当前位置: 仪器信息网 > 行业主题 > >

二极管测试仪原理

仪器信息网二极管测试仪原理专题为您提供2024年最新二极管测试仪原理价格报价、厂家品牌的相关信息, 包括二极管测试仪原理参数、型号等,不管是国产,还是进口品牌的二极管测试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二极管测试仪原理相关的耗材配件、试剂标物,还有二极管测试仪原理相关的最新资讯、资料,以及二极管测试仪原理相关的解决方案。

二极管测试仪原理相关的论坛

  • 二极管阵列检测器原理

    最近领导说要买二极管阵列检测器,我只是听说,没有见过,不知什么原理,二极管个数对仪器是否重要?

  • 电子基础知识简介——晶体二极管

    电子基础知识简介——晶体二极管

    电子基础知识简介——晶体二极管知识全解 普通晶体二极管的基础知识 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。一、二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。普通二极管实物图http://ng1.17img.cn/bbsfiles/images/2012/12/201212230001_414505_1841897_3.jpg大功率二极管实物图http://ng1.17img.cn/bbsfiles/images/2012/12/201212230002_414506_1841897_3.jpg可参考一个PPT课件,有一点电子基础的话,可能更好理解一些。

  • 【分享】光电二极管和硅光二极管的应用

    各位大虾: 我看见有些紫外可见分光光度计用的检测器是光电二极管或硅光二极管,它们之间各自的特点是什么,各有什么优点?谁更好一些?现在用得比较多的是哪一个检测器? 谢谢您的回答.请参照:http://www.instrument.com.cn/bbs/shtml/20071107/1050063/

  • 【原创】关于二极管阵列检测器波长问题

    我知道:紫外-可见光(UV-VIS)检测器 原理: 基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  二极管阵列检测器(diode-array detector, DAD): 以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器.它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检测。二极管阵列检测器可以获得全波长的样品信息,而且可以根据吸收光谱辅助定性。但相对来说,专门的紫外检测器灵敏度能高一些。二极管阵列检测器是检测的全波长,但是我做的产品需要打印特定波长下的谱图。现在我只会一个一个在离线下改波长。但我听说lc solution是可以在一开始做样前改方法的,不知道怎么弄,希望前辈能指点!谢谢!

  • 电子仪器仪表中的二极管结构

    在众多工业中,好多电子仪器仪表中,原先模拟电路已经淘汰,都采用了电子线路,众多电子元器中,二极管、三极管等十分广泛使用。比如说,智能数字显示表、智能氧化锆氧分析仪等,都采用数字线路。下边简要说明下,二极管的结构。晶体二极管的管芯是一个PN结,在管芯两侧的半导体上分别引出电极引线,其正极由P区引出,负极由N区引出,用管壳封装后就制成二极管。常用的晶体二极管是用硅或诸等半导体材料制成的,目前我过已系列化生产的硅二极管有2CP、2CZ、2CK等系列。二极管分为点接触型和面接触型。

