当前位置: 仪器信息网 > 行业主题 > >

旋光仪的基本原理

仪器信息网旋光仪的基本原理专题为您提供2024年最新旋光仪的基本原理价格报价、厂家品牌的相关信息, 包括旋光仪的基本原理参数、型号等,不管是国产,还是进口品牌的旋光仪的基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合旋光仪的基本原理相关的耗材配件、试剂标物,还有旋光仪的基本原理相关的最新资讯、资料,以及旋光仪的基本原理相关的解决方案。

旋光仪的基本原理相关的资讯

  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 质粒抽提的基本原理及操作流程
    质粒抽提的基本原理及操作流程⒈质粒抽提基本原理在其中采用几种水溶液及其硅酸化学纤维膜(超滤膜柱)。 水溶液Ⅰ:50 mM果糖 / 25 mMTris-HCl/ 10 mMEDTA,pH 8.0;水溶液Ⅱ:0.2 N NaOH / 1%SDS; 水溶液Ⅲ:3 M 醋酸钾/ 2 M 醋酸/75%乙醇。水溶液Ⅰ果糖是使飘浮后的大肠埃希菌不容易迅速堆积到水管的底端;EDTA是Ca2+和Mg2+等二价金属材料正离子的螯合剂,其关键目地是以便鳌合二价金属材料正离子进而达到抑制DNase的特异性;可加上RNase A消化吸收RNA。水溶液Ⅱ此步为碱解决。在其中NaOH关键是以便融解体细胞,释放出来DNA,由于在强偏碱的状况下,细胞质产生了从两层膜结构工程向微囊构造的转变。SDS与NaOH联用,其目地是以便提高NaOH的强偏碱,一起SDS做为阳离子表活剂毁坏脂两层膜。那步要记牢二点:首位,时间不可以太长,由于在那样的偏碱标准下基因组DNA-p段也会渐渐地破裂;其次,务必温柔混和,要不然基因组DNA会破裂。水溶液Ⅲ水溶液III的功效是沉定蛋白质和中和反应。在其中醋酸钾是以便使钾离子换置SDS中的钾离子而产生了PDS,由于十二烷基硫酸钠(sodium dodecylsulfate)碰到钾离子后变为了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS不是溶水的,一起1个SDS分子结构均值融合2个碳水化合物,钾钠正离子换置所造成的很多沉定大自然就将绝大多数蛋白沉定了。2 M的醋酸是以便中合NaOH。基因组DNA如果产生破裂,要是是50-100 kb尺寸的片段,就没有方法再被 PDS共沉淀了,因此碱解决的时间要短,并且不可猛烈震荡,要不然蕞终获得的质粒上都会有很多的基因组DNA渗入,琼脂糖电泳能够 观查到这条浓浓总DNA条带。75%乙醇关键是以便清理盐分和抑止Dnase;一起水溶液III的强酸碱性都是以便使DNA尽快融合在硅酸化学纤维膜上⒉质粒抽提流程⑴应用质粒提取试剂盒获取质粒时请参照实际试剂盒的操作指南。如Omega企业的E.Z.N.A.? Plasmid Mini Kit I, Q(capless) Spin (质粒提取盒)。⑵碱裂解手提式法:此方式适用少量质粒DNA的获取,获取的质粒DNA可立即用以酶切、PCR测序、银染编码序列分析。方式给出:①接1%含质粒的大肠埃希菌体细胞于2mlLB培养液。②37℃震荡塑造留宿。③取1.5ml菌体于Ep管(离心管),以4000rpm抽滤3min,弃上清液。④加0.lml水溶液I(1%果糖,50mM/LEDTApH8.0,25mM/LTris-HClpH8.0)充足混和。⑤添加0.2ml水溶液II(0.2mM/LNaOH,1%SDS),轻轻地旋转搅拌,放置冰浴5min.⑥添加0.15m1预冷水溶液III(5mol/LKAc,pH4.8),轻轻地旋转搅拌,放置冰浴5min.⑦以10,000rpm抽滤20min,取上清液于另翻新Ep管。⑧添加等容积的异戊醇,搅拌后静放10min.⑨以10,000rpm抽滤20min,弃上清。⑩用70%酒精0.5ml清洗一回,吸干全部液体。待沉定干躁后,溶解50ulTE缓冲液中(或60℃温育双蒸水)。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 俄歇第一课答疑:AES基本原理、主要功能和应用
    1.问:求问电镜分辨率1.6nm和0.8nm在实际效果差多少?主要观测半导体芯片,具体差别在哪里? 回复:当然总的来说空间分辨率越高,成像特征越清晰;但实际应用与样品基体效应、分析需求、电镜优势性能、操作条件比如加速电压、电流、工作距离,真空环境等都有关系,由具体情况决定。通常供应商提供分辨率指标都是在特定条件比如高加速电压下低电流由标准样品测试得到的。如果观测半导体芯片,如果看浅表形貌特征,需要低加速电压,这时候可能电镜分辨率1.6nm和0.8nm的实际差异不大,要看此电镜在低加速电压的分辨能力;当分析对象尺度接近电镜空间分辨能力的时候,比如几个纳米的形貌特征(小于10nm),可能分辨率1.6nm和0.8nm的不同电镜能体现出成像差异;但当分析特征的尺度远大于空间分辨率的时候,比如100nm,从成像上两者的差别不会很明显。以上是经验浅谈,毕竟PHI不是电镜供应商,仅供大家参考。 2.问:请问AES和SEM-EDS测试的元素分布的区别? 回复: AES 和 EDS成分分析的主要区别:3.问:这种AES化学态的分析和XPS有什么区别?回复: 总的来说化学态分析主要用XPS,而AES主要获得元素信息,也有一定的化学态信息: 1) 俄歇激发本身涉及不同轨道能级三个电子的行为,俄歇电子动能与三个电子对应的轨道的结合能相关,比较难预测动能变化与化学态的相关性,不像XPS是单电子激发,原子得电子和失电子带来的结合能位移有一定的原则,有助于判断化学态;2) 俄歇是电子源入射,电子源本身对化学态尤其是有机材料的化学键有一定的破坏作用;电子源激发出的图谱里有较大的背景(背散电子弹性散射和非弹性散射背底、二次电子背底等)影响谱峰判定,给化学态判断带来影响;3) AES能量分辨率没有XPS能量分辨高,AES谱峰宽、谱峰分裂多(多种终态),不对称性等都影响化学态判断。而XPS谱峰(能量分辨好、背底干扰小、对称性好、 特征峰比如轨道分裂峰、卫星峰等)有化学态特征性。 4.问:请问AES在钙钛矿太阳能电池上有何应用嘛? 回复:只要样品有一定导电性或通过样品制备改善荷电效应,都可以用AES进行分析,所以AES可以分析钙钛矿太阳能电池材料(采用导电铜胶固定样品),但因为钙钛矿材料主要是有机金属卤化物半导体材料,AES电子束对有机化学键有一定损伤,不能用于化学态判定,但可以用俄歇表征元素定性和半定量结果(里面有特征元素比如Pb/I(Br)等), 但也有谱峰重合问题(比如I和O谱峰);所以总体来说AES对钙钛矿材料成分表征有一定局限性。 5.问:请问不导电的样品可以测试AES吗? 回复 : 俄歇主要用于测导体,半导体,对于绝缘材料除非改善荷电效应可以用俄歇分析,但对于有机材料本身电子束对化学键损伤,即使测出有机材料的元素比如C/O/N/S对有机材料的成分分析来说信息非常有限,意义不大。 6.问:硅酸盐粘土矿物可以吗?也是绝缘性的?AES可以区分出来不同羟基吗? Si-OH Al-OH可以区分出来吗? 回复: 同上,除非能改善荷电效应才能分析绝缘材料,本来荷电效应大就会使谱峰信号差,谱峰变形严重(展宽、能量位移等),不能进行化学态判定,所以主要获得元素信息,不能识别化学态(比如羟基等)。对课程感兴趣的小伙伴请扫描下方二维码,PHI小助手将会拉您入微信群,快来一起玩耍吧~
  • 涡动相关观测与数据处理基础知识系列之一:通量塔的选址与建塔的基本原则
