当前位置: 仪器信息网 > 行业主题 > >

基因毒性杂质检测

仪器信息网基因毒性杂质检测专题为您提供2024年最新基因毒性杂质检测价格报价、厂家品牌的相关信息, 包括基因毒性杂质检测参数、型号等,不管是国产,还是进口品牌的基因毒性杂质检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基因毒性杂质检测相关的耗材配件、试剂标物,还有基因毒性杂质检测相关的最新资讯、资料,以及基因毒性杂质检测相关的解决方案。

基因毒性杂质检测相关的资讯

  • 岛津推出《药品中基因毒性杂质检测整体解决方案》
    药品中的杂质定义为无任何疗效、影响药物纯度且可能引起副作用的物质。其中,基因毒性杂质因其特殊性而倍受关注,其即便在低浓度条件下也有着重大的安全风险,会直接或间接导致人体DNA损伤,从而增加罹患癌症的风险。目前基因毒性列表中有1574种致癌物质,其中苯并芘、甲磺酸酯类、偶氮苯类、N-亚硝胺等物质属于高基因毒性物质。2018年7月份,国内某知名药企主动向监管机构提出基因毒性杂质问题,并发布公告称其公司在对某原料药生产优化评估过程中,发现并检定一未知杂质为基因毒性杂质亚硝基二甲胺(NDMA)。这一事件引发了行业震动,此后,多家制药企业被检测出原料药或者药品中存在NDMA和NDEA,并启动召回。除了缬沙坦外,其它沙坦类药物也成为检查重点。2019年初美国FDA连续发布多条召回,涉及印度、美国多家制药公司。据媒体报道,由于近期大面积召回,目前欧美市场上的缬沙坦制剂产品已经出现了一定程度上的短缺,缬沙坦风波事件也已经对相关公司的业绩产生负面影响。 2004年美国药品研究与制造商协会(PhRMA)发表意见书,引入了两个重要的创新理念:①遗传毒性杂质的五级分类系统,②临床实验材料的分期TTC概念。2006年欧洲药品管理局(EMA)颁布的《基因毒性杂质限度指南》自2007年1月1日起正式实施。该指南是第一个直接针对基因毒性杂质的监管规定,重点关注的是在新药合成、纯化和储存运输过程中,最有可能产生的实际潜在性的基因毒性杂质。2010年9月EMA颁布了《基因毒性杂质限度指南问答》,对《基因毒性杂质限度指南》中的若干问题进行了进一步解答,极大的完善了该指南。2008年12月美国食品与药品监督管理局(FDA)正式签发了《原料药和成品药中遗传毒性和致癌性杂质:推荐方法》,但于2015年5月28日撤回。2015年5月,FDA在内的人用药品注册技术要求国际协调会议(ICH)推出原ICH M7指南《评估和控制药物中的DNA反应性(致突变性)杂质以限制潜在的致癌风险》。这是监管机构和行业一致同意的国际统一指导。 ARBs亚硝胺杂质可接受摄入量(AI)临时限值表 高选择性、高灵敏度的分析仪器是药品中基因毒性杂质检测的首要保证。如岛津公司三重四极杆型气相色谱质谱联用仪GCMS-TQ8050 NX,其MRM采集模式完美解决药品基质复杂问题,2.5μg/L标液NDMA信噪比为55,NDEA信噪比为78,完全满足FDA发布的AI临时限值要求和国家药典委员会发布的限值要求。目前用于痕量物质分析的技术,如气相色谱质谱联用法、液相色谱质谱联用法等等,可以对痕量物质进行快速定性、定量分析,为药品中基因毒性杂质检测提供可靠依据。 岛津公司作为全球著名的分析仪器厂商,长期以来一直关注国内外各行业相关标准法规的颁布与实施,积极应对,及时提供全面、有效的整体解决方案。为了应对制药行业相关用户对基因毒性杂质检测的需求,岛津公司推出了《药品中基因毒性杂质检测整体解决方案》,汇编了药品中磺酸酯类、亚硝胺类、残留溶剂类等基因毒性杂质检测的应用报告。
  • ICH M7(R2)落地,再说说基因毒性杂质检测
    基因毒性杂质检测ICH M7笔者查询ICH官网,发现从2023年4月3日起ICH M7(R2)指导原则进入了“Step 5”,即实施阶段(Implementation)。基因毒性杂质,简称基毒杂质,即遗传毒性杂质。自从ARB类降压药缬沙坦中发现基毒杂质NDMA以来,N亚硝胺杂质引发了各国药品监管机构、制药企业、药物研发机构、CXO等的重点关注。NDMA结构ICH M7全称“Assessment and control of DNA reactive(mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk”,其关注的对象:在较低水平时也有可能直接引起DNA 损伤,导致DNA 突变,可能引发癌症的DNA 反应性物质,即致突变杂质。M7指导原则为基毒杂质的鉴别(Identification)、分类(Categorization)、界定(Qualification)和控制(Control)提供了实用框架。这次是M7指导原则的第二次修订,即M7(R2),整体框架和主要内容没有变化,仅在以下方面有所调整:&bull 本次修订将M7分为两个相关联的文件,第一份文件是指导原则主体,第二份文件是关联的附件。&bull 在指导原则附录3,新增了7个化合物的可接受摄入量(AI)或每日允许暴露量(PDE),并在附件(Addendum)中增加了这7个化合物的各论。&bull 调整了致突变杂质的危害性评估和控制策略的部分要求和问题回答。比如:“潜在致突变性”等同“潜在遗传毒性”么?答:不等同,潜在遗传毒性是指潜在的致突变性、潜在的致染色体断裂性或潜在的致多倍体性。明确M7指导原则关注致突变性。更多问答,请见M7(R2) Q&As文件。&bull 由于临床治疗技术的进步,M7(R2)中将HIV患者的生存期从1-10年修改为>10年。&bull 其他,如语法编辑和格式化等。药品中常见的基毒杂质有:N亚硝胺类、磺酸酯类、叠氮类等。不同于普通杂质检测,基毒杂质的检测面临更多的挑战:1、基毒杂质杂质种类,差异大,需要多种分析手段和方法;2、基毒杂质含量低,需要高灵敏度仪器(包括预处理方法);3、对仪器的定性定量准确性和重现性要求高;4、要求仪器维护方便和交叉污染低。药品中基毒杂质,可能来源于原料药本身(如雷尼替丁等),辅料(如二甲双胍缓释制剂),原料药和制剂生产过程使用的溶剂(如缬沙坦等),以及包材(如橡胶材料可能引入亚硝胺杂质)、生产工艺、存储过程等。基于以上的认识,岛津参考权威机构要求,如国家药监局相关文件要求、EP 2.5.42、USP 1469等,为制药和药检客户提供先进的分析仪器和解决方案,分享检测经验。并为此精心制作了《亚硝胺分析UFMS解决方案》等检测方案,涵盖沙坦类药物、雷尼替丁、“神药”二甲双胍和生产使用的溶剂等,供客户参考使用。除了亚硝胺之外,磺酸酯类、叠氮类也是关注对象,岛津推荐HS+GC-MS检测磺酸酯类,LC-MS/MS检测叠氮类。岛津可提供覆盖法规要求的各类分析仪器,供药品CMC和检验检测的客户使用。本文内容非商业广告,仅供专业人士参考。
  • 【安捷伦】方法目录免费下载 | 应对基因毒性杂质,我们有妙招!
    基因毒性杂质,又称遗传毒性杂质,是指能直接或间接损伤细胞 DNA,产生致突变和致癌作用的物质。其主要来源有:- 原料药合成过程中的起始物料、中间体、试剂、反应副产物;- 药物在合成、储存或者制剂过程中的降解产物;- 部分药物通过激活正常细胞而产生基因毒性物质,如化疗药物顺铂等。有关基因毒性杂质的英文文献报道出现于 2006 年。近年来,对于药物研发而言,基因毒性杂质已经不再是新闻:从沙坦类药物中的叠氮化物、亚硝胺类化合物,到美罗培南中的 318BP、M9、S5,再到阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等,人们对于特定药物品种中基因毒性杂质的研究不断深入。同时,随着 EMA,FDA 及 CFDA 对于原料药和制剂中的基因毒性杂质监管和控制法规的不断强化,目前对于基因毒性杂质的评估要求无疑正在朝着更为严格的趋势发展。安捷伦作为药物杂质分析领域全面解决方案的领导者,可提供涵盖液相、气相、液质、气质、色谱柱与方案包、计算机认证与合规软件在内的完整基因毒性杂质检测技术。在当前市场背景和法规驱动下,继 2018 年发布《安捷伦基因毒性杂质检测解决方案》后,我们持续对市场动态和用户需求以及法规升级保持高度关注,并针对常见药物基因毒性杂质分析方法进行了系统的更新与梳理,适时推出《安捷伦基因毒性杂质检测简报》。简报对于常见的基因毒性杂质类型如卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、氨基甲酸乙酯、肼类及其他近二十几类典型基因毒性杂质的分析进行了系统的方法开发,并对方案特点进行了客观详细的说明和总结,对于从事相关研究的用户来说,将是非常有助益的研究工具。访问 www.agilent.com/zh-cn/technology/yaodian,阅读安捷伦药典系列文章。[本文转自“安捷伦视界”公众号,作者为安捷伦 MKT 和 SDT 团队]关注“安捷伦视界”公众号,获取更多资讯。
  • 热门话题探讨:基因毒性杂质分析策略
    热门话题探讨:基因毒性杂质分析策略欢迎参加网上在线讲座 内容简介:杂质分析是药物研发、报批、QA/QC等环节均十分重要的工作。基因毒性杂质相对于常规杂质而言,其特点是在很低浓度时即可造成人体遗传物质的损伤,进而导致基因突变并可能促使肿瘤发生。本次讲座将立足有机质谱平台(含GCMS和LCMS),介绍安捷伦在基因毒性杂质分析方面的多种应对策略。 主讲人介绍:张政祥,应用工程师 会议时间:2016年1月12日(星期二)北京时间10:00-11:00 am 点击链接进行注册,参加此次讨论http://www.antpedia.com/webinar/86976.html
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 蓄能|2020版药典系列-当新版药典遇上基因毒性杂质
    药品中的杂质被定义为无任何疗效、影响药物纯度且可能引起副作用的物质。对药物杂质的分析与控制是国内外药品生产企业共同关注的话题。 2020版药典二部“化学药”在安全性方面要求:进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;四部通则增修订内容(第四批)中新增《遗传毒性杂质控制指导原则审核稿》。 近年来,一系列基因毒性杂质风波事件加之国内外法规的严格规定,此类杂质的风险评估和分析检测到了紧迫的位置。基因毒性杂质分析面临的挑战是什么呢? 01 样品基质复杂,需要合适的前处理方法进行分离,纯化,富集;02 杂质结构多样和差异大,含量很低,选择性要求高,需要多种分析手段和高灵敏度的分析方法。那么如何应对新版药典及分析挑战?针对缬沙坦及雷尼替丁事件的罪魁祸首--N-亚硝基二甲胺(NDMA),小编给您推荐以下几种方法。一 Q Exactive™ 高分辨质谱方法利用Q Exactive静电场轨道阱高分辨质谱保持高分辨的情况下不损失定量灵敏度的特点,运用PRM(平行反应监测)及SIM(选择离子监测)同时扫描来实现定量;再根据Q Exactive能够实现快速正负切换的特点,方法采用正负切换进行扫描,从而达到一针同时分析6个基因毒性杂质。从混标样品特征图谱可以看出:NDEA标准溶液2ng/mL连续进样7针,峰面积RSD值为1.51%,方法稳定性极好。此外,Q Exactive提供精确质量数可以有效的避免假阳性或者假阴性,特别是检定结果在检出限附近时。并且高分辨质谱具有未知物定性能力,可以一机多用,满足未来的拓展应用需求。 二 TSQ Fortis LC-MS/MS方法该方法稳定灵敏,在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,从下图中可以看出建立的方法灵敏、快速和稳定,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。混标样品特征图谱三ISQ7000气质联用仪+TriPlus500 方法采用ISQ 7000气质联用仪,结合新一代TriPlus 500顶空自动进样器方法。连续6针进样0.050μg/mL标准样品的结果,NDMA和NDEA的RSD分别为2.38%和2.14%;远优于一般方法学要求的5%的要求。0.050μg/mL亚硝胺标准溶液连续进样色谱图叠加四 TSQ 9000气质联用仪+液体直接进样本方案采用赛默飞AEI源配置的TSQ 9000气质联用仪+液体直接进样法,建立了一种选择性强,灵敏度高的检测十二种亚硝胺的方法。验证结果表明该方法线性良好,重复性好,灵敏度高,在5 ng/mL浓度下,各亚硝胺类化合物的信噪比均远大于10,连续6针进样十二种亚硝胺标准样品的RSD均小于5%,满足FDA的要求,可将其应用于制药领域中痕量亚硝胺的控制。 T-SRM模式下十二种亚硝胺以及两种内标的重叠谱图是否意犹未尽?接下来,赛默飞将继续开展“2020版药典系列”系列讨论,与您一起蓄能,迎接史上“最严”药典标准,助您从容应对药典变化。
  • 药品中基因毒性杂质的痕量分析,非得用MS吗?
