当前位置: 仪器信息网 > 行业主题 > >

微量核酸蛋白检测

仪器信息网微量核酸蛋白检测专题为您提供2024年最新微量核酸蛋白检测价格报价、厂家品牌的相关信息, 包括微量核酸蛋白检测参数、型号等,不管是国产,还是进口品牌的微量核酸蛋白检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微量核酸蛋白检测相关的耗材配件、试剂标物,还有微量核酸蛋白检测相关的最新资讯、资料,以及微量核酸蛋白检测相关的解决方案。

微量核酸蛋白检测相关的论坛

  • 【原创】微量核酸蛋白定量的最新技术结晶 – NanoVue

    随着常规分子生物学研究的深入,越来越多的生物实验室日常需要测量的核酸、蛋白样品量也在不断地加大。传统的分光光度计虽然已经非常普及,但由于需要在测量后清洗比色杯,实际上消耗了不少宝贵的研究时间。同时,由于核酸样品的体积较小,即使使用昂贵的微量石英比色杯(容积数十ul左右),也往往需要对原始样品进行稀释,从而带来可能的操作偏差。对于一些稀有的样品来说,稀释即意味着测量后无法回收,同样也会对后续研究带来更高成本。因此,无需比色杯,仅需数ul即可测定样品浓度的超微量分光光度计现在受到很多实验室的关注和欢迎。NanoVue是GE Healthcare公司于2008年最新推出超微量分光光度计。GE Healthcare公司的分光光度计品牌Ultrospec和GeneQuant在市场上已经有了十多年的历史,在用户中有着很好的信誉和口碑。NanoVue在该系列仪器的基础上延续了出众的检测性能,同时大大改进了检测的光路设计,通过专利的检测技术使检测样品的体积最小仅需0.5ul, 190-1100nm的宽范围连续波长设计较市场上同类仪器宽了一倍左右,使得能够轻松检测核酸、蛋白样品和Cydye荧光染料标记物的浓度。仪器内置了RNA、DNA 和寡核苷酸浓度和纯度测定方法;寡核苷酸转换因子,分子量,理论Tm计算功能;包括一般紫外、Bradford、 Biuret、BCA、Lowry的蛋白定量法;以及波长扫描,动力学,标准曲线,多波长测定等扩展功能。除了强大的检测性能外,NanoVue还在许多操作性能上进行了精心的设计,能够给用户带来众多全新的体验,主要包括以下方面:1 唯一不需电脑就能在仪器面板上直接检测的超微量分光光度计。仪器配置了一块大面积高分辨率的背光液晶屏和操作面板。相对于点样后转去电脑控制,再回去仪器清洁的过程,NanoVue不仅节省了购买电脑的支出,同时点样,按键测量,擦拭一气呵成。可以通过整合的打印机直接打印分析数据。当然,如果需要在电脑上保存分析数据,NanoVue同样支持USB或蓝牙连接电脑,将珍贵的实验数据永久记录下来。2 通过特别设计的疏水点样表面,能够很容易回收稀有的样品,并且有效避免多个测量间的样品交叉污染,提高测量的准确性。NanoVue的点样表面具有专利设计,表面坚固而且光滑。不管是样品回收还是测量完直接擦去都非常简易,不会有任何样品粘附残留在点样面上。而且点样面耐用性也非常出众,保守估计可以至少测量20000个样品以上。3 最快的检测速度。NanoVue通过独特的光路设计,使得所有样品的检测都能够在5秒钟之内完成,把微量分光光度计的测量时间提升到了一个新的高度。而且NanoVue具备即开即用功能,避免了许多分光光度计开机需要预热的麻烦,真正做到省时省力。由此可见,NanoVue不仅性能出众,其易用性和灵活性也是目前超微量分光光度计中出类拔萃的。通过试用NanoVue的体验,使用者可以完全感受到,原来,核酸蛋白的测定可以这么简单,这么快速!目前,NanoVue已经正式在中国推出,欲了解更多的信息,请直接联系GE公司。

  • 核酸蛋白检测仪应用和原理

    核酸蛋白检测仪是层析分析的主要装置,核酸蛋白检测仪配上层析柱、恒流泵、部分收集器、层析谱分析系统(根据需要选配)和电脑打印设备即构成一套完整的核酸蛋白检测仪分离层析系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。核酸蛋白检测仪分析系统广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。在生化分析、环保科学、食品研究、毒理研究、新药开发等领域中对核酸、蛋白检测、纯化和提取提供了一种独特的分析手段。

  • 尿微量蛋白(尿微量白蛋白/蛋白尿)试验

    尿微量蛋白(尿微量白蛋白/蛋白尿)试验(也称“白蛋白试验”,“尿微量白蛋白”和“蛋白尿”试验)何为尿微量白蛋白(白蛋白)试验?尿微量白蛋白试验是对尿液中的蛋白质进行测定的筛选试验。人体血液中有一种蛋白质称为白蛋白。在正常情况下,几乎无法在尿液中检测到。只有在肾脏受损,尤其是损伤早期,它可以优先于其他肾损伤标志物在尿液中被检测出,因此,尿微量白蛋白在诊断肾脏疾病、早期肾损伤等方面具有重要意义。此项试验有何目的?蛋白质是人体的基本构成“材料”,具备一些重要的功能和作用,可结合营养物质将其运输至各个组织,,并将人体中循环的体液量维持在适当水平。肾脏功能正常时,蛋白质几乎无法通过肾脏进入尿液(仅会排出血液循环产生的废料)。然而,如果人的肾功能受损或衰竭,该肾脏对蛋白质的过滤能力将有所下降,因而一些蛋白质将会透过肾脏而出现在尿液中,称为尿微量蛋白。尿微量白蛋白与蛋白尿有何不同?白蛋白是一种大量存在于血液中的典型蛋白质。因其分子个头小,当肾脏功能出现问题时,白蛋白是能够率先通过肾脏进入尿液的几种蛋白质之一。尿液中出现少量白蛋白的情况称为尿微量白蛋白。若肾脏功能受损严重,尿液中的白蛋白数量呈现出增长趋势,这种症状被改称为蛋白尿。尿微量白蛋白/蛋白尿有何症状?病症早期,并无明显症状或征兆显现。随着肾功能衰竭的加重,大量蛋白质出现在尿液中,手脚、腹部和面部可能出现肿胀。如果蛋白尿的情况加重,可能会造成永久性肾功能损伤,有些病人可能需要做透析或肾移植。不论上述症状是否存在,尿蛋白测定是确定有多少蛋白质进入尿液的唯一办法。蛋白尿还可能引发心血管疾病。血管受损除了会引发肾脏疾病外,还可能会造成窒息和心力衰竭。患蛋白尿(症)的高危人群有哪些?患有糖尿病、高血压、心血管疾病和其他类型肾脏疾病等慢性病的病人易出现蛋白尿。老年人、肥胖人群以及有肾脏疾病家族史的人群。其