    近年来,采用涡动相关(eddy-covariance,EC)方法测量温室气体通量的站点数量在迅速增加,但是要在科学目的、工程标准、安装运行成本和实用性之间做出平衡,寻找到最佳的解决方法,仍是一个具有挑战的工作。从观测结果准确性和精确度来说,选址、建塔等站点设计的环节是重中之重。1、位置选择站点选址的基本原则是,该站点能够尽量观测到全部的研究对象,这涉及到两个问题,一个是方向,一个是架设高度。首先是确定观测区域近几年的主风向,可以参考近几年的气象数据。由于中国大部分地区是季风气候,一般在春夏和秋冬会有两个主风向,这时候要考虑通量仪器的架设方向,实验观测的主要周期等。如果仪器架设方向可以随主风向的改变方便调整,或者实验周期是明确区分了春夏或者秋冬,那么在选址时可以选在观测对象的下风向,这样可以尽可能多的观测到目标对象;如果不能改变通量仪器的架设方向,且是长期定位观测,那尽量将观测地点选址在观测对象的中央位置,或者沿主风向的中点位置,这样可以尽可能的在不改变仪器方向和位置的前提下,观测到尽可能多的研究对象。确定架设高度要满足通量仪器的基本观测条件, 即满足湍流运动的充分交换。一般的架设高度是下垫面冠层高度的1.5到2倍(具体确定观测高度的经验法则见图 1);在相对平坦和均匀的下垫面条件下,观测距离大约是观测有效高度的100倍(风浪区原理),具体范围需要根据footprint源区计算,随着湍流运动强度和下垫面情况会有所改变。图 1 确定观测高度的经验法则通量源区代表性分析(Footprint分析)是检验一个通量站质量的重要手段,可以用来进行实验方案的设计指导,观测数据的质量控制,以及通过特定传感器的源区分布和来自感兴趣下垫面(植被)的通量贡献,从而对观测结果进行分析解释。图 2 Footprint分析2、下垫面的影响2.1植被类型涡动相关法测量温室气体通量要求仪器安装在常通量层内,而常通量层假设要求稳态大气、下垫面与仪器之间没有任何源或者汇、足够长的风浪区和水平均匀的下垫面等基本条件。在涡动相关传感器能监测到的“源区域”内植被类型均匀一致的情况下,其观测到的通量结果是比较有意义的,可以用来解释生态系统的温室气体收支情况。但当涡动相关传感器的“源区域”覆盖到不同植被类型时,情况就会变得复杂起来。一个极端的例子是:某站点周围具有两种不同的森林植被类型,每天周期性地,白天,风从一种植被类型吹向另一种;夜间,则正好相反。那么,该站点观测得到的通量资料的日平均值将毫无意义。这种极端的情况虽然极少出现,但许多站点都会有微妙的风向变化,在数据分析时需要做仔细考虑。此外,光、土壤湿度、土壤结构、叶面积以及物种种类组成的空间异质性会导致温室气体源/汇强度的水平梯度。而其植被类型的变化也会造成表面粗糙度的变化,当风通过不同粗糙度或者不同源/汇强度表面的区域时,就会产生非常明显的平流效应(Raupach & Finnigan, 1997 Baldocchi et al., 2000)。图 3 不同下垫面的地表粗糙度(参考 于贵瑞&孙晓敏,2006)地表植被类型的突然变化会导致气流的变化,如气流在从高大森林向低矮草地移动时,会在森林边缘形成回流区(如图 4所示),导致近地面和上方气流方向不一致,其水平长度尺度(距离)等于冠层高度的2-5倍(Detto et al., 2008)。图 4森林边缘附近湍流结构的概念模型(参考Detto et al., 2008)2.2冠层高度通量足迹Footprint描述了EC系统能够观测到的“源区域”,提供了每个表面元素对测量的垂直通量的相对贡献。Footprint取决于观测高度、表面粗糙度和大气稳定度等。如图 5所示,通常来说,传感器的观测高度越高,就越能观测到更远、更广的区域(Horst & Weil, 1994),也便于捕捉植物冠层上方混合良好的边界层中的通量交换。但是观测高度也不是越高越好,在大气层结稳定的条件下(如夜间),过高的观测高度可能会使观测到的“源区域”超出感兴趣的研究区域。因此应该预先计算并确保来自感兴趣区域的通量贡献至少为90%(Gö ckede et al., 2004),在稳定条件下至少50%的时间以确保适当的数据覆盖不同的风向和不同的天气条件。图 5观测高度与通量足迹基于Munger(2012)等确定塔/测量高度(hm)的原则(如图 1),可能存在准确测量实际观测高度和冠层高度的困难,需要考虑后期调整高度的可能性。观测高度必须用三维超声风速计测量路径的中心来确定,其值取决于感兴趣的生态系统的冠层高度(hc),冠层高度值不需要特别准确:采用主要冠层的平均预期高度是合理的。对于冠层高度在生长季节中快速变化的农田、草地和种植园以及同样具有快速变化特性的冰雪下垫面,塔架设计必须考虑允许通过改变塔架高度(例如伸缩式塔架设计)或通过移动传感器来改变测量高度。随着时间的推移为了确保相同的通量观测源区,可以考虑改变测量高度,遵循的原则是测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值的±10%左右。但这种调整的频率不用特别频繁,最多在植被生长期或在积雪季节每隔一周进行。假设在植被生长期开始时的裸土,其测量高度为2 m,在冠层高度达到1.2 米前,不需要改变测量高度;在植被达到1.2米后(例如增加约0.5-0.8米)开始提高测量高度,然后保持测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值。改变表面高度(由于生长和积雪)以及改变测量高度必须准确记录,因为这必须在后期数据处理中考虑。2.3地形影响EC法测量通量假设了地形水平,这样可以保证地形的坐标系和传感器坐标系方向一致,避免平流、泄流效应的影响。图 6复杂地形对EC观测的影响在复杂的地形条件下,风吹过小山时会引起气流的辐合或辐散运动,产生平流效应(Kaimail & Finnigan, 1994)。存在有局地风场影响的站点,在夜间大气稳定,垂直湍流输送和大气混合作用较弱,CO2的水平和垂直平流效应的影响是很重要的(于贵瑞&孙晓敏,2006)。Mordukhovish & Tsvang(1966)的研究表明,斜坡地形能导致水平异质和通量的辐散。对于设在地势较高的观测塔,在夜间对流比较弱时,通常会因CO2沿斜坡泄流而造成大气传输的通量低估,最后导致生态系统净生产力的估算偏高;对于在地势较低沟谷中的观测塔,其问题更加复杂,如果外部的大气平流/泄流通过观测界面进入生态系统,会高估光合作用吸收CO2的能力;如果外部的大气平流/泄流不能通过观测界面,而是从观测界面下部直接进入生态系统,则会在生态系统中暂时储存,最终输出生态系统,造成对呼吸作用的高估。在大多数情况下,实际地形难以满足地形水平的假设,这就需要进行坐标旋转,以消除平流项的影响。当安装铁塔的斜坡坡度特别大时,可以考虑将原本应水平安装的超声风速计调整为与地面平行。3、塔及塔附属设施的影响3.1塔体本身塔本身对观测的影响可分为塔本身对风场的影响,以及塔的偏转、震荡对测量过程的影响两种。3.1.1 对风场的影响自然气流无论是经过几十米的观测塔,还是遇到几毫米的仪器翼梁或电缆,各种尺度的障碍物都会使流线发散,从而导致用于计算通量的流线分离,称为流体失真,流动失真以难以看见的方式影响测量,其影响只能在塔的设计建造阶段进行最小化。在塔的迎风侧(上游),风速受到影响会有所降低。受流动失真影响的逆风距离与障碍物大小的立方成比例,并随着距离的立方体而减小(Wyngaard, 1981, 1988)。在塔的背风侧(下游),风速也减弱,这种效果随着风速的增加而减小(湍流的更快速重构)并且受到障碍物的长度和宽度的影响。图 7 展示了在高塔的迎风侧观察到的风向上的偏转与加速, 图 8则展示了高塔顶部和底部方向迥异的风向。这是由于在背风侧下方产生的回流区造成的,障碍物(塔)尺寸越大,回流区就越容易发展得更大。