    目前对于药品中含有的极少量物质(如基因毒性杂质等),在对其进行痕量分析时,通常采用的检测手段是:利用先进的液质联用(如LC-MS或LC-MS/MS等)、气质联用(如GC-MS或GC-MS/MS等)设备,对其微量物质进行检测时所需液相色谱系统可能为更高级的超高效液相色谱仪。如检测药物中含有亚硝胺类基因毒性杂质NDMA,根据不同原料药的性质不同,目前国际上公布的方法主要有:GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,HPLC-UV法(EDQM公布)。国内官fang公布的方法主要有GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,如中国药典2015年版二部推荐使用GC-MS法(详见《缬沙坦》原料中N-ya硝基二甲胺的含量测定方法),不推荐使用HPLC-UV法,因为HPLC-UV法灵敏度比质谱仪的灵敏度差很多,而且专属性差些,容易受到检测干扰,故HPLC-UV法具有很大的局限性,只能准确测定那些含量相对较高的物质。然而现有检测技术中:● 质谱仪价格昂贵,运行成本高,所需的试剂要求高,抗干扰能力差,维护保养费用很高,同时对质谱仪操作人员的水平要求非常高,需要高层次的人才方能准确操控。故质谱仪普及率非常低,一般企业较少购置,对于需要使用质谱仪进行痕量分析时只能委托特定的机构使用质谱仪进行检测。● 气相色谱/质谱法操作过程繁琐,经过前处理后样品损失严重。● 高效液相色谱仪价格便宜,操作容易,覆盖面广,一般企业均很常见。但是单纯使用HPLC-UV法进行检测含量极少的物质时,其灵敏度差,不能准确定量检测出复杂原料药中含量极低的物质,且检测过程中目标化合物所受干扰亦较大,目标化合物与其它杂峰之间的分离难度较大。在缺少质谱仪的情况下,中国药企如何走出杂质痕量检测的困境呢? /Father's day/ 基于以上痕量检测的难点,没有质谱仪的帮助,实验人员是否可以通过长期大量的研究,不断尝试各项色谱条件的调试,诸如:流动相试剂的组成、梯度程序设置、柱温、流速的改变等。特别是色谱柱的筛选,如虽然同样都是十八烷基硅烷键合色谱柱,可以尝试不同品牌、不同系列的C18柱,色谱柱间填料的差异会呈现出对样品的不同选择性。另外,色谱柱规格的差异也会带来不同的检测效果,如色谱柱的内径越细灵敏度越高、色谱柱越长柱效越高、填料的粒径越小分离效率越高……光是色谱柱就有多达7项以上的可调节参数。最近就有一家药企尝试走了这样一条路,对尼扎替丁中所含痕量杂质N-ya硝基二甲胺(NDMA)检测方法进行了长期研究,最终探索出一种采用HPLC法测定样品中NDMA的方法,该方法简便快速,且测定结果准确。这就是湖南威特制药股份有限公司。在他们的开发报告中记录到:“我们首先尝试解决了色谱分离的问题,因供试品溶液浓度很大,其他峰对目标物质NDMA的干扰较多,在摸索优化检测方法的过程中,对色谱柱的选择做了大量的工作,既要不被干扰,又要保证峰形正常,且需能够增加该峰的检出能力,最后选择了特定的月旭Ultimate ODS-3 4.0×250mm,3μm色谱柱,且此型号的色谱柱批间差异较小。保证了该方法成功通过了方法学验证,并最终获得了发明专li授权。”湖南威特测试了来自至少4个色谱柱厂家的十几种C18柱,最终月旭Ultimate ODS-3 4.0×250mm,3μm这款柱子展现了其du特的分离和检测特性,4.0mm内径具有更高的灵敏度,3μm粒径也提供了更高的柱效。在这款色谱柱的基础上,客户继续配合优化其他的色谱条件,最终确定了这个简便快捷,且测定结果准确的HPLC方法。艰辛的付出,终于获得了回报。感谢湖南威特为我们示范了超高的液相方法开发水平,展示了不同色谱条件配合玩转色谱柱,为方法开发带来的无限可能!参考文献:一种HPLC法检测尼扎替丁中N-ya硝基二甲胺的方法(专li号:ZL202110045224.4;授权公告日:2023.07.28)附:Ultimate ODS-3色谱柱技术参数
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style="text-indent: 2em "不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。/pp style="text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong相关政策/strong/spanbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "为控制药物中遗传毒性杂质潜在的致癌风险,span style="color: rgb(255, 0, 0) "strong2020版中国药典/strong/span四部通则部分,添加了span style="color: rgb(255, 192, 0) "strong《9306 遗传毒性杂质控制指导原则》/strong/span。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。br//pp style="text-indent: 2em "药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。/pp style="text-align: justify text-indent: 2em "EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》/pp style="text-indent: 2em text-align: justify "对于未知数据的基因毒性杂质,制定了span style="color: rgb(255, 0, 0) "strong相关摄入阈值TCC/strong/span(span style="color: rgb(255, 192, 0) "strongThreshold of Toxicological Concern,毒性物质限量/strong/span),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。span style="color: rgb(255, 0, 0) "strongTTC的限度为1.5 μg/d/strong/span。/pp style="text-indent: 2em text-align: justify margin-top: 20px "span style="color: rgb(0, 112, 192) "strong基因毒性杂质来源与分类/strong/span/pp style="text-indent: 2em text-align: justify margin-top: 10px "基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图)/pp style="text-align: center margin-top: 15px "img style="max-width: 100% max-height: 100% width: 505px height: 423px " src="https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title="种类.jpg" alt="种类.jpg" width="505" height="423"//pp style="text-align: justify text-indent: 2em margin-top: 15px "化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。/pp style="text-align: justify text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong基因毒性作用原理/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong酰基卤化物:/strong/span由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong甲醛:/strong/span高活性致癌物,与DNA发生多种反应。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong卤代脂肪族类:/strong/span毒性取决于卤素的性质、数量和位置以及化合物的分子大小。/pp style="text-align: justify text-indent: 2em "一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。/pp style="text-align: justify text-indent: 2em "二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。/pp style="text-align: justify text-indent: 2em "三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。/pp style="text-align: justify text-indent: 2em "四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong亚硝酸烷基酯亚硝酸酯:/strong/span亚硝酸酯和DNA上的氮发生酯交换反应。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strongα,β-不饱和羰基:/strong/span活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong醌:/strong/span亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong烷基化间接作用试剂:/strong/span单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong肼类:/strong/span该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strongN-亚硝胺化合物:/strong/span一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong芳香胺:/strong/span必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。/pp style="text-align: justify text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong检测方案/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括span style="color: rgb(255, 0, 0) "strongGC、LC、GC-MS和LC-MS法/strong/span等,还有相关的前处理技术包括span style="color: rgb(255, 0, 0) "strong顶空分析法、固相萃取法和衍生化法/strong/span等。下图所示为,不同的基因毒性杂质的检测策略。/pp style="text-align: center "span style="font-size: 14px "strong表1 /strong不同类型杂质的检测方法和前处理办法/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 443px height: 475px " src="https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title="不同杂质的解决方案.png" alt="不同杂质的解决方案.png" width="443" vspace="0" height="475" border="0"//pp style="text-align: center margin-top: 20px "span style="font-size: 14px "strong表2 /strong常用分析方法的特点/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 461px height: 303px " src="https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title="分析方法特点.gif" alt="分析方法特点.gif" width="461" height="303"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 525px height: 428px " src="https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title="决策树.png" alt="决策树.png" width="525" height="428"/br//pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong具体解决方案【附连接】/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:卤代烷)/span/pp style="text-align: justify text-indent: 2em "【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷)br/ Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:N-亚硝基二甲胺,NDMA)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-928363.html#advant" target="_blank"【Thermo】缬沙坦及雷尼替丁/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-924963.html" target="_blank"【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912288.html" target="_blank"【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro/a/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:环氧化物/醚)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-911034.html" target="_blank"【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI/a/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:磺酸类、磺酸酯、氨基酯类)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-871218.html" target="_blank"【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912519.html" target="_blank"【SHIMADZU】维格列汀:GCMS-TQ8050 NX/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-926017.html" target="_blank"【SHIMADZU】酸肌酸钠/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-532949.html" target="_blank"【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-813258.html" target="_blank"【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法/abr//pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:4-硝基卞醇)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912413.html" target="_blank"【Thermo】 TSQ 8000 Evo+Unknown Screening 插件/abr//pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:氯苯胺)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-822564.html" target="_self"【SHIMADZU】/aspan style="color: rgb(255, 0, 0) "br//span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:丁酸氯甲酯和2,3-二氯苯甲醛)/spanbr//pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-910495.html" target="_blank"【SHIMADZU】丁酸氯维地平/a/ppbr//pp(文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).)/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 151px height: 46px " src="https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title="箭头分割线.gif" alt="箭头分割线.gif" width="151" height="46"//pp style="text-align: center"a href="https://www.instrument.com.cn/zt/chemmed-impurity" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title="w640h110impurity.jpg" alt="w640h110impurity.jpg"//a/ppspan style="color: rgb(255, 0, 0) "strong span style="color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击span style="background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) "图片/span进入以上专题~/span/strong/span/pp style="text-align: center margin-top: 10px "a href="https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target="_blank"img style="max-width: 100% max-height: 100% width: 640px height: 110px " src="https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title="2020 banner.jpg" alt="2020 banner.jpg" width="640" vspace="0" height="110" border="0"//a/pp strong2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】/strongspan style="color: rgb(255, 0, 0) "strong/strong/spanbr//p
  • 2020版《中国药典》│遗传毒性杂质检测,您准备好了吗?
    ? 导 读2020版《中国药典》已于今年6月正式发布,并将于12月30日起开始实施。2020版与此前版本的药典相比,有多处重要的增删与修改,四部新增《9306 遗传毒性杂质控制指导原则》为其中之一。该指导原则的出现,为遗传毒性杂质的控制提供了理论依据。据此,药典二部又在十种药物项下规定了对磺酸烷基酯类和N-亚硝胺类遗传毒性杂质的监控要求。如何建立遗传毒性杂质的监控能力成为一些制药企业与检测机构必须完成的挑战,需尽早做好相应准备。 什么是遗传毒性杂质,新版药典为什么要加入这些内容,具体都有哪些规定呢?让小编为你一一解读。 新版药典遗传毒性杂质内容的解读 根据新版药典的定义,遗传毒性杂质(genotoxic impurities)是指能引起遗传毒性的杂质,包括致突变性杂质和其他类型的无致突变性杂质。其主要来源于原料药或制剂的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。 新版药典之所以要增加遗传毒性杂质的内容是为了加强国际标准协调,参考了人用药品注册技术要求国际协调会(ICH)相关指导原则。 药典四部新增《9306 遗传毒性杂质控制指导原则》,用于指导药物遗传毒性杂质的危害评估、分类和限制规定,以控制药物中遗传毒性杂质潜在的致癌风险,为药品标准制修订,上市药品安全性再评估提供参考。 药典二部有10种药物明确指出在必要时,应采用适宜的分析方法对产品进行分析,以确认相关遗传毒性杂质的含量符合我国药品监管部门相关指导原则或ICH M7指导原则的要求。这10种药物关于遗传毒性杂质的规定列表如下: 为了更好的推进磺酸烷基酯及N-亚硝胺的检测方法,岛津根据相关标准开发了多种检测方案。 岛津解决方案之磺酸烷基酯篇 磺酸烷基酯磺酸烷基酯一般是在磺酸盐类药物生产过程中产生的,2007年6月国际制药巨头罗氏制药公司在欧盟国家销售的一种抗HIV药物甲磺酸奈非那韦某些批次检出了甲磺酸乙酯,该事件导致此种药物在欧盟市场一度停售,直到罗氏修正了工艺并增加对甲磺酸乙酯的控制,此后多个国家及国际组织均加强了对磺酸烷基酯的监控。 磺酸烷基酯结构,R1为甲基、苯基或甲苯基,R2为烷基 磺酸烷基酯的分类不同的磺酸盐药物中需要检测的磺酸烷基酯的种类是不同的,下表罗列了各种磺酸盐原料药需要检测的磺酸烷基酯的种类。方案1 顶空+色相色谱质谱岛津HS-20+ GC-MS分析系统 岛津顶空自动进样器特点主要有:• 均一稳定的恒温控制技术,卓越的重现性• 加热炉可以位重叠加热,提高分析效率• 混合振荡功能,可使样品快速达到平衡,缩短分析时间 各磺酸烷基酯衍生物SIM色谱图 方法原理:在顶空条件下使用碘化钠将磺酸烷基酯衍生为的碘代烷烃,然后使用气质检测。方法特点:前处理简单,对仪器污染小,但不能同时检测不同类的磺酸烷基酯。 方案2 气相色谱质谱岛津GC-MS分析系统 岛津气质特点主要有:• 高灵敏度抗污染型离子源,良好的稳定性• 强劲大容量真空系统,大幅度缩短质谱开机后的稳定(抽真空)时间• OD Lens双偏转透镜,聚焦目标离子,减低噪音 八种磺酸酯标准品TIC色谱图 方法原理:药品溶于乙酸乙酯后有机滤膜过滤,直接采用气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,基质复杂样品检测效果可能欠佳。 方案3 三重四极杆气相色谱质谱岛津GCMSMS分析系统 GCMSMS NX系列气质还具有以下特点:• ClickTek技术仪器维护更方便• 新一代AFC全惰性流路,提供更高的检测精度• 智能钟、Smart EI/CI 复合源提高实验效率 八种磺酸酯标准品MRM色谱图 方法原理:药品溶于乙酸乙酯,,有机滤膜过滤后使用三重四极杆气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,三重四极杆气相色谱质谱抗干扰能力强可用于复杂基质样品的检测 岛津解决方案之N-亚硝胺篇 N-亚硝胺N-亚硝胺类化合物是一类强致癌有机化合物,它由前体物质硝酸盐、亚硝酸盐和胺类通过化学或生物学途径合成。典型代表化合物有N,N-二甲基亚硝胺(NDMA)、N,N-二乙基亚硝胺(NDEA)。2018年被爆出沙坦类药物中含有遗传毒性杂质NDMA,尤其是缬沙坦和氯沙坦尤为严重。 N-亚硝胺化合物结构 方案1 液相色谱最高130Mpa的高耐压,完美应对各种分析• 高通量自动进样器,实现样品的连续分析• 可配备流动相精灵,诊断精灵以及修复精灵• 最新设计的三维中文色谱软件,符合GMP标准 NDMA和NDEA 均在10min以内出峰,分离度良好,5 ng/mL标准品溶液灵敏度轻松满足ANSM French OMSL法规要求。 方案2 三重四极杆气相色谱质谱下图为6种N-亚硝胺定量限MRM图,峰型完美。应对欧洲药典质量控制要求so easy。 方案3 液相色谱质谱 • UF-Swiching技术:真正意义上实现了正、负离子同时采集;• UF-Scaning技术:扫描速度可达30000u/sec;• UF- Sweeper Ⅲ技术:离子碰撞过程的超低串扰;• UF- Senstivity技术:三重脱溶剂系统,实现超高灵敏度 轻松再现FDA和EDQM法规中规定的NDMA和NDEA检测方法,并使用LabSolutions软件实现了内标法和外标法同时定量。 5.0 ng/mL标准样品MRM色谱图 岛津自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不仅视自己为仪器供应商,而且努力向各个行业的用户分享岛津丰富的专业资源和强大的应用支持。为应对制药行业相关用户对遗传毒性杂质的检测需求,岛津公司开发了基于LC、GCMS、HS-GCMS、GC-MS/MS以及LC-MS/MS等平台的相关药物中遗传毒性杂质的检测方法。岛津分析中心也精心推出《沙坦类药物中遗传毒性杂质检测方案》和《药品中遗传毒性杂质检测整体解决方案》,希望我们的工作对您有所帮助。
  • 新药典观察 | 9306遗传毒性杂质控制指导原则解读