  • 【求助】核酸蛋白检测仪

    我们实验室用的是上海嘉鹏科技有限公司生产的的核算蛋白检测仪,型号为HD-2000,现在急需该仪器的说明书

  • 【分享】ZHD型紫外蛋白核酸检测仪使用说明

    ZHD型紫外蛋白核酸检测仪使用说明 一、系统简介 蛋白核酸检测仪是层析分析的主要装置,配上层析柱、恒流泵、部分收集器(根据需要选配)和电脑打印设备即构成一套完整的液相色谱分离系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。然而,目前国内生产的蛋白检测仪虽然种类繁多,但均采用记录仪描谱且预热时间较长。 ZHD型紫外蛋白核酸检测仪的研制成功,为科研和实验人员利用电脑系统实现核酸蛋白检测和分析提供了一种先进的手段,其特点是系统稳定、操作简便、电脑显示谱图、数据分析和打印谱图。 二、系统特点 本系列检测仪有别于其他检测仪,主要有以下特点: 1、预热时间短,一般做实验只要预热10分钟左右。 2、稳定性高,预热后每小时漂移一般小于0.001。 3、操作简洁,开机后仪器自动调整透光率(T)到100%,吸光度(A)调整到0.000。 4、透光率(T)和吸光度(A)对应准确,点两者误差小于1%。 5、双数据显示,仪器适时显示吸光度(A)和透光率(T)。 6、仪器带有电脑接口和记录仪接口(吸光度0—200mv)。 7、工作软件提供谱图采集、分析计算、保存、打印等功能,可将谱图插入文档(word)文件中。 8、一台电脑可配多台检测仪(由电脑有效端口数决定)。 三、 技术性能 1、通过测量选择菜单,在电脑屏幕上可描出吸光度(A)谱图,透过率(T%)谱图以及A-T%谱图。 2、通过图形平移、复读伸缩和压缩选择等菜单,可对谱图并进行幅度、宽度调整和谱图参数计算,预览满意后打印输出。 3、在描谱过程中,电脑会自动将图形左移(也可人工调整),电脑描谱最长时间为20小时。 4、采集数据自动保存。 四、主要参数: 1、波长:254nm,280nm(可根据用户需要调配)。 2、样品池100ul,光程3mm。 3、量程:吸光度(A):0--2.000 透光率(T):1%—100%。 4、分辩率:吸光度(A):0.001 透光率(T):0.1%。 5、电脑分析参数:峰高、峰宽、峰面积、峰面积比、保留时间、面积含量(归一化)、层析柱分辩率等。 6、电源220V±10%,50HZ。 7、主机重量:约3.5Kg。 五、系统安装与操作步骤 1、将仪器背板上的输出端通过一根串行口连接电缆与电脑主机的COM1或COM2串行口相连。 2、打开紫外蛋白核酸检测仪电源,仪器预热10分钟左右。 3、打开电脑后,将应用软件(ZHD.exe)复制到硬盘上。钦一下仪器面板上的复位按钮,待仪器显示0.000A和100%T后,双击ZHD.exe启动应用软件,系统进入采集(分析)状态。 4、在“测量选择”菜单下,用鼠标选择检测项目。 5、在“检测操作”菜单下点击“测量开始”,电脑开始采集。 6、要停止采集,点击“检测操作”下的“测量结束”菜单,然后关闭紫外蛋白酸检检测仪。 六、层析普工作站软件使用 1、 对硬件的基本要求: a、电脑在简体中文Windowsxp操作系统上运行; b、显示器分辩率为1024*768,小字体,256色配置; c、图形打印机; d、电脑系统必须正常工作,并保证串行口(COM2或COM1)有效; 2、系统连接无误后先让检测仪工作,再执行应用软件ZHD.exe; 3、 点击文件操作菜单下的“打开谱图”,出现文件操作对话框,打开随机盘上的数据文件(.ran),图形被打开,熟悉菜单操作。菜单介绍如下: a、“文件操作”菜单下有打开谱图、保存谱图、打印谱图、打印预览等; b、“检测操作”菜单下有测量开始、测量结束(测量结束后,系统在应用程序目录下生成“文件名.TXT”文件,此格式文件可在Excel软件中打开,并可转贴到Word文档中使用); c、“灵敏度选择”菜单下有A、T%、A-T%选项; d、“谱图平移”菜单后有向左慢移动 []和向右快移动[]; e、“谱图重绘”菜单:从起始点描谱;清理屏幕;释放压缩; f、“谱图全貌”菜单:在屏幕上观察全部谱图。 g、“参数选择”菜单:可对谱图进行参数分析计算。方法如下:在吸光度状态下,点击鼠标左键选取基线及时间范围(第一次点击选取第一点,第二次点击选取第二点),点击“选择参数”下拉菜单的峰高、标准差、半峰宽、峰底宽、峰面积、峰面积比、面积含量及保留时间等参数进行计算,还可间接计算出层析柱分辨率;双击鼠标左键,即可取消本次计算。 h、在吸光度(A)或透光率(T%)状态下,单击鼠标右键,屏幕显示该鼠标点的数值;双击鼠标右健,擦除屏幕显示数值。 七、注意事项: a、 更改波长方法:打开样品池挡板后,可见到滤光片的燕尾型支架和印字(245或280代表当前所使用的波长),用手将其轻轻抽出,换向后插入原位,再将样品池挡板装上,拧紧固定螺钉即可。 b、 在检测仪和电脑正常工作后才能运行应用软件; c、 应用软件执行后,十秒钟后不出现采集分析界面,说明电脑未收到数据,需检查系统连接是否正常; d、 在A—T%描谱过程中,开始1小时内,T%谱以实蓝线表示;1小时后(或点击“图形重绘” ),已描过的T%谱会以虚蓝线表示; e、 测量开始后(特别是出峰以后)不要按复位按钮。 f、 要停止采集,请点击“测量结束”后,先点击“EXIT”,再关闭检测仪。 g、 开始测量时,屏幕会弹出保存文件对话框,要求输入数据文件名及存放路径;之后,电脑自动保存数据。 I、基线选取要保证基线与所选峰必须要有两个焦点,并与其他峰无焦点。