  • 万用表在晶体二极管检测中的应用

    晶体二极管是由一个PN结构成的具有单向导电性质的器件,它在正向导通时呈低阻,这个电阻称为晶体管的正向电阻,在反向偏置时呈高阻,这个电阻称为晶体管的反向电阻。总之,晶体二极管性能的好坏,依据单向导电性的测量来做简单的判断。 http://www.realchip.net/images/upload/Image/37d3d539b6003af3d2349ab2342ac65c1138b652.jpg 一、万用表在晶体二极管检测中的应用 1、普通二极管的检测 将万用表拨到电阻档的R*100或R*1K,将万用表的红、黑表笔分别接在二极管两端,若测得电阻比较小(几千欧以下),再将红、黑表笔对调后连接在二极管两端,而测得的电阻比较大(几百千欧),说明二极管具有单向导电性,质量良好。 如果测得二极管的正、反向电阻都很小,甚至为零,表示管子内部已短路;如果测得二极管的正反向电阻都很大,则表示管子内部已断路。 2、稳压二极管的检测 将万用表置于R*1K档,测量其正向电阻时,万用表的黑表笔接稳压二极管的正极,红表笔接稳压二极管的负极;测反向电阻时,两表笔的接法正好相反。一般正向电阻为几千欧到几十千欧,反向电阻为几百千欧以上。 3、发光二极管的检测 将万用表置于R*10k档,若测得的正向电阻在30KΩ之内,同时可以看到发光二极管的管芯有一个亮点,反向电阻值大于几百千欧,则表明被测发光二极管性能正常。二、检测二极管时应注意以下事项: 1、由于各电阻量程档的测试电流不尽相同,量程档越小,测试电流越大;反之,量程档越大,测试电流越小。为了被测元器件安全,必须正确选择合适的量程档。如果用万用表的小量程电阻档去测量小功率的元器件时,元器件会流过大电流,如果该电流超过了元器件所允许通过的电流,元器件可能会烧毁。另外,在大量程档,万用表内部电池电压较高,在测量耐压较低的元器件时,万用表不宜放置在大量程的电阻档上。 2、晶体二极管是非线性元器件,在用不同电阻档测同一只晶体二极管时,所测出的电阻值会有差异,这是由于各电阻档的测试电流不相同造成的,属于正常现象。

  • 【分享】肖特基二极管和快恢复二极管有什么区别

    快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(0.5-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns(纳秒)以下。   肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--1.0V)、反向恢复时间很短(2-10ns纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒!  前者的优点还有低功耗,大电流,超高速!电特性当然都是二极管!快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.  肖特基二极管:反向耐压值较低(一般小于150V),通态压降0.3-0.6V,小于10nS的反向恢复时间。它是有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。   快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件.   快恢复二极管FRD(Fast Recovery Diode)是近年来问世的新型半导体器件,具有开关特性好,反向恢复时间短、正向电流大、体积小、安装简便等优点。超快恢复二极管SRD(Superfast Recovery Diode),则是在快恢复二极管基础上发展而成的,其反向恢复时间trr值已接近于肖特基二极管的指标。它们可广泛用于[url=http://www.midiqi.com/Shop/Product.asp?ClassId=27][color=#0000ff]开关电源[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=32975][color=#0000ff]电源模块V-60[/color][/url] 、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管,是极有发展前途的电力、电子半导体器件。 1.性能特点 1)反向恢复时间 反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。它是衡量高频续流及[url=http://www.midiqi.com/Shop/Product.asp?ClassId=38][color=#0000ff]整流器[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=4862][color=#0000ff]硅整流[/color][/url] 件性能的重要技术指标。反向恢复电流的波形如图1所示。IF为正向电流,IRM为最大反向恢复电流。Irr为反向恢复电流,通常规定Irr=0.1IRM。当t≤t0时,正向电流I=IF。当t>t0时,由于整流器件上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。然后整流器件上流过反向电流IR,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM值。此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。从t2到t3的反向恢复过程与电容器放电过程有相似之处。2)快恢复、超快恢复二极管的结构特点 快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受 很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。 20A以下的快恢复及超快恢复二极管大多采用TO-220封装形式。从内部结构看,可分成单管、对管(亦称双管)两种。对管内部包含两只快恢复二极管,根据两只二极管接法的不同,又有共阴对管、共阳对管之分。图2(a)是C 20-04型快恢复二极管(单管)的外形及内部结构。(b)图和(c)图分别是C92-02型(共阴对管)、MUR1680A型(共阳对管)超快恢复二极管的外形与构造。它们均采用TO-220塑料封装,主要技术指标见表1。 几十安的快恢复二极管一般采用TO-3P金属壳封装。更大容量(几百安~几千安)的管子则采用螺栓型或平板型封装形式。 2.检测方法 1)测量反向恢复时间 测量电路如图3。由直流电流源供规定的IF,脉冲[url=http://www.midiqi.com/Shop/Product.asp?ClassId=456][color=#0000ff]发生器[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=48158][color=#0000ff]SP1641B/1642B发生器[/color][/url] 经过隔直电容器C加脉冲信号,利用电子[url=http://www.midiqi.com/Shop/Product.asp?ClassId=293][color=#0000ff]示波器[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=18771][color=#0000ff]示波表190[/color][/url] 观察到的trr值,即是从I=0的时刻到IR=Irr时刻所经历的时间。 设器件内部的反向恢电荷为Qrr,有关系式trr≈2Qrr/IRM由式(5.3.1)可知,当IRM 为一定时,反向恢复电荷愈小,反向恢复时间就愈短。 2)常规检测方法 在业余条件下,利用[url=http://www.midiqi.com/Shop/Product.asp?ClassId=277][color=#0000ff]万用表[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=17373][color=#0000ff]绝缘万用表UT531[/color][/url] 能检测快恢复、超快恢复二极管的单向导电性,以及内部有无开路、短路故障,并能测出正向导通压降。若配以[url=http://www.midiqi.com/Shop/Product.asp?ClassId=283][color=#0000ff]兆欧表[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=14870][color=#0000ff]指针式兆欧表MIS-4A[/color][/url] ,还能测量反向击穿电压。实例:测量一只超快恢复二极管,其主要参数为:trr=35ns,IF=5A,IFSM=50A,VRM=700V。将万用表拨至R×1档,读出正向电阻为6.4Ω,n′=19.5格;反向电阻则为无穷大。进一步求得VF=0.03V/格×19.5=0.585V。证明管子是好的。 注意事项: 1)有些单管,共三个引脚,中间的为空脚,一般在出厂时剪掉,但也有不剪的。 2)若对管中有一只管子损坏,则可作为单管使用。 3)测正向导通压降时,必须使用R×1档。若用R×1k档,因测试电流太小,远低于管子的正常工作电流,故测出的VF值将明显偏低。在上面例子中,如果选择R×1k档测量,正向电阻就等于2.2kΩ,此时n′=9格。由此计算出的VF值仅0.27V,远低于正常值(0.6V)。更多技术论文请详见:[url=http://www.midiqi.com/][color=#810081]买电器网[/color][/url](MIDIQI.COM) [url=http://www.midiqi.com/Knowledge/Index.asp][color=#810081]知识库[/color][/url]