    截图来源:2020版《中国药典》 2020版《中国药典》已正式发布,在四部中新增“9306遗传毒性杂质控制指导原则”(以下简称9306指导原则),以适应当前国外内法规(如ICH M7)和化学药品遗传毒性杂质控制的实际需要。 概述遗传毒性杂质(genotoxic impurities, GTIs),又称基因毒性杂质。9306指导原则主要关注致突变机制的遗传毒性杂质。致突变性杂质(mutagenic impurities)指在较低水平也可直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。遗传毒性杂质和致突变性杂质的关系 9306指导原则包括危害评估方法、可接受摄入量(acceptable intake,AI)计算方法和限值制定方法。 9306指导原则不适用于:生物制品、中药和天然产物、已上市使用的辅料和包材等,但可参考其风险评估方式。 危害评估致突变性杂质的危害评估方法通过监管机构要求、数据库、文献、定量构效关系评估和遗传毒性试验等评估方法,参考ICH M7等相关分类方法,根据致突变和致癌风险危害程度将杂质分为5类。 遗传毒性杂质分类、控制方式和限度依据 可接受摄入量计算对于可接受摄入量的计算方法,有以下几种情况:1、基于化合物特异性风险评估的可接受摄入量适用于已知可接受摄入量或每日允许暴露量(permitted daily exposure,PDE),这几年热点关注的N-二甲基亚硝胺(NDMA),其AI值约为96 ng/d。2、基于毒理学关注阈值的可接受摄入量对于无毒理学研究数据的杂质,可根据毒理学关注阈值(threshold of toxicological concern,TTC)计算可接受摄入量,TTC为1.5μg/d。3、与给药周期相关的和多个致突变杂质的可接受摄入量。 杂质的可接受摄入量(μg/d)限值制定有了上述过程得到的可接受摄入量,就可根据药物的每日最大用量计算杂质限度,公式如下:在药品生产和药品标准提高及上市药品再评估过程中发现潜在遗传毒性杂质后,根据危害评估方法将杂质进行分类,然后计算杂质的可接受摄入量,结合生产工艺、检测方法、临床使用情况等制定合适的限值,也可采用公认的限值。 岛津 解决方案 岛津为药检机构、制药企业、研发机构、CRO/CDMO等提供完善的遗传毒性杂质检测方案,不限于沙坦类药物、替丁类药物、二甲双胍、磺酸盐类药物等。 遗传毒性杂质样本下载
  • GEHC推出高效率筛查药物复合物基因毒性软件
    2005年11月17日华盛顿 DC消息 ——通用电气医疗集团(GE Healthcare)今天在华盛顿 D.C.的IBC生命科学高内涵分析(IBC Life Sciences’High Content Analysis)会议上推出了Micronucleus Formation Module。这种应用于In Cell 1000和In Cell 3000活细胞图像分析测定系统的新软件,可供在药物开发前期节省时间和资源地筛查药物的基因毒性。通用电气医疗集团 Discovery Systems的产品开发副总裁 John Burczak 说道:“这种软件的推广将对药物及其开发过程有很大帮助。该技术能让一些公司在开发工作的前期识别复合物所具有的损害DNA的活力,而不是在药物研发过程结束时再检测这些复合物,从而即节省时间又省钱。”这种微核分析(micronuclei assay)能识别由基因毒性复合物所引起的DNA损伤,并且是美国食品药品管理局(FDA)新药批准过程种最决定性的分析。用这种由FDA所强制规定的手工方法,每种化合物要花费多达两周才能得到分析结果,因此它仅仅用在药物开发较后期的步骤中。当与In Cell 3000活细胞图像分析测定系统一起使用时,该软件能在10 分钟以内完成对一块96孔板微核检测的成像和分析工作。因而让这种关键的基因毒性检测能在复合物的前期步骤中完成,以消除这些具有基因毒性的潜在复合物。Burczak 说道:“Micronucleus 软件使In Cell活细胞图像分析测定系统成为研究工作者准确和高效进行大规模基因毒性筛查最理想的工具。通用电气医疗集团致力于为基于细胞的高内涵药物的筛选和研究工作提高软件分析能力。”
  • 2020药典 |化药杂质检测有大变化:与国际接轨,监管更加严格
    p style="text-indent: 2em text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "化学药品的质量直接关联用药安全。而化药中的杂质是影响药品质量的关键原因。这些检测杂质所应用的仪器在药品质量控制环节中发挥了举足轻重的作用。2020年是新版药典颁布的年份。关于化学药品杂质检测技术有哪些新变化?安捷伦可以提供哪些解决方案呢?仪器信息网邀请安捷伦市场与应用团队来介绍有关化药杂质的相关内容。/span/pp style="text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong/span 2020新版药典中关于化学药品杂质检测技术的内容有哪些新变化?/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong安捷伦市场与应用团队:/strong/span我们注意到2020版药典相对于2015版在化学药品杂质检测这一部分有了较大的程度的修订和增加,总体上来说体现为与国际标准更加接近、更适应行业发展需求以及对于药品安全性的监管更加严格。/pp style="text-align: justify text-indent: 2em "本次涉及到的变动主要体现为以下几方面:/pp style="text-align: justify text-indent: 2em "1.strong《9102药品杂质分析指导原则》/strong的修订:杂质的确定、研究和检查分析增加了参考ICH Q3A、Q3B、Q3D、Q2A、Q2B部分,体现了我国加入ICH之后积极与国际标准接轨的意愿,也为本土药企更好的开拓海外市场奠定基础。另外,确定了原料药和制剂质量标准应包括已鉴定杂质外、未鉴定杂质、非特定杂质以及杂质总量,对整体药品杂质的质量控制非常严格,这同时也要求药企建立完善的杂质全面检测控制方案,保障药品的安全性。/pp style="text-align: justify text-indent: 2em "2.strong《0861 残留溶剂测定法》/strong的修订:主要体现为对药品常见的残留溶剂列表及其限度进行了增加和修改,增加了三乙胺、异丙基苯和甲基异丁基酮及其限度,降低了乙二醇的限度;同时,增加了使用“中等极性色谱柱”时常见有机溶剂在等温法测定时相对于丁酮的保留参考值,充分适应行业发展的趋势。/pp style="text-align: justify text-indent: 2em "3.增加了strong《遗传毒性杂质控制指导原则》/strong:本指导原则弥补了我国药品安全检测指导文件方面的缺失。原则中包含遗传毒性杂质的分类及限度制定方法,以及危害评估方法,包括数据库文献检索评估、(Q)SAR评估以及AMES实验评估等。/pp style="text-align: justify text-indent: 2em "4. 增加了strong《元素杂质限度和测定指导原则》/strong:本原则明确了需要检测的金属元素杂质以及其不同机型允许的元素杂质浓度和每日允许暴露量。是对药物安全检测管理的进一步完善,为行业质控提供了指导意见。/pp style="text-indent: 2em text-align: justify margin-top: 20px "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong/span关于化学药品中杂质的检测项主要有哪些? 对于这些检测项,目前药典中规定的检测方法是什么?/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong安捷伦市场与应用团队:/strong/span药物杂质是活性药物成分(API,原料药)或药物制剂中不希望存在的化学成分。原料药物中的杂质可能源于合成过程或起始物料、中间体、溶剂、催化剂,以及反应副产物等其它来源。在药品开发过程中,杂质可能由于原料药物成分不稳定、与辅料不兼容,或者是与包装材料发生反应而产生。药物中各种杂质的数量将影响最终药品的安全性。因此,杂质的鉴别、定量、定性和控制已成为药物开发过程的关键组成部分。/pp style="text-indent: 2em text-align: justify "span style="background-color: rgb(255, 192, 0) "strong许多监管机构都在关注杂质的控制:/strong/span如国际协调会议(ICH)、美国食品药品管理局(USFDA)、欧盟药管局(EMA)、加拿大药品与健康管理局、日本药物和医疗器械管理局(PMDA),和澳大利亚健康和老龄化的治疗用品部。除此之外,很多官方药典,如英国药典(BP)、美国药典(USP)、日本药典(JP)和欧洲药典(EP)也越来越多地加入了对原料药和药品制剂中杂质限量水平的规定。/pp style="text-align: justify text-indent: 2em "化学药品中杂质的主要检测项为有机杂质、无机(元素)杂质以及残留溶剂如原料药、辅料检测相关项目,基因毒性杂质检测等。span style="color: rgb(255, 0, 0) "药典中描述对于残留溶剂一般采用色谱法,对于其他杂质并未明确规定或建议用那种检测方法。/span目前根据我们国外和国内研发和应用团队的经验总结,大致如下:/pp style="text-align: justify text-indent: 2em "1. span style="color: rgb(0, 112, 192) "strongHPLC/strong/span: 非挥发性杂质分析,安捷伦 1200 Infinity系列,其中1290 Infinity可以进行二维液相分析,对于复杂的难分离的成分有很好的分析作用;/pp style="text-align: justify text-indent: 2em "2.span style="color: rgb(0, 112, 192) "strong LC-MS/strong/span: 对已知杂质的确认和未知杂质初步结构评估的有效分析工具。如安捷伦 6100系列,6500系列Q-TOF,6400三重四级杆系列。/pp style="text-align: justify text-indent: 2em "3.strong span style="color: rgb(0, 112, 192) "GC & GC-MS/span/strong: 试分析大量杂质的首选技术,如卤化物、磺酸盐和环氧化合物。如安捷伦 7690 GC系列等。/pp style="text-align: justify text-indent: 2em "4.span style="color: rgb(0, 112, 192) "strong ICP-OES & ICP-MS/strong:/span 强大的多元素分析技术,用于分析金属杂质。如安捷伦 700系列ICP-OES以及7700系列ICP-MS。/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(255, 0, 0) "对于遗传毒性物质不同的检定限,有以下方法:/span/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 450px height: 309px " src="https://img1.17img.cn/17img/images/202006/uepic/6a57d1be-d421-48b9-a115-275a5a6e3c0e.jpg" title="1-基因毒性药物的检测方案.png" alt="1-基因毒性药物的检测方案.png" width="450" vspace="0" height="309" border="0"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px "(注:主要综合参考目前药典委公布的征求意见稿。)/span/pp style="text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong/span安捷伦在化药杂质检测方面可提供哪些仪器产品和解决方案?/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong安捷伦市场与应用团队:/strong/span安捷伦是生命科学、诊断和应用化学市场领域的领导者,为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。作为能够为医药行业提供最广泛解决方案产品组合的公司之一,从疾病研究和药物发现到药物开发、制造和质量管理,安捷伦的解决方案为医药行业的各个环节提供了精确的分析结果。贯穿整个流程的完整解决方案意味着客户可以让产品更快进入市场,同时确保客户的仪器和流程符合最严格的法规要求。/pp style="text-align: justify text-indent: 2em "ICH 指南将原料药物相关杂质分为三个大类:有机杂质,无机杂质和溶剂残留。安捷伦现有产品线可完美覆盖上述主要的杂质检测需求,例如:/pp style="text-align: justify text-indent: 2em margin-top: 10px "strong1.顶空+气相色谱检测器(FID),顶空+气相色谱检测器和质谱检测器组/strongstrong合。/strong后者可以更好地对溶剂残留相关化合物定性。安捷伦公司最新一代智能化GC产品提供了更加可靠便利的分析平台,顶空自动进样器独特的背压控制技术可精确控制顶空加压和充满定量环压力至0.001 psi,二者合体为化学药物的溶剂残留分析提供完美的解决方案。/pp style="text-align: justify text-indent: 2em margin-top: 15px "strong2.化药无机元素检测仪器方案有:方案一ICP-MS;方案二ICP-OES+GFAAS的组合。/strong/pp style="text-align: justify text-indent: 2em "相比于同类产品,安捷伦ICP-MS的优势在于:/pp style="text-align: justify text-indent: 2em "1)标配耐高盐进样系统,可以耐受各类化药的盐度,包括NaCl注射液直接进样;/pp style="text-align: justify text-indent: 2em "2)可以实现一个碰撞模式完成ChP/USP元素杂质测试要求,方法简单快速,干扰去除彻底;/pp style="text-align: justify text-indent: 2em "3)100%有机溶剂溶解化药直接进样,前处理方法简单,分析稳定。/pp style="text-align: justify text-indent: 2em margin-top: 10px "安捷伦ICP-OES+GFAAS组合的优势在于:/pp style="text-align: justify text-indent: 2em margin-top: 5px "1)全新一代ICP-OES对于化药中限量较低的Pb,Cd等元素具有高灵敏度,可以满足口服类药物全元素分析;/pp style="text-align: justify text-indent: 2em margin-top: 5px "2)安捷伦 GFAAS(石墨炉原子吸收)化药分析具有单个样品分析速度快,分析成本低(石墨炉损坏小),灵敏度高等特点。/pp style="text-align: justify text-indent: 2em margin-top: 15px "3.以目前热门的strong基因毒性杂质检测/strong为例,国内外权威监管部门如中检院、FDA、EMA同时采用安捷伦GCMS与LCMS进行了二甲双胍、沙坦类药物、雷尼替丁等相关基因毒性杂质的检测。/pp style="text-align: justify text-indent: 2em margin-top: 15px "4.此外,strong安捷伦具备完善的信息学、色谱柱与耗材、售后服务与培训支持体系/strong,可帮助用户有效面对复杂的药品杂质分析挑战。/pp style="text-align: justify " /ptable style="border-collapse:collapse " width="648" align="center"tbodytr class="firstRow"td style="border: 1px solid rgb(255, 255, 255) word-break: break-all " width="324" valign="middle" align="center"p style="text-align: center"img style="max-width: 100% max-height: 100% width: 293px height: 414px " src="https://img1.17img.cn/17img/images/202006/uepic/c452a724-363f-4d28-9469-a3353fff1a3c.jpg" title="2A.png" alt="2A.png" width="293" vspace="0" height="414" border="0"//p/tdtd style="border: 1px solid rgb(255, 255, 255) " width="324" valign="middle" align="center"p style="text-align: center"img style="max-width: 100% max-height: 100% width: 293px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/79bebd34-4573-4dae-b0e2-bcf003f09b59.jpg" title="2B.png" alt="2B.png" width="293" vspace="0" height="413" border="0"//p/td/tr/tbody/tablep style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(255, 0, 0) "基于安捷伦GC产品平台和色谱柱等消耗品产线,提供预调试的药物残留溶剂分析仪系统和详实的应用资料可供参考:/span/pp style="text-align: justify text-indent: 2em "1. 5990-7625CHCN 使用安捷伦 7697A 顶空进样器进行 USP 467 溶剂残留的高精度分析!--467--!--467--!--467--!--467--!--467--!--467--!--467--!--467--/pp style="text-align: justify text-indent: 2em "2. 5991-0616CHCN 使用安捷伦特殊设计和测试的针对USP 467 的J& W DB-Select 色谱柱进行溶剂残留分析!--467--!--467--!--467--!--467--!--467--!--467--!--467--!--467--/pp style="text-align: justify text-indent: 2em "3. 5991-1834CHCN 采用配有 安捷伦 7697A 顶空进样器的 安捷伦 7890B 气相色谱仪分析 USP 467 残留溶剂!--467--!--467--!--467--!--467--!--467--!--467--!--467--!--467--/pp style="text-align: justify text-indent: 2em "4. 5991-9029ZHCN 使用 安捷伦 Intuvo 9000 气相色谱系统进行残留溶剂分析/pp style="text-align: center margin-top: 15px "br//ptable style="border-collapse: collapse " data-sort="sortDisabled" align="center"tbodytr class="firstRow"td rowspan="1" colspan="2" style="border-color: rgb(255, 255, 255) border-left-width: 1px border-top-width: 1px word-break: break-all " width="77" valign="middle" align="center"strong[Aglient] Gas Chromagraphybr//strong/td/trtrtd style="border: 1px solid rgb(255, 255, 255) word-break: break-all " rowspan="1" colspan="2" width="578" valign="top"p style="text-align: center"strongimg style="max-width: 100% max-height: 100% width: 518px height: 389px " src="https://img1.17img.cn/17img/images/202006/uepic/14fcdde2-00f1-4c19-90d2-1868efb9d91b.jpg" title="3.jpg" alt="3.jpg" width="518" vspace="0" height="389" border="0"//strong/p/td/trtrtd rowspan="1" colspan="1" style="border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width="266" valign="middle" align="center"a href="https://www.instrument.com.cn/netshow/SH100320/C170097.htm" target="_blank" textvalue="Aglient 7890B气相色谱仪" style="color: rgb(255, 0, 0) font-size: 14px text-decoration: underline "span style="color: rgb(255, 0, 0) font-size: 14px "strongAglient 7890B气相色谱仪/strong/span/aspan style="color: rgb(255, 0, 0) font-size: 14px "strongbr//strong/span/tdtd rowspan="1" colspan="1" style="border-left-color: rgb(255, 255, 255) border-left-width: 1px border-top-color: rgb(255, 255, 255) border-top-width: 1px word-break: break-all " width="296" valign="middle" align="center"a href="https://www.instrument.com.cn/netshow/SH100320/C122881.htm" target="_blank" style="color: rgb(255, 0, 0) font-size: 14px text-decoration: underline "span style="color: rgb(255, 0, 0) font-size: 14px "strongAglient 7697A顶空自动进样器/strong/span/aspan style="color: rgb(255, 0, 0) font-size: 14px "strongbr//strong/span/td/tr/tbody/tablep style="text-align: center"br//pp style="text-indent: 2em "欲了解更多相关信息,请点击进入span style="color: rgb(255, 255, 0) font-size: 18px background-color: rgb(255, 255, 255) "strong /strong/spanspan style="font-size: 18px background-color: rgb(255, 255, 255) color: rgb(0, 112, 192) "strong专题页面《化学药物杂质与检测》/strong/span浏览。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 95px height: 39px " src="https://img1.17img.cn/17img/images/202006/noimg/1779e9c9-3b79-4d88-ab7c-b723c1fbceba.gif" title="箭头分割线.gif" alt="箭头分割线.gif" width="95" height="39"//pp style="text-align: center margin-top: 15px "a href="https://www.instrument.com.cn/zt/chemmed-impurity" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/53e42e2e-6a23-4911-89b4-90bed3d5fc35.jpg" title="w640h110impurity.jpg" alt="w640h110impurity.jpg"//a/p
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP232对元素杂质的限量要求及USP233对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP233规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • CATO药物杂质微信公开课结束!错过的你还有机会,课程干货为你打包奉上!
