发生共振,输出错误信息,从而导致无人机坠落。研究人员发现,如果声音足够强(例如达到140分贝),声波可以击落40米外的无人机。韩国2015年8月公开了一种利用声波干扰陀螺仪击落无人机的技术。研究人员给无人机接上非常小的商用扬声器,扬声器距离陀螺仪4英寸(约10厘米)左右,然后通过笔记本电脑无线控制扬声器发声。当发出与陀螺仪匹配的噪声时,一架本来正常飞行的无人机会忽然从空中坠落。当然,在真实的攻击场景中是不可能把扬声器接到无人机上的,这种方法还不是真正有效的反无人机措施。目前存在的难点在于瞄准和跟踪,未来可能与跟踪雷达配合使用。三、系统实现 目前国内低慢小目标探测需求突现,其中蕴藏的巨大市场需求。本系统依托激光雷达技术,多无人机进行实时在线监测。该系统可以全天24小时开机,全自动运行。首先使用激光雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪。 整套系统由三部分组成:激光雷达探测系统、旋转云台、动态定位和视频追踪系统、定向射频干扰系统。光电设备,先由激光雷达,最远探测距离可达20公里,最小分辨率可达0.01m2大小的目标,发现目标后,动态视频追踪系统根据目标距离自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,提高系统检测的准确性及无人机的移动趋势;定向射频干扰系统根据无人机运行轨迹及距离,定向发射射频干扰或捕捉网等手段,对无人机进行干扰及捕捉。系统可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。四、优势比较到目前为止,大多数雷达都是所谓的脉冲雷达。例如,这适用于几乎所有用于空中交通管制的雷达。脉冲雷达以固定的间隔发射短而强大的脉冲,并且该脉冲的一些被物体反射。通过测量发送和接收反射信号之间的时间,可以计算到物体的距离。脉冲雷达系统擅长检测大面积天空内的物体,并确定与物体的距离。另一方面,它们不太适合确定物体的速度和方向。多普勒雷达系统传输恒定信号。利用多普勒效应,当发射它的物体远离观察者时,信号的波长增加,而当物体向观察者移动时,信号的波长减小。正是这种效应导致救护车警报器在驶过后发出不同的声音。物体移动得越快,效果越强。因此,多普勒雷达可以基于从物体反弹回来的信号波长的变化以非常高的精度确定物体的速度。还可以以非常高的精度确定物体的运动方向。多普勒雷达系统提供了有关被检测物体的更多信息。另一方面,教科书会说多普勒雷达在覆盖大片天空和确定物体距离方面不如脉冲雷达。无人机的飞行速度非常慢。这使得它们难以使用脉冲雷达进行检测,也不适用于多普勒雷达系统。因为即使整个无人机移动缓慢,转子也会快速移动,并在多普勒雷达中产生独特的信号。“除了它们的小尺寸以及它们可以飞得极低的事实之外,无人机还带来了其他一些挑战。无人机尤其具有极强的机动性。熟练的操作员可以利用它来将无人机隐藏在不相关的物体之间,如树木,建筑物,鸟类等。这需要雷达集成的光学系统。通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时更加可行。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360°全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。五、系统结构图 创新点:通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时进行区分。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360° 全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。
  • “超海森堡极限”与海森堡极限的 量子精密测量可同时实现
    2月22日,记者从中国科学技术大学获悉,该校郭光灿院士团队李传锋、项国勇研究组与香港中文大学袁海东教授合作,在量子精密测量实验中,首次实现了两个参数同时分别达到“超海森堡极限”和海森堡极限的最优测量。研究成果日前在线发表在国际知名期刊《物理评论快报》上,并被选作该期的封面文章。精密测量的精度随着消耗的资源增加而提高,数学上用T-k来描述,其中T为资源(如测量时间),k是评价不同测量方法优劣的最重要标准精度增长阶数。在诸如相位估计、磁力仪和量子陀螺仪等众多应用中,研究发现k在经典测量方法和量子测量方法中分别是0.5和1,分别被称作散粒噪声极限和海森堡极限。然而,存在多体相互作用或含时演化的情况下,人们发现k可以超越1,称之为“超海森堡极限”。目前这三种不同的精度极限在单参数量子测量实验中已经分别得以实现,但是海森堡不确定性关系是量子力学的根本限制,“超海森堡极限”是否真的是超海森堡仍存在争议。研究人员采用近年来着力发展的多参数量子精密测量平台,研究测量旋转场的强度和频率两个参数中“超海森堡极限”和海森堡极限是否可以同时达到的问题。他们将控制增强的次序测量技术进一步发展到多参数含时演化的测量中,通过优化量子系统动力学演化各个部分,实现了两个参数同时分别达到海森堡极限和“超海森堡极限”的最优测量,并阐明这两种精度极限都遵从海森堡不确定性关系,都是最优的量子精度极限。该项成果加强了量子精密测量与海森堡不确定性关系两个领域的联系,促进了这两个领域的交叉发展,并且在实际测量问题中具有重要潜在应用价值。《物理评论快报》相关审稿人认为“这是一个具有足够的新颖性和价值的扎实的工作”。
  • 朴槿惠下台 竟与这两家仪器公司有关!