  • 岛津二极管阵列检测器

    各位前辈们,有没有人知道 岛津二极管检测器的相关资料(原理、结构、作用......)http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 【参数解读】解析液相色谱二极管阵列检测器技术指标

    【参数解读】解析液相色谱二极管阵列检测器技术指标

    二极管阵列检测器参数解读二极管阵列检测器 即光电二级阵列管检测器又称光电二极管列阵检测器或光电二极管矩阵检测器,表示为PDA(photo-diode array)、PDAD(photo-diode array detector)或(Diode array detector,DAD)是20世纪80年代出现的一种光学多通道检测器。在晶体硅上紧密排列一系列光电二极管,每一个二极管相当于一个单色器的出口狭缝,二极管越多分辨率越高,一般是一个二极管对应接受光谱上一个纳米谱带宽的单色光。此外,还有的商家称之为多通道快速紫外-可见光检测器(multichannel rapid scanning UV-VIS detector),三维检测器(three dimensional detector)等。光电二极管阵列检测器目前已在高效液相色谱分析中大量使用,一般认为是液相色谱最有发展、最好的检测器。工作原理结构图:http://ng1.17img.cn/bbsfiles/images/2013/03/201303051617_428518_1608710_3.jpg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆列举部分仪器的个别参数,供参考:波长范围:190 nm ~ 950 nm; 光源:氘灯和钨灯; 二极管数量:1024个或512个光电二极管阵列; 波长准确度:± 1nm (D2峰);光谱分辨率:1.2nm (固定)噪音:10 X 10-6AU ,254nm漂移:1X10-3 AU/hr ,254nm狭缝带宽:1-16 nm 可调; 采集速率:80HZ; 流通池:标准:体积15.5μL,光程10mm,压力1000psi;半微量:体积6μL,光程5mm,压力1000psi;微量:体积2μL,光程2mm,压力1000psi.〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1、你觉得哪些参数是这个仪器的心脏?2、光源有些厂家的检测器只有氘灯,而有些是两个灯,为什么?3、二极管数量会影响仪器性能么?4、采集速率、狭缝带宽、波长准确度这几个参数是否能显示仪器竞争优势?5、你的流通池都是什么规格的?6、仪器检定的时候都测哪几个参数?如何测?7、你对厂家的检测器噪声和漂移两个参数是如何理解和认识的?8、你的色谱工作站对检测器的控制和操作是否快捷方便?有哪些优势和缺点?比如峰纯度测试、匹配、数据的提取等等欢迎大家参与讨论,说说自己的认识或者提出自己的疑问!!!

