当前位置: 仪器信息网 > 行业主题 > >

单色仪的工作原理

仪器信息网单色仪的工作原理专题为您提供2024年最新单色仪的工作原理价格报价、厂家品牌的相关信息, 包括单色仪的工作原理参数、型号等,不管是国产,还是进口品牌的单色仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单色仪的工作原理相关的耗材配件、试剂标物,还有单色仪的工作原理相关的最新资讯、资料,以及单色仪的工作原理相关的解决方案。

单色仪的工作原理相关的资讯

  • 新品--扫描数字迷你单色仪
    Mini-Chrom扫描数字迷你单色仪欢迎选购我们的全新产品——扫描数字迷你单色仪!光在商业和科学领域的应用广泛,而我们的产品能够帮助您收集、改变和利用光线,满足多样化的需求。不论是舞台娱乐、摄影还是复杂的光谱学研究,我们的单色仪都能轻松胜任。这款产品的特点之一是高效小巧,尺寸小巧却功能强大。无论是在实验室内还是户外研究,都能轻松携带和使用。无需复杂操作,只需简单操作便可获取您需要的数据,为科研工作带来便利。我们的扫描数字迷你单色仪将成为您的得力助手,助您更高效地进行光学实验和研究。不论您是需要进行光学测量还是光谱分析,这款产品将为您提供准确、可靠的数据支持。选择我们,选择专业、方便和高效!赶快订购吧!&bull 单色仪的应用在研究物质如何发射和吸收光的光谱学领域,单色仪是一个关键工具,因为光学特性通常取决于波长。单色仪帮助科学家选择波长来确定各种材料的化学组成,并从那里协助检查更复杂的物质。单晶单色仪有助于外行人更常见的单色仪应用:它们有助于过滤源光束中的 X 射线,并消除一些可能造成危险的辐射,从而导致医疗专业人员做出错误的诊断。在工业和科学的其他领域,单色仪将可见光谱之外的光(例如紫外线 (UV) 和近红外 (NIR))隔离到窄带中,这对于高性能液相色谱至关重要。Optometrics Fastie-Ebert 配置制成,焦距为 74mm,与紫外、可见光和近红外光谱兼容。它们在以下方面有所不同:标准迷你单色仪代表了单色仪最传统的机械形式之一。通过旋转设备的千分尺来根据需要转动精密正弦杆驱动器来选择所需的波长,然后开始工作!作为该经典设计的替代方案,数字迷你单色仪(DMC) 配备了数字波长选择器,非常适合想要更快选择波段的用户。扫描微型单色仪(SMC) 设计用于与外部伺服控制或步进电机配合使用。扫描数字迷你单色仪( SDMC) 配备了数字计数器和自己的集成步进电机。它始终显示当前波长。当通过 15 针连接器连接到Optometrics PCM-02校准驱动器时,用户可以根据其特定应用的要求控制电机完成扫描。&bull 选择正确的单色仪选择正确的单色仪取决于对几个因素的仔细考虑。以下是一些最重要的。1. 预期应用上述所有模型均适用于大多数依赖于光谱分析的学术、研究、质量控制和工程用途。这些范围从检查用于工业化合物生产的前体化学品到确定专业摄影中的精确灯光设置。但与另一种模型相比,某些应用程序可能会从一种模型中受益更多。例如,由于这些模型固有的电机控制,扫描单色仪可以更好地满足给定科学、学术或工程过程需要扫描波长间隔(用于单独读数或连续监测)的情况。对于需要顺序选择离散波长的 OEM 系统集成应用和任务也是如此。2. 功能环境单色仪或与其连接的任何工具可能会受到物理损坏,特别是在电机驱动型号中。如果将用于调谐到指定波长的螺钉或销钉机构过度推到超出其波长限制,则可能会损坏内部机械结构。为了降低这种风险,Optometrics 的扫描单色仪配备了双光电传感器,充当两个方向的限位开关,以防止损坏。虽然标准和数字 Mini-Chrom 缺乏此功能,但由于用户在手动控制波长选择器时感到阻力,因此不太可能造成机械损坏。3. 波长范围如果单色仪无法根据您的应用特有的波长规格隔离光,那么它对您没有任何好处。想象一下,如果您的舞台灯光产生的色调不是严格的导演指定的精确灯光颜色。如果红外应用的受控环境中的照明没有发射预期的波长怎么办?或者,您的研究可能会受到影响,因为您无法使用光学系统准确测量光反射率。当您选择 Mini-Chrom 系列时,您不必担心任何这些情况。四种型号均提供从最短光谱 190-650 nm 到最长 850-2200 nm 的带宽范围,其间有六种不同的光谱。
  • 关于单色仪,您了解多少呢|Dr. JY 讲光谱系列课程(三)
    大家好,我是Dr.JY,很高兴又跟大家见面了!距离开年课已经快一个月了,大家新年的学习计划进行的怎么样了?在上次课程里,我给大家讲解了光谱分析重要的核心元件——光栅。我们知道光栅重要的作用就是将复合光分开,也知道只有当光被分散的越开,我们也就越有可能得到更准确的信息, 这就是光栅成为重要的一个核心元件的主要原因。接下来的问题就是,利用光栅我们虽然得到了“纯净”的光,但科学家往往只想分析某一个波段的光的表现,换句话说他们要“截取”指定波段的光,然后再进行分析,那么这个截取的动作是怎么完成的呢?这就是我今天要给大家讲解的光谱仪组成模块的大主角——单色仪了。Dr.JY在这期视频中,我将为你讲解单色仪模块是怎样工作的,以及光栅在这个小小的模块中,是如何完成分光,之后又通过什么样的结构和元件精确“截取”的。Dr.JY此外,我还将带你就单色仪的三大关键参数做详细的介绍,让你深入了解如何评价单色仪的好坏,帮助你选择适合你的单色仪!如果你对上面的这些问题感兴趣的话,那么接下来,就请识别下方二维码,跟着我正式开始5分钟的课程吧~~好了,今天就到这里,同学们下次课堂见! HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 我国首台弧矢聚焦双晶单色仪研制成功
    “上海光源”近日竣工。“上海光源”又名“上海同步辐射光源”,而同步辐射光束线的“心脏”则由中科院西安光学精密机械研究所研制。由该所承担研制的水冷弧矢聚焦单色器是“上海光源”光束线中的关键设备,各实验站所需单色光波长、能量分辨率、光斑大小都是由单色器来实现或决定,它是整个同步辐射光应用中最重要的装备之一。该设备的性能好坏直接关系到同步辐射光束线的优劣,因而被称为同步辐射光束线的“心脏”。由于单色器结构设计复杂,加工技术难度大,目前世界上只有法国等少数几个国家能够研制生产,且市场价格十分昂贵。为了研制我国自己的水冷弧矢聚焦单色器,满足“上海光源”工程建设的急需,承担该项研制任务的西安光机所“水冷弧矢聚焦单色器”项目组全体科研人员在中科院上海应用物理所、中科院沈阳科仪中心等单位的密切配合和大力支持下,用不到两年的时间,先后攻克了单色器第一晶体高精度定向、切槽、冷焊以及第二晶体肋拱结构等特殊形状单晶硅精密加工及压弯聚焦面形控制技术,四连杆柔性铰链设计及传递弯矩实施晶体弯曲聚焦技术,晶体投角、滚角、摆角精密微调及光束固定出口技术及高精度高稳定性悬臂式空心轴系、大口径磁流体密封及编码器闭环控制精确定位Bragg转角等系列技术难题,首次成功研制出我国第一台具有自主知识产权的水冷弧矢聚焦单色器。2008年5月12日和6月6日,在“上海光源”首批7条光束线站中,安装的水冷弧矢聚焦单色器的X射线小角散射光束站和高分辨X射线衍射线站等两条光束线相继进行了首轮调光试验。联调期间,各运动、调节机构精度高、稳定可靠,两台弧矢聚焦单色器成功得到我国第三代同步辐射第一束衍射X光束,联调试验获得圆满成功。它标志着我国自己研制的水冷弧矢聚焦单色器完全达到设计和使用要求。“上海光源”工程委员会在评价意见中指出,中科院西安光机所瞬态光学与光子技术国家重点实验室研制的弧矢聚焦双晶单色器是整个同步辐射光硬X射线光束线核心部件;该项目的完成,填补了国内在弧矢聚焦双晶单色器研制领域中的空白,在其结构设计和关键技术应用上填补了多项国内空白。它的研制成功,标志着我国同步辐射硬X射线光晶体单色器的研制水平迈上了一个新的台阶并跻身于国际同类水平,使我国成为第二个能生产弧矢聚焦单色器的国家。
  • 卓立汉光可调单色光源的应用 — 均匀光源