在塔基通量观测中,森林生态系统的观测常需要10m以上的高塔作为基础,容易导致回流区的产生,回流也增加了向上流动的倾向,并加强了烟囱效应,这可能会显著影响风的测量和干扰混合比梯度。图 7 在塔的迎风侧观察到风向上偏转和加速(引自Sanuki and Tsuda, 1957)图 8 塔顶部的西风流(离地面10米)和离地面2米处的东风回流(引自Vaucher et al., 2004)在建造塔时,尽量选择塔身纤细、结构较少的铁塔,避免对风场的影响,也要注意控制林窗的大小,避免人为形成回流区域。此外,应该尽量减少树木和树枝的移除,因为它们对风的阻力作用可以减少这些回流区域的形成。选择纤细塔体的同时也要保证塔体足够坚固,以确保安全的维护通道和应对整个观测周期中的极端环境。当塔架底座和结构由于受到外界辐射而加热引起对流循环时,可以观察到烟囱效应。这增强了气流的垂直偏转,从而使更多的空气向上移动。烟囱效应取决于基础和塔的质量和热容量、塔的形状、对树冠的干扰程度(清理/切割塔构造的树木)和站点的净辐射量等。烟囱效应是不可避免的,应尽量减少混凝土基础和塔架结构,塔的的横截面也尽量不超过2 x 3 m (Munger et al., 2012)。塔体结构对经过气流的扭曲变形和烟囱效应应该通过专业的方式或通过建模方法(Griessbaum & Schmidt,2009)进行调查(Serafimovich et al., 2011)。3.1.2 对测量过程的影响塔体本身随风速的运动会导致测量中的系统不确定性;塔的移动应限制在0.02 m s-1(即测量风速的精度),并且不应具有在1到20 Hz之间与风向共同变化的力矩(谐波效应);快速响应加速度设备可用于量化塔运动,逐点校正还需要快速响应测斜仪测量以确定旋转速率以及加速度;由于在塔上工作的人员而导致的塔架运动不会随着风或标量交换而变化,但可能会扰乱风场。3.2塔上横臂在1976年的国际湍流对比实验中,一些报告显示直径0.05 m的水平支撑结构造成的平均上升风速为0.1 m/s (Dyer, 1981),它大到足以使涡动相关测量无效。因此,风速计安装臂的尺寸也要尽量小,只需要提供一个安全稳定的测量平台就可以了。王国华等利用成熟的计算流体软件,对布置多个支撑观测仪器的支架所导致的大气边界层风场失真进行定量仿真。他们发现,当支架间距小于6倍的支架直径D或来流风向角小于30°时支架附近流场受到明显的相互干扰。通过对不同来流风向及支架间距离模拟结果的对比分析,认为使用多支架进行多点联合观测时,支架应沿垂直于观测地点常年来流主风向的展向布置。为避免不同支架相互干扰,支架间的最小距离L应大于9倍的支架截面直径。此外,横臂本身需要足够稳定以支撑仪表,可以通过增加侧臂和拉索的方式,以避免横臂的扭矩和振荡。3.3塔下建筑物3.1.1一节讨论了塔体本身对风速和风向造成扭曲从而影响风场的作用,塔下其他障碍物(如设备房间、供电小屋等)也存在这种作用,如图 9 所示。图 9 从障碍物侧面看的迎风流畸变和背风侧流畸变的概念图(引自Davies and Miller, 1982)回流效应在高大的森林冠层中最为明显,但较矮的草地和作物冠层也必须考虑,特别是在附近存放其他设备的房屋的情况下。因此,应尽可能地减少这种流动变形源,在不可减少的情况下,障碍物应远离观测塔,避免对风场的影响。参考文献1. Raupach M R , Finnigan J J . The influence of topography on meteorological variables and surface-atmosphere interactions[J]. Journal of Hydrology, 1997, 190(3-4):182-213.2. Baldocchi D , Falge E , Wilson K . A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. 2000.3. 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 高等教育出版社, 2006.4. Detto M, Katul G G, Siqueira M, et al. The structure of turbulence near a tall forest edge: The backward‐facing step flow analogy revisited[J]. Ecological Applications, 2008, 18(6): 1420-1435.5. Horst T W, Weil J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.6. Gö ckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.7. Munger J W, Loescher H W, Luo H. Measurement, tower, and site design considerations[M]//Eddy Covariance. Springer, Dordrecht, 2012: 21-58.8. Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement[M]. Oxford university press, 1994.9. Mordukhovich M I, Tsvang L R. Direct measurement of turbulent flows at two heights in the atmospheric ground layer(Atmospheric turbulence statistical characteristics dependence on stratification and elevation from heat flux and wind friction stress characteristics)[J]. ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS, 1966, 2: 477-486.10. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements[J]. Journal of Applied Meteorology and Climatology, 1981, 20(7): 784-794.11. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars[J]. Journal of Atmospheric Sciences, 1988, 45(22): 3400-3412.12. Sanukii M, Tsuda N. What are we measuring on the top of a tower?[J]. Papers in Meteorology and Geophysics, 1957, 8(1): 98-101.13. Vaucher G T, Cionco R, Bustillos M, et al. 7.3 FORECASTING STABILITY TRANSITIONS AND AIR FLOW AROUND AN URBAN BUILDING–PHASE I[J]. 2004.14. Griessbaum F, Schmidt A. Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 2009, 135(643): 1603-1613.15. Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2011, 140(3): 429-451.16. Dyer A J . Flow distortion by supporting structures[J]. 1981, 20(2):243-251.17. 王国华, 贾淑明, 郑晓静. 观测支架引起的大气边界层风场的失真规律[J]. 兰州大学学报: 自然科学版, 2012, 48(5):71-78.Davies M E, Miller B L. Wind effects on offshore platforms-a summary of wind tunnel studies[R]. National Maritime Inst., Feltham (UK), 1982.为了保障各位老师同学从仪器维护的工作中解放出来,做数据的使用者,把更多的时间和精力用在数据深度分析和科学价值发掘方面,我们特提供以下技术服务:站点长期正式运维基于站点管理、工作流程/规范、设备安全、系统优化、设备/数据预警、站点/设备监控、数据分析、科研成果凝练和挖掘等多方面综合执行。站点短期巡检发现目前设备安装、使用、维护、运行状态等影响数据质量的问题。数据远程综汇系统升级建立系统平台,对站点运行状态和数据质量进行预警、监控等。数据整理分析和深度挖掘通过数据整理、插补和分析,形成数据质量分析报告;同时深入挖掘数据背后的科学信息,可以多方面地支撑文章写作、项目申请、专利以及软件著作权申请等工作。通量观测技术培训(涡动相关系统、闪烁仪系统等)根据用户的实际需求,可以有针对性地培训涡动通量观测和设备运行的基本原理,数据处理的基本流程,通量数据处理软件介绍及实际操作演示,通量、气象设备日常维护以及仪器标定,站点选址等相关内容。提供远程视频和上门现场培训等多种方案。
  • 日立高新扫描电镜的基本原理和应用技巧--教你成为扫描电镜的应用高手
    近年来,电镜作为科学研究的一个重要手段,被越来越多的研究者接受。日立高新的电镜多年来本着用户第一的信念,获得了广大用户的好评。为了给广大用户提供更好的技术支持,让每一位用户都能用好电镜,日立高新决定利用网络,开展一系列电镜知识普及讲座。 第一次网络讲座将于5月8日下午14:30开讲。观察电镜的过程中,常会碰到这样那样的问题,在本次讲座中,您可以逐步学习到电镜基础知识、观察技巧、前处理方法等,由浅到深,为各种问题提供合适的解决方法。让您今后能更好地操作电镜,相信此次讲座一定可以为您的工作提供很有用的帮助。主讲人:罗琴(日立高新电子显微镜应用工程师)报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=374关于日立高新: 日立高新技术是一家全球雇员人数超过10,000人,百余处经营网点的跨国公司。 日立高新技术的企业发展目标是"成为独步全球的高新技术/解决方案提供商",即兼有掌握 最先进技术水准的开发、设计、制造能力和满足企业界不同需求的解决方案提供商身份的综合性高新技术公司。 日立高新技术在中国区域除了生产半导体制造设备、液晶制造设备、基板安装设备、 电子显微镜、医用仪器设备外,还从事高新技术工业仪器设备、电力设备、汽车零部件、 半导体设备电子元件、显示器相关产品、光学元件、金属&bull 合成树脂材料及其衍生产品等的销售业务。同时,还积极布局国外,并且提供能够综合、动态管控从国外采购到国外销售诸环节中的信息&bull 物流&bull 资金流程的供应链解决方案。 日立高新在华企业的发展目标涵盖四方面内容,即将"人与技术"作为经营资源的核心内容,推动中国高新产业的发展,维护中国人民的身体健康,满足合作伙伴的需求。我们真诚希望在今后的岁月里继续得到您的支持与厚爱。
  • 天美应邀参加原子吸收光谱仪鉴定规程宣贯会
    中国计量科学院受全国物理化学计量技术委员会的委托于2012年9月24-28日在黑龙江省哈尔滨市举办&ldquo 原子吸收分光光度计鉴定规程和原子荧光光度计鉴定规程宣贯暨分析技术交流会&rdquo 。来自全国各省市质检院所的一线鉴定员约60人参加了这次宣贯会。天美(中国)科学仪器有限公司的夏奕生副总裁应邀参加了这次会议;天美公司资深专家李梅介绍了原子吸收光谱的基本原理、背景校正技术、原子吸收光谱发展的新技术及应用原子吸收光谱的直接进样分析技术。参会的鉴定员们分组在Z-2010原子吸收分光光度计上完成了仪器计量鉴定指标的实际操作、火焰和石墨炉分析的全过程,并就分析中的各种常见问题进行了充分的讨论,使鉴定员们更加准确的理解和执行规程内容,促进规程及时得到推广和应用起到了很好的作用,到达了会议的预期目标。 公司介绍: 天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。 天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 实验室设计基本原则:人流、物流、气流
    实验室设计的目的是要建立有高效率、功能完善和考虑周全的实验室。在实验室设计时,应充分考虑影响实验室效率和安全的因素,如空间、工作台、储藏柜、通风设施、照明等。特殊实验室应按国家标准有关要求设计。实验室设计要有合理化的空间实验室设计时应根据实验功能模块及放置设备的需要。而考虑空间的合理化分配来决定布局。同时应从发展眼光确定实验室空间大小。有很多因素影响到实验室空间的设计,如工作人员的数量、分析方法和仪器的大小。实验室应是灵活的,让工作人员感到舒适,又不产生浪费。工作空间的大小应保证zui大数量的工作人员在同一时间工作。应将有效的空间划分为清洁区(办公室、休息室、学习室),缓冲区(储存区、供给区、过道),污染区(工作区、洗涤区、标本储存区)。实验室设计基本原则:人流、物流、气流要畅通;清洁区、缓冲区、污染区要分离。在指-定的实验区域,应控制工作人员数量和运输人员数量。在控制实验室通路的同时,还应设置一些预备区,如接受样品或标本,准许进入实验室人员和参观者的通道。通过工作人员、自动传输、风力系统或其他自动化系统运输样品或标本。还应充分考虑内部通信联络系统和警报器以便通知或报警(如灾害、火警、样本到达、或实验室其部分寻求帮助等)。还应考虑实验室空间的扩展需要,将实验室设计为可向外扩展或者可以移动性,以满足实验室未来发展的空间有拓展的需要。运输和电脑网络系统分别用于实验室内和实验室与单位各科之间样品或标本运输和信息交流。国家的法律法规(有国家标准和行业标准等)在很大程度上影响到实验室设计,在整个实验室设计中应由建筑师提出有关法规的要求。在制定空间分配计划前,应对仪器设备、工作人员数量、工作量、实验方法等因素作全面分析和对空间标准的要求进行评估,并计算区域的净面积和毛面积。特殊功能的区域根据其功能和活动情况不同决定其分配空间的不同。实验室的布局设计实验室的布局情况应考虑以下几点:由于每个实验室的工作性质不同,无法建立一个统一的实验室通用的设计方案。但应考虑原则性和灵活性。1、样品的转运和人员流动:分配实验室区域,首先应考虑工作流程、样品的转运和流转、生物安全因素等。2、灵活性:实验室设计能否适应未来发展变化的需要是极其重要的。3、安全性:实验室的设计和大小应考虑安全性,满足紧急清除和疏散出口的建筑规则,针对各实验室情况配备安全设备。距危险化学试剂30米内,应设有紧急洗眼处和淋浴室。所有的实验室和与污染物直接接触的地方均应安装洗手池,将洗手池设在出口处。洗手池应是独-立专用的,不能与污染物处理及实验混用。