    药物杂质标准品的选择是一致性评价工作中的重要环节,快速准确地选择合适的标准品可以为一致性评价工作节省很多时间,cato为了提高各大药企研究人员之间相互交流学习,12月21日晚,cato联合丁香园成功举办了一堂药物杂质谱和基因毒性杂质的微信公开课,共吸引了180多位药企人员参加。李雪明博士,cato技术总监,2011年获得中山大学药学院有机化学博士学位,至今已有5年药物研发相关经验,所负责的新药研发项目已成功找到有明确体内生物活性的化合物,正在进行临床前毒理研究。在加入cato之前,李博士曾任职成都先导药物开发有限公司和桂林南药股份有限公司等知名药企,深知药企工作的重点和难点。期间在oragnic letters, chemical communications等学术期刊上发表多篇研究论文,申请国内外专利6项;曾参与863、973、国家自然科学基金等重点项目的研究工作,作为主要参与人员,完成两项国家自然科学基金。 李雪明博士本次演讲主题是「药物杂质谱及基因毒性杂质介绍」,主要为各大在药物一致性评价工作任然处于迷茫的药企人员进行疑问解答。如果你错过了本次精彩的微信公开课,请不用担心,我们为你准备了完整的ppt讲义(关注“cato标准品”关注号直接下载课程讲义),现在就跟随李雪明博士一起开始观看学习吧。课后大家也结合自身情况提出了一些与药物杂质相关的问题。我们在课后选择了一些代表性的问题进行了整理,现分享给大家,相信可以为你带来一些收获。 问题一:毒性杂质问题:除常规的苯胺类,卤代烷烃类,甲磺酸酯类等,比较明显判断为毒性杂质或潜在毒性的结构,有没有其他比较直接(或者说成本较低)的方法确认物质结构是否有潜在毒性,避免遗漏。答:拿到一个结构很难一眼看出是很明确的有基因毒性的杂质,下面是两个查询方法:查询cpdb数据库,利用化合物毒性预测软件。做仿制药项目,最好的方法就是拿原研的产品制剂,原研产品中存在的杂质那一定是没有问题的。问题二:我们在申报药物时碰到的情况,中间体结构是基因毒性警示结构,而该中间体是最终产品结构的一部分,最终产品是通过了各种毒性评价,显示没有基因毒性!该中间体是否还是需要按照基因毒性杂质来控制还是直接按普通杂质来控制?答:问题中提到的杂质属于第四类:具有警示结构、与api有关、基因毒性(突变性)未知的杂质,而且api是明确没有基因毒性的,这类的杂质就按照普通杂质来控制。问题三:有一中间体,从结构看,含有羟基,后续步骤用到甲磺酰氯!因此,可能存在磺酰基类基因毒性问题!但是,该中间体的磺酸酯稳定性不好!在进行气相和质谱~质谱时分解了!因此,要说明很困难!是否能够通过该中间体磺酸酯的溶解性,反应性!(该离最后中间体还有十多步呢),说明该杂质底?还有,在该中间体前使用了甲醇,而我们控制多批次甲磺酸酯在限度以内,上述杂质是否进行这样说明就可以?还有其他办法吗?答:对于高活性物质,特别是在工艺早期引入的,后续的操作一定会把这些高活性物质给消耗掉的,一般通过对工艺的说明就可以了。问题四:大部分药物的起始原料及起始原料的中间体都含有苯胺类似物和硝基苯类似物,这些都是潜在基因毒性,该如何控制,都需要控制吗?答:硝基后面是需要转化的,氢化效率很高会转化为铵,铵后面会再进行缩合。如果是在起始物料中的基因毒性杂质,可以在其转化后一两步反应产物进行控制,并说明对该中间体进行控制可以确保api中不会超过ttc的限度。另外,潜在基因毒性这个说法是不对的,潜在基因毒性是指在潜在杂质。(mq)问题一:请问edc和其水解产物edu按照基因毒性杂质控制吗?以前申报是按基因毒性控制的。答:这个问题比较具体,需要去查一下资料。其实可以去查查有没有现在还在市场上试用的药物工艺里是用了edc的。如果有条件控制,那就不用纠结了。(叶子)问题二:所有根据工艺分析出的潜在杂质都需要合成出对照品并做全套结构确证吗?答:这样做当然是最保险的,但是成本很高。先用警示结构和文献的数据进行一个判断,再对杂质进行说明。有些拿不准的有条件就用对照品验证一下。(老豆芽)问题三:请问辅料与主成分发生反应反应生成的杂质,以及制剂中的辅料生成的杂质如何研究和控制?答:辅料与主成分发生反应生成的杂质是需要进行评估的。制剂中的辅料生成的杂质,这个是指降解杂质吗?对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要。(老豆芽)问题补充:这里是指辅料的降解杂质。您说的对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要的。这个有法规方面的依据吗?答:ich m7有明确的规定,我的ppt里也有,其实你可以理解成为这些辅料已经被很多公司用过多年,已经证明里面没有基因毒性杂质。(立方研究所 汪泉)问题五:对于基因毒性杂质,有些品种在ep里面有着明确的控制方案,但其限度标准与我国现行标准不同,感觉自12版药典发布以后,我国现行标准很多都比ep8.0要高出不少,请问我们如何去应对现行的申报要求下的基因毒性杂质控制策略。答:对于仿药来说,先看看参比制剂里的杂质情况,如果参比制剂的杂质都高于15版药典,那评审老师那边应该也是没有问题的。(陶海波)问题六:有个问题,就是第三象限杂质问题。杂质未知,没有方法检测?用多少种柱子,多少种方法尝试才能说明问题?没有判断方法,不能用穷尽啊?答:当然不是穷尽的,有两种明显区分的互补方法会好很多。(陶海波):感谢李博士,用两种方法确实能够大大降低未检出的风险。答:杂质研究是一个风险评估的过程,首先要说服自己,对自己的产品有信心。(半日军拯救世界)问题七:原料药研发中所有的物料都需要进行杂质研究吗?还是只要研究关键物料的杂质即可?我一个项目中用了氯甲酸苄酯,该物料遇水分解,不够稳定,参与最后一步反应(除粗品精制外),合成人员没有将其定为关键物料,是否需要对其进行研究?答:如果是最后一步反应使用的,那肯定是要考虑的,你可以通过数据来说明现有的合成工艺条件下,该杂质的残留量是符合限度标准的,就可以不用制订在最终的质量标准里。(晴天娃娃summer)问题八:杂质谱分析究竟是分析工艺还是分析样品呢 ?我们现在按照药典方法检测的时候,我们的工业杂质小于0.05%,工艺杂基本是未检出,如果是分析样品的话,我们认为根本不需要进行工艺杂质的杂质谱的分析。答:我认为你的申报的申报文件里最好有对工艺杂质的说明,分析这些杂质里是没有高毒性的杂质,对于微量杂质来说,常规的检测方法不能保证。今后cato也会开展更多线上及线下杂质标准品讲座,为国内药物研究人员提供相关的标准品方面的讲座指导。欢迎大家关注cato,了解更多课程资讯。
  • 【报告回放】化学药物杂质研究及检测技术大会圆满成功,逾600人线上交流
    p style="text-align: justify text-indent: 2em line-height: 1.5em "07月01日,仪器信息网主办的“化学药物杂质研究及检测技术”主题网络研讨会成功召开,会议为期1天,共吸引超过600人报名参会。 为方便更多从事化学药物杂质研究的最新进展及检测技术人员学习相关技术,现特将会议内容剪辑整理,span style="background-color: rgb(255, 192, 0) "strong点击报告题目或报告图片/strong/span即可进入视频观看页面。/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"strong【1】张金兰(中国医学科学院药物研究所)/strong/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"strong《化学药有关物质的色谱质谱分析技术研究与应用》/strong/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"strong(暂不提供回放视频)/strong/a/pp style="line-height: 1.5em text-align: justify text-indent: 2em "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"报告摘要:原料药是药物制剂产品的起始材料和主要成分,对其进行有关物质的检测鉴定直接关系到后续产品的质量安全,因此建立快速、准确的分析方法来鉴定原料药中有关物质的结构具有重要意义。高效液相色谱-紫外检测器-电喷雾电离-多级质谱技术已成灵敏、快速和准确分析和鉴定原料药及制剂中有关物质有力手段,为药物研发过程中能够为工艺优化、质量分析与控制,以及生产、贮存、运输及临床使用过程中的质量评价提供了技术支撑。/a/pp style="line-height: 1.5em text-align: justify text-indent: 2em "br//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【2】许磊磊(岛津)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《2020版药典化药杂质检测解读及岛津应对方案》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width: 100% max-height: 100% width: 423px height: 234px " src="https://img1.17img.cn/17img/images/202007/uepic/81b71a90-11d2-4b9b-8eb9-5571e919d610.jpg" title="许磊磊(岛津)《2020版药典化药杂质检测解读及岛津应对方案》" alt="许磊磊(岛津)《2020版药典化药杂质检测解读及岛津应对方案》" width="423" height="234" border="0" vspace="0"//a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【3】郭瑞臣(山东大学齐鲁医院)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《色谱-质谱技术在化学药物杂质研究及检测中的应用》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/c7497a61-16bf-41d8-bc84-0a98f4064ef7.jpg" title="image002.png" alt="image002.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【4】殷承华(默克生命科学)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《默克分析化学产品在化学药物杂质控制中的应用》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/1763fdd0-c6bf-4880-9ea5-570e9a1ffb5f.jpg" title="image003.png" alt="image003.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【5】杨学林(LGC)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《通过使用合规的杂质标准品来有效提高化学药品质量》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/d5c8b839-54ae-426c-b9db-cb112a85afac.jpg" title="image004.png" alt="image004.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【6】李笃信(苏州大学)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《二维液相色谱-质谱技术在药物杂质研究中的应用》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/fd9bbe10-073b-4dc3-9cbb-19b6a93507e5.jpg" title="image005.png" alt="image005.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【7】戴荣继(北京理工大学)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《红霉素中的杂质及其分析方法》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/cccdf1a5-c7aa-4ea3-b63e-b8cbaa2a33c5.jpg" title="image006.png" alt="image006.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【8】徐永威(沃特世)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《手性药物分析常见难点及最新解决方案介绍》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/c118f6a2-9e93-4fd1-9ff3-9160c61c66c0.jpg" title="image007.png" alt="image007.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【9】郑枫 (中国药科大学 )/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《药物中遗传毒性杂质的控制策略》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/07cc98c6-9db6-431a-be37-d5791ed8932f.jpg" title="image008.png" alt="image008.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【10】吴珊湖(赛默飞世尔科技)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《基于Orbitrap平台的化学药物杂质研究》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/75e44d16-f72e-471b-91bd-4ee9cdca78ea.jpg" title="image009.png" alt="image009.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【11】胡楠(安捷伦)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《安捷伦杂质分析解决方案》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/e9d1c8ab-4d3e-4d1d-98d0-52360c3f0b66.jpg" title="image010.png" alt="image010.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"【12】徐新军(中山大学)/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"《药物基因毒性杂质分析方法开发及案例分析》/a/pp style="text-align: center"a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/185f9aa0-558a-492e-8dd5-f27b0d41a042.jpg" title="image011.png" alt="image011.png"//a/ppbr//pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"点击链接,观看全部“化学药物杂质研究及检测技术”网络会议视频。/a/pp style="line-height: 1.5em text-align: center "a href="https://m.instrument.com.cn/webinar/video/collection/10581" target="_blank"https://m.instrument.com.cn/webinar/video/collection/10581/a/pp style="line-height: 1.5em "br//pp style="line-height: 1.5em text-align: center "span style="color: rgb(192, 0, 0) background-color: rgb(255, 255, 0) "strong生命科学会议预告,/strong/span/pp style="line-height: 1.5em text-align: center "span style="color: rgb(192, 0, 0) background-color: rgb(255, 255, 0) "strong尽在【3i生仪社】/strong/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/8edd78d0-18a0-4701-b506-4c8b01927788.jpg" title="3i生仪社 二维码.jpg" alt="3i生仪社 二维码.jpg"//p
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 守护药物安全秘籍,尽在“第八届化学药物杂质研究及质控技术”网络研讨会!