  • 【分享】LED发光二极管的基础知识详解

    一、LED基础知识 LED 是取自 Light Emitting Diode 三个字的缩写,中文译为“发光二极管”,顾名思义发光二极管是一种可以将电能转化为光能的电子器件具有二极管的特性。目前不同的发光二极管可以发出从红外到蓝间不同波长的光线,目前发出紫色乃至紫外光的发光二极管也已经诞生。除此之外还有在蓝光LED上涂上荧光粉,将蓝光转化成白光的白光LED。  LED的色彩与工艺: 制造LED的材料不同,可以产生具有不同能量的光子,借此可以控制LED所发出光的波长,也就是光谱或颜色。历史上第一个LED所使用的材料是砷(As) 化镓(Ga) ,其正向PN结压降(VF,可以理解为点亮或工作电压)为1.424V,发出的光线为红外光谱。另一种常用的LED材料为磷(P)化镓(Ga),其正向 PN结压降为2.261V,发出的光线为绿光。  基于这两种材料,早期 LED工业运用GaAs1-xPx材枓结构,理论上可以生产从红外光一直到绿光范围内任何波长的LED,下标X代表磷元素取代砷元素的百分比。一般通过 PN结压降可以确定LED的波长颜色。其中典型的有GaAs0.6P0.4 的红光 LED,GaAs0.35P0.65 的橙光LED,GaAs0.14P0.86 的黃光 LED等。由于制造采用了鎵、砷、磷三种元素,所以俗称这些LED为三元素发光管。而GaN(氮化镓)的蓝光 LED 、GaP 的绿光 LED和GaAs红外光LED,被称为二元素发光管。而目前最新的工艺是用混合铝(Al)、钙(Ca) 、铟(In)和氮(N)四种元素的AlGaInN 的四元素材料制造的四元素LED,可以涵盖所有可见光以及部份紫外光的光谱范围。  LED发光强度: 发光强度的衡量单位有照度单位(勒克司Lux)、光通量单位(流明Lumen)、发光强度单位(烛光 Candle power).  1CD(烛光)指完全辐射的物体,在白金凝固点温度下,每六十分之一平方厘米面积的发光强度。(以前指直径为2.2厘米,质量为75.5克的鲸油烛,每小时燃烧7.78克,火焰高度为4.5厘米,沿水平方向的发光强度)  1L(流明)指1 CD烛光照射在距离为1厘米,面积为1平方厘米的平面上的光通量。  1Lux(勒克司)指1L的光通量均匀地分布在1平方米面积上的照度。  一般主动发光体采用发光强度单位烛光CD,如白炽灯、LED等;反射或穿透型的物体采用光通量单位流明L,如LCD投影机等;而照度单位勒克司Lux,一般用于摄影等领域。三种衡量单位在数值上是等效的,但需要从不同的角度去理解。比如:如果说一部LCD投影机的亮度(光通量)为1600流明,其投影到全反射屏幕的尺寸为60英寸(1平方米),则其照度为1600勒克司,假设其出光口距光源1厘米,出光口面积为1平方厘米,则出光口的发光强度为 1600CD。而真正的LCD投影机由于光传播的损耗、反射或透光膜的损耗和光线分布不均匀,亮度将大打折扣,一般有50%的效率就很好了。  实际使用中,光强计算常常采用比较容易测绘的数据单位或变向使用。对于LED测试仪显示屏这种主动发光体一般采用CD/平方米作为发光强度单位,并配合观察角度为辅助参数,其等效于屏体表面的照度单位勒克司;将此数值与屏体有效显示面积相乘,得到整个屏体的在最佳视角上的发光强度,假设屏体中每个像素的发光强度在相应空间内恒定,则此数值可被认为也是整个屏体的光通量。一般室外LED显示屏须达到4000CD/平方米以上的亮度才可在日光下有比较理想的显示效果。普通室内LED,最大亮度在700~2000 CD/平方米左右。