    技术介绍:目前市场上有多种灯源,这些灯源只一般提供复色光,不能根据用户的实际应用提供单一或是较短波段范围的光,因此可调光源也就孕育而生。光源经过不同特点的分光器件(一般为单色仪),输出或是高分辨高窄线宽光,或是高能量的复色光,从而可以在不同的应用场景中使用。产品应用:均匀光源是可调光源一个重要分支,一般可用于探测器如(CCD,CMOS)的响应均匀性测试等光电领域测试。CCD像素非均匀性测试:CCD芯片是由多个像素组成。在CCD制造过程中,因为硅基材料本身质量,以及生产工艺等因素,即使在同一个采集参数下(曝光时间,读出速率等),各像素的暗电流,量子效率还是会有细微的差别。在一些大面阵相机使用的场景,如天文观测,需要在CCD相机使用前对感光芯片的各像元的响应非均匀性做统一的测试。 均匀光源是该测试中的重要环节,光源的均匀性和稳定性都会影响到测试的准确性。 图1:CCD芯片非均匀性测量流程图,内含TLS(可调光源)和积分球如上图所示灯源经光谱仪分光后由积分球输出成为均匀光源,然后照射待测CCD相机进行测试。根据测试响应波段的要求,一般灯源可以选用卤素灯作为光源,用光功率计放置于积分球出口,测量光源在不同电流时的能量输出。经过长时间开启后,(一般30分钟以上),再次测量输出能量数值。经过对比,得到一个电流最佳值使得灯源在长时间工作后仍可保持1%以内的稳定性。光源均匀性测试可以用光功率计在XY电移台上以一定间隔(如1cm),在CCD测试位置获得光源照射到CCD面上的不同位置的照射强度均匀程度。在光源的强度稳定性和均匀性符合测试指标后,接下来可以进行CCD非均匀性测试。分别在挡光和不挡光状态下获得相机在同一AD等参数的情况下图像数据。然后在逐一针对不同曝光时间分析像素点的数值输出。最后得到对CCD芯片的响应均匀性测试,并重新建构测试芯片的暗电流和光电流的分布情况。 图2:卓立汉光推出的基于可调光源的均匀光源系统卓立汉光经过多年的研发,针对不同的光源需求,推出基于不同光源和单色仪的可调光源系统(TLS系列光源) 图3:不同灯源组合灯源加320mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-2000nm氙灯(300W、500W)10%200-2000nmEQ光源1%200-2000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-12um 灯源加200mm焦距谱仪组合TLS光源灯源不稳定性输出范围氙灯(75W、150W)1%200-1000nm氙灯(300W、500W)10%200-1000nmEQ光源1%200-1000nm溴钨灯(150W、250W)1%350-2500nm40W红外光源1%1.1-8um 引用文献:1, Liang Shaolin, Wang Yongmei, Mao Jinghua, Jia Nan, Shi Entao,Infrared and Laser Engineering, 0417004, 48(2019)2, EMVA Standard 1288,Standard for Characterization of Image Sensors and Cameras,2021Wang Shushu, Ping Yiding, Men Jinrui, Zhang Chen, Zhao Changyin,Proc. SPIE 11525, SPIE Future Sensing Technologies, 115252I (2020)
  • 探测器的那些秘密 |Dr. JY 讲光谱系列课程(四)
    新年过后,是时候要调整好状态开始学习和工作了。在前几期的课程里,我带大家了解了光栅和单色仪,知道了光栅在单色仪中是如何完成分光,之后又通过怎样的结构和元件精确“截取”指定波段的光。我们知道,通过分析光的波长及强度的信息,我们可以了解光与物质相互作用后发出的光所携带的信息。那么问题来了,我们现在有了光的波长信息,但是应该如何获得光的强度信息呢?这就需要光谱仪组成模块的第二大主角——探测器出马了。探测器是一个光电转换器件,它可以把我们截取的光信号转换成电信号,并显示出来供我们分析。那它是怎样工作的呢?单通道PMT是如何工作的?多通道CCD又是如何工作的?光谱响应范围受什么影响呢?前照射,背照射和开放电CCD的量子效率有什么区别?暗噪声、读出噪声和散粒噪声分别受什么影响?该如何降低呢?带着这些问题,识别二维码观看视频,让我们开启“光谱原理动画——第四课:探测器”的学习之旅吧!通过这四期课程的学习,你应该对光谱测量的基本原理有了一定的了解。但是到此为止,你们的学习还未完成,因为要开启更深入的科研探索,还需要掌握更多更扎实的光谱知识。不过别担心,普及光谱知识是我Dr.JY的使命,只要你继续关注我的光谱学院课程,我就会把光谱知识的奥秘一一讲解给你们。记住,我是Dr.JY,下次上课见! HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 珀金埃尔默推出具有集成式单色器选件的多标记微孔板检测仪
    基于滤光片的灵敏度与基于单色器的灵活性完美结合,从而大大增强 EnVision 检测仪的性能马萨诸塞沃尔瑟姆 – 生命科学研究、新药研究和细胞科学领域的全球技术领先者珀金埃尔默生命与分析科学部,今日宣布推出两种用于 EnVision 多标记微孔板检测仪的新型单色器选件,该检测仪被众多生物技术、制药和学术研究人员用于在新药研究过程中筛选化合物。这项新的 EnVision 技术将于 1 月 27 日至 30 日在加州棕榈泉市召开的 2008 实验室自动化大会的 427 号展台展出。利用这一技术,可制造出将基于滤光片技术的灵敏度与单色器的灵活性融为一体的优化型微孔板检测仪。带有单色器的 EnVision 实现了检测技术与应用之间的轻松转换,所有操作都依靠一个性能优于市面上其它台式检测仪的平台完成。“整合到 EnVision 系统之中的新型单色器选件带来了前所未有的灵活性和速度,大大提高了先导化合物优化过程中化学靶物与先导化合物的比率。”珀金埃尔默生命与分析科学部生物研发业务总裁 Richard Eglen 博士说道,“这一新技术可根据研究人员的需要不断升级,证实了我们在推动微孔板检测仪市场和巩固公认的 EnVision 品牌方面做出的不懈努力。” EnVision 多标记微孔板检测仪可在每项应用中针对每种标记都表现出卓越性能。新型单色器选件将 EnVision 变为性能极致的双模式仪器,既能检测吸光度也能检测荧光强度。这种单色器选件具备两种使用模式,“吸光度单色器”使用单个单色器测量吸光度,而“荧光强度单色器”用两个双光栅单色器来测量吸光度和荧光强度。 微孔板检测仪的模块化设计针对实验室不断变化的应用需求和不断提高的通量需求提供了可升级的解决方案。可将单色器选件与其它 EnVision 选件结合使用,包括 TRF(时间分辨荧光)LASER,它能发出强烈的短时间激发脉冲,从而实现极佳的信噪比。EnVision 仪器可方便地集成到全自动系统中(如珀金埃尔默的 JANUS 自动化工作站),旨在提供最大的配置灵活性,并可以使用 1 到 3456 孔微孔板。与高精度分液器设备和温度控制器配合使用时,EnVision 可以执行快速的动力测量、酶检测和其它多种基于细胞的新药研究检测。经过优化的 EnVision 还体现了珀金埃尔默专有的 AlphaLISA 技术,利用该技术可以对复杂样品(如血清和血浆)中的大生物分子进行同质测量而无需清洗过程。 有关带有单色器选件的 EnVision 多标记微孔板检测仪的详细信息,请访问 http://www.perkinelmer.com\platereaders
  • 青涩的学术生涯从拉曼散射研究开始——南京大学物理学院吴兴龙教授
    1990年初秋,我离开政府机关踏上了去南京大学的研究生求学之路,心中的忐忑不言而喻。南京大学是一所国内著名学府,有众多我少儿时代就已耳熟能详的著名学者,当时的物理研究更是闻名遐迩,有魏荣爵先生和冯端先生分别领衔的声学和晶体物理学研究团队承载着中国物理学的半壁江山。欣喜之余,毅然选择了光学和晶体物理学的交叉学科拉曼散射作为我研究生阶段的研究方向,由此开始了我的学术生涯。记得进校的第一年,就选修了在拉曼散射方面有深厚造诣的张明生教授给全校研究生上的拉曼光散射课程,因为是一门全校公选课,选修的同学特别多,有物理、化学、生物、地质等满满一教室学生。记得张老师的第一堂课是介绍了拉曼散射的发展历史,从瑞利散射讲到拉曼是怎样发现苯分子的振动,提出拉曼散射原理,随后张老师用简正坐标推导了晶格动力学的振动方程,导出了晶格振动的频率。一些复杂数学方程的推算,使得原本对拉曼散射颇感兴趣的同学突觉拉曼散射课程的难度,到第二节课时,听课的同学就只剩6位了,其中包括化学系的陆云和生物系的一位同学。记得第二节课张老师讲授了振动的对称性分析,涉及了一些群论知识,这次讲课的结果直接把除我们三人之外的其他同学吓得从此没有了听课的兴趣,在随后的时间里,这门课程一直只有我们三人,但张老师仍是一如既往的认真教学。通过这门课程的学习使我积累了拉曼散射基本理论和实验的许多基础知识,也增加了研究拉曼散射的兴趣。后来我惊讶地发现,我们一直坚持下来的三位同学毕业后都留校任教,三人也一直坚持做拉曼散射研究,只是研究的材料稍有不同而已。进入拉曼实验室也是在张老师课程的最后实践训练课上,这也是我第一次真真切切见到了当初为数不多的由世界银行贷款统一购买的最先进的美国SPEX 1403拉曼谱仪,它是由长度达0.64米的双光栅单色仪构成,因为长距离的光栅分光,使得这台拉曼谱仪具有高的分辨率和高的灵敏度,特别是无需使用滤波器就可抑制瑞利线到几十个波数。由于当初的拉曼研究还是以晶体材料的声子特性为主,故而样品腔没有显微装置,主要以直角散射为几何配置获取拉曼信号,在做薄膜样品时,需要自制一个样品架,把样品倾斜起来,以增加透光面积,从而增加散射的光通量。此外这台设备也没有CCD检测装置,信号收集使用低温Ge光电探测器,信号收集速度较慢,一个50-1000波数的拉曼谱测量往往需要30分钟以上,因此为获取多几个样品的拉曼谱,需彻夜留在实验室工作,因实验室温度较低(恒温18oC),不经意的瞌睡,常引起感冒,但心无旁骛,工作劲头十足。