  • 【求助】微量定氮仪测蛋白数据不平行

    请各位高手发表一下看法:我用凯式微量定氮仪测蛋白,同一瓶消化液,容量瓶内的消化液已经应该均匀了,我都摇晃6次的,但在同一个时间段里测两个数据,结果不平行,请问是为什么啊?这种现象已经出现了100多次了,以前没这种情况的。最近一直为这个问题烦恼啊

  • 请教一个关于用毛细管电泳看蛋白和核酸的结合的问题

    我现在在做蛋白和核酸的结合.我的蛋白和核酸可以结合. 蛋白是400多KDa的 核酸很小, 是30bp的dsDNA. 我现在的检测条件下只跑蛋白是可以跑出来的, 当我蛋白和核酸一起跑的时候, 也会在跟只跑蛋白在差不多的位置出峰. (我用的双波长检测,蛋白和核酸分别标记,所以都能看到.)问题就是,一起跑的时候, 出的所有峰, 都是既有蛋白又有核酸, 不管我加的比例是多少.我就很困惑. 如果我加的核酸量很小的话,不是应该有很多游离的蛋白吗,就是说应该有的蛋白峰对应的地方是没有核酸出峰才对的啊, 为什么没有这样的峰呢, 我什么地方理解错了吗?~ 请大家帮忙.谢谢~~~~!BTW, 我用的是bare fused silica capillary, 是CZE, 不是凝胶的 谢谢~~~

  • 可溶性蛋白的定量检测方法

    如题,,现在已经试验过茚三酮、考马斯亮蓝, 两种方法都有缺点,,,有没有简便点的方法进行检测,,谢谢补充,,可能我说的不是很清楚,,是我们的一种产品里面含有可溶性蛋白,,在我们产品里,,蛋白质属于杂质,,必须除去的那种,,很微量的,用于离交前进料质量的控制,,,所以方法必须简便,,毕竟生产车间使用的

  • 关于用半微量蒸馏装置做蛋白空白的问题

    请教各位,我们在用半微量蒸馏装置做蛋白空白时需要半个多小时硼酸才变绿,这样对蛋白的结果有影响吗?而且我们做的结果要比别的公司做的结果偏低,也不知道是什么原因,请各位赐教一下,在此先谢了

  • 饲料检测_饲料水分检测_饲料粗蛋白检测

    [font=&][size=16px][color=#333333][url=https://www.woyaoce.cn/service/info-39790.html]点击打开链接:https://www.woyaoce.cn/service/info-39790.html[/url][/color][/size][/font][font=&][size=16px][color=#333333]服务背景[/color][/size][/font]饲料是一种以大豆、豆粕、玉米、鱼粉、氨基酸、杂粕、添加剂、乳清粉、油脂、肉骨粉、谷物、甜高粱等十多种不同的饲料原料制成的饲料。饲料安全在动物产品中占有举足轻重的地位。通常情况下,只有植物的饲料才是饲料,包括草、各种谷物、块茎、根等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]物理指标:感观(外观及气味)、粒度、水分、灰分、pH、混合均匀度营养成分:钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸等微生物:细菌总数、霉菌数、沙门氏菌、乳酸菌、大肠菌群、酵母菌数等有毒有害物质:黄曲霉毒素B1、水溶性氯化物、挥发性盐基氮、氰化物、亚硝酸盐、三聚氰胺、重金属残留、农药残留[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]饲料[/td][td]钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸[/td][td]实验室方法[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]菲优特检测服务形式委托检测:环境检测、食品/医药/保健品检测、化工检测、水产养殖检测、微生物检测等。科研服务:高校科研服务(氨基酸类、维生素类、脂肪类、糖代谢类、有机酸类、动/植物激素类、核苷酸类、生物胺类、花青素类、黄酮酚酸类、皂苷类、氮代谢类、植物提取物类、神经递质类等。生物项目研发(毒理测试、动物饲养、动物模型构建、保健食品功能性评价服务、动物实验技术服务等)。仪器共享:HPLC检测平台、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]检测平台、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]检测平台、动物实验服务平台。方法开发及咨询:实验室检测方法开发和应用、实验室管理咨询和培训、质量控制咨询与培训、实验仪器配置和选型等