  • 每周一贴谈设计——光电二极管阵列检测器

    每周一贴谈设计——光电二极管阵列检测器

    每周一贴谈设计——光电二极管阵列检测器二极管阵列检测器有多种名称,可表示为PDA(photo-diode array)、PDAD(photo-diode array detector)或(Diode array detector,DAD),是液相色谱最有发展、最好的检测器。其主要工作原理如下:复色光通过样品池被组分选择性吸收后再进入单色器,照射在二极管阵列装置上,使每个纳米波长的光强度转变为相应的电信号强度,即获得组分的吸收光谱,从而获得特定组分的结构信息,有助于未知组分或复杂组分的结构确定。至于每个厂家如何实现,接下来进入主题。首先讲Waters。Waters推出的光电二极管检测器光路如下图所示:http://ng1.17img.cn/bbsfiles/images/2013/05/201305142225_440058_2352217_3.jpg氘灯产生的光首先被M1向流通池反射聚焦(M1为一个椭圆形镜面)。在M1和流通池之间有一个分光镜(Beam Splitter)将一部分光反射到参比二极管上,另一部分光路不变。经过流通池后再经M2反射聚焦,经过狭缝和光闸,到达光栅,经全息光栅衍射后被光电二极管阵列(512根,190nm-800nm波长范围)检测。接下来是AGILENT G1315的光路:http://ng1.17img.cn/bbsfiles/images/2013/05/201305142225_440059_2352217_3.png首先钨灯产生的光经耦合透镜聚焦,经过氘灯上一个预留的孔(故此氘灯有别于G1314上使用的)与氘灯的光轴重合。重合后的光经过一片透镜和一组消色差透镜后,再经过一片透镜,流通池,光谱透镜,和狭缝到达光栅,经全息光栅衍射后由光电二极管阵列(1024根,190nm-950nm波长范围)检测。看完这两种设计以后,我能感受到的第一个感觉是AGILENT用了好多的透镜啊!我们可以来看看各个透镜的用处。首先耦合透镜,这是一个聚焦的透镜,作用是将可见光聚焦到氘灯的光轴上。然后是一组消色差透镜。消色差透镜的作用其实是用于修正不同波长的光经透镜聚焦后导致的色差。光谱透镜就是为了将经流通池的光聚焦以增强光能量。还有一些平面透镜,这些大多仅仅是用于隔开各个腔室的。而Waters设计中只有两枚反射镜(球面、聚焦)和一枚分光镜。第二点是参比。可以看到Waters的设计中参比是有一个独立的参比二极管进行能量采集并反馈调节氘灯电压以控制灯状态的。至于数据中的参比,Waters的解释是“参比光谱是在打开光闸的情况下,在曝光时间指定的间隔期间内测量灯强度和流动相吸光度”,“为得到最佳结果,参比光谱应代表初始流动相”。AGILENT光路中并没有什么独立的参比二极管,而其数据中的参比则来自于参比波长带宽内的平均吸收。第三点是可见光区。其实氘灯本身在可见光区就有能量,只是比较低。至于能否使用,个人认为只要在应用中灵敏度、噪音、漂移等达到要求即可。同时Waters放弃钨灯也让其可以使用这种不同于AGILENT的光路设计。第四点是二极管数量。这么说吧,512根二极管,平均1.2nm每根的分辨率是足够的用的。而1024根二极管,我只能说AGILENT相应配套硬件配置不够,没有发挥其优势。最简单的例子是AGILENT在任意时间提取的光谱图是非常有问题的(不详细分析了,也可能部分与其数据算法有关)。第五点是波长准确性。由于氘灯的发射光谱有特征谱线(656.1nm和486.0nm,此两处较尖锐),故广泛用于紫外检测器中,以便于波长校准。之前有版友讨论说为什么氙气灯不用于紫外检测器,我想,主要就是这个原因吧。其实所谓的校准,真正目的是确定某根二极管对应的波长。然后计算第x根二极管采集的是哪些波长吸光度的平均值。AGILENT中提供了一个验证方法,即氧化钬测试,以验证计算结果与真实结果是否相符。Waters的验证方法则是将本次校准值与上次相比较,并没有额外引入其他的标准谱线。[/si