T64000激光拉曼谱仪 阿飞罗夫参观实验室博士阶段在导师冯端先生和张明生教授指导下开展拉曼散射工作,研究质子交换的LiNbO3和LiTaO3及Nd掺杂LiTaO3晶体的声子特性,揭示体和表面掺杂后引起的拉曼模变化。对一个参加工作已有6年之多的“老”学生而言,学习的努力不言而喻,再加每周差不多有两天时间的拉曼谱仪可供使用,让我获得了大量的拉曼谱数据,为随后的分析奠定了基础,也由此帮助我在博士阶段完成了5篇学术论文,后留校任教。现在回想起来读博阶段的努力是何等重要!记得那个年代只有打印出来的纸质拉曼谱图,我常常把它们满满地排列在寝室的床上,仔细、反复地比较区别,随时地对比文献,找出思想,获得结论;也深深体会到和导师的讨论总能收益匪浅。有一次请冯端先生帮助修改一篇论文,冯先生看后说,英文修改比较容易,但是物理概念的清晰更是一篇论文的基石,这句话深深地影响着我的科研直到现在。也有一次在整理一些数据时发现,有一个振动模在多种几何配置下其强度始终很大,阅读了许多文献就是不得要领,那天正好在办公室见到张老师,刚一询问就见张老师脱口而出,是样品应力造成的,此语一出茅塞顿开,让我猛然把读过的文献中不能连贯的知识瞬间地链接起来,顿然明白是应力导致的光折变效应,引入了很强的内建电场,促使了这个振动模在一些不应出现的几何组态下出现和强度增强。当初的这个情形历历在目,现在我在带学生时非常强调和学生的讨论,发现好多学生读过很多文献就是不能把知识连贯,因此很难提出一些创新的想法,老师的一个简单暗示或许就是点睛之作。毕业后来到半导体物理与材料研究实验室,开展了纳米材料的拉曼散射研究,此间有很长一段时间常幻想能拥有一套可以自由支配使用的拉曼谱仪,也常幻想能中一次彩票,去买一台世界最好的拉曼谱仪。感谢祖国的蓬勃发展,此愿望得以在千禧之年实现,那年国家开展物质科学平台建设,我有幸获得200多万研究经费的支撑,在国内率先购买了法国Jobin Yvon公司T64000由三单色仪组成的带有微区的激光拉曼谱仪,同期购置此设备的国内仅三家,北京物理所刘玉龙老师的那一台安装到位最早,做出了许多重要的工作,深圳大学也购置了一台,据说由于人员配备不足,没有进入实质性的使用。我们实验室安装成功后也一度成为教育部定点的对外开放实验室,获教育部开放基金的支持。2002年南京大学举行百年庆典,前苏联科学院约飞技术物理研究所前所长诺贝尔奖获得者阿飞罗夫被邀参加我校庆典,还专程参观了我的拉曼实验室,由我代表实验室向他介绍了我们在拉曼散射上取得的成果,此后的一些研究思想部分也得益于和他们的不断讨论。T64000拉曼谱仪的架构至今已历时了20多年而鲜有改变,其最强大的功能是能实现前两个单色仪的相加和相减模式,由此使得其有很高的灵敏度和分辨率,特别是相减模式下可把瑞利散射线压得极低,在不用高性能滤波器的情况下,低波数可以测到5cm-1左右甚至更低,此为各种声学声子、磁振子、等离激元等更多元激发的研究提供了可能。值得庆幸的是,有了这台拉曼谱仪,我做了一批纳米颗粒表面声学声子研究的工作,也较早提出了表面声学声子-极化子(polariton)的概念,随后也在低波数段,揭示了由纳米片组成的核壳结构氧化锌纳米球具有高效、室温的太赫兹发射。T64000拉曼谱仪还有一个重要的功能,它可以使用第三单色仪检测材料的荧光发射,获得高质量的光致发光谱。在对拉曼散射的研究中,也激发我对半导体纳米材料发光现象研究的兴趣,并由此在实验室前任主任鲍希茂教授带领下获得了一项国家奖。现今随着研究组的扩大和学生的增多,研究内容也扩大至纳米材料的生长动力学、磁性和光电催化等多个方面,但是对拉曼散射和荧光谱学的研究仍是我最敏感也最为擅长的研究内容,我至今引用超过千次的一篇论文,就是先研究拉曼散射后揭示荧光现象的结果。现今拉曼谱仪和拉曼散射研究获得了蓬勃发展,已经渗透到几乎所有的研究领域,展示出极大的应用潜力,我由衷地为我当初的选择感到庆幸,正是这门学科的发展造就了我的现在。作者简介: 吴兴龙教授,1995年2月博士毕业于南京大学物理系凝聚态物理专业,现为南京大学物理学院教授、博士生导师。长期从事半导体微纳结构的设计、发光和拉曼散射特性的研究,近期开展微纳结构在光电催化效应方面的探索。在包括Nat Nanotechnol、Nat Commun、Joule、Phys Rev Lett、J Am Chem Soc、Nano Lett、Adv Mater、Angew Chem、ACS Nano等高水平杂志上发表论文300余篇,论文被同行在国际杂志上他引万余次,单篇他人引用超1000余次。2002年获国家杰出青年基金资助,2007年入选教育部长江学者特聘教授。主持和参与国家科技部 “973”项目、国家自然科学基金委、教育部、江苏省自然科学基金委等重点和面上项目多项。曾获国家自然科学四等奖、江苏省科技进步一、二等奖,2017年获教育部自然科学一等奖。
  • 【华高仪器】岛津顺序型双单色器——高性能ICP发射光谱仪
    双顺序扫描型单色器装置确保尖锐的谱线和稳定性这是一款高性能的ICP发射光谱仪,配置了顺序型双单色器,拥有高分辨率及快速的特点,并且提供了多种的进样系统。仪器易于操作,适用于研发和质量控制。高分辨率(0.0045 nm)高分辨率可满足金属、稀土和土壤分析的要求,可对目标分析物提供精细准确至痕量水平的高分辨率分析,并且不受干扰物质或者主要成分的影响。真空型光室可提供长期稳定的测量真空光室可对S, B, I, Al和其他在真空紫外线区域拥有很高灵敏度分析线的成分进行高灵敏度分析。由于不需要气体吹扫,因此可减少气体对流时的波动和污染。所需稳定时间短,并能确保长时间分析的稳定性分析铁中的锌和砷。登记样品名称并用已设定好的分析条件开始分析。分析条件很容易改变,并可设置到常规条件中。分析结果可用商业软件以报告的形式打开。
  • 森泉光电邀您共聚第二十届全国分子光谱学学术会议暨2018年光谱年会
    会议简介由中国光学学会和中国化学会主办的“第20届全国分子光谱学学术会议”暨由中国光学会光谱专业委员会主办的“2018年光谱年会”将于2018年10月19-22日在山东省青岛市黄岛区召开,森泉光电作为行业内的佼佼者受邀参加此次行业盛会。自1979年在桂林召开第一届会议以来,全国分子光谱学学术会议已经成功举办了19届,2018年将迎来会议的四十周年,也将是时隔28年再次在青岛市举办。本次会议是我国光谱科学工作者的又一次盛会,将全力展示我国在光谱及相关领域的最新研究进展及取得的成果,增进广大光谱科学工作者及其支持光谱事业人们间的交流与合作,促进我国光谱事业的发展。届时大会组委会将邀请国内外光谱及相关领域的院士、知名专家学者到会作大会报告,同时会议还将组织各类专题讨论和学术交流。时间:2018年10月19-22日地点:山东省青岛市黄岛区银沙滩温德姆至尊酒店(山东省青岛市黄岛区银沙滩路178银沙滩畔)森泉展位:一楼3号展位精彩看点此次会议森泉将重点展示:Camlin光源、可调谐光源、单色器,光谱仪、高光谱成像及荧光计系统等模块化光谱。 APOLLO 光源 Camlin Photonics提供一系列专业高性能、高稳定性光源:连续式/脉冲式氙弧灯,氘灯和卤钨灯等。 光源的选择取决于应用所需的光谱范围、光源亮度、稳定性以及光谱平滑度等要求。 APOLLO 可调谐光源 我们光源的创新设计使ATLAS单色仪与我们配套光谱成像仪系列可简单方便对准,可形成功能强大的可调谐光源系统 - APOLLO TLS系列。 在以上光源和单色器范围内,我们可以提供高度定制的可调谐光源,以有效地满足客户对功率和分辨率的要求。 ATLAS系列-单色仪 ATLAS系列Czerny-Turner单色仪可提供一系列定制的高质量直接扫描单色仪系统。焦距为150 mm, 300 mm, 500 mm和750 mm以及多光栅转台设计特点,我们可以为低,中,高分辨率应用提供合适的系统。 例如,ATLAS 150的分辨率为0.4nm,而ATLAS 750的分辨率高达0.03 nm。 Fluoro SENS分子荧光光谱仪系统 fluoroSENS系统是一款具有极高的光谱灵敏度 - 单光子计数的多功能台式荧光系统。有两种标准配置可供选择:fluoroSENS MINI 和fluoroSENS PRO。模块化设计适用于对各种光源、单色仪、样品架和探测器等配置进行完全控制。 fluoroSENS系统也很容易从稳态升级到时间分辨测量。 高光谱成像软件 用于数据采集、查看和分析的综合软件是任何高光谱系统的关键部分。我们spectraSENS软件是一个完全集成的高光谱平台,可用于收集、查看和处理数据。 可直接通过软件单光谱或多光谱相机操作,可输出高分辨率RGB图像,传感器触发信号,数据流和直接可视化信号。 spectraSENS软件已经配备了全面的内置数据分析功能库,包括有监督和无监督的方法,以及用于地面参考(训练)数据集的偏最小二乘建模,以实现材料的浓度Mapping。森泉光电诚挚的欢迎国内外光谱界的同仁莅临我们的展位,共同见证光谱会议四十年的发展成果,真诚期待大家2018年金秋10月在青岛相聚!
  • 光电二极管的量子效率:如何测量量子效率?