  • 牛奶蛋白质分析仪可以用于检测乳蛋白制品嘛

    牛奶蛋白质分析仪可以用于检测乳蛋白制品。以下是详细解释和相关信息:  功能与应用:牛奶蛋白质分析仪是一种专门用于分析牛奶及其制品中蛋白质含量的仪器。它基于先进的生化分析技术,如比色法、光谱法或电化学法等,能够准确、快速地检测样品中的蛋白质含量。  乳蛋白制品的检测:乳蛋白制品,如奶粉、酸奶、奶酪等,其蛋白质含量是产品质量和营养价值的重要指标。牛奶蛋白质分析仪可以有效地检测这些乳蛋白制品中的蛋白质含量,为生产厂家提供准确的质量控制手段。  优点与特点:  准确性高:牛奶蛋白质分析仪具有高灵敏度和高准确性,能够确保测量结果的可靠性。  快速便捷:该仪器操作简单,使用方便,可以快速得出测量结果,提高检测效率。  适用范围广:除了牛奶及其制品外,还可以用于其他含蛋白质样品的检测,如豆类制品、肉制品等。  在乳品工业中的重要性:随着乳品市场的不断扩大和消费者对乳制品质量要求的提高,牛奶蛋白质分析仪在乳品工业中的重要性日益凸显。它可以帮助乳品企业提高产品质量、降低生产成本,同时为消费者提供更加安全、健康的乳制品。  综上所述,牛奶蛋白质分析仪是一种功能强大、应用广泛的检测仪器,完全可以用于检测乳蛋白制品中的蛋白质含量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405271615421543_8284_6238082_3.jpg!w690x690.jpg[/img]

  • 【讨论】大家来讨论下这几台仪器--超微量分光光度计

    【讨论】大家来讨论下这几台仪器--超微量分光光度计

    超微量分光光度计的新选择 检测核酸或者蛋白样品浓度是最常用的实验操作之一,传统比色皿体积大,需要稀释较多样品,造成珍贵的核酸蛋白样品浪费,而且还要反复清洗比色皿,甚烦。好在有超微量分光光度计的出现。早在2004年生物通就已经大力推荐过基因有限公司引进的NanoDrop微量分光光度计,这种技术利用微量液体张力牵引形成光通路,从而替代比色皿,极具创新性和实用性,并得到2004年年度产品仪器类的创新大奖。(点此链接:Nanodrop:只要1微升就可以检测核酸/蛋白浓度 )这种首创无需比色皿稀释,只要1ul样品溶液即可直接检测核酸/蛋白/或者细胞浓度的新型分光光度计很快在国内科研用户中得到非常热烈的认同。 并非仅仅是个概念。Nanodrop ND-1000的高吸收光检测能力相当50倍于传统分光光度计,使得多数样本不需要稀释即可进行全光谱(220nm-750nm)检测,无需消耗品,即插即用无需预热,操作极为方便。可以进行核酸定量和纯度检测,蛋白A280检测,Bradford检测,蛋白BCA检测,细胞浊度检测等多种紫外/可见光检测。Nanodrop ND-1000令NanoDrop公司声名大振而迅速确立来其在超微量分光光度计市场的领导地位。 但是对于高通量实验,不说384孔,就是96孔,这么一个一个的加样-检测-清洁下来,不累死也要头晕眼花的。因此,顺应这种需求,NanoDrop公司又推出了NanoDrop ND-8000,可一次同时检测1-8个样本,使得检测速度立刻提升8倍----用8道排枪,只要6分钟可以检测96个样品,而且体积非常紧凑----差不多A4纸大小(32x24cm)。设想看检测96孔样品的浓度----可以节省多少样品,节省多少时间和清洗比色皿的精力阿!新技术真是令人喝彩! Nanodrop延续这个设计理念到荧光信号检测,推出了ND-3300荧光分光光度计。这个体积只有一本字典大小(20x14x12cm)的仪器却拥有强大的功能----3组LED(UV365,蓝光470和白光500-650)覆盖400-750nm全光谱荧光分析,不需更换滤光片,不论是自行研发或市售荧光染剂都可使用,如 PicoGreen、RiboGreen、Hoechst、FITC、Cy3-Alexa555、Cy5-Alexa647, quantum dots等等。只要1.5-2ul样本量,不需比色皿或者毛细管,无需稀释样品,检测发射光峰值波长的荧光强度和±20nm相对荧光输出,通过标准曲线定量。荧光范围可达10的5次方(0.1nmM-1000nM),采用2048像素CCD检测,内置滤光片去除395nm以下光波干扰,由于使用三组LED冷光源代替传统高能耗光源,NanoDrop ND-3300能耗超低----只需要电脑的USB接口供电,根本无需外置电源! NanoDrop ND-3300并不能完全替代传统扫描荧光分光光度计,也不适合检测浓度特别低的样品,其检测浓度下限是1pg/ul,不如酶标仪和传统荧光分光光度计。但是NanoDrop ND-3300能检测样品物质量却实在比酶标仪和传统荧光分光光度计小的多----以PicoGreen为例,ND-3300可以检测少至2pg的DNA样品(2ul,1ug/ul),酶标仪/读板机检测下限50pgDNA样品(浓度读数下限以0.25pg/ul为例);传统分光光度计下限则是25pgDNA样品(浓度读数下限0.025pg/ul为例)。所以生物通特别提示你注意“检测浓度”和“检测物质量”是不同的概念哦。 NanoDrop在快速超微量样品吸收光/荧光检测领域带来的令人耳目一新的变革,新技术可令每个研究人员直接感受到技术进步的愉悦,好用是很好用,这3台仪器价格不菲。2007年10月赛默飞世尔(Thermofisher)宣布收购Nanodrop公司,并将其产品收归Thermofisher旗下。 现在我们又多了一个新选择----GE Healthcare公司最新推出都NanoVue超微量分光光度计!这是一款非常容易操作的微量分光光度计,可以用来精确检测核酸、蛋白和细菌培养液的浓度。只要0.5-5l的样品加在一种全新设计的样品板上检测即可直接得到结果。由于全新的疏水点样表面使得样品检测完之后还可以用Tips直接回收样品,如果不需要当然也可以简单擦拭彻底清洁样品板,减少样品间交叉污染。检测时间5秒之内即可完成读数、出峰识别和检测峰确认。检测波长范围200nm-1100nm。核酸扫描的可视化功能使得可以检测样品中杂质的存在,对于RNA样品测定非常有用。Press-to-Read功能使得按下检测键后才打开光源检测,减少光源工作时间延长光源使用寿命。整体光学结构为固定化设计,避免搬动造成光路偏移。 NanoVue的设计上内置了很多功能,方便使用者的工作----既然要简化操作,当然是越方便越好!比如,仪器内置寡核苷酸引物的分析方法,只要键入66碱基以下的寡核苷酸序列即可计算获得转换因子(ug/ml),分子量理论吸光度(AU/umol)和理论Tm值。内置多种蛋白定量检测方法,包括Bradford, BCA, Lowry, Biuret和直接紫外法,最多可支持27个标准样品制作标准曲线并可以保存。此外,仪器可以自动测定所需光径也可手动调教以满足特殊要求。可以单点校正或者多点校正、自选波长测定目标样品浓度。大面积高分辨率液晶屏上可显示所有结果,包括标准曲线波长扫描图像,处处体现方便用户的宗旨。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903121121_138121_1631196_3.jpg[/img]