  • 【讨论】雪崩光电二极管与光电倍增管的放大倍数比较

    近晶参加了某仪器公司的培训,在比较不同公司粒度仪性能的时候,有一项是检测器的比较,某公司说其所用的检测器雪崩式光电二极管比光电倍增管的放大倍数更大,但从我现在的了解和原理上说,还应是光电倍增管的放大倍数要大,哪位帮我解释和比较一下.谢谢!

  • 【原创】整流二极管

    一种将交流电能转变为直流电能的半导体器件(MB95F128)。通常它包含一个PN结,有阳极和阴极两个端子。普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。

  • 光二极管阵列检测器

    光二极管阵列检测器是一种对光子有响应的检测器。它是由硅片上形成的反相偏置的p-n结组成。反向偏置造成了一个耗尽层,使该结的传导性几乎降到了零。当辐射照到n区,就可形成空穴和电子。空穴通过耗尽层到达p区而湮灭,于是电导增加,增加的大小与辐射功率成正比。光二极管阵列检测器每平方毫米含有15000个以上的光二极管。每个二极管都与其邻近的二极管绝缘,它们都联结到一个共同的n型层上。当光二极管阵列表面被电子束扫描时,每个p型柱就连接着被充电到电子束的电位,起一个充电电容器的作用。当光子打到n型表面以后形成空穴,空穴向p区移动并使沿入射辐射光路上的几个电容器放电。然后当电子束再次扫到它们时,又使这些电容器充电。这一充电电流随后被放大作为信号。光二极管阵列可以制成光学多道分析器。

  • 【原创大赛】二极管检测器有优势

    【原创大赛】二极管检测器有优势

    二极管检测器有优势 光电二极管阵列检测器(以下简称二极管检测器)也是紫外检测器的一种,一般也能实现紫外-可见光的检测功能。现在市场上主要还是以紫外检测器为主,二极管检测器还处于青年期,它的应用还不够多。 二极管检测器的一些特点铸就它势必会有很大的发展空间,在分析应用中会占有一席天地。 下面就介绍下二极管检测器相比紫外检测器的一些主要特点和发展前途。 二极管检测器是由一系列光电二极管以不同的组合排列而成,一般有256个的,512个的,1024个的,现在市场上最多的也是1024个的。它采用的是单波长、多波长和全波长检测,功能很多,大家经常采用的是全波长检测。它可实现三维色谱图,实现多波长检测和多通道检测。对于单个物质具有多个可实现的检测波长和某些同分异构体类或检测波长非常接近的物质时,选择最佳的检测波长和实现分离度不好也能非常准确的检测出来就显得非常的有优势。更有优势的是它可在一张色谱图上通过选择不同的波长实现不同的检测结果。比如下面这个样品,实现混合物完全分离非常难,基本分离也是比较难的,如果采用二极管检测器检测,那就容易的多了。http://ng1.17img.cn/bbsfiles/images/2014/10/201410181833_518953_2498430_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410181837_518957_2498430_3.png 二极管检测器发展到现在发展的还不是很成熟,和紫外检测器相比还有一些劣势,比如造价较高,结构较复杂,灵敏度不够高等。 二极管检测器的这些劣势可能是它结构较复杂,造价较高而没被各大厂家重视而没发展起来。随着基础工业、高新工业的发展,我想这些问题会越来越不是问题,最近几年这种检测器的市场占有率就明显多了起来。 希望国内外的各大厂家都能重视二极管检测器的发展,把它的造价减下去,灵敏度搞上来,把它的优势发展的淋漓尽致。另外这种检测器到1024个二极管时,二极管数量越多,性能越强大。那么我们是不是能把二极管的数量再往上增加些呢,比如2048个、4096个等等。 期望二极管检测器能快速发展,能被市场广泛认可。