    p  2017年3月10日上午,韩国宪法法院宣布总统弹劾案最终判决结果,总统弹劾案获得通过,朴槿惠被立即免去总统职务。朴槿惠也成为了韩国历史上第一位被成功弹劾的总统。/pp  虽然导致朴槿惠下台的直接原因是“闺蜜干政门”等事件,但也有国际问题专家认为,真正的“始作俑者”是“萨德”系统入韩,正是由于这一事件的持续发酵,使得自2015年朴槿惠出席中国9-3阅兵活动后,其所获得的54%的民众支持率一路下滑到惊人的5%。/pp style="TEXT-ALIGN: center"img title="00000.jpg" src="http://img1.17img.cn/17img/images/201703/insimg/6509348f-bd7b-428a-9e58-e457bf1e7ce4.jpg"//pp  “萨德”系统是一款末端高空防御系统,是当今世界上最先进的导弹防御系统之一。而如此先进的反导系统里自然也少不了测量仪器的身影。据了解,“萨德”系统的主要组件里包括像由美国模拟器件公司(ADI)提供的陀螺仪、法国ULIS公司提供的红外探测器等。离开了这些精密的测量仪器,“萨德”的威力将大打折扣。/pp style="TEXT-ALIGN: center"img title="b291124c510fd9f946ae34992c2dd42a2934a46a.jpg" src="http://img1.17img.cn/17img/images/201703/insimg/5957977a-c504-484f-b744-494abcd06c77.jpg"//pp  以陀螺仪为例,虽然是个很冷门的东西,但高精度的陀螺仪对导弹的发射精度起了越来越重要的作用(注:“萨德”系统的两套核心组件之一就是拦截导弹)。相关资料介绍,ADI公司MEMS陀螺仪和iSensor® MEMS陀螺仪子系统可在复杂、恶劣工作条件下可靠地检测和测量物体角速率。它的两款MEMS陀螺仪新品包括:一款战术级iSensor® 数字MEMS陀螺仪ADIS16136,性能可匹敌光纤陀螺仪 另一款是iSensor® MEMS IMU(惯性测量单元)ADIS16488,据称它是最稳定最完整的集成传感器套件,在很多性能指标上优于其它同类IMU,甚至优于传统的军用级IMU。/p
  • 中国科大在基于原子器件的精密测量物理方面取得进展
    中国科学技术大学工程科学学院教授盛东与物理学院教授卢征天联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。6月10日,相关研究成果以Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer为题,发表在《物理评论快报》上。   原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,因而共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用由诺奖得主维尔切克(Franck Wilczek)提出,它可由一种至今尚未被探测到的“轴子”粒子来传播。  为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法【Phys. Rev. A 102, 043109 (2020)】;同时,发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11-0.55 mm的作用程范围里(对应的传播子质量范围为0.36-1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm附近,本工作的实验精度比前人结果提高了30倍。  研究工作得到国家自然科学基金和中科院战略性先导科技专项的支持。  论文链接 核子(左)与极化氙原子(右)的单极-偶极相互作用示意图
  • 小芯片提高光学仪器测量精度
    罗切斯特大学研究人员共同开发的1平方毫米的集成光子芯片将使干涉仪精度更高。图片来源:罗切斯特大学/ J. Adam Fenster从镜子上的微小缺陷,到大气中污染物的扩散,再到宇宙深处的引力波,通过合并两个或多个光源,干涉仪产生的干涉图样可以提供一切事物的详细信息。“想要进行非常精确的测量,光学干涉仪必不可少,因为光可以成为非常精确的‘尺子’。”美国罗切斯特大学光学助理教授Jaime Cardenas说。现在,Cardenas的实验室发明了一种方法,使这种光学机器更加灵敏。罗切斯特大学博士生宋美廷(音译)首次在1平方毫米的集成光子芯片上验证了一种实验方法,可以在不增加无关且不必要的输入或“噪声”的情况下放大干涉信号。近日发表在《自然—通讯》的这一突破,基于该校物理学教授Andrew Jordan和实验室学生开发的波导弱值放大理论。Jordan和团队研究弱值放大已有十多年。他们以一种新颖的方式将模态分析应用于具有弱值放大功能的自由空间干涉仪上,弥补了自由空间与波导弱值放大之间的差距,并由此证明了在光子芯片上集成弱值放大的理论可行性。弱值放大是基于光的量子力学,基本上只涉及包含所需信息的特定光子导向探测器。Cardenas说,这个概念曾被演示过,但“总是要在实验室里放置一张桌子、一堆镜子和激光系统,这些物件排列起来非常耗时和辛苦”。“我们将所有这些物质提炼出来,放入光子芯片中。通过把干涉仪装在芯片上,你可以把它放在火箭、直升机,或者手机上。放在哪里它都不会偏移。”Cardenas说。与传统的干涉仪不同,新装置没有使用一组倾斜的镜子来弯曲光线并产生干涉图样,而是使用了一个设计好的波导来传播光场的波。Cardenas说,这是该研究的新颖之处。在传统干涉仪中,只要简单地提高激光功率,就可以提高信噪比,从而产生更有意义的输入。但Cardenas说,这实际上是有限制的,因为传统的干涉仪探测器只能处理有限的激光功率,在达到饱和前,信号噪声比并不能提高。新装置通过在探测器上以更少的光达到相同的干涉仪信号,消除了这一限制,这为通过继续增加激光功率从而增加信噪比留下了空间。“如果以传统干涉仪相同的功率到达新弱值,新设备总是会有更好的信噪比。”Cardenas说,“这项工作真的很酷,有很多非常棒的物理和工程应用在后台进行。”他表示,下一步将把该设备用于相干通信和使用压缩或纠缠光子的量子应用,使量子陀螺仪等设备成为可能。相关论文信息:https://doi.org/10.1038/s41467-021-26522-2