  • 几种常用的蛋白鉴定方法

    传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的comigration分析,或者在一个有机体中有意义的基因的过表达通常耗时、耗力,不适合高流通量的筛选。 目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序、进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。1 图象分析技术(Image analysis)“满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。 在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。 首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoroimagers,对图象进行数字化。 并成为以象素(pixels)为基础的空间和网格。 其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。 利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。图象分析检测的斑点须与肉眼观测的斑点一致。 在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。 通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。 以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。 第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。 由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。 IPG技术的出现已使斑点配比变得容易。 因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。 用来配比的著名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。 配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。 之后,扩展至整个胶。例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。 所估计的精确度大大依赖于所建网格的结构及标本的类型。 已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0。25个单位。 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。 故需联合其他的技术完成鉴定。2 微量测序(microsequencing)蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息。 尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术。 目前已实现蛋白质微量测序的自动化。 首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicomole水平的蛋白质的鉴定。 但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费

  • 核酸、蛋白技术参数资料、分子量标准

    核酸及蛋白质常用数据1.核苷三磷酸的物理常数化合物分子量λmax(pH7.0)1摩尔溶液(pH7.0)中λmax时的最大吸收值OD280/OD260ATP507259154000.15CTP48327190000.97GTP523253137000.66UTP484262100000.38dATP494259152000.15dCTP46727193000.98dGTP507253137000.66dTTP48226796000.712.常用核酸的长度与分子量核酸核苷酸数分子量λDNA48502(双链环状)3.0×107pBR3224363(双链)2.8×10628SrRNA48001.6×10623SrRNA37001.2×10618SrRNA19006.1×10519SrRNA[/td

  • ICPMS检测蛋白溶液中的Fe的含量

    如何用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]检测蛋白中离子含量。还需要加HNO3消解定容吗?还是说过滤直接上机测?我的标液和内标都是2%HNO3介质的

  • 求助-检测血红蛋白

    我想检测兔子全血的血红蛋白,不知道那个公司有这方面的试剂盒?如果我用血红蛋白计测量,xk-2血红蛋白计怎么样啊?还有就是全血的血红蛋白和血浆的血红蛋白的差别到底在哪啊?请各位老师指教!!

  • 【求助】求皮革水解蛋白检测方法

    浙江金华晨园乳业生产的牛奶中被查出使用皮革水解蛋白,以增加产品中蛋白质的含量。想问问这方面的高手,目前国内外有没有皮革水解蛋白的检测方法,可否给个标准号?谢谢了

  • 【讨论】乳制品中蛋白质及非蛋白氮快速检测技术

    对于乳制品中蛋白质及非蛋白氮的检测方法,国家在2008年发布了GB/T 21704-2008《乳与乳制品中非蛋白氮含量的测定》和NY/T1678-2008《乳与乳制品中蛋白质的测定 双缩脲比色法》,但GB/T 21704-2008是采用滴定的方法,NY/T1678-2008是双缩脲比色法,检测时间比较长,均无法实现乳制品中蛋白及非蛋白氮的快速检测,造成在鲜奶收购中检测速度慢,运奶车等待时间比较长的现象,是否有一种方法或仪器可快速定量的检测上述物质呢,最好分析时间控制在15分钟以内。

  • 下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量占大豆蛋白复合纤维的比例来确定大豆蛋白复合纤维含量,有点不可理解?大豆蛋白复合纤维,目前是大豆蛋白和聚乙烯醇复合,仅仅用蛋白溶解后,剩余的聚乙烯醇的含量来‘推算’出来大豆蛋白复合纤维的含量,是有点欠妥,虽然规定了大豆蛋白复合纤维的蛋白含量,但是实际的大豆蛋白复合纤维中,大豆蛋白和聚乙烯醇含量的比例不一定的,也就是说比例不是那么固定的,这样的检测方法对检测公司来说是没有任何问题的,也是标准的一个进步,但对生产企业来说,确实是致命的,没有规定大豆蛋白复合纤维的配比必须是多少,这个检测很可能每批次大豆与羊毛动物纤维,蚕丝产品的标示和实际检测结果是不合格的。而实际生产添加的各成分是标准的?比如填充,大豆与羊毛动物纤维,蚕丝混合,生产企业是烘干后,按照回潮率计算,按重量比添加混合的,这样企业就根据这样的比例进行标示,这个是最准确的,也是最合理的?大家认为呢?[img=,690,172]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250916_01_2154459_3.png!w690x172.jpg[/img][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250913_01_2154459_3.png!w690x138.jpg[/img]