  • 【求助】二极管阵列(PDA)紫外/可见分光光度仪

    本人计划购买二极管阵列(PDA)紫外/可见分光光度仪,正在调研中。了解了2-3个公司的产品,新科(S-4100)、耶拿(S-600)和安捷伦(8354)的,不知这些公司的产品各有什么优点(优势),其它还有哪些厂家生产。我希望能配上光纤检测器的那种,能直接浸入溶液测试的。望使用过的大侠不吝赐教。

  • 硅光二极管是硅光电池吗?

    看到网上及论坛内不少说这两种是一样的,也有说是不一样的http://bbs.instrument.com.cn/shtml/20071107/1050063/硅光电池(硅光二极管)是一个大面积的光电二极管,它被设计用于把射到它表面的光转化为电能,因此,可用在光电探测器和光通信等领域。特点:当它照射光时会流过大致与光量成正比的光电流. 用途:1.作传感器用时,可广泛用于光量测定和视觉信息,位置信息的测定等. 2.作通信用时,广泛用于红外线遥控之类的光空间通信,光纤通信等. 3.紫蓝硅光电池是用于各种光学仪器,如分光光度计、比色度计、白度计、亮度计、色度计、光功率计、火焰检测器、色彩放大机等的半导体光接收器;紫蓝硅光电池具有光电倍增管,光电管无法比拟的宽光谱响应,它特别适用于工作在300nm-1000nm光谱范围的各种光学仪器对紫蓝光有较高的灵敏度、器件体积小、性能稳定可靠,电路设计简单灵活,是光电管的更新换代产品。目前也有可以使用到190-1100nm的产品,但紫外能量弱一些,光谱带宽不能太小,已经有很多厂家在紫外可见分光光度计上用了。 网上硅光电池是发电的硅光电二极管只要是用光来控制电流 本身几乎不发电另外光电二管管与硅光电二极管有什么区别?

  • MITEQ反射式PIN二极管开关

    [font=Calibri]PIN[font=宋体]二极管开关是最常用的开关二极管,通常由三个引脚组成,其中两个引脚用于控制电流开关,另一个引脚用作电路的接地装置。[/font][font=Calibri]PIN[/font][font=宋体]二极管开关的优点在于其速度快、低阻抗、灵敏度高等优点,可以在高频下快速控制电路,从而使[/font][/font][font=宋体]电源[/font][font=Calibri][font=宋体]电路的响应速度更快。[/font][/font][font=Calibri][font=宋体]反射型[/font]PIN[font=宋体]二极管开关是指具有至少一个反射表面的[/font][font=Calibri]PIN[/font][font=宋体]二极管开关。光学设备中的[/font][/font][url=https://www.leadwaytk.com/article/5271.html]MITEQ[/url][font=Calibri][font=宋体]反射式[/font][font=Calibri]PIN[/font][font=宋体]二极管开关具有转向光路、缩减仪器体积、改变图像的正反关系等等。[/font][/font]

  • 求普及“二极管基础知识”

    X射线管的本质是一个在高电压下工作的二极管。我对电子学相关知识很http://simg.instrument.com.cn/bbs/images/default/em09506.gif无知,因此请大家普及二极管知识。