    为了测量光电二极管或太阳能电池等设备的量子效率,通常需要测量响应不同波长的入射光子而产生的电子或载流子的数量。此过程涉及将设备的输出(如光电流)与撞击设备的已知光子数量进行比较。使用专用设备和受控照明条件来确保在不同波长的光下进行准确测量。然后将量子效率计算为比率或百分比,以量化设备将光转换为电信号的效率。量子效率(QE)测量系统的PD-QE光路设计。以下是该系统如何工作的分步说明:灯系统:这是系统的光源。它发出的光直接射向单色仪。斩波器:斩波器周期性地中断光束。这种调制可以区分光源信号和环境光信号,从而提高测量精度。单色器:单色器将光分散成其组成波长,类似于棱镜,并选择窄带波长通过。滤光轮:位于单色仪之后,可用于进一步细化到达样品的光的波长或强度。光圈:光圈调整光束直径,控制穿过样品的光量。镜头:镜头将选定的光聚焦到样品或光电探测器上。参考电池:用于通过提供可比较样品 QE 的已知标准来校准系统。样品:这是正在测试 QE 的光电探测器或太阳能电池。它吸收光线并产生光电流,其大小用于计算其 QE。在 QE 测量系统中,光源的准确度和精度、单色仪选择正确波长的能力以及检测器的稳定性至关重要。光路设计对于确保光有效、精确地传递到样品以进行准确测量至关重要。光伏检测请搜寻光焱科技
  • 闪谱发布 SuPerMax 3000FA型多功能酶标仪新品
    SuPerMax 3000FA型多功能酶标仪 ----专为生命科学实验室而打造上海闪谱生物科技有限公司成立于中国科学院上海生物工程中心,与复旦大学、上海交通大学有着良好的合作关系,是一家致力于为生命科学和药物研发工作者提供专业的、高精度、高通量、高性能的微孔板测读分析仪厂商,是国内第一家光栅型酶标仪生产商,SuPerMax型光栅酶标仪系列产品已被广泛应用于药物筛选、分子生物学、免疫学、细胞学、生物化学等多个领域,完全可以取代进口产品,是高性能微孔板测读分析领域的国产领导品牌,是科研单位与生化制药厂的明智选择。SuPerMax 3000FA型主要特点:1、适用于荧光、光吸收检测,具有多种拟合曲线进行分析;2、适用于蛋白酶与激酶、磷脂酶、NADH、GST活性测试;3、适用于蛋白质定量分析,支持UV,NanoOrange,Bradford,Lowry等方法;4、适用于DNA/RNA分析;5、适用于活性氧分析,cAMP分析;6、适用于细胞增殖和细胞毒性测试,MTT,XTT;7、适用于微生物生长、内毒素与细菌浓度分析;8、适用于分子探针实验;9、可进行紫外、荧光光谱扫描;10、激发与发射组件均为高分辨光栅单色仪,可设定最优激发与发射波长;11、内置光栅单色器的波长范围为190-1000nm,具有良好适应性;12、波长分辨率1nm,波长重复性可达0.2nm;13、具有动力学分析模式;14、具有温控孵育系统,温度可达65℃,适应高温试验;15、带有微孔板震荡混匀功能,无需使用外部摇床;16、使用氙灯光源,强度高、发光稳定;17、具有有样品检测探测器和参比探测器,检测精确;18、具有功能强大的数据分析能力的微孔板分析工作站;19、具有仪器参数设置与仪器自检功能,高度自动化;20、使用USB数据接口,便于仪器控制与数据传输;21、全中文界面,适合国内操作人员使用与教学;22、性能不低于进口同类产品,具有极高的性价比; SuPerMax 3000FA型主要指标:荧光性能:n 探测器:光电倍增管(PMT)n 激发波长范围:190nm-1000nm;n 发射波长范围:270nm-850nm;n 波长分辨率:1nm;n 波长带宽:10、20nm可选;n 波长准确度:0.2nm;n 荧光灵敏度:顶读<0.5fmol(FITC/孔→384板) 底读< 5fmol (FITC/孔→384板)n 检测数量级:顶读> 6个数量级(FITC/孔→384板) 底读>5.5个数量级(FITC/孔→384板)n 读数方式:顶读+底读n 比色皿模块:不存在 光吸收性能:n 检测器:光电池n 波长范围:190nm-1000nmn 波长准确度:±1.0nmn 波长重复性:0.2nmn 线性范围:0-4Abs(96孔,450nm),±2%n 整板重复性:极值<0.006n 比色皿检测模块:不存在 加液器功能(选配):n 数量: 1或2个n 加液体积:10-1000uL 常规特性n 光源:氙灯n 温度控制:(室温+2℃)至65℃n 振荡方式:线性、十字、圆周n 振荡幅度:高、中、低n 板型:96、384孔(其它孔位可定制) SuPerMax 3000FA型主要组成:1、主机(包括光源、检测器、孵育装置、振荡装置);2、SuPerMax 3000FA型多功能酶标仪工作站软件;仪器附件(选配)1、MF-10型孵育振荡仪;2、加液器组件;3、审计追踪;SuPerMax 3000FA型多功能酶标仪工作站软件界面: 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:适用于荧光、光吸收检测,具有多种拟合曲线进行分析,可进行紫外、荧光光谱扫描,激发与发射组件均为高分辨光栅单色仪,可设定最优激发与发射波长,内置光栅单色器的波长范围为190-1000nm,具有良好适应性 SuPerMax 3000FA型多功能酶标仪
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • HORIBA Scientific推出新一代TCSPC荧光寿命系统
    新一代快速、简便和高性能的Delta系列荧光寿命系统 作为全球荧光光谱系统的者,HORIBA Scientific推出了新一代时间分辨单光子计数(TCSPC)荧光寿命系统,它比市场上任何一款寿命系统测试速度更快、操作更简便、性价比更高。针对时间寿命测试的要求,从光源、检测器、计时装置到偏振片、滤光片等各种光学部件的耦合,我们提供整体的解决方案。 Delta系列采用了新技术的TCSPC控制器、全波长范围、多种光源可选(重复频率高至100MHz)、实现全范围的寿命测试(ps~s);F-link交互总线连接、即插即用、便于控制系统部件;行业专用寿命模型软件。相比其它TCSPC系统,Delta系列具备短的死时间,这使得其成为市场上快的寿命系统,保证了光源重复频率在高至100MHz、总寿命测试时间短至1ms时,实现近乎无损光子计数。 该系列中DeltaPro是一款滤光片式的寿命系统,具有高性能和易操作的特点。DeltaFlex则是一款模块化系统,可选配无缝集成的激发和发射单色仪、全波长范围的多种光源(二管、激光二管及超连续激光光源),以及从紫外到近红外区响应的多种高灵敏检测器,使其具有高度灵活性和无限升级能力。DeltaPro简化了时间相关单光子计数(TCSPC)的复杂性,实现了任何一个实验室都可利用TCSPC技术研究复杂的荧光动力学。DeltaPro配有脉冲激光二管和LED光源,此类光源具有即插即用、方便操作、免维护等特点。激发光源NanoLED和DeltaDiode能够覆盖紫外到近红外区的全范围波长,以及满足ps~µ s的宽寿命范围测试条件。此外,通过选择SpectraLED光源,系统可以轻松覆盖µ s~1s的磷光测试范围。 DeltaFlex具有高度的灵活性,在无需更换连线及板卡条件下,即可实现测试11个数量级范围的发光寿命。该系统可配高频光源、高速检测器和超低死时间的电子设备,可快速高效地采集寿命数据。新型的F-link总线有效地简化了系统部件之间的连接方式,轻松地满足了用户对加载额外光学部件的需求,此外,系统还可自动检测新加载的附件并获得软件许可。现在已经有越来越多的应用热衷于近红外区的时间分辨检测,例如,在生物探针和光伏等领域,配有NIR检测器的DeltaFlex可提供完美的解决方案。 DeltaFlex系统包括通用的DeltaDiode激发光源或NKT超连续激光光源,DeltaHub计时电子设备和PPD皮秒检测模块。特殊设计的TDM-800单色仪具有低时间色散的特点,根据需求可作为激发/发射单色仪,实现波长选择或完整的光谱采集,例如TRES检测。基于40多年的寿命系统的设计和研发经验,新一代的时间寿命分析系统-Delta系列,在保持TCSPC高灵敏度的基础之上,还具有不可比拟的测试速度和操作的便捷性,已经成为荧光寿命系统中新的力量,满足了不同用户的需求。
  • HORIBA发布收购PTI后的首款荧光光谱仪新品
    2014年2月,HORIBA宣布收购PTI(Photon Technology International, Inc.)及其附属子公司的全球资产。收购PTI两年多以后,日前HORIBA发布了PTI QuantaMaster系列产品的新成员——PTI QuantaMaster 8000系列光谱仪。  PTI QuantaMaster 8000系列模块化研究级荧光光谱仪具有世界上最高的灵敏度,水的拉曼信噪比(SNR)为30000:1,目前只有HORIBA 的Fluorolog-3能与之相媲美。PTI QuantaMaster 8000  作为一款模块化、研究级荧光光谱仪,PTI QuantaMaster 8000可以用于稳态和荧光寿命的测量。它配备了四个激发光源和六个检测通道,采用三光栅系统拓展波长范围,使用一个单色仪或双单色仪进行杂散光的抑制。同时,通过TCSPC增加灵活性和适应性,提供最快的速度,并提供260nm到2000nm之间可调的UV/Vis/NIR超连续激光。此外,该产品还可以实现覆盖到5500nm的光谱和磷光寿命检测。  PTI QuantaMaster 8000是一款完全自动的仪器,FelixGX软件控制所有的硬件功能, 为光谱和动态测量提供了一套完整的数据采集协议。使用SSTD转换器或VCI可以进行激发和发射光谱扫描、时间扫描、光谱和时间偏振扫描、同步激发/发射扫描、TCSPC寿命和磷光衰减以及时间分辨激发和发射光谱的扫描等。  “PTI QuantaMaster 8000系列产品是下一代稳态和寿命荧光光谱仪的代表,同时也是HORIBA收购PTI后发布的第一款荧光光谱仪新品,”HORIBA荧光部门全球产品经理Cary Davies说,“现在,研究人员拥有了一款从UV到NIR (280 to 5500 nm)的高度灵活性,同时具有超高灵敏度以及许多其它很多独特优势的荧光光谱仪。”HORIBA荧光产品发展历史
  • 小编精选|多功能酶标仪导购篇
    酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。其在生物医学、药物研发、农业和微生物学领域被广泛应用,是生命科学实验室必不可少的仪器品类。单通道酶标仪检测原理图(图源网络)酶标仪实际上就是一台变相的分光光度计,其基本工作原理与主要结构和分光光度计基本相同。酶标仪测定是在特定波长下,检测被测物的吸光值。随着检测手段的进步和检测技术的发展,拥有多种检测模式的多功能酶标仪已成为一种发展趋势,多功能酶标仪具备吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、化学发光(Lum)等检测功能,甚至还可以支持“Western Blot”和“上转换发光”等功能。根据不同的检测模式,选择光栅或滤光片作为最适合的光路,其中光栅适用于吸光度和荧光强度,滤光片适用于AlphaScreen和时间分辨荧光,化学发光一般无需波长选择(可以根据需要使用滤光片)。酶标仪市场主流的仪器品牌主要包括美谷分子、伯腾、帝肯和珀金埃尔默等,据统计高校和科研院所上传共享的酶标仪信息显示(点击查看),这四个品牌在国内科研市场中份额占到近90%,而国产品牌仅占比1%。那么如何从琳琅满目的品牌和型号中选择符合自身需求,且可靠的产品呢?接下来,小编将遴选推荐一些靠谱品牌型号,希望能够帮助正在苦苦寻觅多功能酶标仪的同学。进口品牌美谷分子 SpectraMax iD5多功能酶标仪SpectraMax iD5多功能酶标仪(点击查看)美谷分子(Molecular Devices)始创于上世纪80年代美国硅谷,作为全球高通量仪器设备的优秀品牌,一直致力于为生命科学研究及药物研发提供先进的解决方案。新推出的SpectraMax iD5-多功能酶标仪具备多种检测功能,如光吸收、荧光、化学发光、时间分辨荧光、荧光偏振、FRET、DLR、BRET、Nano-BRET、TR-FRET、HTRF、此外还加入了最常用Western Blot检测。相较于前几代产品,其创新性体现在高灵活性和高灵敏度的精确结合,仪器内置光栅和滤光片双系统,即四光栅+滤光片杂合方式,既保证检测灵活性,又提高检测的灵敏度。此外,SpectraMax iD5内置近场通讯功能 (NFC),可自动检测并识别滤光片标签代码,使得工作流程简化,效率大大提升。伯腾 Synergy Neo2 HTS全功能酶标仪Synergy Neo2 HTS全功能酶标仪(点击查看)伯腾(BioTek)公司创立于 1968 年,并于 1981 年推出了自己的第一款微孔板酶标仪,已有40余年的技术积累和研发经验。伯腾推出的Synergy Neo2 HTS全功能酶标仪专为开展筛选应用的实验室而设计,具备快速检测速度和超高性能。采用专利 Agilent BioTek Hybrid 技术,具有独立的基于滤光片的光学系统和光栅系统,确保在所有检测模式下均能获得出色的性能。先进的环境控制技术,包括 CO2/O2 控制,温控至70°C和变速振荡,以支持活细胞分析。此外可提供无人值守的自动化功能、高通量和条形码标记的滤光片模块,可以简化工作流程和降低出错率。帝肯 Spark多功能酶标仪Spark多功能酶标仪(点击查看)帝肯(Tecan)推出的Spark多功能酶标仪是一款可自由配置多功能的产品,可以在将来任何时间进行模块添加和升级。Spark多功能酶标仪配备高速光栅检测器,在5秒内提供了200-1000纳米的吸收光谱,使用的阶跃尺寸仅为1纳米,有效地消除了样品蒸发的风险。搭配NanoQuant微量检测板,可以同时检测多达16个样本,样本体积仅为2uL。Spark的发光模块可为 96孔、384孔和1,536孔的微光、闪烁和多色发光应用提供更高的灵敏度。此外Spark内置冷却功能模块,能够将整体温度控制在18到42 °C之间,不受外界环境影响。珀金埃尔默 多模式读板仪PerkinElmer VICTOR Nivo多模式读板仪PerkinElmer V ICTOR Nivo(点击查看)珀金埃尔默(Perkin Elmer)VICTOR 系列的酶标仪在市场上拥有一批忠实客户,全球装机量达上万台,其推出的多模式读板仪PerkinElmer VICTOR Nivo不仅继续传承高灵敏度特点,而且灵活性和空间性能上实现进一步突破。VICTOR Nivo具有光吸收、荧光、化学发光、时间分辨荧光和荧光偏振等五种检测模式,并具有温度控制、气体控制、加样器及WIFI远程控制等模块。此外系统配置了多种适用于基础研究和方法开发的检测模式,帮助开展分子&细胞生物检测、蛋白/核酸定量分析、报告基因系统、动力学检测、分子免疫检测及结合实验等科学研究。赛默飞 Varioskan LUX 多功能酶标仪Varioskan LUX多功能酶标仪(点击查看)赛默飞(Thermo Fisher)推出Varioskan LUX多功能酶标仪是一款模块化、可升级的产品,适用于多种多样的实验。Varioskan LUX可提供多达五种测量技术,包括吸光度测定、荧光强度测定、化学发光测定、AlphaScreen 测定和时间分辨荧光测定。除常规功能外,Varioskan LUX 还具有自动增益调节功能,可节省时间并减少灵敏度下降或信号过饱和的风险。 BMG CLARIOstarPlus多功能酶标仪CLARIOstarPlus多功能酶标仪(点击查看)德国BMG LABTECH推出一款多功能酶标仪CLARIOstarPlus,该产品具有先进的LVF光栅技术,高灵敏度的过滤器和超速UV/Vis分光计全吸收光谱,可应用于多种检测场景。据介绍,CLARIOstarPlus具有拥有无需人工干预的最大检测动态范围,超快速数据采样(100次检测/秒),基于活细胞分析的专用功能等特点。国产品牌闪谱 SuPerMax 3100型多功能酶标仪SuPerMax 3100型多功能酶标仪(点击查看)上海闪谱生物科技有限公司是国内历史悠久的光栅型酶标仪生产商,其推出的SuPerMax型光栅型多功能酶标仪系列产品已被广泛应用于药物筛选、分子生物学、免疫学、细胞学、生物化学等多个领域。其中SuPerMax 3100型多功能酶标仪适用于荧光、光吸收、化学发光检测。据介绍,该款产品可进行光谱扫描,激发与发射组件均为高分辨光栅单色仪,可设定最优激发与发射波长;具有温控孵育系统,温度可达65℃,适应高温试验;可以选配加装自动加液器,用于快速检测。奥盛 Feyond-A300多功能酶标仪Feyond-A300多功能酶标仪(点击查看)杭州奥盛仪器有限公司提供的多功能酶标仪Feyond系列可满足不同人群的需求,其中Feyond-A300多功能酶标仪具有紫外/可见光光吸收、荧光、化学发光检测功能,并且提供一系列专用的、模块化的、可升级的检测配件来满足客户的需求。据介绍Feyond-A300的光栅单色器光路检测系统可确保仪器出色的波长准确性,在200-1000nm内,以1nm步进量进行全光谱扫描;采用二向色镜和滤光片来构成光路,可实现灵敏和灵活的微孔板顶部荧光测量,独立可拆装滤光片模块,可以更加方便研究员滤光片的更换。近年来,多功能酶标仪市场涌现出的国产品牌日益增多,产品性能参数不断增强,国产仪器也开始抢占市场份额,由低端市场向高端市场进军,更多酶标仪讯息,点击专场查看。找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、生命科学仪器、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类。
  • 森泉光电获得英国Camlin光学独家代理权
    近日,森泉光电获得英国Camlin Photonics独家代理权! Camlin Photonics是国际Camlin集团的一个部门,其经营的愿景是为各行各业带来颠覆性的产品。Camlin Photonics作为光谱方面的专家,可提供多种高光谱和常规光谱设备和集成系统。 我们所有的产品都由领先的数据采集、分析和显示软件提供支持。我们相信高品质的工程和设计,使我们能够开发市场领先的产品和服务。Camlin公司产品:光源、可调谐光源、单色器,光谱仪、荧光计系统、高光谱成像APOLLO可调谐光源我们光源的创新设计使ATLAS单色仪与我们配套光谱成像仪系列可简单方便对准,可形成功能强大的可调谐光源系统 - APOLLO TLS系列。 在以上光源和单色器范围内,我们可以提供高度定制的可调谐光源,以有效地满足客户对功率和分辨率的要求。。 我们的可调谐光源采用完全模块化、可集成化方式设计,可以直接调整配置和附件。APOLLO TLS300-X600 - 可调谐光源,包括ATLAS系列300mm焦距单色仪和APOLLO X600氙光源。ATLAS系列单色仪 - 光谱仪ATLAS系列Czerny-Turner单色仪可提供一系列定制的高质量直接扫描单色仪系统。 焦距为150mm,300mm,500mm和750mm以及多光栅转台设计特点,我们可以为低,中,高分辨率应用提供合适的系统。 例如,ATLAS 150的分辨率为0.4nm,而ATLAS 750的分辨率高达0.03nm。完整的控制配置:单色仪:选择单色仪的焦距需要考虑平衡分辨率,收集光能力和预算等要求。 提供单个,二个和三个配置。输入和输出端口:需要多个输入或输出时,可选择配有电动切换的两个输入和两个输出端口。狭缝和阵列端口:配标准千分尺的双侧精密刀口狭缝可升级为固定狭缝或电动狭缝。 用于CCD,InGaAs和iCCD的阵列端口也可提供。衍射光栅:可提供各种各样的高质量光栅。配件:提供各种配件,包括电动滤波片轮,光纤和液体光导适配器和探测器。fluoroSENS荧光光谱仪系统fluoroSENS系统是一款多功能台式荧光计,具有极高的光谱灵敏度 - 单光子计数。 有两种标准配置可供选择:fluoroSENS MINI和fluoroSENS PRO。模块化设计适用于对各种光源、单色仪、样品架和探测器等配置进行完全控制。 fluoroSENS系统也很容易从稳态升级到时间分辨测量。智能高光谱解决方案应用领域:精准农业食品安全文物/艺术品保护化学成像颜色测量取证分析工业质量控制检验分析材料鉴定医学影像环境检测及研究生物医学/光谱成像技术研究 高光谱成像应用高光谱成像作为一项具有强大功能的技术,其结合了紫外到红外波段光谱分析技术与数字成像技术。高光谱图像结构中的每个像素包含检测目标对应的连续光谱特性或指纹特征信息。 Camlin Photonics公司可独立设计、制造坚固耐用、结构紧凑且性价比高的成像分析系统,结合用于收集及分析高光谱图像的光谱采集工具和分析软件--HYPERION HIS高光谱成像仪。 该系统现在已广泛被应用于过程控制、监测、诊断和检测等领域。作为一种无损、非接触式技术,具有多种领域的应用前景,例如:比色法,制药,艺术保护,法庭医学,精准农业、食品质量控制/安全防范,检测假冒材料和产品掺假,检测现场变化等等。 农业食品检验基于成熟度及损坏情况分拣水果和蔬菜,根据鲜嫩程度和产量对肉类进行切割加工,或烘烤过程工艺优化以避免变质或浪费,在线检测等应用领域具有巨大的应用潜力,可确保质量过程,同时减少浪费。 与人工检查、简单颜色测量或定期采样相比,在线光谱成像技术可用于识别人眼无法看到的过程质量问题,确保食品加工过程中100%的实时在线检测。制药短波近红外(SWIR)高光谱成像系统通常可用于测量活性成分,其可透过透明包装,直接对片剂或胶囊经行采样分析,判定药片中的活性成份及其浓度。Camlin Photonics高光谱成像系统可同时提供有实验室分析和在线检测版本,用于实验室样品分析或全质量控制检测。 机载HSI机载高光谱成像作为一种功能强大的远程遥感工具,可用于目标判定及识别。通过建立正确系统的地面参考数据库,可用于对植被及农作物的物种及其健康生长情况进行空中测量和精确识别判定。 