  • 新品发布——爱色丽新款多角度分光光度仪MA-T 6/12系列正式上市
    爱色丽新款多角度分光光度仪MA-T系列为特效表面的特性表征设定了行业标准 新一代 MA-T 系列仪器兼具色彩成像和多角度测量,提供对色彩、闪烁度和颗粒度精准的特性表征。 [ 中国 上海 ] 2017 年 10 月 09 日 – 色彩科学和技术的全球领军企业爱色丽有限公司及其子公司 Pantone LLC 于今日宣布推出新一代系列便携式多角度分光光度仪,对特效表面的特性表征设定了行业标准。提供 12 个测量角度的全新 MA-T12 和 6 个测量角度的 MA-T6 是前所未有的兼具色彩成像和多角度光谱测量仪器,可量化色彩、闪烁度和颗粒度这些新设备使客户能更准确地定义和控制汽车、塑料、涂料和化妆品行业目前常用的特殊效果表面,以减少瑕疵并实现更有效的质量保证。 在购买从汽车到消费电子产品和家用电器等新产品时,颜色是购买与否的决定性因素。产品不同部件之间的颜色一致性会强烈影响顾客对品质的认知。在当今激烈竞争的市场中,制造商越来越多地使用特殊效果表面,从而使自己有别于竞争对手。举例而言,汽车行业中大约 70% 的新车均使用包括铝、珠光或特效颜料(如 Xirallics 水晶颜料)的特效表面。因此,仅仅测量颜色已经不足以完整地表征这些材料的特性或确保各个相邻部件(如汽车保险杠和车身面板)之间的一致性。当零部件由不同的供应商在多个不同的地点生产时,情况尤其如此。新颖的 MA-T 系列设备旨在帮助制造商制定、交流和确保特效表面其色彩、闪烁度和颗粒度等等符合全球标准,以达到全新水平的一致性及和谐。 爱色丽战略与产品规划副总裁 Chris Winczewski 表示:“MA-T 系列是在目前多角度测量技术基础之上的一个重大进步。彩色相机与多达 12 个测量角度相结合,使得制造商及其供应链合作伙伴能在定义和测量甚至当今最极致的特效表面时实现新的尖端水平。这项新技术展现的结果更接近人眼感知颜色的方式,能加快审批周期,最大限度地减少昂贵的返工并加速上市时间。” 新款 MA-T 系列产品和 AutoQC 软件在测量色彩、闪烁度和颗粒度方面,MA-T 系列便携式分光光度仪的重复性和重现性分别是市场上其他任何多角度设备的 2.5 倍和 2 倍。设备的设计符合人体工学,具有中心定位孔径和定位销,确保稳定的测量。触摸屏导航使设备的操作简单又直观。实时预览测量区域或“检查区域”可确保准确的目标定位,简化整体测量过程。 两款机型均采用 RGB 相机和白光照明,以确保更准确地捕获色彩、闪烁度和颗粒度,提供与人眼感知颜色方式相符的可量化结果。MA-T6 可从六个不同观测角度测量颜色,MA-T12 则提供 12 个测量角度。这使得用户能够对当今复杂的特效材料进行更完整的特性表征。 MA-T 系列与新款 AutoQC 软件相结合成为基于云的解决方案,确保色彩标准、测量程序和数据在分散型供应链上明确无误地交流并加以有效管理。包括了性能趋势图和存储的特定测量图像在内的新视觉工具帮助实现实时性能监控,并提供可实施的监控,加快对超出容差范围的产品进行故障排除过程。 MA-T12 和 MA-T6 均向后兼容爱色丽 MA68 和 MA94、MA96、MA98 等便携式多角度分光光度仪,确保与旧有数据保持一致。 有关MA-T 系列产品的更多详情,可访问东南科仪官网
  • 中科大盛东教授与卢征天教授团队在基于原子器件的精密测量物理上取得进展
    中国科学技术大学工程科学学院盛东教授与物理学院卢征天教授联合课题组开发了高精度的氙同位素共磁力仪,并利用该原子器件探索超越标准模型的新物理,对核子与中子间的单极-偶极相互作用强度在亚毫米尺度上设定了新的上限。相关成果以“Search for Monopole-Dipole Interactions at the Submillimeter Range with a 129Xe-131Xe-Rb Comagnetometer”为题于6月10日发表在《物理评论快报》[Phys. Rev. Lett. 128, 231803 (2022)]上。原子共磁力仪是一种既可以用来研究基础物理又具有实际应用价值的原子器件,它通过同时同地测量两种原子的自旋进动信号来消除磁场波动和漂移的影响,从而精确测量器件本身的转动,所以共磁力仪也是一种小型陀螺仪。当转动信号在实验中被置零后,该原子器件即可用来探索单极-偶极相互作用。这种奇异相互作用是由诺奖得主维尔切克(Franck Wilczek)提出的,它可由一种至今尚未被探测到的“轴子”粒子来传播。为了实现高精度测量,课题组开发了自主的原子器件制备技术,并对131Xe的进动频谱提出了新的理论分析方法[Phys. Rev. A 102, 043109 (2020)];同时也发展了极化调制手段来有效抑制极化碱金属原子对核自旋进动的影响。基于这一系列技术,课题组利用积累了两个月的测量数据,在0.11 - 0.55 mm 的作用程范围里(对应的传播子质量范围为0.36 -1.80 meV/c2)对核子与中子单极-偶极相互作用强度设置了新的测量上限,特别是在作用程0.24 mm 附近,本项工作的实验精度比前人结果提高了30 倍。图1核子(左)与极化氙原子(右)的单极-偶极相互作用示意图。物理学院博士生丰宇焜为论文第一作者,盛东和卢征天是共同通讯作者。该研究工作得到了国家自然科学基金委和中科院先导项目的资助。论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.128.231803
  • 汽车色彩检测仪器—便携式多角度测色仪