4、设立烟雾罩和安全设施:任何安全罩的放置均应尽量远离出口处,以符合有害实验远离主通道的原则。5、特殊实验室设计与布局:特殊实验室在这里主要指微生物和分子生物学实验室,其设计总体上应按《微生物和生物医学实验室生物安全通用准则》的要求。基因扩增实验室应有充分的空间和按标准要求进行设计与布局,以避免实验室的污染。微生物学实验室所接触的有害微生物,通常将微生物实验室划分成清洁区、半污染区、污染区。在污染区应使用生物安全柜,以保护工作人员的健康。现代微生物学实验室还必须具备有空气调节和过滤的设备。实验室通风设计为了实验室的安全,有条件的或具备条件的必须装备中央空气处理系统。避免因电扇鼓风导致微生物实验室传染性疾病的传播。特别是微生物和生物医学实验室应严禁使用电扇。适当通风不仅去除实验室有害气味和毒气,而且也保证设备正常运行。空气交换数量目前倡导在一般实验室,在使用蒸气和生化危险剂的区域,空气交换每小时12次。在从事微生物检验区域空气交换达16次每小时。电源和通讯设计电源布局应对实验室所需电源,做充分的考虑和分析,注意以下:1、实验室所有仪器所需电量和所需电插座数量,布局合理,使用安全和方便。2、电插座是三孔或是二孔。3、电插座分布各地方,保证使用安全和方便。4、仪器所需电压(220V或380V)、电量。5、应充分考虑计算机所需插座。6、实验室所需照明设备的数量由工作的类型、工作台面的颜色、工作室天花板和墙壁的颜色、固定照明与工作台面之间的距离、需要照明空间的大小而决定。7、照明设备安装的位置:照明设备应安装成与工作台面呈垂直或对角线,可消除物体遮挡产生的阴影。8、特殊照明设备:如果实验室用于分离微生物和分子生物学实验区域,应能有效地保护工作人员和标本免污染。紫外灯是zui-常用的消毒设备。固定紫外灯距地面的距离不要超过2.1米,紫外灯的数量应根据实验室空间决定。使用紫外照明设备时,必须确信物体表面(例如,墙体表机的涂料、工作台面等)能经受紫外光的漂白作用。9、在设计电源时除考虑已满足现在使用需要外,要有足够多的扩展量满足实验室的需要。10、通讯在实验室实现信息化、网络化,将很大程度上提高实验室的管理质量和工作效率,在实验室设计时应周密设计通讯线路,除充分满足目前的需求外,还应有额外的容量适应仪器的增加和移动。
  • 新手捋清qPCR原理并不难~
    什么是实时荧光定量PCR(qPCR)?在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过Cq值和标准曲线对起始模板进行定量分析的方法。一.使DNA产物发出荧光的常用标记方法① 非特异性荧光染料—SYBR Green荧光染料也称DNA结合染料,SYBR Green 是一种结合于所有DNA双螺旋小沟区域的具有绿色激发波长的染料。游离的SYBR Green几乎没有荧光信号,但结合双链DNA后,其荧光信号可呈数百倍的增加。随PCR产物的增加,PCR产物与染料的结合量也增大,其荧光信号强度代表双链DNA分子的数量。▲ 图1. SYBR Green染料法发光原理② 特异性荧光探针—TaqMan探针qPCR中最常用的荧光探针为TaqMan探针,其基本原理是依据目的基因设计合成一个能够与之特异性杂交的探针,该探针的5' 端标记荧光基团,3' 端标记淬灭基团。完整的探针,两个基团的空间距离很近,淬灭基团的靠近会通过空间上的荧光共振能力转移(FRET)而显著降低由荧光基团发射的荧光。PCR扩增时,探针一般先于引物结合到目的基因序列上,结合位点位于其中一个引物结合位点的下游。随着引物的延伸通过Taq DNA聚合酶的5' 外切酶活性,探针发生水解,荧光基团和淬灭基团进行分离,从而增强了荧光基团的信号。每经过一个PCR循环,就会有更多的荧光基因从探针上脱离,荧光强度会随着PCR产物的增加而增加。因此,根据PCR反应体系中的荧光强度即可得出初始DNA模板的数量。▲ 图2. TaqMan探针法发光原理二.荧光定量PCR系统如何记录荧光信号所有的实时荧光定量PCR系统都有三个共同的组成部分:温控系统,光源系统和检测系统。温控系统用于PCR扩增,执行高温变性,低温退火和中温延伸的步骤;光源系统用于激发荧光染料或荧光基团,使其发出信号;检测系统采集荧光信号。温控系统每完成一个循环,光源和检测系统则先后进行激发和采集,从而实时记录每一个循环荧光信号的变化。随着PCR反应的进行,产物逐渐积累,荧光信号逐渐增强。▲ 图3. 实时荧光定量PCR系统检测原理那么Azure Cielo™ 实时荧光定量PCR系统,采用了高能LED作为光源系统,可保证光源强度高,光源一致性好;高品质的帕尔贴温度模块作为温控系统,升降温速率快,可设置12列跨度30°C的温度梯度;卓越的CMOS拍照+光纤信号传输作为检测系统,CMOS检测灵敏度高,光纤传输速度快,无光损失和噪音干扰,无需ROX校准。Azure Cielo™ 实时荧光定量PCR系统的高配置保证为您的科学研究提供高精准度、高灵敏度和高可靠性的实验结果。▲ 图4. Azure Cielo™ 实时荧光定量PCR系统三.如何根据荧光信号得出初始模板量实时荧光定量PCR系统所监测到的所有循环的荧光信号可以绘制成一条曲线,即为荧光扩增曲线。扩增曲线一般分为基线期、指数期、线性期和平台期。指数期内,每个循环PCR产物量大约增加1倍(假定100%反应效率),该阶段的扩增反应具有高度特异性和精确度,所以重复性好。▲ 图5. 扩增曲线qPCR软件会在指数期划定一个阈值线,阈值线对应一个荧光强度值,即阈值。在qPCR过程中,各扩增产物的荧光信号达到设定的阈值时,所经过的扩增循环数即是Cq值。Cq值与初始模板量的对数成线性关系。样本初始模板量越多,荧光信号达到阈值所经历的循环数越少,即Cq值越小。▲ 图6. Cq值与初始模板量的关系
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 《污水处理在线监测仪器原理与应用(第二版)》最新出版
    近年来,我国的城市污水处理设施建设发展迅速,大中型污水处理厂已有3000余座,中小城镇的污水处理厂建设方兴未艾。这些污水处理厂的运行将获得巨大的环境效益,同时也将产生巨大的能耗和物耗。从实现国家节能减排和可持续发展的目标出发,发展污水处理的节能降耗技术具有重大的意义。污水处理厂达标运行和节能降耗技术的发展,必然会推动控制技术和在线监测仪器的广泛应用。 《污水处理在线监测仪器原理与应用(第二版)》介绍了污水处理中常用的在线监测仪器及其基本原理,内容包括测量仪表的基本知识、污水处理的常用监测指标、污水处理在线监测仪器、数据采集与通信、仪器仪表的日常维护与管理和在线监测仪器的应用及实例。在此基础上,根据国内外最新发展,增加了溶解氧的荧光检测技术、COD的光谱检测技术、基于人工嗅觉原理的氨氮检测技术、生物毒性检测和管网的液位检测等新技术,先进实用,是国内少有的详细介绍污水处理在线分析监测仪器的专业著作。 《污水处理在线监测仪器原理与应用(第二版)》作者清华大学环境学院施汉昌教授长期以来从事污水处理系统的优化运行和仪器化、污水生物处理反应动力学和生物传感器的研究,积累了大量研究成果和丰富的经验。本书正是施教授长期以来从事废水生物处理和传感器技术研究的研究成果和经验的总结,具有实用性、可操作性和指导性。 《污水处理在线监测仪器原理与应用(第二版)》于2013年11月出版,书号:9787122182852。点击查看购买链接