预处理后的高光谱图像质量在几何上可以与摄影测量的图像质量相匹配,因此高光谱成像是识别植被和周围结构的面积与分布的有力工具,并且可以导入地理信息系统。 高光谱成像系统高光谱成像系统主要包括:光谱采样相机、机械扫描结构、分析软件及信号处理等。 光谱采样相机推扫式光谱采样相机可用于测量线性图像,并通过使用扫描创建二维图像。Spectral CameraNUVVNIRNIRSWIRSpectral Range350 - 800 nm400 -1000 nm900 -1700 nm900 -2500 nmSpatial Pixels10001600640 (320 option)384Spectral Resolution2 nm2 nm4 nm6 nmLine Frame (lf) Rates35 lf/s35 lf/s100 lf/s400 lf/sSmile and Keystone ErrorSub-pixel across the spectrograph output fieldInterface OptionsUSB2.0 / 3.0, CL / GiGeUSB2.0 / 3.0, CL / GiGeUSB2.0 / CLCameraLink扫描解决方案创建二维图像需要对目标进行行扫描,可通过线性移动相机或样品完成,常见的扫描模式如下:线性用于样品目标移动的线性位移台或传送带或用于相机移动的线性位移台?位移台行程:100 -2500mm?分辨率:2.5 - 25μm/步?扫描速度可达40 mm/s旋转旋转式扫描仪适用于大场景成像?360°旋转的垂直或水平扫描模式?0.005°角分辨率?角度扫描速度可达每秒25°镜像紧凑型扫描仪,适用于所有光谱相机中、短焦距物镜。?标准物镜17毫米?分别跟踪和跨越70和40度的视野?瞬时视场高达0.05度?根据所选的光谱相机,扫描速率最高可达400帧/秒?水平和垂直扫描模式机载成像相机可搭载固定翼飞机、旋转翼飞机或无人机使用。 物镜在成像相机前可用物镜来定义视场和目标的像素分辨率。 这些物镜专为高光谱成像而设计,具有非常高的机械稳定性和宽谱镀膜。物镜类别光谱范围焦距VNIR400 to 1000 nm9, 18, 23, 35, 50, and140 mmNIR / SWIR900 to 2500 nm15, 22, 30, 56, and 73(macro) mm 光源主动或被动高光谱成像均可提供。 通常情况,可提供钨灯用于提供目标上主动照明,点或线性照明可选。对于高光谱成像荧光或拉曼光谱研究,我们可以提供宽谱的汞和氙灯,并且可以配置线照明和滤光以确保高准确测量。对于低信号强度或高速采集应用,我们可配套相应的激光器和自适应光学元件。高光谱成像软件用于数据采集、查看和分析的综合软件是任何高光谱系统的关键部分。我们的spectraSENS软件是一个完全集成的高光谱平台,可用于收集、查看和处理数据。直接通过软件可单光谱或多光谱相机操作,可输出高分辨率RGB图像,传感器触发信号,数据流和直接可视化信号。Control features and displays 起止波长选择起止目标空间范围选择光谱分辨率选择空间分辨率选择每个数据点的帧率和积分时间单向或双向扫描电子倍增CCD增益控制(如适用)实时谱图:按像素或选定区域样品和照明位置优化的实时信号计数 多帧采集显示帧图像和高光谱数据立体显示假彩色图像 spectraSENS软件已经配备了全面的内置数据分析功能库,包括有监督和无监督的方法,以及用于地面参考(训练)数据集的偏最小二乘建模,以实现材料的浓度Mapping。关键显示和分析功能包括:显示分析多帧光谱图像旋转主成分分析空间选择光谱角度Mapping假色RGB支持向量机直方图和水平调整终端成员分类光谱切片偏最小二乘
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 北大电镜室:原位电子显微学法研究锂电池离子迁移
    对于锂离子电池,锂离子在电极材料中迁移的动力学过程决定了电池的宏观性能。比如,离子迁移的快慢决定了充电放电的速率,离子迁移的数量对应了电池的容量,离子迁移引起的结构恶化是电池寿命变短的根本原因。因此研究锂离子在电极材料中的迁移过程是我们了解电池工作原理、失效原理等的关键。透射电子显微镜是研究材料结构的利器,结合原位局域场探测的手段,则能在原子尺度下实时监控外场下的结构演化。这种表征手段很适合于研究锂电池中电化学势驱动的离子迁移。北大电镜室俞大鹏院士团队的高鹏研究员在过去几年在一直从事原位电镜局域场探测固态离子迁移的研究。他们与合作者曾成功地观察到离子导体中氧空位的迁移(JACS 132, 4197,2010),阻变存取器件中的Ag、Ni、Cu、Pt等金属离子的迁移行为(Nat.Commun. 3, 732 ,2012) Nat.Commun. 5, 4232,2014))等。  最近,高鹏研究员课题组研究了Li和Na离子在二维材料中的迁移行为,取得了系列进展, 包括Li离子在SnS2中的迁移(Nano Lett 16, 5582,2016,作者:Peng Gao*, Liping Wang, Yu-Yang Zhang*, Yuan Huang, Lei Liao, Peter Sutter, Kaihui Liu, Dapeng Yu, En-Ge Wang),Na离子在SnS2中的迁移(Nano Energy 32, 302,2017),Na离子在MoS2中的迁移(ACS Nano 9, 11296,2015)。这些具有van der Waals相互作用的二维材料,不仅仅展现出了优异电学、力学、光学性能,也是重要的能源存储材料。作为电池电极材料,van der Waals相互作用系统的最主要特征就是层间相互作用很弱,碱金属离子能够比较容易地在其中发生迁移。他们的研究发现,在二维材料中离子插入和拔出的反应路径是不对称的,这种不对称的反应路径对应着充放电过程中不对称电压平台。该研究揭示了这些层状锂电池电极材料中低能量效率的一个根源。高鹏研究员为这些论文第一作者和通讯作者。  另外,他们与东南大学合作研究了Na离子在尖晶石NiCo2O4纳米结构的迁移行为(Adv. Fun. Mater., DOI: 10.1002/adfm.201606163,2017),也发现了类似的非对称反应路径。高鹏研究员为论文共同通讯作者。  原子尺度上实时跟踪锂电池电极材料SnS2中的离子迁移过程电子束诱导的spinel -rocksalt的核壳结构。Rocksalt 核的直径约3 nm,相界宽度约1~2nm。  此外,他们和日本东京大学的合作者用电子束激发的方法,发现LiMn2O4中的Li和Mn离子都会发生迁移,发生从尖晶石到岩盐的结构相变(Chem. Mater. 29,1006,2017)。一般认为,这种结构相变会导致LiMn2O4电池的容量损失和电压降低。他们利用球差矫正透射电子显微镜,跟踪了Li和Mn 在氧四面体和氧八面体之间的迁移过程,揭示了离子迁移过程中的中间相、迁移路径、相界的原子结构、以及阳离子迁移伴随着的氧原子位置的自我调整,据此提出了一些可能的提高电极材料稳定性和电池寿命的方法。高鹏研究员为论文第一作者和共同通讯作者。  由俞大鹏院士领导的北京大学“电子光学与电子显微镜实验室”-校级大型公共仪器平台在2015年底増置了两台国际上迄今最先进的球差矫正透射电镜: Nion公司的配置单色仪的U-HERMES200(能量分辨率8 meV)和FEI公司的双球差矫正的Titan Cubed Themis G2 300 (空间分辨率60 pm)。与此同时,俞大鹏院士也积极在国际上积极招募青年才俊,重点发展电子显微学新技术在材料科学方面的应用,进一步提高大型高端仪器的管理水平、提升电镜平台服务效率和质量。目前,FEI双球差矫正电镜正在调试当中。  该研究工作得到了国家自然科学基金委、科技部、量子物质科学协同创新中心、千人计划和电子显微镜实验室等的大力支持。  论文链接:  http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02136  http://pubs.acs.org/doi/full/10.1021/acsnano.5b04950  http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b03659  http://www.sciencedirect.com/science/article/pii/S2211285516306176
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 卓立汉光携波长可调单色光源亮相德国慕尼黑光电展
    第二十三届德国慕尼黑光电展于2017年6月26日在德国慕尼黑展览中心举行,该展会是全球唯一覆盖整个光电子行业所有门类、展示最尖端科技的专业光电博览会,目前,卓立汉光与Mountain Photonics GmbH 联合参加展出,卓立汉光携最具影响力产品:波长可调单色光源亮相展会现场! ZOLIX&Mountain Photonics GmbH德国慕尼黑光电展展位号:B2.340 卓立汉光与Mountain Photonics GmbH 已正式签订代理协议,由Mountain Photonics GmbH全权代理卓立汉光产品推向德国市场,Mountain Photonics GmbH 在光电行业累积了70年的经验,为客户推广最全面的光学测量技术专业产品。 Mountain Photonics GmbH德国慕尼黑光电展(展位现场图) 卓立汉光自1999年成立,通过数年的不断努力,成为了光电行业知名的生产厂商, 2000年我司推出第一套量产型三光栅光谱仪后,不断推出了多套荧光、拉曼、光电探测器光谱响应、太阳能电池检测等光谱测量系统,广泛应用在众多高校和科研院所的研究与试验,为国家科技创新贡献了一份力量,产品凭借优良的品质远销欧美、东南亚等海外市场。 此次展会,与Mountain Photonics GmbH公司联合展出的Omni-λBright亮谱系列产品, 其应用市场广泛: 用于荧光光谱测试系统的激发光源 生物荧光测试 探针台应用 CCD相机 CMOS相机 紫外光传感器 红外光传感器 太阳能电池测试 PEC光电化学电池量子效率测试 光电探测器光谱响应度标定 眼部防护用品光谱测试 光学镜头透过率测试 透反吸测试系统光源 更多卓立汉光产品详情,请登录公司展台:北京卓立汉光仪器有限公司更多产品详情:可调单色光源
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 一文了解椭偏仪的前世今生