    随着当今市场竞争的日趋白热化,汽车、家居、化妆品和消费电子品牌不断 通过日益复杂的材料和特效表面来区分产品。然而,当制造商必须在分散的 供应链中保证相邻部件的色彩一致性时,仅仅使用标准的分光光度仪测量 色彩并不能准确评估闪烁度、颗粒度和复杂纹理效果的外观。 凭借12个测量角度和经过色彩校准的内置RGB相机,先进的MA-T12多角度分光光度仪 能够全面表征和验证色彩、闪烁度、颗粒度和纹理特征,并拥有 非常高的可重复性和再现性。MA-T12适用于从设计和灵感到最终检验的整 个过程,并能沟通、指定、测量和确保整个供应链中复杂材料和表面处理的 合规性。MA-T12 测色仪 精确测量和沟通复杂材料 &bull 使用12个测量角度快速准确地测量和量化色彩、闪烁度、颗粒度和纹理&bull 通过内置相机和实时预览功能,充分减小测量样品缺陷的风险&bull 数字化沟通全球供应链中复杂材料和表面处理的容差&bull 定义、沟通和确保符合标准和测量程序&bull 向后兼容爱色丽MA68、MA94、MA96和MA98设备,可确保顺利过渡并保留历史数据MA-T12色差仪执行远程质量控制 &bull 在所有生产阶段使用相同的设备,确保可重复性和再现性&bull 通过快速测量样品并与品牌规格比较,加快生产审批为复杂材料创建数字化工作流程 MA-T12可以连接两种不同的软件解决方案,使客户能够进入更加数据驱动和可持续的工作流程,以用于测量和管理 复杂材料。其中,工业设计师、产品工程师和材料供应商可使用MA-T12和Pantora Appearance软件在产品开发期间 可视化色彩和外观,而供应链合作伙伴则可使用MA-T12和EFX QC软件来确保它们满足客户期望。使用PANTORA可视化3D色彩和外观,尽可能减少实体原型 &bull Pantora色彩与外观软件是一种桌面应用程序,专为简化复杂色彩和外观数据的管理而设计&bull 准确捕获实体材料的色彩和外观特征,并对其进行数字化转换&bull 在用于展示色彩和外观的PLM软件中渲染逼真的3D模型,从而在概念阶段展现产品设计并尽可能减少审批期间的 实体原型&bull 在桌面上虚拟对比样品并远程审批复杂的材料和表面处理&bull 创建全面的数字材料库,实现在世界任何地点轻松共享和访问关键产品外观信息,确保更加准确的色彩并减少运 输样品的需求使用EFX QC满足客户标准 &bull EFX QC是一种专为管理复杂材料和特效表面而设计的质量 控制软件&bull 快速验证颜色和外观是否符合客户期望,确保实现设计意图&bull 通过确保每个人都按照相同的标准工作,消除色彩不符合预 期导致的停机时间和昂贵的成本浪费&bull 使用EFX QC可视化工具监测实时性能,并提供操作指导来排 查超出容差的产品问题“爱色丽彩通 ”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 升级MEMS制造:从概念到批量生产
    作者:David Haynes博士,泛林集团客户支持事业部战略营销高级总监长期以来,电脑、手机以及一些汽车应用一直是推动半导体器件增长的动力。这些传统市场的发展也在加速催化对各种相关新应用的需求,包括人工智能(AI)、虚拟现实(VR)、增强现实(AR)、机器人技术、医疗传感器以及更先进的汽车电子产品,而以上各种应用的发展又刺激了对各类半导体的需求,包括逻辑芯片、控制IC、图像传感器以及MEMS组件。电脑、手机或汽车应用都需要各种类型的传感器(例如图像传感器和/或MEMS传感器)来感知周边环境并提供客户需要的核心功能。在这种情况下,近年来传感器的需求呈现出强劲的两位数增长,这对于成熟市场来说颇为不易。2018年,MEMS和传感器在整个IC市场的占比超过了10%。根据法国市场调研公司Yole Développement的《2020年MEMS行业报告》,到2025年,MEMS器件的出货量预计将从2019年的240多亿翻倍至500多亿。机遇与挑战并存传感器,尤其是MEMS器件的市场机遇也面临着制造方面的挑战,具体包括:晶圆尺寸过渡:目前图像传感器制造使用的是300mm晶圆,而MEMS器件的制造将在不久的将来从小直径晶圆转移至300mm晶圆。所有晶圆制造厂都面临边缘不连续性的问题,而这个问题在晶圆尺寸提升至300mm后会更难解决。加工:MEMS和逻辑CMOS的晶圆加工是完全不同的。在加工MEMS晶圆时,器件制造商可能需要用到双面抛光晶圆、带薄膜的空腔晶圆、需特殊传动的临时键合晶圆、单晶圆清洗、结构释放刻蚀和斜面工程技术。深度反应离子刻蚀(DRIE):MEMS器件生产需要降低斜率、更好的关键尺寸和深度均匀性以及其他与集成和覆盖相关的半关键刻蚀工艺。另外,对未来的MEMS制造来说,提升分辨率和生产率也非常重要。等离子体增强化学气相沉积(PECVD)的特殊要求:MEMS制造对沉积过程中的应力控制有极高的要求并可能需要低温加工技术。压电材料:有越来越多的压电材料被用来实现MEMS器件的功能。但对于制造设备来说,这些材料属于具有独特特性和制造要求的新物质。钼(Mo)和铂(Pt)等电极材料可用于避免在压电层极化过程中产生不均匀的电场。晶圆尺寸的影响:任何刻蚀都要面临边缘不连续性以及由其导致的边缘反应物、钝化和鞘层梯度(图1)。图1:300mm逻辑、存储器和MEMS制造商都面临边缘的不连续性问题。腔室和晶圆之间的温度差会导致温度的不连续性,这种不连续性又会导致钝化梯度。材料(或化学)的不连续性和反应物梯度会导致化学物质吸附速率出现差异。除温度梯度以外,晶圆边缘反应物消耗量和副产物排放速率的变化也会导致吸附速率发生变化。在晶圆的边缘,从偏置表面到接地或悬浮表面的变化也会导致等离子体壳层弯曲并进而改变离子相对于晶圆的运动轨迹。任何晶圆的刻蚀都涉及边缘不连续性,而且随着晶圆尺寸提升至300mm,这些问题对良率的影响会更为显著。对300mm晶圆来说,外层8mm边缘的表面积占比可达10%左右,即使是外层2mm边缘也几乎占据晶圆表面积的3%,依然具有不可忽视的影响。升级MEMS制造的策略针对MEMS器件制造领域的挑战,泛林集团采用了三管齐下的升级策略:利用先进技术升级MEMS加工能力,例如深硅刻蚀(DSiE)、PECVD和光刻胶去除技术。