  • 粗蛋白的消化时间对检测结果的影响

    粗蛋白的消化时间对检测结果的影响

    1 设备凯氏定氮蒸馏仪消化炉2 原理试样在催化剂存在下用硫酸消解,反应产物用碱中和后蒸馏。释放出的氨被硼酸溶液吸收,吸收液用硫酸溶液滴定,测定氮含量并计算粗蛋白质含量。3 实验步骤蛋白质的测定常用凯氏定氮法进行检测。凯氏定氮法主要包括试样的消煮、氨的蒸馏、滴定三个环节。本实验主要研究试样的消煮对蛋白质的检测结果的影响。4 消煮时间和温度对检测结果的影响采用温度分别420℃和350℃,时间分别为2h、3h、4h的消化条件,对鱼粉(高蛋白质含量)、豆粕(中蛋白质含量)、DDGS(低蛋白质含量)三种样品进行检测分析。详细如表1和表2。http://ng1.17img.cn/bbsfiles/images/2015/12/201512162213_578369_2721667_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512162213_578370_2721667_3.png 4.1 消煮时间对蛋白质的检测结果的影响从表1和表2中可以明显看出,相同消煮温度下,样品的消煮效果随着消煮时间的延长而提高。4.2 消煮温度对蛋白质的检测结果的影响从表1和表2中可以明显看出,相同消煮时间下,样品的消煮效果随着消煮温度的提高而提高。5 结论蛋白质的检测需要足够的消煮时间和温度。建议按420℃消煮4h。6 参考文献 GBT6432-1994 饲料中粗蛋白测定方法