    聚焦行业核心,共探药学新境界!由仪器信息网举办的“第八届化学药物杂质研究及质控技术”网络会议即将于2024年7月30日开幕。这场会议聚焦药物杂质控制,揭开药物质量守护的关键技术面纱!全面剖析有机杂质、无机杂质及残留溶剂的来龙去脉,深入探索杂质控制策略。从源头到成品,从理论研讨到实践技术,交流讨论药物质控的每一个环节。欢迎各位药学工作者和检测人员相聚云端,免费报名!点击报名》》本次网络研讨会将全方位、多维度的探讨药物杂志研究及质量控制,会议亮点如下:1. 药物质量研究深度解析;2. 药物杂质分析技术突破;3. 新技术新方法助力精准药物发现;4. 先进仪器在药物杂质分析领域的应用潜力。多位相关专家将在云端开讲,化学药物杂质研究及质控技术精彩内容不容错过。专家阵容及精彩报告简介如下:中国医学科学院医药生物技术研究所 山广志 副主任《药物质量研究新技术与新思路》山广志,博士,副研究员,中国医学科学院北京协和医学院医药生物技术研究所分析测试中心副主任,北京协和医学院硕士生导师。主要从事药物开发、药物分析、药品质量以及检测技术研究工作。将NMR、LC-HRMS、GC-MS、ICP-MS、2D-HPLC、HPLC、GC、SFC、Biacore、iTC、μDSC等新技术和新方法综合应用于药物发现、开发和质量表征工作,具体研究领域涉及基于靶点的新药筛选、结构确证、杂质谱研究、蛋白相互作用研究等。完成企业科研合作50余项,协助多个品种完成质量研究获批上市。在国内外学术期刊发表研究论文60余篇。【摘要】报告详细介绍了药物质量研究的过程、药品质量控制理念的变迁及团队在药物质量研究方面开发的新技术,围绕基于靶点的药物发现和基于片段的药物设计等两个方面阐释了新技术新方法助力精准药物发现的案例。岛津企业管理(中国)有限公司 孟海涛,高级应用工程师《液质联用技术在药物杂质分析中的应用》孟海涛,高级应用工程师,具有十多年色质谱应用支持经验,长期负责医药行业相关仪器使用培训、应用方法开发、客户合作项目支持,在药物杂质谱分析、基因毒性杂质方法开发、新型热点事件跟进及方案应对等相关领域积累了丰富的应用经验。【摘要】药物杂质的种类及涉及的分析技术,常规杂质定性分析中的痛点及二维液相在杂质鉴定中的应用案例,基因毒性杂质的分析思路及案例分享。中山大学药学院 徐新军 副教授《罗达那非原料药质量标准研究》徐新军,药物分析学博士,中山大学药学院副教授,广东省现代中药工程技术研究开发中心副主任,中国合格评定国家认可委员会(CNAS)实验室认可评审员,广东省科技厅、广州市科信局、广州市生产力促进中心专家库专家,广东省食品药品监督管理局药品、保健食品审评专家。主要从事中药、化学药质量标准研究及中药健康产品开发方面科研工作,在药品检验、药品质量标准制订及体内药物分析方法建立方面具有多年工作经验,已与企业合作完成多项药品质量标准及药物生物等效性研究并通过国家药审中心审核,已建成药品质量评价技术平台及中药化学对照品制备平台并对外提供技术服务。已发表论文144篇,其中SCI论文81篇,获授权发明专利6项。【摘要】罗达那非是中山大学药学院团队研究发现的一种PDE5抑制剂,其可选择性的抑制PDE5,而对其他的亚型磷酸二酯酶没有或具有微弱的抑制作用,主要用于治疗男性勃起功能障碍。按照国家药监局新药申报的相关要求及指导原则,对其质量标准进行了全面研究,主要有残留溶剂分析、有关物质分析、杂质谱分析、杂质结构鉴定、含量分析等。安捷伦科技(中国)有限公司 曾 梦 应用工程师《ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究》曾梦,原子光谱应用工程师,有多年原子光谱分析仪器使用经验,主要负责ICP-MS、ICP-OES在各行业的应用与方法开发,专注于制药、环境、半导体等领域的分析应用。【摘要】药品中的元素杂质不能给患者提供任何治疗益处,超规定限度的杂质水平甚至会引发一些不良反应,给患者带来危害。同时,元素杂质的存在会影响药物的稳定性,缩短药物有效期。因此,对药中的元素杂质水平和种类进行检测,并将其控制在限度范围内是至关重要的。本报告介绍了药物中杂质元素分析的特点/难点,以及安捷伦分析仪器ICP-OES/ICP-MS在化学药元素分析中的应用及优势。广东省科学院测试分析研究所(中国广州分析测试中心) 周熙 博士《高分辨质谱技术在药物杂质分析中的应用》周熙,博士研究生,从事中药物质基础及中药质量标准等方面的研究,在Food chemistry、 Journal of Chromatography B、Analytical Biochemistry、分析化学、分析测试学报等期刊发表论文10余篇。【摘要】高分辨质谱技术在药物杂质分析领域扮演着越来越重要的角色。因其在高分辨率、高质量精度和宽动态范围等优势,在药物杂质分析中显示出了巨大的应用潜力。第八届化学药物杂质研究及质控技术网络研讨会,更多精彩内容,我们直播当日见!点击下方图片,抢占席位!历届会议页面:第一届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/ChemicalDrug/第二届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/icd第三届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/hyzz第四届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020第五届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/impurity2021第六届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/impurity2022第七届“化学药物杂质研究及检测技术”主题网络研讨会:https://www.instrument.com.cn/webinar/meetings/chemicaldrug230706
  • 药品研发注册杂质研究与控制专题研讨会会议通知
    关于举办“药品研发注册杂质研究与控制专题研讨会”的通知  各有关单位:  随着《国家药品安全规划(2011—2015年)》的出台,对全面提高药品安全保障能力,降低药品安全风险提出了更高的要求 而在药品安全研究中,杂质问题一直是国内注册和国际注册的难点和重点,控制药物中杂质已成为控制药品质量的关键因素之一,也是困扰着广大药物分析工作者的难题之一。由于药物杂质的来源广泛,已知的杂质可以通过现有的分析手段进行定性定量,未知的杂质则成为分析的难题,为了让广大药物分析工作者能实现有效地药品杂质控制,更深刻的理解安全性对于药品的关键影响,经研究,全国医药技术市场协会定于2013年3月15日-17日在北京市举办“药品研发注册杂质研究与控制专题研讨会”。请各有关单位积极选派人员参加。现将有关事项通知如下:  一、会议时间地点:  时间:2013年3月15日-17日(15日全天报到)  地点: 北京市 (地点确定直接通知报名者)  二、会议主要内容  详见课程安排(附件一)  三、参会对象  制药企业和新药研究机构的研发人员,各级药品检验所(院)和口岸药品检验所人员,药品生产企业研发技术与质量管理负责人,新药研发CRO实验室人员及高管。各药品分析仪器设备研发生产、代理商 各高等院校、科研院所、医疗机构等相关专业人员。  四、会议说明  1、理论讲解,实例分析,模拟审计,互动答疑.  2、主讲嘉宾均为药典委委员和行业内资深专家、欢迎来电咨询  3、本次会议将征集与会议主题和研讨内容有关的论文。来稿应具有科学性、实用性,且论点鲜明、数据可靠、文字精练通顺。截稿日期:2013年3月9日。  五、会议费用  会务费:1980元/人。会务费包括:培训、研讨、证书、资料及论文集。食宿统一安排,费用自理。  六、联系方式  电 话:13121666780   传 真:010-52226401  联 系 人:陈海涛   邮 箱:yyxhpx2012@126.com  会议质量监督电话:010-51606480 张 岚  附件一日 程 安 排 表3月16日(星期六)09:00-12:0014:00-17:00药品杂质分析指导原则  1、创新药物杂质研究的思路、仿制药物杂质研究的思路、原料药物杂质研究的思路  2、仿制药与原研有关物质的对比研究  3、.新药注册申请资料的质量要求、药物杂质研究案例分析(对注册批件中生产工艺内容要求的思考)  4、针对质量标准中已规定的已知杂质和未知杂质的研究思路  5、药物研发中杂质分离、分析、控制策略与去除策略  6、有关物质研究中的液相使用技巧与注意事项  7、起始原料质量对终产品的重要影响:杂质超标等问题  8、原料药杂质控制的相关法规:Q3A, Q3B, Q3C  9、原料药申报中采用HPLC方法测定有关物质存在的问题  10、原料药与成品药中的残留溶剂  11、主药与辅料相容性研究时出现的杂质问题  12、案例分析  主讲人:谢沐风 资深专家、上海市食品药品检验所及国家药典委中检所相关专家等。3月17日(星期日)09:00-12:0014:00-17:00FDA对药物杂质的控制要求  1、原料药与成品药中的有机杂质  2、有机杂质来源和控制  3、有机杂质控制限度的论证  4、案例分析:有机杂质控制限度的设置和论证  5、原料药与成品药中的残留溶剂  6、残留溶剂的指导原则和控制限额的建立  7、案例分析:如何建立残留溶剂的控制限额  8、具有基因毒性杂质的控制  9、多晶型药物质量控制、异构体杂质控制等。  主讲人:沈新华博士 上海安必生技术有限公司研发副总裁,首席科学家,主要负责药物分析研发。曾在国外工作20 多年,具有药物研发、药物合成、药物分析的丰富实践经验及其深厚的理论知识,以及国际仿制药公司工作的经验。曾在TEVA 药业(全球著名的跨国仿制药集团)加拿大分公司任高级研发科学家,以及在加拿大最大的制药公司Apotex 任研发部门经理,负责和参与了数十种非专利药ANDA 的分析研发、药物申报和质量监控等工作。曾获中国药科大学有机合成硕士学位和瑞典皇家理工大学 化学博士学位 兼任北京大学药物信息与工程研究中心授课教师。备注每天除专家报告外,还安排了约1小时的代表发言和提问时间。   附件二:药品研发注册杂质研究与控制专题研讨会回执表  (此表复制有效)单位名称 联系人 地 址 邮 编 姓 名性别职务电 话传真/E-mail手 机 住宿是否需要单间:是○ 否○ 是否参加企业推广: 是○ 否○ 是否参加会议发言:是○ 否○是否提交论文: 想学习的内容:论文题目:联系人: 陈海涛 电话/传真:010-52226401 邮箱:yyxhpx2012@126.com
  • PerkinElmer推出元素杂质检测解决方案应对美国药典232/233杂质元素检测要求
    美国药典(U.S.Pharmacopeia,简称USP) 是一家制定法定公共医药保健产品标准的权威机构,主要药品质量标准和检定方法作出的技术规定。美国食品药品监督管理局(Food and Drug Administration,简称FDA)的职责是对药品进行管理和监督,在管理和监督过程中就会引用USP相关标准。很多没有法定药典的国家通常都采用美国药典作为本国的药品法定标准,因此国内相关药厂向美国以及这些国家出口的药品或原材料或辅料时就必须符合美国药典的要求。药物杂质按其性质可以分为有机杂质、无机杂质、残留溶剂三大类,其中对于无机杂质主要涉及杂质元素的检测,美国药典2008年9月份提出对杂质元素的检测进行修改,正式实施的日期是2015年12月1号。美国药典USP232明确要求测定各元素杂质含量,并规定了15 种金属元素杂质(Cd、Pb、As、Hg、Ir、Os、Pd、Pt、Rh、Ru、Cr、Mo、Ni、V和Cu)的每日允许暴露值(PDE),USP233提供了两种基于现代分析仪器的检测方法,并已由USP 下属的分析开发部门验证。新通则中所述两种方法分别是电感耦合等离子体原子发射光谱法(ICP-AES法或ICP-OES法)、电感耦合等离子体质谱法(ICP-MS 法),样品均采用封闭容器微波消解法。对于准备进入美国或相关市场或已在该市场有销售的原料药或制剂厂家,必须在新法规执行之前做好充分的准备,提前对即将上市申报的产品进行金属元素杂质风险评估;同时需要做好硬件和软件上的升级,按照法规的要求,开发和验证适合自己公司产品的金属杂质检测方法,保证上市产品符合法规要求。否则,即使现在药品申请已被FDA批准,在2015 年12 月1日新法规正式执行生效后,还需对工艺中的各个阶段潜在的、加入的或不经意引入的金属元素杂质进行风险评估,并再次经FDA批准,后续工作将非常烦琐。针对以上情况,PerkinElmer推出针对USP 232/233的解决方案来应对美国药典元素杂质的检测要求。解决方案下载地址:http://go.perkinelmer.com/l/32222/2014-08-26/28svh/32222/57362/PerkinElmer_USP232233.pdf
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 注意事项(1)本测试中需要制备无铵甲醇,前处理操作需注意实验安全。配置硫酸溶液时应严格按照“酸入水”的操作准则;蒸馏时应保证操作在通风橱中进行,且不可出现无人值守的情况;(2)采用抑制电导法检测时建议使用外加水模式进行抑制器再生。(3)为减小样品对色谱柱的影响,样品应经过RP柱净化后进样分析。 皖仪科技 中国高端色谱标杆品牌— END —扫描二维码 | 关注我们● 公众号 : 皖仪分析仪器云平台 ● 联系电话:0551-62521516
  • 赵宇亮/陈春英/谷战军研究团队——人造纳米材料的毒性研究
    近几十年来,纳米材料或纳米产品在能源、航空航天、农业、工业、生物医药等诸多领域得到了蓬勃发展和广泛应用。然而近些年报道的纳米材料对人类健康和环境安全造成的潜在负面影响引起了各界的担忧,这催生了“纳米毒理学”领域的诞生。该领域主要研究纳米材料或纳米产品在生命周期内对生物的不良健康影响,并进行安全性评估和风险管理,最终实现纳米材料的安全生产、使用和废弃。大量的基础毒理学研究和国际纳米技术标准表明纳米材料的物理化学性质包括化学组分、尺寸、形状、表面化学、结晶度、溶解度、氧化还原电位等会广泛地影响纳米材料与生物体在器官/组织、细胞和分子层次上的相互作用。因此,深入了解纳米材料的理化性质在介导不同水平纳米–生物相互作用中所扮演的角色具有重要意义,这不仅利于实现进行可靠的纳米毒性评估,也有助于设计更加安全的纳米产品。为此,赵宇亮/陈春英/谷战军团队在Particuology上发表综述文章,深入探讨了人造纳米材料的关键物理化学性质对诱发潜在生物毒性的影响。该文章首先概述了纳米材料如何在器官/组织、细胞和分子水平上与生物体发生相互作用,并在此基础上深入讨论了尺寸、形状、化学性质、表面化学,以及上述理化性质所介导的纳米材料的团聚/聚集、生物冠形成和降解等行为对其毒理学特征的影响。另外,该文章还介绍了研究纳米–生物相互作用的主要分析方法、不同地区和/或国家目前对含纳米材料产品的监管和立法框架,提出了纳米毒理学领域面临的挑战和可能的解决方案,以期为纳米材料的安全性评价提供参考。图1. 纳米材料的毒性相关特性及研究纳米–生物相互作用的分析方法器官、细胞、分子层面上的纳米-生物相互作用根据所处的生命周期阶段的不同,人造纳米材料对人类的主要暴露方式包括肺部吸入、口服摄取、皮肤接触和静脉注射等。大多数经肺、胃肠和皮肤暴露的纳米产品会被滞留在暴露器官中并可能在被机体逐渐清除之前诱发毒性;只有少数局部暴露的纳米材料可能被吸收到血液和/或淋巴循环。由于缓慢的剂量率、独特的吸收途径和特殊生物冠的生成/演变,非静脉注射的纳米材料在体内分布更广泛、更均匀。相比之下,静脉注射纳米材料则更快地从血流中清除,并主要聚集在富含单核-吞噬系统(MPS)的器官,如肝脏和脾脏。此外,无论暴露途径如何,进入体循环的纳米材料可能通过血脑屏障、血睾丸屏障和胎盘屏障,并对这些器官造成影响。基于纳米材料的性质,其代谢和排泄方式多种多样,主要发生在肝脏和肾脏。综上,根据纳米材料的毒物动力学过程,可以推断肺、肠、肝、脾和肾是纳米材料的主要毒性靶点。 图2. 器官、细胞和分子水平上的纳米生物相互作用。(a) 毒物动力学(即纳米材料在体内的吸收、分布、代谢和排泄) (b) 纳米材料的潜在毒性机制在细胞、亚细胞和分子水平上,纳米材料可能粘附、切割、嵌入细胞膜而造成膜损伤,或被细胞内化而进入细胞。包括网格蛋白依赖、小窝蛋白依赖、非网格蛋白和非小窝蛋白依赖的内吞、微胞饮和吞噬在内的多种胞吞途径是纳米材料进入细胞的主要方式。不同的内化途径将进一步影响其在细胞内的定位、命运和下游的细胞毒性。纳米材料通过多种毒性机制发挥细胞毒性,本质上可归因于其对细胞组分和结构的氧化损伤和物理损伤。一方面,纳米材料可以通过促进活性氧(ROS)的生成、消耗细胞内抗氧化系统和/或干扰线粒体的功能而引起氧化应激,造成脂质、蛋白质和核酸分子的氧化损伤。另一方面,纳米材料可能会改变生物大分子的构像和功能,通过直接的生物物理相互作用干扰或破坏细胞。二者可能引起的下游事件包括:细胞膜渗漏、线粒体功能障碍、溶酶体膜通透性(LMP)、内质网应激、刺激或阻断涉及细胞增殖和死亡、细胞骨架破坏、基因毒性等信号通路,最终导致炎症反应、细胞周期阻滞和细胞死亡(凋亡、坏死、自噬、铁死亡和焦亡等)。影响纳米材料毒性的关键特性 本节作者重点讨论了经合组织成立人造纳米材料工作组提出的11种典型纳米材料(包括纳米氧化铈、纳米氧化锌、纳米二氧化钛、金纳米材料、银纳米材料、富勒烯、多壁碳纳米管、单壁碳纳米管、纳米粘土、二氧化硅、树状聚合物)的关键理化性质以及其所介导的团聚/聚集、形成生物冠和降解行为对不同水平纳米–生物相互作用的影响。化学组成纳米材料核心的化学本质决定了纳米材料的溶解性、催化活性、氧化还原能力、电离特性、与生物大分子的亲和性,从而决定了纳米材料的毒性及其机理。除了核心纳米材料的化学性质,表面涂层/接枝和元素掺杂等材料设计也会影响纳米材料的毒理学特征。元素掺杂通过改变纳米材料的催化性能和溶解特性而影响其毒性。另外,纳米材料制备过程中的金属和杂质残留、内毒素污染等也是其生物毒性的潜在来源。粒径经肺、胃肠、皮肤暴露的纳米材料,其吸收行为表现出不同的尺寸依赖性。体循环中的纳米材料因其尺寸不同可能发生:快速经肾脏清除、被肝脾吞噬而积聚、经胆汁排泄或实现相对长的血液循环而遍布全身,可见其分布和排泄行为也受尺寸的影响。在细胞水平,尺寸是影响纳米材料内吞途径的重要因素。另外,尺寸直接影响纳米材料造成氧化应激和物理破坏的能力。形状纳米材料可以制成多种形状,如纳米球、纳米管、纳米棒、纳米线、纳米立方体、纳米片等。