用各种手段解决客户的高价值挑战,包括投资材料科学研究、减少开发时间、延长设备的生命周期以及更顺利地实现晶圆设备从200mm到300mm的过渡。提供工具助力客户进行MEMS开发和工艺优化。泛林研发的很多创新技术现在正被广泛用于解决MEMS制造面临的问题。举例来说,泛林的变压器耦合等离子体(TCP)技术能在整个晶圆表面实现出色的等离子体均匀性,而我们的变压器耦合和电容调谐线圈能创建多个均匀高功率密度晶圆区域。泛林还能提供针对300mm晶圆开发但同样适用于200mm MEMS制造的领先设备技术。例如,我们的DSiE™ G深度反应离子刻蚀(DRIE)设备就是结合了泛林的深硅刻蚀技术以及300mm先进设备——用于硅通孔刻蚀的Syndion和用于导体刻蚀的Kiyo系列——所具备的特性。泛林在其他设备上也采用相同的策略,使用经过现场验证的升级手段来提升机台的性能。举例来说,用于Express处理程序的VECTOR PECVD(用于300mm晶圆的先进电介质沉积设备)在经过针对200mm工艺的调整后已经能够满足MEMS的制造要求。VECTOR现在使用的增强型原子氟源能为工艺腔室提供更高浓度的自由基,由此提升效率并缩短腔室清洁时间。专为VECTOR研发、用于减少缺陷的套件也为之带来众多改进,包括增强的负载锁定气流、LTM阻尼器、伺服冷却功能、基座传动装置、自动晶圆对中(AWC)等。类似地,原本已经很成熟的SP203L单晶圆清洗系统也通过泛林最新的控制系统软件得到了升级。基于协作的工艺优化在通过设备改进提升晶圆相关性能的同时,晶圆厂也必须优化其工艺流程以提高可靠性、产量和良率。新流程的开发可能需要经历多个“构建和测试”周期,因此其时间和金钱成本会比较高。得益于对Coventor的收购,泛林在器件设计、工艺建模(包括“虚拟制造”)和新式虚拟计量技术方面开始有所建树,能够避免上述的多周期现象并提高解决方案的交付速度(图2)。图2:使用器件建模和虚拟制造平台的反馈可以实现工艺优化以改善MEMS的制造和设计基于MEMS+或CoventorWare(包含CoventorMP MEMS设计平台)的MEMS器件设计可以作为工艺优化(参见图2)的第一步。上述设计过程的第一步是输入材料特性和工艺描述。然后通过导入MEMS布局或根据MEMS+组件库的参数元素进行组合即可创建器件模型。MEMS+用户可以通过组合高级有限元或特定于MEMS的基本构成要素实现完整的设计。创建器件模型后即可将其导入MEMS+执行仿真试验。随后可将MEMS设计的降阶模型导入MathWorks或Cadence环境执行系统或电路仿真试验。前述所有形式的模型都可以用3D展示。MEMS+3D模型还可以被转移至CoventorWare。CoventorWare使用专门的预处理器,并设有针对MEMS器件优化的网格划分选项。该工具包含一套适用于各种MEMS物理建模的现场解决工具,其中涵盖了世界一流的耦合机电、静电、压电、压阻和阻尼效应。它还支持封装效果分析,具体实现方法包括直接模拟封装和基板的热机械行为,或使用第三方FEA工具将基底形变导入MEMS+器件模型。上述步骤完成后可以用SEMulator3D在MEMS设计上执行虚拟制造和工艺建模。SEMulator3D可基于一系列单元加工步骤创建虚拟3D半导体器件模型。通过使用集成了工艺流程的完整模型,SEMulator3D可以预测工艺变更对下游过程的影响,因而晶圆厂无须再进行“构建和测试”。虚拟制造技术可用于运行数字化实验设计(DoE)生成虚拟计量数据,并针对设计给出反馈。泛林设备的实际工艺处理结果数据可以导入虚拟过程模型用于校准模型、优化工艺开发和缩短寻找“配方”所需的时间。成功的方向我们可以通过一项高级MEMS陀螺仪研究案例来展现工艺优化的概念。MEMS陀螺仪的结构很复杂,任何工艺缺陷(例如沟槽侧壁角度和轮廓误差)都会导致交叉耦合和器件故障。音叉陀螺仪的驱动件和传感模块应完全正交。工艺缺陷通常会导致驱动件发生偏离设计意图的振动,而这种振动正是导致正交误差(QR)的一大原因。在过去,陀螺仪可以容许微小的倾斜(约0.1度),但如今的高级陀螺仪可以容许的误差则要小得多。良率高低的差异可能就是由于沟槽设计中微小的斜率误差或其他不理想因素。然而,使用传统的SEM计量技术又难以精确测量这种极其微小的斜率。在这种情况下,要想保证性能,就必须制造出完整的器件进行测试,并基于测试结果进行工艺开发,而这整个过程要循环多次才能推断出真正满足要求的刻蚀工艺。很明显,上述开发过程非常适合用虚拟模型处理。通过将斜率纳入虚拟模型可以精准确定斜率变化带来的各种影响,包括对器件性能的影响。此外还可以根据测得的性能数据对虚拟模型进行校准以及通过仿真测试确定斜率。使用这一技术可以缩短制造工艺的开发时间并提高良率。上述概念已被实际应用于开发一款高级MEMS陀螺仪并成功提高了良率(图3)。图3:在实际应用中通过工艺优化将良率损失从35%降低到了不足1%。良率在优化前和优化后的巨大变化(从大约65%提升到99%)部分是由于能够建模并了解斜率对器件性能的影响。通过设计一种新的计量技术来更准确地测量测试晶圆的斜率也可以达到同样的效果。综上,通过综合利用虚拟模型、创新的计量技术以及泛林的工艺和硬件开发能力可以有效缩短工艺开发周期并提升良率。MEMS的美好未来随着消费品、汽车和物联网应用持续推升对MEMS器件的需求,半导体行业将需要更多基于200mm晶圆的生产能力,而与其配套的ASIC则依赖制程在28nm以上的300mm晶圆生产能力。泛林集团开发的各种先进工具可以解决200mm和300mm晶圆生产领域的各种制造难题,并提供统一且高产的MEMS制造解决方案。结合泛林的领先技术和Coventor的建模技术,再加上我们与代工厂和研究机构的合作经验,泛林的产品和服务将持续加快提供解决方案的速度,并由此缩短全新MEMS产品的上市时间。
  • 市场监管总局批准启用激光小角度副基准装置