  • 【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速检测人血白蛋白原液蛋白质含量的建模研究摘要:本研究建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析模型,对浓缩液蛋白含量进行快速及有效的测定。在实验室条件下配置不同浓度的蛋白样品,建立用于蛋白含量测定的定量分析模型,以实现浓缩液蛋白含量的快速及有效的判断。关键词:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术;人血白蛋白;定量分析模型1材料1.1 试剂供试品:人血白蛋白原液;生理盐水。1.2 仪器和软件AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国Thermo Fisher scientific公司);内径4×50 mm的玻璃小管(Kimble Chase,德国); MATLAB 2015a(美国Mathworks公司);PLS_Toolbox工具箱(美国Eigenvector Research公司)。2方法2.1 蛋白含量的测定及样品溶液的配制2.1.1 蛋白质含量的测定取生产过程中超滤浓缩后的人血白蛋白原液为实验供试品,用半微量凯氏定氮法测定蛋白质浓度,浓度应不低于26.5%。2.1.2样品溶液的配制根据试验需要,将供试品溶液用生理盐水进行稀释得到多个不同蛋白质浓度的实验样品。2.2 样品光谱的采集本实验使用AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],采用透射分析模块,采用仪器自带的RESULT-Intergration软件编写采集光谱的工作流程。光谱分辨率为8 cm-1,扫描范围为10000-4000 cm-1,扫描次数为32次,用偏最小二乘回归(Partial Least Squares Regression, PLSR)方法建立定量模型。2.3 校正集和验证集的划分校正集中的样品应包含使用该模型预测的未知样品的所有化学成分。且校正集中的样品的化学成分浓度范围应覆盖使用该模型预测的未知样品中可能存在的浓度范围。而且验证集中的样品应涵盖使用模型分析的待测样品中的化学组成,测定浓度范围也应尽可能覆盖该模型分析的待测样品可能存在的浓度范围,且分布均匀。所以,需要选择合理的样品集划分方法,以提高模型的应用性及准确性。2.4 预处理方法的选择为了消除噪声和产生的基线漂移,提高模型的预测能力,得到稳健的模型,需要在模型建立前对样品的原始光谱进行预处理,常用的谱图处理方法有均值中心化(Mean Center)、标准化(Auto scale)、平滑和导数等。导数是常用的基线校正和光谱分辨预处理方法,但也会放大噪声的信号,降低光谱的信噪比;为消除光谱变换带来的噪声,常对原始光谱进行平滑后求导,能有效提高信噪比;均值中心化可增大不同样品之间的差异,从而使模型的稳健性和预测能力得到提高;标准化可以使光谱中所有波长变量的权重相同,增加光谱之间差异化,适合于低浓度成分的建模。本研究中对Auto scale、Mean Center、一阶导数(First Derivative,FD)SG13点平滑、二阶导数(Second Derivative,SD)SG13点平滑等预处理方法进行了考察,以模型的RMSEP为指标,选择最合适的预处理方法。2.5 光谱区间的选择[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信息十分复杂,在建立校正模型的过程中选择有效的建模变量是十分必要的。本研究选用间隔偏最小二乘法(Interval Partial Least Squares Regression, iPLS)),以RMSECV值为评价标准,选择变量区间以建立最佳的定量模型。3 实验结果3.1 蛋白质含量的测定结果采用半微量凯氏定氮法进行蛋白含量的测定,测定得到17个样品的蛋白含量。用生理盐水稀释样品,共得到49个不同蛋白质含量的样品。3.2 样品的原始光谱图1为49个蛋白样品的原始光谱,原始光谱图中可见各样品的光谱差异不明显,因此需要使用化学计量学方法对样品光谱进行处理。[align=center][img=,494,237]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151606_01_1626619_3.png[/img][/align][align=center]图1 样品原始光谱图[/align]3.3 校正集和验证集的划分结果本研究采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,划分为33个校正集样品和16个验证集样品。图2为校正集样品和验证集样品的主成分得分图,图中灰色点为校正集样品,红色点为验证集样品,从主成分得分图中可以看出,校正集样品和验证集样品分布比较均匀,且验证集样品比较均匀的分布在校正集样品之间,符合理想校正集和验证集的要求。[align=center] [img=,467,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151608_01_1626619_3.png[/img][/align][align=center]图2 样品主成分得分图[/align]3.4 光谱预处理的结果建模过程中,分别采用各种方法对光谱数据进行预处理,包括标准化(Auto scale)、均值中心化(Mean Center)、一阶导数(First Derivative,FD)、SG13点平滑、二阶导数(Second Derivative,SD)等处理方法,以RMSEP作为评价模型的参数,通过对比预处理后的建模结果,选出最合适的预处理方法。表1列出了预处理后各模型的评价参数,通过比对,可以较直观的选出一阶导数SG13点平滑和Mean Center的组合为最佳预处理方法。图3所示为用经过一阶导数SG13点平滑和Mean Center 预处理后的光谱所建立的模型的结果,从图3中可以看出,建模效果较好,预测能力较高,Rc2=0.994,Rp2=0.986,RMSEC=0.1993%,RMSEP=0.2585%,RMSECV=0.2518%。[align=center]表1 不同预处理后各模型参数[/align][align=center][img=,629,241]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151613_01_1626619_3.png[/img][/align][align=left]FD+SG:一阶导数+SG13点平滑[/align][align=left]SD+SG:二阶导数+SG13点平滑[/align][align=center][img=,572,305]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151616_01_1626619_3.png[/img][/align][align=center]图3 一阶导数+SG平滑+ Mean Center[/align]3.5 光谱区间的选择结果通过筛选光谱区间,可以选择与样品白蛋白含量相关性大的光谱变量进行建模,去掉大量无关信息,减少模型的计算量,使得模型的效果更好。本实验采用iPLS进行变量的选择。将光谱进行SG13点平滑+一阶导数+ Mean Center预处理后,分别采用Forward iPLS和Reverse iPLS方法选择最佳的光谱区间,改变窗口宽度,分别选择最佳变量,以RMSECV为标准选择谱区。3.5.1Forward iPLS选择波段采用FiPLS的方法以RMSECV为标准选取最佳的光谱区间,分别选择50、100、200个变量进行自动选择,如表2所示窗口宽度为100个变量时建模结果较佳,结果图4所示。[align=center]表2 Forward iPLS结果[/align] [align=center][img=,645,163]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151618_01_1626619_3.png[/img][/align][align=center][img=,517,246]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151619_01_1626619_3.png[/img][/align][align=center]图4 Forward iPLS波段结果图[/align]由图4中可以看出,绿色部分为建模的波段,图5为建模预测结果图。[align=center][img=,551,291]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151620_01_1626619_3.png[/img] [/align][align=center]图5 Forward iPLS建模结果图[/align]3.5.2 Reverse iPLS选择波段采用Reverse iPLS的方法选取最佳的光谱区间,同样,分别选择50、100、200个变量进行自动选择,如表3所示窗口宽度为50个变量时建模结果较佳,波段选择结果如图6所示。[align=center]表3 Reverse iPLS结果[/align][align=center][img=,652,456]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151622_01_1626619_3.png[/img][/align] [align=center]图6 Reserve iPLS 选波段结果图[/align]如图6中所示,其中绿色部分为建模波段,图7为预测结果。[align=center][img=,520,228]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151624_01_1626619_3.png[/img][/align][align=center]图7 Reserve iPLS 建模结果图[/align]通过采用Forward iPLS和Reservei PLS波段选择方法建立PLSR模型,经过两种方法中选择的最优变量的对比(见表4),选择窗口宽度为100变量的Forward iPLS变量选择方法建立的模型最佳。最终建立的PLSR模型结果:模型的参数为Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%,建模结果较好。[align=center]表4不同变量选择方法的建模结果[/align][align=center][img=,641,142]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151629_01_1626619_3.png[/img][/align]3.6 一级数据与预测值比较对16个验证集样品的传统方法获得的蛋白含量和NIRS蛋白含量预测值进行偏差分析,结果见表5所示。蛋白含量一级数据和预测值的平均偏差和相对平均偏差的计算公式见式1和式2,蛋白含量NIRS的预测值和一级数据间的平均偏差为0.17,相对平均偏差为0.81,两者都较低,说明了NIRS和传统的凯氏定氮法结果相差较小,表明NIRS用于蛋白含量测定的准确性和可靠性。[align=center][img=,372,89]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151631_01_1626619_3.png[/img][/align]式中yi, actual为传统凯氏定氮方法得到的一级数据值,yi, predicted为NIRS得到的预测值,n为验证集样品数量。[align=center]表5 验证集样品方法结果比较表[/align][align=center][img=,585,86]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151632_01_1626619_3.png[/img][/align]3.7 预测值的精密度通过重复测量光谱计算,建立的蛋白含量校正模型的预测精密度。随机选取验证集样品中的1号、15号、35号、42号和47号样品,每个样品重复测量10次,然后采用建立的蛋白含量模型采集以上样品的光谱,得到样品的预测值。然后计算每个样品预测值的平均值、标准偏差和相对标准偏差,用这些指标来表示预测的精密度,结果见表6。如表中所示, RSD值均在1.0%以下,远远低于5.0%,证明了模型的精密度良好。[align=center]表6 模型精密度考察结果[/align][align=center][img=,584,394]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151636_01_1626619_3.png[/img][/align]4结论和讨论本研究建立了人血白蛋白生产过程中蛋白含量测定的近红外定量模型,用于人血白蛋白原液蛋白质含量的测定,为下一步原液的生产配制提高依据。首先,取生产过程中的样品17个,用凯氏定氮法测得各个样品的蛋白含量,然后在实验室条件下,用生理盐水配制成49个不同浓度的蛋白样品。对49个样品进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集,然后对样品进行校正集和验证集的划分,对光谱进行预处理方法和不同的变量选择方法进行了考察;采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,优先选出Mean Center +一阶导数SG13点平滑的预处理方法,并采用窗口宽度为100变量的Forward iPLS变量选择方法选出变量区间,最终建立最佳的近红外定量模型。最终建立的PLSR模型结果:Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%。除此之外,对模型进行了重复性考察,从结果可知模型具有较好的重复性。在模型的建立中,选用Kennard-Stone(K-S)分类的算法进行样品集的划分,通过PCA分析得到具有代表性的校正集和验证集样品。在预处理方法的选择中,分别选用Autoscale、Mean Center、SG平滑一阶导数以及各预处理方法的组合进行预处理方法的考察,其中SG平滑中,不同的窗口宽度会对平滑产生不同的效果,窗口宽度越宽平滑效果越好,但也会丢掉有用的信息,经过考察选择13点平滑时结果较佳。参考文献吴清, 周法根. 脑梗死治疗中白蛋白应用价值的探讨 . 心脑血管病防治, 2005, 5(2): 49-50.王华平, 米宇俊. 人血白蛋白治疗肾综合征出血热低血压休克患者疗效观察 . 医师进修杂志, 2001, 24(8):20-21.郑红光, 杨志藩, 关欣. 静脉输注人血白蛋白对肾病综合征的正负临窗效应观察 . 中国实用内科杂志, 2003, 23(1):25-27.刘丽萍. 人血白蛋白在肝硬化资料中的应用 . 中国医院用药评价与分析, 2013, 13(5):388-390.常花蕾, 史涛. 人血白蛋白临床不合理应用及改进措施 . 中国药物应用与监测, 2014, 11(1): 52-54.孙世光, 余明莲, 王建民, 张国辉. 人血白蛋白的临床应用误区及其对策 .解放军药学学报, 2009, 25(4):366-368.