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p   strong  各有关单位: /strong /p p   由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。 /p p   拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。 /p p   为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。 /p p   同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。 /p p   会议事项通知如下: /p p   strong  一、时间和地点 /strong /p p   会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议 /p p   会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室 /p p   地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内) /p p strong   二、宣贯内容 /strong /p p   1、拉曼光谱的基本原理与应用介绍 /p p   2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /p p   3、拉曼光谱仪的校准与溯源 /p p   4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。 /p p   strong  三、考核与发证 /strong /p p   培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。 /p p   strong  四、培训费用 /strong /p p   培训费:1500 元/人,包括讲义、标准复印件、培训证书。 /p p   请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款 /p p   信息如下: /p p   账户名:中国计量科学研究院 /p p   开户行:交通银行北京分行和平里支行 /p p   账号:110060224018010008693 /p p   行号:301100000074 /p p   电话:010-64524304 /p p   银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填 span style=" TEXT-ALIGN: center" 写参会回执(附件2)中的开票信息。 /span /p p style=" TEXT-ALIGN: center" img title=" QQ截图20180906104247.jpg" style=" HEIGHT: 701px WIDTH: 600px" border=" 0" alt=" QQ截图20180906104247.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width=" 600" height=" 701" / /p p strong   附件: /strong a title=" 附件2. 宣贯会参会回执(1).docx" style=" FONT-SIZE: 12px COLOR: rgb(0,102,204)" href=" https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx" br/ strong    /strong /a strong /strong a title=" 附件1. CSTM-FC00领域委员会简介(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf" strong 附件1. CSTM-FC00领域委员会简介.pdf br/   附件2. 宣贯会参会回执.docx br/    /strong /a strong /strong a title=" 附件3. 酒店交通(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf" strong 附件3. 酒店交通.pdf /strong br/ /a /p
  • 解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程
    解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程 引言概述:电子脱扣器是一种广泛应用于电子设备中的关键元件,其工作原理是通过控制电流流过特定的电路,实现对电子器件的脱扣操作。本文将详细介绍电子脱扣器的工作原理,包括其基本原理、工作流程、应用场景、优势以及未来发展方向。一、基本原理1.1 电磁感应原理:电子脱扣器利用电磁感应原理,通过电流流过线图产生的磁场,引起磁铁的吸引或排斥,从而实现脱扣操作。1.2 磁铁工作原理:电子脱扣器中的础能够产生足够的磁场强度,以实现可靠日永磁材料,具有较强的磁性1.3电路控制原理:电子脱扣器中的电|电流的大小和方向,调节磁场的强弱和方向,从而实现对磁铁的控制脱扣操作。 二、工作流程:2.1 输入信号检测:电子脱扣器首先要检测输入信号,通常是通过传感器或开关来实现,一旦检测到输入信号,即可触发脱扣操作。2.2 电路控制:一旦输入信号被检测到,电子脱扣器会根据事先设定的参数,通过控制电路来调节电流的大小和方向,以实现对磁铁的控制。2.3 脱扣操作:当电子脱扣器控制电路调世刚合适的状态后,磁铁会受到电磁力的作用,实现脱扣操作,将电子器件从离出来。 3.1 电子产品制造:电子脱扣器广泛应用于电子产品的制造过程中,用于将电子器件从 PCB板上脱离,以便进行后续的加工和组装。3.2 电子设备维修:在电子设备维修过程中,电子脱扣器可以帮助技术人员快速、安全地分离电子器件,减少损坏的风险。3.3 生产自动化:随着生产自动化水平的提商,电子脱扣器被广泛应用于自动化生产线上,提高生产效率和质量。 优4.1 高效快速:电子脱扣器能够在短时间内完成脱扣操作,提高生产效率。4.2 精准可靠:电子脱扣器能够精确控制电流和磁场,确保脱扣深作的准确性和可靠性。4.3 安全环保:电子脱扣器在脱扣过程中不会产生大量的热量和噪音,对环境和操作人员都比敦安全。五、未来发展方向:5.1 智能化:未来的电子脱扣器将更加智能化,能够根据不同的工作环境和需求进行自动调节和优化。5.2 多功能化:电子脱扣器将会融合更多的功能,例如温度检测、电流监测等提供更全面的服务。g5.3 节能环保:未来的电子脱扣器将更加一源的节约和环境的保护,采用更高效的电路和材料。
  • 本源量子公司与晶合集成公司共建量子计算芯片联合实验室