不同形状的纳米材料可能表现出不同的毒代动力学行为、细胞摄取和毒性效应。这可能与形状影响纳米材料晶面暴露、催化性能、生物冠形成等有关。表面特性由于纳米生物相互作用通常发生在纳米–生物界面上,故而纳米材料的表面性质(特别是表面电荷、表面疏水性和表面原子/基团)对其吸收、分布、排泄、细胞摄取及毒性潜力等至关重要。这些表面特性通过综合影响纳米材料在生物介质中的分散性、所形成的生物冠、与细胞表面配体的亲和力、核心纳米材料的ROS生成能力和有毒离子释放程度等方面而发挥作用。影响纳米材料毒性的生物转化行为纳米材料由于其超高的表面能而极不稳定,倾向于发生系列转变以降低其表面活性。形成团聚体、表面吸附生物分子而形成生物冠、发生降解是其常见的降低表面能的方式。聚集状态本质上,团聚对纳米材料的毒物动力学、细胞摄取和毒性的影响可归因于纳米材料表观尺寸的增强。在人体暴露前形成聚集体可极大地减小经肺、肠、皮肤的吸收而降低系统暴露风险和毒性。然而,纳米材料一旦进入或在机体中形成聚集体,似乎具有很高的毒性潜力。在细胞水平,团聚状态可以改变原始纳米材料的细胞内化途径和摄取程度而产生复杂的影响。总之,团聚状态对最终纳米毒性的影响仍存在争议,需进一步讨论。生物冠的形成及演化生物冠的形成及演化高度依赖于初级纳米材料的理化性质(如尺寸、表面化学、形状等)及其周围生物环境。它会改变原始纳米材料的合成特性并赋予其全新的生物特性。生物冠在介导纳米生物的吸收、血液循环、分布、代谢、细胞摄取和毒性机制等多种相互作用中发挥着主导作用。在大多数情况下,纳米材料表面生物冠的形成可缓解其非特异性的毒害作用,这可能与生物冠抑制细胞摄取、减少ROS生成、降低团聚率、减轻有毒表面活性剂诱导的细胞毒性,减缓纳米材料溶解及释放有毒金属离子等有关;然而生物冠可能具有激活免疫而诱发炎症、改变基因表达、诱发内质网应激、细胞凋亡等负面影响。生物降解纳米材料暴露可能会经历恶劣的胃肠道环境、肝细胞微粒体酶、MPS系统的酸性富含氧化性物质和离子的溶酶体环境,这都将挑战纳米材料的完整性并促进其降解。根据降解程度和速率、完整纳米材料和降解产物的毒性潜力,生物降解对纳米材料的毒理学特征具有深远的影响。例如,银纳米材料降解释放银离子已经被认为是其毒性作用的重要机制之一。而二硫化钼纳米片降解产生的钼酸盐可以参与肝细胞的钼酶合成并提高其活性。吸入不可降解的碳纳米管会长时间聚集在肺部而诱发肉芽肿、肺泡炎和纤维化反应。纳米毒理学研究的分析方法 本小节作者首先从分子层面探讨了用于原位分析蛋白冠结构、组成、形成动力学的先进技术,接着在细胞层面介绍了用于可视化纳米材料摄取、转位、毒性作用的高分辨显微镜成像和质谱成像技术、以及基于流式的单细胞技术和多组学技术;最后,在器官层面概述了纳米材料的体内定量方法和活体成像技术用以研究纳米材料的吸收、分布、代谢、排泄。图3. 针对不同水平纳米-生物相互作用的分析方法纳米产品的监管 现阶段,世界各国对含纳米材料产品的监管由现有的一般和特定行业的监管和立法体系覆盖。例如,不同领域纳米产品在欧盟的流通均须遵守the Registration, Evaluation, Authorization, and Restriction of Chemicals regulations和the Classification, Labelling and Packaging Regulation regulations。此外,欧洲食品安全局、欧洲医药局、健康和消费者保护联合研究中心以及欧洲工作安全与健康机构等细分机构还出台了针对本领域纳米产品的监管办法和指导。另外,各国普遍认为纳米材料的风险评估应在个案基础之上,可能的风险与特定的纳米材料和特定的用途有关。比如,美国的食品药品监督管理局(FDA)以特定纳米产品作为重心,通过上市前审查和/或上市后监管系对其进行监管。FDA针对纳米材料的详细监管参见“FDA’s Approach to Regulation of Nanotechnology Products”。美国的环境保护署还出台了一系列法规包括Toxic Substances Control Act, Federal Insecticide, Fungicide and Rodenticide Act, Clean Air Act, and Clean Water Act等对纳米材料整个生命周期进行监管。虽然目前纳米材料与普通化学品有着相似的监管和立法框架,但几乎所有的监管机构都对纳米材料安全性评价的几乎每个阶段都给予了特别的关注,并推出了指南或标准化。还有一些倡导者呼吁建立专门针对纳米材料的立法和监管框架。相信随着纳米材料风险评估的发展,对纳米材料的监管和立法将进一步完善。总结与展望 尽管纳米毒理学领域取得了巨大的进展,但纳米材料的安全性评价仍面临着严峻的挑战。第一,确定纳米材料毒性与其理化特性之间的因果关系非常困难。为此,通过精细的材料设计和制造提供一个可在单变量水平控制的覆盖广泛毒理学相关性质的纳米材料库尤为紧迫。第二,有相当一部分的毒理学研究忽略了诱导纳米毒性的现实情况。在这方面,有必要避免内毒素污染、未纯化或分离的有毒催化剂/表面活性剂和剂量过大而造成的毒性。第三,针对纳米材料在生物环境中的动态转化,特别是非静脉注射给药的纳米材料所形成的生物冠,对其毒性的影响仍然十分匮乏。第四,基于多组学技术的系统毒理学手段对微小的生物分子改变的解读具有挑战性,很难获得纳米材料毒性机制的整体图像。幸运的是,上述问题已经引起了广泛的关注,并有望通过精细的实验设计、先进的原位分析技术和生物信息学方法的发展来解决。这些努力将在纳米材料理化性质和纳米生物相互作用之间的因果关系方面带来重大突破,从而促进人造纳米材料的风险评估和管理,以及更好地设计生物兼容的新型纳米产品。
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 珀金埃尔默发布《药物元素杂质检测解决方案》
    珀金埃尔默发布《药物元素杂质检测解决方案》ICH Q3D指导原则与中、美药典国际人用药品注册技术协调会(ICH)在2014年发布元素杂质指导原则Q3D,适用于原料药和制剂中元素杂质的风险评估,对由合成、生产工艺步骤的变化,原料药、药辅料以及密闭容器系统的使用等而引入的元素杂质进行控制。《中国药典》接轨ICH规则已成趋势,2020版药典《元素杂质限度和测定指导原则》和《分析方法验证指导原则》的部分内容即参照ICH Q3D完成修订,检测方法和方法验证必须符合中国药典要求。《美国药典》(USP) 通则232根据ICH Q3D规则,规定了不同给药途径的元素杂质限值和使用ICP-MS和ICP-OES 两种分析方法;而USP通则233则提供检测方法的验证指导。珀金埃尔默药物元素杂质检测解决方案珀金埃尔默一直致力于为药物生产和监管提供真正合规、全面、有效、创新的药品安全解决方案。最新发布《药物元素杂质检测解决方案》,全面覆盖从样品前处理到实验数据合规处理的各个环节,帮助中国制药企业顺利应对2020版中国药典的变化和原料药出口业务严格遵循ICH Q3D的要求。 欲了解制药杂质元素的相关法规,以及珀金埃尔默解决方案是如何满足法律合规性的,请扫描下方二维码即刻获取《珀金埃尔默药物元素杂质检测解决方案》。扫描上方二维码即可下载资料
  • 岛津,将应用液相色谱仪检测缬沙坦原料药中的NDMA和NDEA付诸于实践!
    N-亚硝基二甲胺(NDMA)和 N-亚硝基二乙胺(NDEA)是非常典型的遗传毒性杂质,自从沙坦类原料药中报道检测出NDMA以及NDEA后,受到社会广泛关注。 各国监管机构(FDA、EMA)发布了关于N-亚硝胺类遗传毒性杂质的液质和气质的相关检测方法,岛津公司早在2016年就推出《药品中基因毒性杂质检测解决方案》,其后,陆续发布多项有关于遗传毒性杂质杂质的解决方案。 但无可回避的是,通常所用的质谱方法,无论是GCMS还是LCMS,均无形中提高了企业及实验室的采购和运行成本。本着为客户寻找最佳解决方案的理念,岛津参考ANSM French OMSL所发布的《 Determination of NDMA and NDEA in SARTAN drug substances by HPLC/UV》,在最新旗舰级Nexera LC-40超高效液相色谱仪上开发了沙坦类原料药中NDMA和NDEA的检测方法。 得益于二极管阵列检测器SPD-M40极高的灵敏度和卓越的线性范围(2.5 AU),即使在高浓度的样品中,也能定量检测痕量的杂质组分。 此外,岛津独特的检测器“三重控温技术”,对光源+光学系统+流通池实时稳定控温,全面杜绝因环境温度波动对检测结果产生的影响。本实验中,对浓度为5 ng/mL标准品溶液考察灵敏度,结果显示,NDMA和NDEA的S/N分别为29.8和15.6,完全满足中国药典缬沙坦标准修订案中灵敏度测试要求(5ng/mL标准溶液测试信噪比应大于10)。 灵敏度考察色谱图(5ng/mL标准品溶液) Nexera LC-40 对样品交叉污染方面的控制更加出色,更进一步保证了在更宽检测浓度范围内出色的线性,尤其是低浓度区间的检测,数据结果表现更佳。考察厄贝沙坦原料药样品加标溶液,进行加标回收率计算,得出NDMA和NDEA加标回收率分别为103.2%和107.8%。 实际样品色谱图 整体上看,Nexera LC-40超高效液相色谱的低噪音、高灵敏度和高稳定可靠等特点可轻松应对HPLC方法检测厄贝沙坦原料药中NDMA和NDEA,方法专属无干扰,灵敏度溶液测试信噪比均大于10,满足ANSM方法学要求。重复性结果显示NDMA和NDEA的保留时间相对标准偏差分别为0.01%和0.04%,峰面积相对标准偏差分别为0.85%和3.7%,重复性良好。 最后,考察某厄贝沙坦原料药样品结果显示,厄贝沙坦原料药样品NDMA浓度为0.47 ppm,NDEA未检出。 岛津药品中基因毒性杂质检测解决方案https://www.shimadzu.com.cn/an/news-events/appnews/2016/4291.html 岛津GC-MS/MS法测定二甲双胍药品中NDMA含量https://www.shimadzu.com.cn/an/literature/GCMSMS/AP_News_GCMSMS-186.html 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案https://support.shimadzu.com.cn/an/solution/NMBA/index.html 2019年,随着全新液相色谱Nexera LC-40的发布,岛津液相色谱仪也跨入全新时代,以“AI”和“IoT”为代表的、最先进科技的融合与使用,岛津液相用户必将在智能、便捷、高通量、高稳定方面获得远优于以往的最佳体验。
  • 赋能创“芯” | 电子气体中离子态杂质检测的先进技术探讨
    电子气体电子气体广泛应用于半导体制造的诸多环节,包括清洗、离子注入、刻蚀、气相沉积、掺杂等工艺,因此被称为芯片制造的血液。集成电路产业的快速发展,为电子气体国产化发展带来了机遇,同时国产化也面临着分离纯化、分析检测等多方面的挑战。赛默飞凭借其离子色谱的技术优势,与电子气体各细分领域客户通力合作,开发了多种电子气体中无机阴离子和铵根杂质检测的全面解决方案。电子气体国产化所面临的挑战 电子气体是晶圆制造的第二大耗材,在集成电路生产环节,使用的电子气体有近百种这些高纯气体从生产到分离纯化,以及运输供应阶段都存在较高的技术壁垒,特别是在气体纯化方面,涉及的高性能催化材料、过滤吸附等设备都需要大量研发投入。电子气体用途多、用量大,电子气体中的杂质含量直接影响最终芯片的良率和可靠性,赛默飞离子色谱系统可为电子气体中超痕量阴离子和铵根的测定提供同时测定方案,整个系统“只加水”不需要引入任何外接试剂,完全避免引入人工操作带来的污染和试剂中杂质的干扰,获得极低的系统背景和噪音;且对于复杂的气体吸收样品,赛默飞提供了中和、排斥、在线固相萃取、浓缩等多种谱睿技术,帮助客户实现复杂样品的在线基质消除,具有灵敏、抗干扰、稳定、高效、便捷的特点。离子色谱检测高纯气体吸收液样品流程示意图(点击查看大图) 电子级二氧化碳中痕量阴离子和铵根的检测方案 半导体工业中,高纯电子级二氧化碳主要用于清洗技术和沉浸式光刻技术,二氧化碳的超临界特性在加工过程中对芯片的损坏降至最低,有着广泛的前景。国际半导体设备与材料组织(SEMI )在2018年C55-1104中,对二氧化碳产品的纯度要求要达到 99.999% 以上,发展至今,相关企业对二氧化碳产品的纯度要求已达到 9N级,对阴离子杂质和铵根的限度要求达到 ppb ~ppt级。在样品测定时,电子级二氧化碳通过流量泵通入超纯水中,调节吸收时间和吸收体积,测定最终吸收液中的阴离子和铵根含量。常见的吸收方法有离线吸收、半自动吸收和全自动在线吸收。阴离子分离谱图(点击查看大图)铵根分离谱图(点击查看大图)各种离子的定量限(点击查看大图)滑动查看更多赛默飞 ICS-6000 通过大体积上样和谱睿技术去除二氧化碳基质,并对样品进行浓缩,再进入离子色谱进行分析检测。在所示色谱条件下各种离子的定量限可达到0.2ppb,该方法加标测试满足要求,准确度较高,连续运行结果稳定,可用于电子级 CO2 吸收液中杂质铵根离子和阴离子的分析。该方案同样适用于非反应型惰性气体,也可以应用于高纯气体净化材料和设备的性能考察。 三氟化氮中可水解氟化物的检测方案 高纯三氟化氮(NF3)具有非常优异的蚀刻速率和选择性,在被蚀刻物表面不留任何残留物,同时是非常良好的清洗剂,主要用于等离子体刻蚀和化学气相沉积(CVD)的清洗。随着集成电路制程技术节点的不断减小,高纯三氟化氮的需求快速增长,气体中杂质的检测也备受关注。SEMI组织在2018年C3.39-1011中,对三氟化氮的纯度要求要达到 99.98% 以上,对氟离子的限量要求为小于0.1ppm,用的是氟离子选择性电极测定方法。该方法操作繁琐,影响因素多,且重复性不佳。在GB/T21287-2021电子特气三氟化氮中 气体纯度要求达到5N级,氟离子的限量要求为0.5ppm,已采用离子色谱法测定氟离子的含量,分析效率大大提高。 // 在电子工业迅猛发展的推动下,国内三氟化氮的生产制造水平已与国外发达国家水平相当,目前相关企业对氟离子的限量要求达到ppb级。赛默飞Aquion RFIC离子色谱系统,通过大体积进样和特有的色谱分离技术,可避免基质影响满足三氟化氮中痕量氟离子限量检测要求,该方法分析时间短,无需手配淋洗液和再生液,操作便捷,系统稳定可靠。Aquion RFIC 三氟化氮吸收样品谱图(点击查看大图)在GB/T21287电子特气 三氟化氮中采用了多瓶串联的吸收方式,这种方法也是经典的吸收装置,第一瓶作为吸收瓶,判断吸收是否充分,第二瓶可作为吸收瓶,同时也作为空白瓶提供背景值。通过这种方式既可以判断吸收效率,调节气体流速,还可以提供时时背景,获得更准确的测定结果。三氟化氮吸收装置图(点击查看大图)电子气体的吸收率是值得关注的问题,特别是反应型气体如SiF4 、BF3等,除吸收率外,还要关注反应产物对检测结果的影响。赛默飞期待与更多客户通力合作,探讨更多电子气体的吸收与基质消除技术,共同开发更多电子气体中痕量杂质的检测方法。 赛默飞半导体材料全面解决方案 除了电子气体的分析方案外,赛默飞开发了针对半导体材料包括硅片、光刻胶及辅材、湿电子化学品、靶材的全面解决方案,包括独家的Orbitrap技术对于未知物解析、不同批次样品的差异分析,以及高纯金属、靶材直接进样分析的GDMS技术等,尽在《赛默飞半导体材料检测应用文集》,长按识别下方二维码即可下载或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 赛默飞:蓄能助力新版药典检测变化
    p style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "2020年7月2日,新版《中国药典》正式颁布。第一版《中国药典》于1953年颁布,至今国家已经颁布11版药典。新版药典不仅在收录的药物和方法上有变化,其中检测仪器和相关的指导原则也有相应的更新。《中国药典》是国家药品标准的重要组成部分,是国家药品标准体系的核心。新版药典的颁布实施必将对保障药品质量、维护公众健康、促进医药产业高质量发展发挥重要作用。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "为了帮助制药领域用户学习、了解新版药典的相关内容,仪器信息网特别策划了“2020年版《中国药典》变化盘点”系列报道。仪器信息网特邀赛默飞李卉芳博士为广大用户盘点2020版药典中最新变化及检测技术。/span/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 188px height: 291px " src="https://img1.17img.cn/17img/images/202008/uepic/42498539-b3a4-4261-a1db-c4282e0b6e81.jpg" title="李卉芳.jpg" alt="李卉芳.jpg" width="188" height="291"//pp style="text-align: center text-indent: 0em "span style="font-size: 14px color: rgb(89, 89, 89) "strong赛默飞色谱质谱/strong/span/pp style="text-align: center text-indent: 0em "span style="font-size: 14px color: rgb(89, 89, 89) "strong制药行业及液相色谱市场经理 李卉芳 博士/strong/span/pp style="text-align: justify margin-top: 15px text-indent: 0em "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong对于本次药典更新,赛默飞有哪些解决方案?/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong李卉芳:/strong/span作为药品生产企业,研发、注册、生产与质量管理都要遵照《药典》的标准。《中国药典》在保障公众用药安全的同时,也在推动我国药品质量提高、加快企业技术进步和产品升级换代、促进我国医药产业结构调整,并将进一步扩大和提升我国药典在国际上的积极影响。因此,新版药典具有“高标准、严要求”,同时具备“先进性、创新性”。