    椭偏仪概述椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量设备。由于并不与样品接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量设备。椭偏仪可测的材料包括:半导体、电介质、聚合物、有机物、金属、多层膜物质。椭偏仪涉及领域有:半导体、通讯、数据存储、光学镀膜、平板显示器、科研、生物、医药等。椭偏法测量优点(1)能测量很薄的膜(1nm),且精度很高,比干涉法高1~2个数量级。(2)是一种无损测量,不必特别制备样品,也不损坏样品,比其他精密方法如称重法、定量化学分析法简便。(3)可同时测量膜的厚度、折射率以及吸收率。因此可以作为分析工具使用。(4)对一些表面结构、表面过程和表面反应相当敏感,是研究表面物理的一种方法。在半导体制造领域,为了监测硅片表面薄膜生长/蚀刻的工艺,需要对其尺寸进行量测。一般量测的对象分为两种:3D结构与1D结构。3D结构是最接近于真实Device的结构,其量测出来的结果与电性关联度最大。3D结构量测的精度一般是纳米级别的。1D结构就是几层,几十层甚至上百层薄膜的堆叠,主要是用来给研发前期调整工艺稳定性保驾护航的,其测量精度一般是埃数量级的。就逻辑芯片来说,最重要的量测对象是HKMG这些站点各层薄膜的量测。因为这些站点每层薄膜的厚度往往只有几个到十几个埃,而process window更极限,往往只有1-1.5个埃,也就是说对工艺要求极高。而这些金属层又跟电性关联度很大,所以每一家fab都对这些站点的量测非常重视。如何验证这些精度呢?在fab里,一般会撒一组DOE wafer: Baseline wafer,以及Baseline +/-几埃的wafer,然后每片wafer上切中心与边缘的两个点。zai采用TEM或XPS结果作为参考值,与椭偏仪量测结果拉线性,比如R-Square达到0.9以上就算合格。最能精确验证椭偏仪精度的是沉积那些薄膜的机台,比如应用材料等公司的机台,通过调节cycle数可以沉积出不同厚度的薄膜,其名义值往往与椭偏仪的量测值有极其高的线性(比如R-Square在0.95以上)。但为啥不用这些机台的名义值作为参考值啊?因为这些机台本身也是以光学椭偏仪量测出来的值来调整自身工艺的,当然需要一个第三方公证,也就是TEM或XPS。光学椭偏仪的原理上世纪七十年代就有了,已经非常成熟。光学椭偏仪的量测并不是像TEM一样直接观察,而是通过收集光信号再通过物理建模(调节材料本身的光学色散参数与薄膜3D结构参数)来反向拟合出来的。真正决定量测精度的是硬件水平,软件算法,以及物理建模调参时的经验。硬件水平决定信号的强弱,也就是信噪比。软件算法决定在物理建模调参时的速度。因为物理建模调参是一个最花费时间的过程: 需要人为判断计算是过拟合还是欠拟合,需要人为判断算出来的3D结构是否符合制程工艺,需要人为判断材料的光学色散参数是否符合物理逻辑。仪器原理椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。椭圆偏光法涉及椭圆偏振光在材料表面的反射。为表征反射光的特性,可分成两个分量:P和S偏振态,P分量是指平行于入射面的线性偏振光,S分量是指垂直于入射面的线性偏振光。菲涅耳反射系数r描述了在一个界面入射光线的反射。P和S偏振态分量各自的菲涅耳反射系数r是各自的反射波振幅与入射波振幅的比值。大多情况下会有多个界面,回到最初入射媒介的光经过了多次反射和透射。总的反射系数Rp和Rs,由每个界面的菲涅耳反射系数决定。Rp和Rs定义为最终的反射波振幅与入射波振幅的比值。椭偏法这种非接触式、非破坏性的薄膜厚度、光学特性检测技术测量的是电磁光波斜射入表面或两种介质的界面时偏振态的变化。椭偏法只测量电磁光波的电场分量来确定偏振态,因为光与材料相互作用时,电场对电子的作用远远大于磁场的作用。折射率和消光系数是表征材料光学特性的物理量,折射率是真空中的光速与材料中光的传播速度的比值N=C/V;消光系数表征材料对光的吸收,对于透明的介电材料如二氧化硅,光完全不吸收,消光系数为0。N和K都是波长的函数,但与入射角度无关。椭偏法通过测量偏振态的变化,结合一系列的方程和材料薄膜模型,可以计算出薄膜的厚度T、折射率N和吸收率(消光系数)K。市场规模据GIR (Global Info Research)调研,按收入计,2021年全球椭圆偏振仪收入大约40百万美元,预计2028年达到51百万美元,亚太地区将扮演更重要角色,除中美欧之外,日本、韩国、印度和东南亚地区,依然是不可忽视的重要市场。目前椭偏仪被广泛应用到OLED 、集成电路、太阳能光伏、化学等领域。有专家认为,随着国内平板显示、光伏等产业爆发,国内椭偏仪将形成30亿元到50亿元大市场。据专家估计,全球显示面板制造,约有六七成在我国生产。光谱椭圆偏振仪和激光椭圆偏振仪根据不同产品类型,椭圆偏振仪细分为: 光谱椭圆偏振仪和激光椭圆偏振仪。激光椭偏仪采用极窄带宽的激光器作为光源,在单波长下对纳米薄膜样品进行表面和界面的表征。激光椭偏仪作为常规的纳米薄膜测量工具,与光谱椭偏仪相比,具有如下特点:1.对材料的光学常数的测量更精确:这是由激光的窄带单色性质决定的,激光带宽通常远小于1nm,因此能够更准确地获得激光波长下的材料的材料参数。2.可对动态过程进行快速测量:激光良好的方向性使得其强度非常高,因此非常适合对动态过程的实时测量。但激光椭偏仪对多层膜分析能力不足,不如光谱型椭偏仪。椭偏仪的发展进程1887年,Drude第一次提出椭偏理论,并建立了第一套实验装置,成功地测量了18种金属的光学常数。1945年,Rothen第一次提出了“Ellipsometer”(椭偏仪)一词。之后,椭偏 仪有了长足发展,已被广泛应用于薄膜测量领域。根据工作原理, 椭偏仪主要分为消光式和光度式两类。在普通椭偏仪的基础上,又发展了椭偏光谱仪、红外椭偏光谱仪、成像椭偏仪和广义椭偏仪。典型的消光式椭偏仪包括光源、起偏器、补偿器、检偏器和探测器。消光式椭偏仪通过旋转起偏器和检偏器,找出起偏器、补偿器和检偏器的一组方位角(P、C、A), 使入射到探测器上的光强最小。由这组消光角得出椭偏参量Y和D。在椭偏仪的发展初期,作为唯一的光探测器,人眼只能探测到信号光的存在或消失,因而早期椭偏仪的类型都是消光式。消光式椭偏仪的测量精度主要取决于偏振器件的定位精度,系统误差因素较少, 但测量时需读取或计算偏振器件的方位角,影响了测量速度。所以消光式椭偏仪主要适用于对测量速度没有太高要求的场合,例如高校实验室。而在工业应用上主要使用的是光度式椭偏仪。光度椭偏仪对探测器接收到的光强进行傅里叶分析, 再从傅里叶系数推导得出椭偏参量。光度式椭偏仪主要分为旋转偏振器件型椭偏仪和相位调制型椭偏仪。其中旋转偏振器件型椭偏仪包括旋转起偏器型椭偏仪、旋转补偿器型椭偏仪和旋转检偏器型椭偏仪。光度式椭偏仪不需测量偏振器件的方位角,便可直接对探测器接收的光强信号进行傅里叶分析,所以测量速度比消光式椭偏仪快,特别适用于在线检测和实时测量等工业应用领域。对于多层薄膜,一组椭偏参量不足以确定各层膜的光学常数和厚度, 而且材料的光学常数是入射光波长的函数, 为了精确测定光学常数随入射波长的变化关系, 得到多组椭偏参量, 椭偏仪从单波长测量向多波长的光谱测量发展。1975 年,Aspnes 等首次报道了以RAE为基本结构的光谱椭偏仪。它利用光栅单色仪产生可变波长,从而在较宽的光谱范围(近红外到近紫外)内可以测量高达 1000 组椭偏参量,膜厚测量精度可以达到0.001 nm,数据采集和处理时间仅为7s。1984年,Muller 等研制了基于法拉第盒自补偿技术的光谱椭偏仪。这种椭偏仪采集400组椭偏参量仅用时 3s。为了进一步缩短系统的数据采集时间,1990年Kim 等研制了旋转起偏器类型的光谱椭偏仪,探测系统用棱镜分光计结合光学多波段分析仪(OMA) 代替常用的光电倍增管,在整个光谱范围内获取 128 组椭偏参数的时间为 40ms。紫外波段到可见波段消光系数较大或厚度在几个微米以上的薄膜,其厚度和光学常数的测量需使用红外椭偏光谱仪。红外椭偏光谱仪已经成为半导体行业异质结构多层膜相关参量测量的标准仪器。早期的红外椭偏光谱仪是在 RAE、RPE 或 PME 的基础上结合光栅单色仪构成的。常规的红外光源的强度较低,降低了红外椭偏仪的灵敏度。F. Ferrieu 将傅里叶变换光谱仪(FT) 引入到 RAE,使用常规的红外光源,其椭偏光谱可以从偏振器不同方位角连续记录的傅里叶变换光谱得到,从而能够对材料进行精确测量,提高了系统的灵敏度。其缺点是不能实现快速测量。由于集成电路的特征尺寸越来越小,一般椭偏仪的光斑尺寸较大(光斑直径约为 1 mm),为了提高椭偏仪的空间分辨率,Beaglehole将传统椭偏仪和成像系统相结合,研制了成像椭偏仪。普通椭偏仪测量的薄膜厚度是探测光在样品表面上整个光斑内的平均厚度,而成像椭偏仪则是利用 CCD 采集的椭偏图像得到样品表面的三维形貌及薄膜的厚度分布,从而能够提供样品的细节信息。成像椭偏仪的 CCD 成像单元,将样品表面被照射区域拍摄下来,一路信号输出到视频监视器显示,一路信号输入计算机进行数据处理。CCD 成像单元较慢的响应速度限制了成像椭偏仪在实时监测方面的应用。为了克服这一限制,Chien - Yuan Han 等利用频闪照明技术代替传统照明方式,成功研制了快速成像椭偏仪。与传统椭偏仪相比,由于 CCD 器件干扰了样品反射光的偏振态,且有很强的本底信号,成像椭偏仪的系统误差因素增多,使用前必须仔细校准。探测光与样品相互作用时,若样品是各向同性的,探测光的p分量和s分量各自进行反射,若各向异性,则探测光与样品相互作用后还将会发生光的 p 分量和 s分量的相互转化。标准椭偏仪只考虑探测光的 p 分量和 s 分量各自的反射情况,所以只能用于测量各向同性样品的参量,对于各向异性的样品,需使用广义椭偏仪。国内椭偏技术的研究始于20世纪70年代。70年代中期,我国第一台单波长消光椭偏仪TP-75 型由中山大学莫党教授等设计并制造。1982年,旋转检偏器式波长扫描光度型椭偏仪( TPP-1 型) 也得以问世。随后在80年代中后期西安交通大学研制出了激光光源椭偏仪,同期实现了椭偏光谱仪的自动化。复旦大学的陈良尧教授于1994年研制出了一种同时旋转起偏器和检偏器的新型全自动椭偏仪。该类型椭偏仪曾成功实现商业化,销售给包括德国在内的多家国内外单位使用。1998年,中国科学院上海技术物理研究所的黄志明和褚君浩院士等人研制出了同时旋转起偏器和检偏器的红外椭圆偏振光谱仪。2000年,中国科学院力学所靳刚研究员研制出了我国第一台椭偏光显微成像仪。该仪器可以实现纳米级测量和对生物分子动态变化及其相互作用进行实时观测。2000 年,复旦大学陈良尧和张荣君等人研制出了基于双重傅里叶变换的红外椭偏光谱系统。2013年华中科技大学张传维团队成功研发出椭偏仪原型样机。2014年,华中科技大学的刘世元教授等人使用穆勒矩阵椭偏仪测试了纳米压印光刻的抗蚀剂图案,同时还检测了该过程中遇到的脚状不对称情况,其理论和实验结果都表明该仪器具有良好的敏感性。2015年,国内首台商品化高端穆勒矩阵椭偏仪终于成功面世。主流厂商企业名称国内睿励科学仪器合能阳光复享光学量拓科技赛凡光电武汉颐光科技国外Accurion GmbHK-MacAngstrom Advanced瑟米莱伯J.A.WoollamHORIBAPhotonic LatticeAngstrom Sun大塚电子GaertnerFilm SenseHolmarc Opto-MechatronicsOnto Innovation Inc.AQUILAPARISA TECHNOLOGYDigiPol TechnologiesSentech Instruments海洋光学 以上,就是小编为大家整理的椭偏仪知识大全,附上部分市场主流厂商信息,更多仪器,请点击进入“椭偏仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 众星联恒与德国HP Spectroscopy正式签署独家代理协议