    4月2日,合肥本源量子计算科技有限责任公司和合肥晶合集成电路股份有限公司共建量子计算芯片联合实验室签约仪式在合肥举行。省领导邓向阳、张红文出席签约仪式,省发展改革委相关负责同志主持,合肥市政府、省科技厅、省经济和信息化厅相关负责同志参加。量子科技是新一轮科技革命和产业变革的前沿领域。安徽省委、省政府高度重视量子科技产业发展,“十四五”将加快建设量子科技创新成果策源地和产业发展集聚区,形成量子科技产业创新链,打造具有全球影响力的“量子中心”。本源量子和晶合集成分别是量子计算和驱动芯片代工领域的龙头企业,双方的合作,是充分发挥量子计算和晶圆制造技术优势、共建创新联合体的一次探索,为新一代信息技术产业生态构建提供了新的路径。双方共建的安徽省首个量子计算芯片领域联合实验室,将在极低温集成电路领域进行工艺合作开发以及工程流片验证,实现从芯片设计到封装测试全链条开发。联合实验室的建设,将对量子计算芯片集成化发展、填补国内制造空白、加快应用落地具有重要的推动作用。量子科学技术受到广泛关注主要是由于其可以突破信息和物质科学技术的经典极限。量子科学技术主要研究方向包括量子通信,量子计算和量子精密测量。除了本源量子的量子计算外,以国仪量子为代表的量子精密测量产业也备受关注,量子精密测量的基本原理是利用磁、光与原子的相互作用,实现对各种物理量超高精度的测量,可大幅超越经典测量手段。目前量子精密测量已在生物与医疗、食品安全、化学与材料科学等领域显示出其独特的优势和广阔的应用前景。但我国量子精密测量在系统工程化和实用化仍有待探索,科研成果转化应用机制不成熟,产业合作和推动力量有限。为推动量子精密测量产业化进程,2021年4月23日,第十五届中国科学仪器发展年会(ACCSI2020)将召开量子精密测量产业化发展论坛,邀请领域内技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快量子精密测量产业化。现诚邀各领域相关从业人员参加学习 ! (报名参会)ACCSI 2021“量子精密测量产业化发展论坛”邀请报告及报告嘉宾一、论坛时间:2021年4月23日 9:00-12:00  二、论坛地点:无锡融创万达文华酒店  三、参会嘉宾:领域内技术专家教授、研究院、技术公司、资本投资专家;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。  四、会议形式:现场会议 / 线上会议内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽皮秒高重频相干脉冲产生及量子光学应用复旦大学 教授吴赛骏量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋2021第十五届中国科学仪器发展年会(ACCSI2021)将于2021年4月21-23日在无锡市召开。ACCSI定位为科学仪器行业高级别产业峰会,经过14年的发展,单届参会人数已突破1000人,被业界誉为科学仪器行业的“达沃斯论坛”。ACCSI2021以“创新发展,产业共进”为主题,力求对过去一年中国科学仪器产业最新进展进行较为全面的总结,力争把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等在最短的时间内呈现给各位参会代表。会议期间将颁发 “年度优秀新品”、 “年度绿色仪器”、“年度行业领军企业”、“年度十大第三方检测机构”、“年度售后服务厂商”、“年度网络营销奖”“年度人物”等多项行业大奖,引领科学仪器产业方向。参会咨询报告及参会报名:010-51654077-8124 13671073756 杜老师 15611023645李老师 赞助及媒体合作:010-51654077-8015 13552834693魏老师微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。报名链接:https://insevent.instrument.com.cn/t/qK 报名二维码扫描二维码查看最新会议日程
  • XPS数据处理必备 | 原理、特征、分析
    01 XPS简介XPS(X-ray Photoelectron Spectroscopy),译为X射线光电子能谱,以X射线为激发光源的光电子能谱,是一种对固体表面进行定性、定量分析和结构鉴定的实用性很强的表面分析方法。XPS是一种高灵敏超微量表面分析技术,样品分析的深度约为20埃,可分析除H和He以外的所有元素,可做定性及半定量分析。定性:从峰位和峰形可以获知样品表面元素成分、化学态和分子结构等信息 半定量:从峰强可以获知表面元素的相对含量或浓度▲ XPS测试过程示意图 ▲02 功能和特点(1)定性分析--根据测得的光电子动能可以确定表面存在哪些元素,a. 能够分析除了氢,氦以外的所有元素,灵敏度约0.1at%,空间分辨率为 100um, X-RAY 的分析深度在 2 nm 左右,信号来自表面几个原子层,样品量可少至10的-8次方g,绝对灵敏度高达10的-18次方g。b. 相隔较远,相互干扰较少,元素定性的相邻元素的同种能级的谱线标识性强。 c.能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。(2)定量分析--根据具有某种能量的光电子的强度可知某种元素在表面的含量,误差约20%。既可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。(3)根据某元素光电子动能的位移可了解该元素所处的化学状态,有很强的化学状态分析功能。(4)结合离子溅射可以进行深度分析。(5)对材料无破坏性。03 基本原理当单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用: 1)光致电离产生光电子;2)电子从产生之处迁移到表面;3)电子克服逸出功而发射。用能量分析器分析光电子的动能,得到的就是X射线光电子能谱。▲ 基本原理 ▲这方面很多书上都介绍了,归根结底就是一个公式:E(b)= hv-E(k)-WE(b): 结合能(binding energy)hv: 光子能量 (photo energy)E(k): 电子的动能 (kinetic energy of the electron)W: 仪器的功函数(spectrometer work function)通过测量接收到的电子动能,就可以计算出元素的结合能。铝靶:hv=1486.6 eV镁靶:hv=1253.6 eV04 具体定性分析步骤A:对化学成分未知的样品——全谱扫描(0-1200eV)图谱分析步骤:1、在XPS谱图中首先鉴别出C1s、O1s、C(KLL)和O(KLL)的谱峰(一定存在且通常比较明显)。 2、鉴别各种伴线所引起的伴峰 3、确定主要元素的最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。 4、辨认p、d、f自旋双重线,核对所得结论。鉴别通常采用与XPS数据库和标准谱图手册的结合能进行对比的方法:XPS数据库一般采用NIST XPS database:https://srdata.nist.gov/xps/selEnergyType.aspx通过这个网站你可以查到几乎xps所需的所有数据包括:对双峰还应考虑两个峰的合理间距、强度比等。▲ 网站截图 ▲XPS表征手册一般采用:Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1995.还可以对比XPS电子结合能对照表进行查找(文末资源包内含),有了这些表,你就可以指导每个元素分峰的位置。▲ 结合能对照表部分内容 ▲B:分析某元素的化学态和分子结构——高分辨谱测化学位移扫描宽度通常为10-30eV,以确保得到精确的峰位和良好的峰形。05 具体定量分析步骤经X射线辐照后,从样品表面出射的光电子的强度(I,指特征峰的峰面积)与样品中该原子的浓度(n)有线性关系,因此可以利用它进行元素的半定量分析。