/pp style="text-align: justify text-indent: 2em "一方面,从管理维度上讲,新版《中国药典》的标准体系建设强调与国际相接轨;二是品种维度,实现中药、化学药品、药用辅料、生物制品标准从不同程度上与国际先进水平基本保持一致,在部分优势领域引领国际标准。/pp style="text-align: center margin-top: 10px margin-bottom: 10px "img style="max-width: 100% max-height: 100% width: 536px height: 316px " src="https://img1.17img.cn/17img/images/202008/uepic/0726886a-25f9-4a6a-9b16-fcb1277c8f90.jpg" title="1-各部分通则.png" alt="1-各部分通则.png" width="536" height="316"//pp style="text-align: justify text-indent: 2em "归纳起来,新版药典有span style="color: rgb(255, 0, 0) "strong七个特点/strong/span:药品标准体系进一步完善,药品质量控制水平不断提高,新技术新方法应用进一步扩大,全过程质量控制体系逐步构建,标准形成机制不断完善,与关联审评审批制度改革相适应、相补充,标准与国际逐步接轨、更加协调。/pp style="text-align: justify text-indent: 2em "赛默飞一直持续关注新药典的相关变化,开展了“蓄能2020药典”系列的线上活动,分析和解读药典的变化。针对2020药典新变化,赛默飞可以提供“全面、高效、合规”的整体解决方案。/pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strong“全面”/strong/span代表产品线比较长,可以提供一站式解决方案,覆盖从无机杂质、有机杂质、残留溶剂到基因毒性杂质、药物包材等全产线的检测。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 562px height: 307px " src="https://img1.17img.cn/17img/images/202008/uepic/689815af-582a-48e2-864b-4b089dbe460b.jpg" title="thermometer.png" alt="thermometer.png" width="562" height="307"//pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strong“高效”/strong/span代表着解决方案高效赋能,差异化方案提升生产力:如电雾式CAD检测器测定无紫外吸收化合物杂质,离子色谱IC电解再生膜抑制器技术和LC-MS联用法测定极性化合物杂质,离子色谱IC-ICPMS联用测定无机杂质形态分析,高分辨质谱Orbitrap平台和三重四极杆质谱平台测定基因毒性杂质,及质谱前端双三元液相色谱在线除盐等一系列特色方案,展现了赛默飞创新技术与独特应用,旨在助力客户效能提升。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 590px height: 293px " src="https://img1.17img.cn/17img/images/202008/uepic/1ab26fa0-d019-48de-8202-0cc0be601aa7.jpg" title="3-应用.png" alt="3-应用.png" width="590" height="293"//pp style="text-align: justify text-indent: 2em "span style="font-size: 18px "strong“合规”/strong/span数据系统,确保流程遵循、数据完整性:赛默飞的变色龙色谱数 据系统系统,助力合规,严格驻守药企生命线。在新的监管要求下,药品企业对工作流程的质量控制要求变得日益严格,以确保满足数据完整性法规和原始数据归档的需求。变色龙色谱数据系统,在实现安全访问控制、流程、数据可追溯、实验数据安全性的前提下,不仅可控多个厂商的色谱仪器,也全面支持赛默飞GC-MS和LC-MS等多产线产品,其中MS部分包括单四极杆、三重四极杆和高分辨质谱,处于行业领先水平。特色的解决方案,一套软件平台,同时控制色谱和质谱,可以在不牺牲效率的情况下,满足实验室合规要求,为制药客户保驾护航。/pp style="text-align: justify margin-top: 15px text-indent: 0em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:/span/strongspan style="color: rgb(0, 112, 192) "对于《中国药典》一部中的中药饮片和中成药,有何解决方案?/span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong李卉芳:/strong/span对于一部中药部分,2020版《中国药典》编制大纲强调以中医临床为导向构建中药质量控制技术体系。其标准越来越严格,凸显了新版药典对中药材质量提升的重大决心。/pp style="text-align: justify text-indent: 2em "新药典加强和强调了几个方面变化,安全性方面:有效控制外源性污染物对中药安全性造成的影响,全面制定中药材、饮片span style="color: rgb(0, 176, 80) "strong重金属及有害元素/strong、strong农药残留的限量标准/strong/span;全面制定易霉变中药材、饮片span style="color: rgb(0, 176, 80) "strong真菌毒素/strong/span限量标准。有效控制内源性有毒成分对中药安全性产生的影响,重点解决符合中药特点的肝肾毒性预测及评价方法。/pp style="text-align: justify text-indent: 2em "近期,新版药典中药的农残检测成为了热点话题。2020版《中国药典》四部通则strong《0212药材和饮片检定通则》/strong33种禁用农药正式被列入。通则strong《2341 农药残留量测定法》/strong中新增的第五法“药材及饮片(植物类)中禁用农药多残留测定法”要求采用GC-MS/MS和LC-MS/MS对药材及饮片中禁用农药测定。strong《9305 真菌毒素检测》/strong品种扩大至60余种。通则2351也按相应添加了多种真菌毒素测定法。/pp style="text-align: justify text-indent: 2em "针对中药热点应用,赛默飞推出了中药禁用农残全面解决方案,其中LC-MS/MS方法检测的化合物有30个,GC-MS/MS方法检测的化合物有33个:/pp style="text-align: justify text-indent: 2em "strong1.GC-MS/MS方案:/strong使用TSQ9000串联三重四极杆质谱仪,每个分析步骤都有对应方案,可以提供满足药典规则的全检测流程;官网可下载方法包,包含所有前处理方案、所用耗材、方法学数据、仪器方法、数据处理方法、报告模板等,可一键式导入本地软件,可操作性强;涵盖前处理应用方案,提供所有法规规定的前处理方案,覆盖高风险品种复杂基质样品。/pp style="text-align: justify text-indent: 2em "strong2.LC-MS/MS方案:/strong前端液相推荐新款液相色谱Vanquish Core,可靠耐用,搭载三重四极杆质谱TSQ Fortis,确保中药农残分析中耐用性和稳定性,使系统长时间正常运行,完全满足LC-MS/MS方法检测30种农残的灵敏度、线性、回收率要求。/pp style="text-align: justify text-indent: 2em "strong3.合规的色谱数据系统:/strong赛默飞的Chromeleon色谱数据系统,只需使用Chromeleon 7这一种数据处理系统就可完全控制LC-MS/MS和GC-MS/MS,大大简化了工作流程。特色的解决方案,一套软件平台,同时控制色谱和质谱,可以在不牺牲效率的情况下,满足实验室合规要求。/pp style="text-align: justify text-indent: 2em "strong4.前处理方案完善:/strong第五法中QuEChERS前处理法,因简便、快速,适用于大部分中药基质的处理,赛默飞提供针对性的前处理方案,采用QuEChERS法对人参、党参等多种中药基质进行处理,也可应对不同药用部位,如根、茎、花、果实等的处理。/pp style="text-align: justify text-indent: 2em "针对中药农残分析,赛默飞可提供相应专家级的售后技术支持,如提供第四法、第五法、快速分析第四法第五法农药多残留分析方法包;提供农残测定思维导图;操作及维护演示视频及作业指导书。帮助客户更快建立分析平台,熟悉所需每一操作步骤。/pp style="text-align: justify text-indent: 2em "此外,赛默飞还可以提供中药成分分析、中药配方颗粒、真菌毒素、中药代谢组学等行业解决方案,涵盖了从提升中药安全性、有效性分析到中药临床组学分析等应用领域,为保证中药质量,阐明作用机理,和明确临床价值贡献自己的一份力量。/pp style="text-align: justify margin-top: 15px text-indent: 0em "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong对于药典二部的化药部分,新版药典规定了基因毒性杂质的相关指导原则,如何解读?这部分内容?/span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong李卉芳:/strong/span遗传毒性杂质又叫基因毒性杂质,通则《9306 遗传毒性杂质控制指导原则》中做出了详细的说明。/pp style="text-align: justify text-indent: 2em "目前基因毒性杂质检测分析面临的挑战主要集中在:1,样品基质复杂,需要合适的前处理方法进行分离,纯化,富集;2,杂质结构多样性和差异大,需要多种分析手段和方法;3,有些杂质具有“亚稳定性”的化学结构,在样品准备,制备和分析过程中容易发生转化;4,含量很低,选择性要求高,需要高灵敏度的仪器(GC-MS/MS、LC-MS/MS、IC-MS,ICP-MS等)。/pp style="text-align: justify text-indent: 2em "针对span style="color: rgb(0, 176, 80) "strong基因毒性杂质/strong/span研究,以雷尼替丁中NDMA的检测方法为例,赛默飞分别基于高分辨质谱Orbitrap平台和三重四极杆质谱平台均可提供出色的方案。以Orbitrap高分辨质谱平台检测NDMA是FDA的推荐第一法,可拓展至同时检测六种N-亚硝基化合物,获得高分辨率和高质量的检测结果。三重四极杆质谱TSQ Fortis针对基因毒性物质10个N-亚硝基化合物建立稳定灵敏的分析方法。可稳定、快速、满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。/pp style="text-align: justify text-indent: 2em "由于杂质限度要求低,原辅料可能干扰检测,通常需要质谱进行检测。而原分析方法流动相如果含不挥发性盐,不能直接转为质谱检测方法。因此与质谱联用需要首先去除样品中的盐分。赛默飞特色的双三元液相色谱系统不仅能够支持span style="color: rgb(0, 176, 80) "strong在线除盐/strong/span,而且可以支持高通量的在线除盐,和Orbitrap高分辨质谱联机,配置两根脱盐小柱,交替为质谱提供除盐后样品,大大提高工作效率,降低了质谱的开机成本。/pp style="text-align: justify text-indent: 2em "对于span style="color: rgb(0, 176, 80) "strong极性化合物杂质检测/strong/span,赛默飞提供特色的离子对试剂与MS兼容的解决方案,离子色谱IC电解再生膜抑制器技术和LC-MS联用法。赛默飞离子色谱的电解再生膜抑制器技术可以为杂质鉴定过程中液相色谱流动相与质谱不兼容的问题提供一个全新的解决方案。该技术相比2D-LC MS:可以更好的应对离子对试剂质谱不兼容及杂质在第二维同样不保留的分析挑战;一针进样可以分析所有杂质,工作效率大大提高;方法开发更简便,仪器方法设置更简单,实验人员更易掌握。离子色谱法自2010年进入中国药典附录以来,在离子型药物和杂质的检测中发挥了越来越大的作用。仿制药一致性评价,离子色谱法成为制剂中阴、阳离子组成及含量测定最便捷的方法;药物基因毒性杂质分析,离子色谱法在不易被LC和GC测定的难挥发离子型物质分析中展现了突出的优势。/pp style="text-align: justify text-indent: 0em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong仪器信息网:/strong对于四部中新增加的35种检查法和更新的51种方法,有哪些对应解决方案?/span/pp style="text-align: justify text-indent: 0em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong李卉芳:/strong/span2020版《中国药典》四部收载通用技术要求361个,其中制剂通则38个(修订35个)、检测方法及其他通则281个(新增35个、修订51个)、指导原则42个(新增12个、修订12个);药用辅料收载335种,其中新增65种、修订212种。/pp style="text-align: justify text-indent: 2em margin-top: 10px "检测方法方面有几个显著变化:/pp style="text-align: justify margin-top: 10px text-indent: 0em "span style="color: rgb(0, 32, 96) "strong1.在2020药典四部通则当中,首次增加span style="color: rgb(255, 0, 0) "电雾式检测器CAD/span的内容。/strong/span/pp style="text-align: justify text-indent: 2em "赛默飞电雾式检测器(CAD)使用独特的通用型检测技术,为杂质研究提供高灵敏度、宽线性范围、一致性响应及兼容梯度分析的解决方案,尤其适用于检测无紫外吸收的化合物。CAD对目标物的响应,完全与分子结构无关,只要进入到检测器的目标物质量一致,它的峰面积响应即趋近于一致。利用这一特点,可以给一些未知物质进行相对定量,适用于化学药物杂质的分析研究,包括有关物质的研究。/pp style="text-align: justify text-indent: 2em "各国药典已经收录或正在收录CAD检测方法有钆布醇、脱氧胆酸,琥珀酸美托洛尔、托吡酯、伊班膦酸钠等。通常来说,相较于ELSD蒸发光散射检测器,CAD的灵敏度高一个数量级,相对于RI示差折光检测器,CAD高达两个数量级,且可兼容梯度分析,优势明显。如药用辅料如蛋黄卵磷脂,CAD相比ELSD的检测手段,灵敏度显著提升。在过去的15年里,CAD检测器已经在全世界范围内,被多个大型制药厂应用于研发和生产领域/pp style="text-align: justify text-indent: 0em margin-top: 10px "span style="color: rgb(0, 32, 96) "strong2.新版药典首次引入了span style="color: rgb(255, 0, 0) "二维液相色谱/span的概念。/strong/span/pp style="text-align: justify text-indent: 2em "2020版药典《0722 维生素D测定方法》在2015版基础上新增了第四法。该法采用二维液相色谱,供试品无需经过复杂处理即可进样分析,大大节省了样品前处理的时间。二维法优势明显,方法自动化程度高,抗干扰能力强,准确度高,无需方法转换。早在2010年,赛默飞技术支持团队就已经和相关食品药品检验院所合作,并共同探讨研究采用二维液相色谱技术测定维生素D的方案,并结合双三元液相色谱仪器开展相关实验。/pp style="text-align: justify text-indent: 2em "据悉,此次第四法的部分复核单位也使用了赛默飞双三元液相仪器对方法进行复核。赛默飞双三元液相是通过整合两套独立的三元低压梯度泵,两套泵可以借助变色龙软件共用自动进样器、柱温箱、检测器三个模块,组成类似于两套独立的液相色谱,性价比超高。同时,两套泵也可以借助软件协同工作,可以实现在线固相萃取、离线/在线二维色谱技术等复杂应用,大大拓展液相色谱对复杂样品的处理能力。/pp style="text-align: justify text-indent: 0em margin-top: 10px "span style="color: rgb(0, 32, 96) "strong3.新版药典针对方法转换,明确了span style="color: rgb(255, 0, 0) "色谱参数调整/span的相关原则。/strong/span/pp style="text-align: justify text-indent: 2em "有关方法转换方面,品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变调整。相比15年版《中国药典》,该通则细化方法调整幅度,与国际接轨,可操作性更强。赛默飞今年推出的新一代液相产品Vanquish Core拥有连续可调节系统梯度延迟体积(GDV)技术,可以轻松地实现各品牌液相色谱方法之间的无缝转换。