    近日,市场监管总局批准启用由北京航天计量测试技术研究所和中国航空工业集团公司北京长城计量测试技术研究所分别研制建立的两项“激光小角度副基准装置”。 激光小角度副基准装置是国家平面角基准的重要组成之一,可复现和保存平面角单位,并作为激光小角度基准装置的备份,可为激光小角度测量仪、自准直仪、光学角规等小角度器件进行量值传递,满足航空航天用激光陀螺、精密机床用高精密导轨、芯片制造用光刻机等高精尖领域的小角度量值计量需求,对航空航天、高端装备制造、精密光学器件、集成电路等领域高质量发展发挥基础性作用。 北京航天计量测试技术研究所建立的激光小角度基准装置突破了400mm超精密殷钢正弦臂、大口径空心角隅棱镜研制瓶颈,以及双频激光干涉差动测角等关键技术,实现了0.001"超高精度角度测量分辨力,相当于地球上的观察者能够看清400公里外空间站上宇航员手中的铅笔芯。中国航空工业集团公司北京长城计量测试技术研究所建立的激光小角度副基准装置实现了超高分辨力小角度量值复现,具有微小角度的测量能力,其分辨力近似一个圆周的1亿3千万分之一对应的角度量值,准确度可以达到0.03″,相当于一根100公里长的圆棒,一端抬高15毫米对应的角度量值。 当前,我国测量仪器产业正在高速向国际领先水平发展,激光小角度副基准装置的建立有助于解决当前面临的大量小角度精密测量和准确度评价问题,将为我国小角度测量技术的发展提供有力的计量支撑,并推动高精度大范围自准直仪、激光小角度测量仪等高端测量仪器加速实现国产化。
  • 汽车颜色光泽的检测方法—便携式多角度分光色差仪
    随着时间的推移,人们对汽车的期望已经远远超越了仅仅是一台能够代步的交通工具。现代消费者关注的焦点,已经从最初的动力、稳定性和安全性逐渐转移到了汽车的外饰和内饰。他们希望所拥有的汽车在外观上独一无二,内部装饰富有特色,这无疑为汽车制造商提出了更高的挑战。汽车的外观颜色、光泽、以及内部的材质和颜色选择都已经成为决定消费者购买意愿的重要因素。不同的颜色和材质不仅代表着车主的个性和审美,也是汽车品牌形象和定位的体现。然而,如何确保每一款车的颜色和材质都能达到设计师的预期,并且在大规模生产中保持一致性,却是一大技术难题。当然,伴随着科技的发达,解决汽车内饰和外饰的色彩问题也有了解决方案,MA-T12便携式多角度分光光度仪成为解决这一问题的关键性工具。一、为什么说MA-T12便携式多角度分光光度仪能解决汽车外观内饰问题?首先,MA-T12便携式多角度分光光度仪是一款多角度色差仪,它可以同时测量汽车的外饰和内饰,确保车身颜色与内部装饰的和谐统一,这意味着从车身到座椅,从仪表盘到车顶,每一个部分都可以得到精确的颜色和光泽度测量。其次,MA-T12在色彩闪烁度和颗粒度的测量上具有超高的精确性,其重复性和重现性效能均是市场上其他设备的两倍。更为重要的是,它可以通过12个测量角度对特效饰面进行全面的特性表征和测量,测量结果更接近人眼的感知方式。二、MA-T12便携式多角度分光光度仪的性能描述MA-T12便携式多角度分光光度仪有着诸多性能,例如:①色彩闪烁度和颗粒度精确性:MA-T12的色彩闪烁度和颗粒度测量功能展现了其卓越的精确性。相比市场上其他设备,MA-T12的测量结果在重复性和重现性方面均达到了市场上其他设备的两倍水平。这使得MA-T12成为了一个可靠的工具,为制造商提供了精确测量和评估汽车色彩特性的能力。②完整表征和测量:MA-T12通过其12种测量角度,能够对特效饰面进行全面的表征和测量。这项功能使得设计师能够更准确地分析和理解色彩在不同角度下的变化,从而更好地控制和优化汽车外观的视觉效果。③接近人眼感知:MA-T12的测量结果更接近人眼感知颜色的方式,从而在设计和审批过程中能够更加直观地展示色彩特性。这项特性有助于简化审批流程,加快产品上市进程。④直观界面:MA-T12的直观界面大大降低了用户的学习难度,提高了测量效率。操作简便的界面使得用户能够快速上手,轻松完成色彩测量任务。⑤自动内部校准:设备内部的自动校准功能降低了因设备校准不足而导致测量不准确的风险。这有助于减少对外部校准的需求,为用户节省了时间和成本。⑥数据兼容性:MA-T12与爱色丽早期型号的设备兼容性良好,确保了平稳过渡,用户不会丢失旧有的数据。这为用户升级到新型号提供了更大的便利。⑦数字方式交流:MA-T12使得供应链上的色彩、闪烁度和颗粒度能够以数字方式交流。这有助于制定全球容差和测量程序,提高持续一致性,从而确保不同批次的产品具有相似的色彩特性。⑧监控色彩和谐:实时监控供应链上的色彩和谐是提高运营效率的重要手段之一。MA-T12能够帮助用户快速发现并调整不符合标准的产品,从而确保生产流程的顺畅进行。⑨视觉工具:新的视觉工具为用户提供了快速分析和解析不符合标准的产品的能力。这有助于用户更好地理解问题所在,并采取相应措施进行改进。三、MA-T12与PANTORA配套使用当MA-T12与PANTORA配套使用时,工业设计师可以在概念和设计期间使用手持式设备将复杂的材料表面数字化,从而准确捕获其色彩与外观特征,并将其渲染在PLM软件中。供应链则可以利用同一设备来确保其生产的产品处于容差范围内,且最终检验可以使用该设备来测量和捕获装配成品或车辆的所有外观。PANTORA材质软件专为简化大量复杂色彩和外观数据的管理而设计。它可作为外观工作流程的中枢,将数字材料输入源连接到第三方3D渲染软件和产品生命周期管理(PLM)系统等输出目标。消费者对汽车外饰和内饰的要求日益提高,如何在大规模生产中确保颜色和材质的一致性成为了汽车制造商面临的一大挑战。而MA-T12便携式多角度分光光度仪,无疑为他们提供了一个高效而精准的解决方案。四、关于爱色丽xrite“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。  iWatch将成传感器大热催化剂  据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。  据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。  Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。  