简单的可以表示为:I = n*SS称为灵敏度因子(有经验标准常数可查,但有时需校正)对于对某一固体试样中两个元素i和j, 如已知它们的灵敏度因子Si和Sj,并测出各自特定谱线强度Ii和Ij,则它们的原子浓度之比为:ni:nj=(Ii/Si):(Ij/Sj)06 数据处理这里小编向大家推荐三款软件Xpspeak、Avantage以及我们最常用的origin篇幅有限,作图过程在这里就不详细说了07 常见问题解答1、XPS样品制备:粉末制样• 压片• 粘到双面胶带上• 分散到挥发性有机溶剂中,形成悬浊液滴到硅片等固体基片、金属箔或滤膜、海绵等基底上纤维细丝(网)样品• 缠绕或压在架子或回形针上,或样品台的孔中 央,分析区域内纤维丝悬空,避免基底元素干 扰分析结果;• 包裹在有孔的铝箔中,用小束斑XPS分析孔内样品;液体、膏状样品• 滴到Si片、聚乙烯/聚丙烯、金属片、滤膜、树 脂、海绵等固体基片上晾干或冷冻干燥2、H和He为什么不能测XPS主要原因有三点:1) H和He的光电离界面小,信号太弱;2) H1s电子很容易转移,在大多数情况下会转移到其他原子附近,检测起来非常困难 3) H和He没有内层电子,其外层电子用于成键,H以原子核形式存在。所以用X射线去激发时,没有光电子可以被激发出来。3、什么是荷电校正,如何进行荷电校正XPS分析中,样品表面导电差 样品表面导电差,或虽导电但未有效接地。此时,当X射线不断照射样品时,样品表面发射光电子,表面亏电子, 出现正电荷积累(XPS中荷正电),从而影响XPS谱峰,影响XPS分析。在用XPS测量绝缘体或者半导体时,需要对荷电效应所引起的偏差进行校正,称之为“荷电校正”。最常用的,人们一般采用外来污染碳的C1s作为基准峰来进行校准。以测量值和参考值(284.8 eV)之差作为荷电校正值(Δ)来矫正谱中其他元素的结合能。具体操作:1) 求取荷电校正值:C单质的标准峰位(一般采用284.8 eV)-实际测得的C单质峰位=荷电校正值Δ;2)采用荷电校正值对其他谱图进行校正:将要分析元素的XPS图谱的结合能加上Δ,即得到校正后的峰位(整个过程中XPS谱图强度不变)。将校正后的峰位和强度作图得到的就是校正后的XPS谱图。4、磁性元素对XPS有没有影响有,磁性样品最好进行退磁、消磁处理也可在测试中采用磁透镜模式或静电透镜模式
  • 中仪标化“ICP光谱分析技术应用”高级培训班12月22日将于北京举办
    中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。 是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训来自全国各地仪器分析测试人员及实验室管理人员近千名。   中仪标化将于2014年12月22日北京再次举办&ldquo ICP光谱分析技术应用&rdquo 高级培训班,拟邀请辛仁轩教授、李冰研究员、计子华研究员、郑国经研究员四位专家全面讲授ICP光谱的基本原理、分析技术、行业应用及分类样品分析方法等。   【培训详情】   培训时间:2014年12月22日-12月27日   培训地点:北京   培训对象:各企事业单位从事ICP光谱仪器分析的技术人员及管理人员   授课专家:   辛仁轩 教 授 清华大学   李 冰 研究员 国家地质测试中心   计子华 研究员 地质科学研究院   郑国经 研究员 首钢研究院   培训内容:详见培训通知   【报名详情】   报名官网:http://www.fxyqpx.org/Spetrain/19_1110.html   本网报名:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101176   咨询电话:010-52573244 15718847789   报名传真:010-61772365   报名邮件:fxyq06@126.com
  • 一文了解原子层沉积(ALD)技术的原理与特点
    什么是原子层沉积技术原子层沉积技术(ALD)是一种一层一层原子级生长的薄膜制备技术。理想的 ALD 生长过程,通过选择性交替,把不同的前驱体暴露于基片的表面,在表面化学吸附并反应形成沉积薄膜。 20 世纪 60 年代,前苏联的科学家对多层 ALD 涂层工艺之前的技术(与单原子层或双原子层的气相生长和分析相关)进行了研究。后来,芬兰科学家独立开发出一种多循环涂层技术(1974年,由 Tuomo Suntola 教授申请专利)。在俄罗斯,它过去和现在都被称为分子层沉积,而在芬兰,它被称为原子层外延。后来更名为更通用的术语“原子层沉积”,而术语“原子层外延”现在保留用于(高温)外延 ALD。 Part 01.原子层沉积技术基本原理 一个完整的 ALD 生长循环可以分为四个步骤: 1.脉冲第一种前驱体暴露于基片表面,同时在基片表面对第一种前驱体进行化学吸附2.惰性载气吹走剩余的没有反应的前驱体3.脉冲第二种前驱体在表面进行化学反应,得到需要的薄膜材料4.惰性载气吹走剩余的前驱体与反应副产物 原子层沉积( ALD )原理图示 涂层的层数(厚度)可以简单地通过设置连续脉冲的数量来确定。蒸气不会在表面上凝结,因为多余的蒸气在前驱体脉冲之间使用氮气吹扫被排出。这意味着每次脉冲后的涂层会自我限制为一个单层,并且允许其以原子精度涂覆复杂的形状。如果是多孔材料,内部的涂层厚度将与其表面相同!因此,ALD 有着越来越广泛的应用。 Part 02. 原子层沉积技术案例展示 原子层沉积通常涉及 4 个步骤的循环,根据需要重复多次以达到所需的涂层厚度。在生长过程中,表面交替暴露于两种互补的化学前驱体。在这种情况下,将每种前驱体单独送入反应器中。 下文以包覆 Al2O3 为例,使用第一前驱体 Al(CH3)3(三甲基铝,TMA)和第二前驱体 H2O 或氧等离子体进行原子层沉积,详细过程如下:反应过程图示 在每个周期中,执行以下步骤: 01 第一前驱体 TMA 的流动,其吸附在表面上的 OH 基团上并与其反应。通过正确选择前驱体和参数,该反应是自限性的。 Al(CH3)3 + OH = O-Al-(CH3)2 + CH4 02使用 N2 吹扫去除剩余的 Al(CH3)3 和 CH4 03第二前驱体(水或氧气)的流动。H2O(热 ALD)或氧等离子体自由基(等离子体 ALD)的反应会氧化表面并去除表面配体。这种反应也是自限性的。 O-Al-(CH3)2 + H2O = O-Al-OH(2) + (O)2-Al-CH3 + CH4 04使用 N2 吹扫去除剩余的 H2O 和 CH4,继续步骤 1。 由于每个曝光步骤,表面位点饱和为一个单层。一旦表面饱和,由于前驱体化学和工艺条件,就不会发生进一步的反应。 为了防止前驱体在表面以外的任何地方发生反应,从而导致化学气相沉积(CVD),必须通过氮气吹扫将各个步骤分开。 Part 03. 原子层沉积技术的优点 由于原子层沉积技术,与表面形成共价键,有时甚至渗透(聚合物),因此具有出色的附着力,具有低缺陷密度,增强了安全性,易于操作且可扩展,无需超高真空等特点,具有以下优点: 厚度可控且均匀通过控制沉积循环次数,可以实现亚纳米级精度的薄膜厚度控制,具有优异的重复性。大面积厚度均匀,甚至超过米尺寸。 涂层表面光滑完美的 3D共形性和 100% 阶梯覆盖:在平坦、内部多孔和颗粒周围样品上形成均匀光滑的涂层,涂层的粗糙度非常低,并且完全遵循基材的曲率。该涂层甚至可以生长在基材上的灰尘颗粒下方,从而防止出现针孔。 ALD 涂层的完美台阶覆盖性 适用多类型材料所有类型的物体都可以进行涂层:晶圆、3D 零件、薄膜卷、多孔材料,甚至是从纳米到米尺寸的粉末。且适用于敏感基材的温和沉积工艺,通常不需要等离子体。 可定制材料特性适用于氧化物、氮化物、金属、半导体等的标准且易于复制的配方,可以通过三明治、异质结构、纳米层压材料、混合氧化物、梯度层和掺杂的数字控制来定制材料特性。 宽工艺窗口,且可批量生产对温度或前驱体剂量变化不敏感,易于批量扩展,可以一次性堆叠和涂覆许多基材,并具有完美的涂层厚度均匀性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制