/pp style="text-align: justify text-indent: 0em margin-top: 10px "span style="color: rgb(0, 32, 96) "strong4.利用span style="color: rgb(255, 0, 0) "质谱检测器/span提供的色谱峰分子质量和结构的信息。/strong/span/pp style="text-align: justify text-indent: 2em "《0512 液相色谱方法通则》中,除了引入利用光谱相似度进行定性以外,强调了利用质谱检测器进行定性分析,可获得比仅利用保留时间或增加光谱相似性进行定性分析更多、更可靠的信息。/pp style="text-align: justify text-indent: 2em "加强质谱检测器辅助化合物定性功能,赛默飞的单四极杆质谱仪ISQ EC/EM采用第二代HESI电离技术,配备正交离子源技术,即使复杂的样品基质也可以很轻松地应对。锁定的电离位置保证了喷雾针伸出长度时刻保持一致,使得日间、日内以及喷雾针更换前后的信号更一致。/pp style="text-align:center"a href="http://instument1999.mikecrm.com/lGWNMkR" target="_blank"img style="max-width: 100% max-height: 100% width: 550px height: 179px " src="https://img1.17img.cn/ui/bimg/SH100000/special/w920h3002020ChP.jpg" title="" alt="" width="550" vspace="0" height="179" border="0"//a/pp style="text-align: justify text-indent: 2em margin-top: 10px "仪器信息网将特别推出“span style="color: rgb(255, 0, 0) "strong2020年版《中国药典》变化盘点/strong/span”专题,盘点通则增修、药典仪器以及相关资讯。敬请广大读者关注!span style="color: rgb(0, 112, 192) "strong【点击图片进入专题】/strong/span/pp style="text-align: center "a href="https://www.instrument.com.cn/zt/2020ChP-changes" target="_self"img style="max-width: 100% max-height: 100% width: 550px height: 94px " src="https://img1.17img.cn/17img/images/202009/uepic/1a99183e-131f-46da-b578-e18bff0eb239.jpg" title="w640h1102020ChP.jpg" alt="w640h1102020ChP.jpg" width="550" vspace="0" height="94" border="0"//a/p
  • 【安捷伦】一文读懂 |《 2020 版中国药典》化药元素杂质检测的那些事儿
    p style="text-align: center"img style="max-width: 100% max-height: 100% width: 476px height: 188px " src="https://img1.17img.cn/17img/images/202006/uepic/cdf4b992-4fcd-42e2-a5cc-4fe1148a78cb.jpg" title="元素-1.png" alt="元素-1.png" width="476" height="188"//pp style="text-align: justify text-indent: 2em "随着中国加入 ICH(人用药品注册技术要求国际协调会),中国药典的步伐也更加贴近 ICH 的相关要求以及指导原则。ICH-Q3D 元素杂质指导原则已进入到 Step4 的阶段,对于元素杂质的种类根据给药途径做了相应的限量要求,并对风险评估给出了建议。br//pp style="text-align: justify text-indent: 2em "元素杂质可能来源于化药中原辅料、催化剂以及环境污染物,2020 版《中国药典》对于化药中元素杂质检测也进行了规范,首次提出元素杂质限度和测定指导原则。/pp style="text-align: left text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong2020 版中国药典中关于化药元素检测有哪些修改和新增内容?/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/71bfaa63-151a-48c1-828c-3db8a413d761.jpg" title="元素-2.png" alt="元素-2.png"//pul style="list-style-type: disc " class=" list-paddingleft-2"lip style="text-align: justify text-indent: 0em "胶囊用明胶空心胶囊 —— Cr 检测,为了增强检测方法的专属性,新增 ICP-MS 法为仲裁方法。/p/lilip style="text-align: justify text-indent: 0em "相比于 2015 版药典,2020 版药典化药部分修订了元素杂质限度和测定指导原则。/p/lilip style="text-align: justify text-indent: 0em "将药品中元素杂质 PDE 值的 30% 定义为控制阈值,作为元素杂质水平显著性的衡量指标。/p/lilip style="text-align: justify "关于元素形态部分,元素杂质测定指导原则中指出当总砷测定量超过了限度,为证明无机态砷是否符合规定,则可能需要测定不同形态的砷量;对于有可能含有甲基汞的品种(例如,从鱼中得到的物质)的限度则应在各品种项下列出。/p/lilip style="text-align: justify "元素杂质测定指导原则规定的限度不直接适用于原料药和辅料。/p/li/ulp style="text-align: justify text-indent: 2em "针对 2020 版中国药典化药元素杂质的分析方法及限量,安捷伦的两套方案均可以更加高效,准确满足其要求。/pp style="text-align: left text-indent: 2em "span style="color: rgb(0, 112, 192) "strong快速智能化方案 — 电感耦合等离子发射光谱法/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c28c0cae-c630-42d4-8590-2475b8406597.jpg" title="元素-2.png" alt="元素-2.png"//pp style="text-align: justify text-indent: 2em "自 2015 版开始,电感耦合等离子体发射光谱(ICP-OES)法作为化药元素杂质检测手段,被新增入中国药典。该方法具有快速、基质耐受性强等优势。/pp style="text-align: justify text-indent: 2em "安捷伦全新一代 ICP-OES 独有的超低检出限可以实现 24 个元素同时分析,充分满足 2020 版药典中元素杂质的限量要求:/pul style="list-style-type: disc " class=" list-paddingleft-2"lip style="text-align: justify text-indent: 0em "安捷伦 ICP-OES 业内首家实现水平垂直双观测的技术,对于药典中元素杂质不同的限度要求可以轻松应对。/p/lilip style="text-align: justify text-indent: 0em "全新升级的光路系统,可以有效提升 Pb、As 等元素的检出能力,应对口服类用药不再有后顾之忧。/p/lilip style="text-align: justify text-indent: 0em "在业内,安捷伦 ICP-OES 仪器首次配备智能定量大师 IntelliQuant,该模块将根据实际药品的分析智能化给出谱线的推荐星级排名,所以即便是元素分析新手,也不会因为谱线的选择而发愁,可以轻松实现化学药品的多元素同时分析;曾经有过选错谱线而造成假阳性的不堪经历将不再出现,让谱线选择交给强大的智能数据系统。/p/lilip style="text-align: justify "全新安捷伦 ICP-OES 软件中的智能拓展 QC 功能,可以更加快速简单实现 ChP 方法学验证。/p/li/ulp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 281px " src="https://img1.17img.cn/17img/images/202006/uepic/d6431328-7210-4975-988e-2597a90102d1.jpg" title="元素-3.png" alt="元素-3.png" width="560" vspace="0" height="281" border="0"//pp style="text-align: center margin-bottom: 15px "span style="font-size: 14px "strong图 1 Agilent 5800 ICP-OES测试低浓度Pb的标准曲线(根据药典限值)/strong/span/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 350px height: 267px " src="https://img1.17img.cn/17img/images/202006/uepic/1d97f3fe-f6af-4dd7-ba65-58ab3d0969ea.jpg" title="元素-4.png" alt="元素-4.png" width="350" vspace="0" height="267" border="0"//pp style="text-align: center "span style="font-size: 14px "strong图 2 Agilent ICP-OES 智能拓展 QC 功能/strong/span/pp style="text-align: left margin-top: 15px "span style="color: rgb(0, 112, 192) "strong全能高效方案 — 电感耦合等离子体质谱法/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7d7398ab-4e0d-40d0-873b-4d35a7ef92ce.jpg" title="元素-2.png" alt="元素-2.png"//pp style="text-align: justify text-indent: 2em "电感耦合等离子体质谱法(ICP-MS),因其快速多元素同时测定、质谱干扰少、检出限低以及专属性强等优势,已然撑起各国药典的检测大梁,成为元素杂质分析的首选技术。/pp style="text-align: justify text-indent: 2em "针对 2020 版药典化药限量要求,安捷伦 ICP-MS 系统的硬件及软件也有更好的应对方案。/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong1、软件内置药典元素杂质指导原则方法/strong/span/pp style="text-align: justify text-indent: 2em "针对 2020 版药典要求,安捷伦 ICP-MS 的 MassHunter 软件内置中国药典以及 ICH 和 USP 化药分析方法,一键调用,看似复杂的方法验证,软件已都内置好,只需根据给药途径进行选择,便可以轻松达成方法到报告的完美工作流。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 231px " src="https://img1.17img.cn/17img/images/202006/uepic/9b0330b6-4eaa-4bb8-b817-e78ee1a95c7a.jpg" title="元素-5.png" alt="元素-5.png" width="560" vspace="0" height="231" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 3 MassHunter 中预设“元素杂质测定指导原则”方法/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong2、化药测定,消解有困难,直接有机进样/strong/span/pp style="text-align: justify text-indent: 2em "元素杂质检测,传统的化药前处理方式就是水溶、酸溶、湿法消解或者微波消解。但对于某些含有复杂官能团的化学药,常会遇到以上几种方式都处理不了情况,这可怎么办?对于安捷伦 ICP-MS 来说,最简单的方式就是 100% 有机溶剂溶解后直接进样。/pp style="text-align: justify text-indent: 2em "What?ICP-MS 能耐 100% 有机溶剂吗,分析还能稳定吗,是否需要很强的参数调节经验?这些问题是来自很多药厂 ICP-MS 分析猿的心声。安捷伦 ICP-MS 拥有 20 年左右的有机样品直接分析经验,第一批使用 100% 有机溶剂直接进样的客户都是在 21 世纪初,直至今日该技术已经过 4-5 代的迭代,可实现有机分析方法内置化,无需优化常见的有机分析参数即可直接进样分析。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 207px " src="https://img1.17img.cn/17img/images/202006/uepic/a4c35f71-7091-4d40-b949-fd4eff0fe89f.jpg" title="元素-6.png" alt="元素-6.png" width="560" vspace="0" height="207" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 4 有机样品分析方法内置化/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "有机溶剂溶解样品后,24 个元素都可以稳定分析吗?一个新的问题又出现了,接下来可以看看针对 2020 版中国药典中 24 元素,安捷伦 ICP-MS 测试 DMSO 溶解的这 24 类元素的表现。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 600px height: 533px " src="https://img1.17img.cn/17img/images/202006/uepic/d2d911c2-f3e0-4c70-8435-aa78c894e6bf.jpg" title="元素-7.png" alt="元素-7.png" width="600" vspace="0" height="533" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 5 DMSO溶解 24 元素标准曲线 (根据药典限值)/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong3、方法学验证,专业的工作流/strong/span/pp style="text-align: justify text-indent: 2em "安捷伦是业内唯一家推出 2020 版中国药典化药中 24 元素配套标液的厂商,该标液可以满足口服和注射给药类型的样品测试。/pp style="text-align: justify text-indent: 2em "商品化的 2020 版药典的分析服务方案,由制药行业资深工程师在客户现场采用客户提供药品进行方法验证和培训指导,同时附带全流程 SOP。对于难做的、易挥发、不稳定的元素,您所想要的 know-how 或许就能在这一本专业的 SOP 中探寻到。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 296px " src="https://img1.17img.cn/17img/images/202006/uepic/214046de-8836-4268-851b-0d8397c93183.jpg" title="元素-8.png" alt="元素-8.png" width="560" vspace="0" height="296" border="0"//pp style="text-align: center text-indent: 2em margin-bottom: 10px "span style="font-size: 14px "strong图 6 Agilent 制药行业元素分析完整方案/strong/span/pp style="text-align: justify text-indent: 2em "对于元素杂质的控制是药品整体控制策略的一部分,采用专属性更强的方法可以更好确保元素杂质的测试和评估,安捷伦快速智能的 ICP-OES 方案突破传统仪器的检出能力,可以满足药典中口服类药物全元素的测试;全能高效的 ICP-MS 方案标配高基体引入系统,内置有机进样方法,可以高效完成 100% 有机溶剂溶解进样,兼顾高效和准确性,可以更好保证符合药典的测试。/pp 【安捷伦】供稿br//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制