针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。  除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。  iPhone 6或搭载气压计及  传感器装置  据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。  据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。  业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。  此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。  上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。  此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。  5000亿市场引角逐  应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。  而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。  另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。  具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
  • 北航重大科研仪器设备研制专项获批
    1月14日,由北京航空航天大学仪器光电学院院长房建成教授作为项目负责人的基金委国家重大科研仪器设备研制专项“基于原子自旋效应的超高灵敏磁场与惯性测量实验研究装置”项目启动会在我校召开。基金委副主任孙家广院士、综合计划局郑永和副局长及谢焕瑛副处长、信息学部秦玉文常务副主任、张兆田副主任、综合处吴国政主管、三处王成红处长、四处何杰处长和潘庆主管、工业和信息化部科技司技术创新处王锐、王乃东主管等领导出席会议,该项目专家组成员南京大学吴培亨院士、中科院理化所许祖彦院士、中科院半导体所李树深院士、清华大学李春文教授、中科院国家授时中心张首刚研究员等莅临启动会。会议由基金委信息学部秦玉文常务副主任主持,项目依托单位北航校长怀进鹏院士致欢迎词,感谢基金委以及工信部对该项目给予的支持、指导和帮助,指出学校将给项目的顺利实施全力提供保障。我校张军副校长、基础研究院领导以及参研单位的代表70余人也参加了本次启动会。  该项目由北京航空航天大学牵头,山西大学、华东师大以及中科院化学所、物理所和系统所等五家单位参加,五年内研制一套基于原子自旋效应的超高灵敏磁场与惯性测量实验研究装置,包含以下三个核心单元:基于原子自旋SERF效应的超高灵敏磁场测量单元和惯性测量单元以及结构限域介质材料与内嵌原子操控惯性测量单元,并达到目前国际最高水平的磁场和惯性测量灵敏度。该装置将用于原子自旋极化的精密操控、原子自旋进动的高精度检测等新原理新方法的实验研究,还可用于研究物质的极弱磁性,以及作为超高灵敏磁场测量的计量基准,同时将支撑超高灵敏SERF原子自旋陀螺仪和原子自旋磁强计的研制。该项目的实施将对推动我国超高灵敏磁场、惯性测量的科学研究和技术发展具有重要意义。  会上,房建成教授介绍了项目研究的必要性、拟解决的关键科学问题、主要研究内容、关键技术、实施方案以及项目的组织实施和管理模式等。其它参研单位就各自承担课题的研究内容、实施方案等作了详细汇报。与会领导和专家充分肯定了该项目研究的重要性以及各参研单位优势互补、高效合理的组织管理模式,并就仪器研制工作以及项目实施过程中可能遇到的困难展开了深入的交流与讨论,为下一步项目的顺利实施和组织管理提出了很好的建议。
  • 东曹发布东曹TOSOH多角度光散射检测器(HPLC/UHPLC系统兼容)新品
    仪器简介:东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。LenS3是一款具有突破性创新技术的多角度光散射检测器,它结合了MALS和小角光散射LALS检测器的所有优点,舍弃了传统的流通池设计,采用扩展流路,通过10°(LALS)、90°(RALS)和170°(HALS)这三个固定角度来执行MALS和LALS分析。LenS3多角度光散射检测器采用了505 nm绿色激光,比传统的660 nm红色激光的散射强度高约3倍。相对于传统的流通池,LenS3的光路设计极大地提高了灵敏度,与溶质分子的相互作用更加充分,散射光收集机制的效率更高,噪音更低。另外,LenS3使用了角不对称图的全新计算方法来测量Rg,这种创新性的计算方法的优势是,提高了信噪比,能够测量到更小的分子尺寸和Rg(Rg<10nm)。LenS3多角度光散射检测器搭配SECviewTM软件,与东曹EcoSEC GPC系统配合使用时,SECview不仅能够控制GPC系统/硬件,还能够采集多通道数据及执行数据处理和分析。因此,SECview是一款功能强大的软件平台,可为目前最新的高端GPC/SEC仪器提供一站式整体解决方案。 技术参数:测量角度:3个角度测量角度的位置:LALS(10°) RALS(90°) HALS(170°)激光光源类型:二极管激光波长:505 nmMW范围:<200-107 DaRg范围:<2 nm- >50 nm尺寸:36.5(W)×48.5(D)×13(H)cm重量:16 kg创新点:LenS3是东曹生命科学推出的首台激光光散射检测器。其创新点如下:1)采用了创新的光路设计,可以在10° 、90° 和170° 三个固定角度进行光散射测量。2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。东曹TOSOH多角度光散射检测器(HPLC/UHPLC系统兼容)
  • 盘点!二氧化碳有哪些测量方法标准?