    X射线吸收谱(X-ray absorption spectroscopy,XAS)是一种研究材料局域原子、电子结构的一种有力的工具,广泛应用于催化、能源、纳米等热门领域。目前我国有XAS表征需求的科研人员众多,但我国的同步辐射XAS表征线站机时极其有限,远远不能满足现有的测试需求。德国HP Spectroscopy公司的交钥匙式、高性价比的XAS系统能在一定程度上缓解同步辐射的压力,打破同步辐射机时的限制,能让客户在自己的实验室进行样品测试。NEWS北京众星联恒科技有限公司一直致力于X射线技术的积累,并时刻关注X射线领域的技术发展。经过密切的交流与探讨,我司和德国HP Spectroscopy公司于近日最终落实并达成深度战略合作协议:众星联恒成为德国HP Spectroscopy公司XAS系统的中国地区独家代理,全面负责中国市场的产品售前咨询,销售以及售后业务。新的合作,期待新的开始,感谢我们的合作伙伴一直以来对众星的信任。在专业、敬业、拼搏的理念指导下,众星的初心始终未变,不断引进高端的X射线产品及新孵化高新技术产品给中国的同步辐射,研究所,高校及高端制造业客户。为推动HP-S XAS进入中国市场,助力用户实验室升级,众星联恒也为中国广大用户带来了特殊优惠:中国区域首两台XAS系统用户将享受无限接近于我们成本价格的最低折扣。欢迎感兴趣的客户随时联系我们,联系方式见文末。关于HP SpectroscopyHP Spectroscopy:focus on scientific instrumentation德国HP Spectroscopy公司成立于2012年,致力于为全球科研及工业领域的客户定制最佳解决方案,是科学仪器的全球供应商和领先开发商。产品线包括XAS系统(众星独家),XUV/VUV/X-ray光谱仪(授权代理),beamline产品(授权代理)等。主要团队由x射线、光谱、光栅设计、等离子体物理、beamline等领域的专家,以及机械、电子和软件工程师组成。并与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。典型客户01XAS系统hiXAS- XAFS系统 l 5-12keV-实验室EXAFS /XANES 交钥匙式解决方案-同步辐射级的光谱质量-极高的信噪比-带宽可达1KeV应用:化学形态分析和浓度比复合物研究催化剂分析短程有序和键长确定测试结果X-ray absorption measurement of a Cu foil acquisition time: 3 min with sample, 1.5 min without sample.C. Schlesiger et al, Recent progress in the performance of HAPG based laboratory EXAFS and XANES spectrometers, J. Anal. At. Spectrom. 35, 2298 (2020)proXAS-桌面式NEXAFS系统 l 200-1200eV / 1-6nm-首台 NEXAFS 实验室解决方案-同步辐射级的光谱质量-用于地质、生物、材料学的化学状态分析-无需申请同步辐射机时应用:表面科学地球化学中的化学状态分析电子结构与氧化态分析测试结果NEXAFS spectrum at the carbon K-edge of a polyimide film (t=200nm). measured with the table-top system, averaging over 60 pulses. NEXAFS spectrum recorded at a synchrotron for comparison.02XUV/VUV/X-ray光谱仪、单色仪产品线For XUVmaxLIGHT pro 高效平场XUV光谱仪和光束分析仪easyLIGHT XUV紧凑型高效平场XUV光谱仪beamLIGHT同轴XUV光谱仪HighLIGHT高分辨率平场XUV光谱仪nanoLIGHT集成XUV光谱仪和光束分析仪For VUVeasyLIGHT VUV紧凑型VUV光谱仪maxLIGHT pro VUV高效平场VUV光谱仪和光束分析仪For X-rayhardLIGHT TXS 软x射线光谱仪单色仪(VUV/XUV)easyLIGHT VUV 紧凑型VUV单色仪和光谱仪monoLIGHT 超环面光栅单色仪maxLIGHT pro高效平场XUV光谱仪和光束分析仪典型参数波长范围1-200nm光源距离灵活探测器类型CCD/MCP/CMOS真空兼容度10^-6mbar (超高真空可定制)无狭缝技术含输出狭缝可选光栅定位电动光谱滤光片插入单元含数据接口USB 或 网口控制软件Windows UIand Labview/VB/C/C++ SDK可选项非磁性,旋转几何,极化等SXRXUVVUV分辨率1-20nm5-80nm40-200nm色散能力0.2-0.4nm/mm0.5-1.3nm/mm0.9-1.6nm/mm分辨率0.015nmat 10nm0.028nmat 40nm0.05nmat 120nm03BeamLINE产品线交钥匙式HHG beamline解决方案,包含HHG源,原位光谱仪及实验装置参数阿秒脉冲波长6-120nm /100-200eV*孤立阿秒脉冲波长6-16nm / 80-200eV*光强稳定性3% rms in 12 hours *指向稳定性3urad rms in 12 hours *真空兼容度10-9 mbar (10-11 mbar available)定位手动或电动60nm / 21eV13.5nm / 90eV平均功率 / 谐波高达400µW*高达0.9µW*通量 / 谐波高达 1014 ph/s *up to 51010 ph/s *谐波带宽10-2510-3*匹配适合的激光器应用角分辨光电子能谱(tr-ARPES),相干衍射成像,时间分辨紫外光谱,阿秒科学,EUV光刻测量,自旋电子学等。欢迎对HP Spectroscopy系列产品感兴趣的老师直接联系我们,请拨打:400-860-5168,2943, 众星团队为您提供专业的技术咨询服务。
  • 大连依利特新一代高效液相色谱仪亮相BCEIA
    仪器信息网讯 2013年10月23日,在BCEIA 2013展会上,大连依利特分析仪器有限公司展出了其在2013年推出的iChrom 5100 高效液相色谱仪。据悉,iChrom 5100高效液相色谱仪刚刚获得了本届BCEIA金奖。大连依利特iChrom 5100 高效液相色谱仪  据了解,iChrom 5100 高效液相色谱仪定位在中高端市场。该款仪器采用无操作按键及控制面板模式,可以实现由电脑、pad及手机直接控制系统的开关以功能及操作;自主设计的全新自动进样器,采用托盘与进样针同时相对运动的工作模式,优化了管路连接、缩短了进样周期;检测器单色仪采用电机直接驱动光栅的方式,取代传统机械式正弦机构,实现精准的自动波长定位和良好波长准确性、重复性;采用高品质的进口光栅、氘灯、钨灯,保障检测器高灵敏度、宽线性范围、长寿命的需求;输液泵采用全新一体式凸轮设计,新增凸轮定位及脉动阻尼功能,实现低流量的稳定输出。  值得指出的是,该仪器采用全新的一体化控制设计,能够便捷实现系统的电源管理,可通过上位机设定设备的休眠、唤醒;多级故障提示系统,既能通过指示灯及蜂鸣提示,又能通过应用软件弹出错误代码,还能通过自诊断系统在无操作状态下按设定要求处理,保证人机安全;全方位的漏液报警提示系统,使用户能够发现系统中各单元模块出现的漏液问题,及时处理。大连依利特在BCEIA 2013上的展台  据依利特工作人员介绍,该款仪器已有用户使用,并受到用户广泛好评。
  • HORIBA荧光光谱仪在中国地区销售及售后模式发生重大变更
    日前,HORIBA发布一封&ldquo HORIBA荧光光谱仪在中国地区销售及售后模式变更事宜&rdquo 的告客户书。  过去几年,HORIBA授权Techomp Ltd.(以下简称天美)作为HORIBA集团旗下JY品牌荧光光谱仪产品线在中国地区的独家经销商,全权负责该产品线在中国区的销售、售后及应用支持工作。鉴于该合作协议到期,自2013年7月15日起,天美将不再担任该产品线在中国区的独家经销商。  告客户书具体内容如下:  尊敬的客户:  您好!感谢您一直以来对HORIBA 产品的支持与信赖。  过去几年,我司授权 Techomp Ltd. (以下简称天美)作为HORIBA 集团旗下 Jobin Yvon 品牌荧光光谱仪产线中国地区独家经销商,全权负责该产线在中国区的销售、售后及应用支持工作。鉴于该合作协议到期,自2013年7月15日起,天美将不再担任该产线在中国地区的独家经销商。  自即日起,HORIBA荧光光谱仪的销售、售后以及应用支持将由HORIBA 集团科学仪器事业部中国区全面直接负责(包括过去经由天美在中国区销售的所有该类仪器,我们将直接提供售后支持)。相信这将大大缩短我们与用户的距离,并有助于我们为客户提供更加便利的沟通与支持。  目前HORIBA在中国已经设立了3个办公室(北京、上海和广州),2个应用和培训中心(北京和上海),拥有65人的专业团队(包括20位资深服务工程师,10位应用专家以及35位产品顾问、市场及后勤服务人员)。我们的中国团队已经做好准备并乐于为中国的广大用户提供直接的支持与服务。  HORIBA旗下的Jobin Yvon光谱技术已拥有近200年历史,除荧光光谱仪,其它产线如:拉曼光谱、椭圆偏振光谱、光栅、单色仪等系列光谱仪器,在技术上可完全满足对高端科研及检测的要求,并在全球获广泛认可。我们仍将继续努力,希望通过我们的产品和服务,为中国的广大用户带来更多的便利。  当您在购买和使用我们的仪器时遇到任何困难或者问题,请随时联系我们:  售前咨询电话:  北京:010-8567 9966-212  上海:021-6289 6060-101  广州:020-3878 1883  售后服务中心热线:010-8567 9966-213  此致!  HORIBA科学仪器事业部  2013-10-21
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制