  • 【分享】二极管阵列检测器应用经验点滴

    二极管阵列检测器可提取某一色谱峰的光谱图、可进行峰纯度检测,在药品日常检验和方法学验证中有广泛应用,这里介绍我所工作中的几个应用实例,供同行参考。 一、用HPLC法测定含量,当结果明显偏高时,进行峰纯度检查非常必要,可提示有无杂质干扰。我所按USP29检测某企业生产的三批“D-氨基葡萄糖硫酸钾盐”含量测定时,发现每批样品均在104.0%~105.0%之间,用二极管阵列检测器进行峰纯度检测,发现峰不纯,提示含有杂质。这一提示使我们进一步研究发现检测原理错误(论文发表在《中国现代应用药学》2008年6月第25卷第3期上)。二、对峰的每一点进行光谱提取,有时可提示有无疑似物。2007年,我们用HPLC法检测“天蚕镇痛片”非法添加双氯芬酸盐的过程中,用平时建立的同时鉴定多种解热镇痛药的HPLC法进行鉴定时,曾经得出不含双氯酚酸盐成分的结论,差一点错失良机。后用峰纯度检测功能对每一个峰进行纯度检测,发现其中3个峰不纯,对这3个峰的每一点进行光谱提取,发现在与双氯酚酸盐保留时间接近的色谱峰的某一较窄区段,其提取光谱基本一致,使我们得出处方中中药成分有较大干扰,导致色谱保留时间与提取光谱图与目标物不符,明确了下一步要把这一峰分开的实验思路,最终成功检出。三、利用提取光谱确定疑似目标物。我们在非标检测中,有时发现色谱图上的某一色谱峰的提取光谱形状与某一化学药品类似,进而用该化学药品的对照品进行比较,往往能减少不必要的筛选实验,加快目标物的确定。不过,这需要平时专业理论和学习经验的积累,同时应注意色谱条件不同可能引起光谱形状的不同。四、峰位置的确定。在HPLC法中,有时碰到几种主成分同时分析,事先需要分别进样确定某一成分峰的位置,当几种成分的峰形状特别是最大吸收波长有较大差别时,可用二极管阵列检测器提取光谱进行确认,不必分别定位。

  • 稳压二极管的玻璃豁免吗?

    很奇怪,我用EPA3050B消解稳压二极管的玻璃,居然铅含量高达25-50%,按ROHS豁免,它该豁免,但我怀疑稳压二极管的玻璃是真正的玻璃吗?EPA3050B消解其他的玻璃不可以,但为什么可以消解稳压二极管的玻璃呢? 高手指点!谢谢

  • 【转帖】二极管阵列检测器应用经验点滴。

    二极管阵列检测器可提取某一色谱峰的光谱图、可进行峰纯度检测,在药品日常检验和方法学验证中有广泛应用,这里介绍我所工作中的几个应用实例,供同行参考。一、用HPLC法测定含量,当结果明显偏高时,进行峰纯度检查非常必要,可提示有无杂质干扰。我所按USP29检测某企业生产的三批“D-氨基葡萄糖硫酸钾盐”含量测定时,发现每批样品均在104.0%~105.0%之间,用二极管阵列检测器进行峰纯度检测,发现峰不纯,提示含有杂质。这一提示使我们进一步研究发现检测原理错误(论文发表在《中国现代应用药学》2008年6月第25卷第3期上)。二、对峰的每一点进行光谱提取,有时可提示有无疑似物。2007年,我们用HPLC法检测“天蚕镇痛片”非法添加双氯芬酸盐的过程中,用平时建立的同时鉴定多种解热镇痛药的HPLC法进行鉴定时,曾经得出不含双氯酚酸盐成分的结论,差一点错失良机。后用峰纯度检测功能对每一个峰进行纯度检测,发现其中3个峰不纯,对这3个峰的每一点进行光谱提取,发现在与双氯酚酸盐保留时间接近的色谱峰的某一较窄区段,其提取光谱基本一致,使我们得出处方中中药成分有较大干扰,导致色谱保留时间与提取光谱图与目标物不符,明确了下一步要把这一峰分开的实验思路,最终成功检出。三、利用提取光谱确定疑似目标物。我们在非标检测中,有时发现色谱图上的某一色谱峰的提取光谱形状与某一化学药品类似,进而用该化学药品的对照品进行比较,往往能减少不必要的筛选实验,加快目标物的确定。不过,这需要平时专业理论和学习经验的积累,同时应注意色谱条件不同可能引起光谱形状的不同。四、峰位置的确定。在HPLC法中,有时碰到几种主成分同时分析,事先需要分别进样确定某一成分峰的位置,当几种成分的峰形状特别是最大吸收波长有较大差别时,可用二极管阵列检测器提取光谱进行确认,不必分别定位。http://www.zjyj.org.cn/jykjdetial.asp?id=706

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制