    (1)国家标准 《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由气象部门提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。 《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由气象部门提出,规定了本底大气二氧化碳浓度气相色谱在线观测方法。 《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中二氧化碳的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。 《固定污染源排气汇总颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)由环境保护部门提出,规定了使用奥氏气体分析仪法测定固定污染源排气中二氧化碳的方法,其原理为用不同的吸收液分别对排气中的二氧化碳进行吸收,根据吸收前、后排气体积的变化,计算出该成分在排气中所占的体积分数。(2)行业标准 《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法》(QX/T 429-2018)是气象行业标准,除规定了利用离轴积分腔输出光谱法观测二氧化碳方法外,还对观测系统、安装要求、检漏与测试要求、运行和维护要求、溯源及数据处理要求等做了规定,适用于温室气体二氧化碳离轴积分腔输出光谱法的在线观测和资料处理分析。 《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是国家环境保护标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。 《环境空气 无机有害气体的应急监测 便携式傅里叶红外仪法》(HJ 920-2017)是国家环境保护标准,规定了测定环境空气中无机有害气体的便携式傅里叶红外仪法,为定性半定量方法,适用于环境空气中二氧化碳的现场应急监测,以及筛选、普查等先期调查工作,方法检出限1mg/m3,测定下限4mg/m3。 《沼气中甲烷和二氧化碳的测定 气相色谱法》(NY/T 1700-2009)是农业行业标准,规定了沼气中二氧化碳的气相色谱实验方法,适用于沼气中二氧化碳的测定。 《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。 《工作场所空气有毒物质测定 第37部分 一氧化碳和二氧化碳》(GBZ/T 300.37-2017)为国家职业卫生标准,规定了工作场所空气中二氧化碳的不分光红外线气体分析仪法,适用于工作场所空气中二氧化碳浓度的检测,方法检出限为0.001%。 综上,我国气象、生态环境、农业、职业卫生及石化工业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法及奥氏气体分析仪法等。这些方法根据原理、采样方式、样品基质及特性不同,适用于各类应用场景。 其中农业、职业卫生及石化工业的二氧化碳测量方法主要是为了解决产品组分、职业防护等特定领域问题,从温室气体测量角度出发,在环境大气方面,气象部门提出了较为完善的测量方法体系,以离轴积分腔输出光谱法(GB/T 34286-2017和QX/T 429-2018)和气相色谱法(GB/T 31705-2015)为主,生态环境部门提出的便携式傅里叶红外仪法(HJ920-2017)仅适用于应急监测;在污染源废气方面,生态环境部门提出了非分散红外法(HJ870-2017),而奥氏气体分析仪法(GB/T 16157-1996),由于测试精度以及现场工作便利性的原因,在实际工作中应用不多。 在温室气体(二氧化碳)测量领域,与环境大气二氧化碳测量方法体系相比,污染源废气仅有一个手工测量方法,无在线监测技术规范,而“碳源监测”是实现碳中和的重要保障。国际上对于温室气体排放测算有“排放因子法”与“直接测量法”两种方法,直接测量法在精确度上优势较为明显,也是排放因子法中“排放因子”的基础来源。下一步,可以现有方法标准为依托,进一步优化完善方法体系,构建二氧化碳以及其他温室气体源、汇观测网络,为碳达峰、碳中和提供有效测量支撑与保障。
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 爱色丽支持光学可变防伪油墨标准制定及油墨色彩测量仪器
    防伪油墨作为一种防伪产品的基材,已经广泛应用于国家有价证券、证件证书、普通印刷品和商品包装等领域,其应用范围非常广泛。为了进一步规范防伪油墨的生产、使用及检测,保障国门安全、社会金融安全和产品监督管理的稳定性,爱色丽全力支持将于2023年12月实施的【光学可变防伪油墨】国家标准。这一标准的实施对于保障生产厂商、使用厂商和消费大众的合法权益,维护国家的安全和稳定,具有重要意义。爱色丽的参与和支持,旨在提升产品质量的稳定性和可控性,使得防伪油墨在多领域的应用更加规范和安全。一、测量参数光学可变防伪油墨通过光学原理,使印样随观察角度不同而呈现不同颜色。这一特定材料制作的油墨需要通过以下几个参数来进行测量和评估:外观色:使用单角度色差仪测量颜色差异。同角最大反射波长:标准和样品在波峰位置的匹配度。同角色差:标准和样品分别在30°和90°观察角度的颜色差异值。异角色差:同一试样在30°和90°观察角度的颜色差异值。二、防伪油墨标准制定具体方案参数:外观色试验步骤:1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,分别取标样1份,试样3份。3. 按GB/T19437-2004中4.1的规定进行仪器校准,检测标样色值,包括亮度L、绿色到红色的分量a、蓝色到黄色的分量b,作为颜色标准。在试样中选取避免透印干扰的测量点进行测量,得到ΔE,测量3次取平均值。测量设备:eXact系列色差仪。eXact系列色差仪是印刷和包装应用中用于测量色彩数据的行业标杆。其作为45:0便携式分光测色仪具有简单的用户界面和直观的触摸屏显示,因此是繁忙印刷车间的理想印刷机工具。通过无线操作以及不受限制的校准、规格和数据捕获,操作人员可以在车间内的任意地方使用eXact来测量和存储数据,无需电源。由于存储位于设备上,因此可以快速访问作业预设置和色彩库。参数:技术指标和耐性指标指标要求:- 技术指标:达到油墨的基本要求。- 耐性指标:符合各种耐受测试性能。测量参数:光谱和DE*。试验步骤(以耐性试验为例):1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,抽取4份样品,其中1份作为标样,3份作为试样。3. 将试样和GB/T730-2008规定的1级蓝色羊毛标样用黑色板纸衬白色书写纸各遮盖一半,放入日晒仪中,根据所使用的日晒仪要求确定环境温度和环境相对湿度,进行暴晒。当1级蓝色羊毛标样的变化程度相当于GB/T250-2008中“评定变色用灰色样卡”的3级时停止暴晒,取出试样放入暗处30分钟后,使用多角度分光光度计,测量试样30°、90°观察角度下的色值L、a、b,与标样30°、90°观察角度下的色值进行对比,记录试样ΔE1、ΔE2及异角色差,计算3份试样平均值,记录试验结果。测量设备:MAT系列多角度色差仪。爱色丽MA-T系列多角度色差仪包含6、12个测量角度,而且该色差仪价格实惠,是一款适用于特殊效果涂料的汽车测色仪,兼具彩色成像和多角度测量,体现完整色彩、光亮和粗糙特性。EFX QC是爱色丽MA-T系列汽车测色仪中附带的一个软件包,基于云计算的软件简化了各个分布式供应链交流容差和测量的过程。新的可视化工具支持实时性能监控,并为故障排除提供可行性建议,从而减少浪费和返工。通过严格的检测和标准化流程,光学可变防伪油墨将更好地服务于各类防伪需求。爱色丽将继续在这一领域发挥重要作用,为维护国家和社会的安全与稳定贡献力量。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 120万!清华大学高精度光谱椭偏仪采购项目
    项目编号:清设招第2022344号项目名称:清华大学高精度光谱椭偏仪采购项目预算金额:120.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高精度光谱椭偏仪1套是设备用途介绍:拟采购的椭偏仪设备将应用于测量各类薄膜的膜厚及光学参数(n,k),对特殊结构的材料具有光学性能分析能力。简要技术指标:Psi和Delta精确度测量:直射测量空气(Psi = 45° Delta = 0°),满足:Ψ≤45°±0.02°,Δ≤0°±0.02°(1.5-5eV);光谱范围覆盖190– 2000nm;入射角:自动量角器,角度可从40°到90°变化,最小步进为0.02°。合同履行期限:合同签订后7个月内交货本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制