  • 悬赏征集真蛋白的检测技术(已征集18种)

    各位网友,在下想征集真蛋白的检测技术。80年代,曾有2种蛋白检测技术的诞生(可能不止两种,请大家集思广益),一种是凯氏定氮法,一种是杜马斯燃烧法。目前我们用的最多的是凯氏定氮法。 大家都知道,这两种方法都是以氮元素的量乘以相应的系数,得出蛋白的含量,是粗蛋白的含量。2008年的三鹿奶粉事件,就是因为不能检测真蛋白而发生的。 现在小弟在这个帖子中,征集各位大侠的检测方案。要求: 原理: 使用仪器: 检一个样的时长: 注意:每发一种新的检测帖,奖励30分,与楼上重复的不得分。各位先到先得了!http://simg.instrument.com.cn/bbs/images/default/em09502.gif==============================================非常感谢:hhciq对本帖的大力支持!送http://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gif,感谢xujing0202520的补充。现将hhciq及xujing0202520的回帖整理如下:请hhciq把把关,看有没有什么重复的。1、采用化学发光方法, 结合有效氮吸收装置,测定饲料中的粗蛋白质。静态注射化学发光法选用2.0×10-4mol/L的Luminol溶液,用量为2.00ml,待测液的用量为2.00ml。静态注射化学发光法简化了测试方法,缩短了时间,加标回收率为86.91%~104.60%,RSD5%(n=5),适用于饲料生产部门的质量控制。 2、反相高效液相色谱法 反相高效液相色谱法通常采用低离子强度酸性有机冲洗液和烷基硅胶键合固定相, 影响分离的因素主要有流动相组成、洗脱湿度、洗脱液p H值、离子对试剂和流速等; 有利于分离的条件是低 p H值、流动相、室温或较高的温度及使用乙腈或异丙醇作为有 机部分,三氟乙酸 ( T F A)对于蛋白质及气相色谱公认是一种较好的流动相添加剂。 蛋白质的保留性质和选择性还与键合固定相的性质有关, 采用大孔硅胶和短链烷基 键合固定相在蛋白质分离中具有优势。3、正交轴逆流色谱法是新近发展起来的一种方法。 具体是:以n l ( 质量分数为 1 2 . 5 % 的P E G 8 0 o 0 ) :n l( 质量分数为2 5 %的磷酸氢二钾)=1 :1 或i n( 质量分数为 1 2 . 5 %的 P E G 8 0 0 0 ) : m ( 质量分数为3 0 % 磷酸氢二钾) =1 :1 为溶剂系统,以下相作流动相,上相 作固定相,操作时采用5 0 0 r / m i n的转速和6 0 0 ml / h的流动相流速。该方法在分离度不大 的基础上提高了进样量,适用于分离天然生物大分子。4、微乳液毛细管电动色谱分离法 ( ME E K c) 微乳液毛细管电动色谱分离法是在胶束电动色谱 ( ME K c)基础上发展起来的,在E K C中,分离载体为离子胶束,它由表面活性剂组成,不同的表面活性剂构成不同的胶束,因而具有不同选择性,若以水包油微乳液作为分离载体,则称之为ME E K C法, 该法是一种新型的分离技术,目前多用于小分子中性物质的分离。5、毛细管电泳法 电泳一直是研究蛋白质的重要方法。毛细管电泳除了具备凝胶电泳的高分辨力以 外,以其快速、定量、重复性好。灵敏度高及自动化程度高等诸多优点在近几年内成为 蛋白质分离分析一项崭新且重要的技术。 其分离机理是根据被分离物质的泳动率不同而 将其分开,毛细管电泳仪就是基于这个原理而设计的自动化分离分析样品的仪器,由于 毛细管电泳刚兴起,目前主要应用的模式仍是自由溶液毛细管电泳,虽然此法具备多项 优点,但仍有不足之处。首先它不能用于制备分离,再者当样品较稀时不能象H P L C那 样进样较多体积,使样品吸附在柱上,然后洗脱下来。 6、毛细管导电聚焦法 ( C mF ) C l E F法可用于分离等电点 ( P I )相差0 . 1 2 p H单位的蛋白质,其基本步骤是:先在 毛细管内对蛋白质进行等电聚焦,然后对分离的蛋白质区带进行检测,按照迁移技术的 不同,分离方法可分为两步法、一步法、固定区带法。C l E F分离蛋白质应先解决基本 问题:消除或减少电渗的涂层方法、检测方法和条件,蛋白质区带的迁移及 P I测定方法,影响C I E F分离效能的因素,两性电解质的组成和浓度、毛细管长度、聚焦电压等。 7、反胶团萃取法 反胶团萃取分离蛋白质是一种新型的有发展前途的生物产品的分离技术。 它是利用 表面活性剂在有机溶剂中形成反向胶团,从而实施了对蛋白质的有效萃取,是表面活性 剂在生物工程中的一种成功应用。8、累加进样分离法 它是指导蛋白质在梯度开始后的一段时间内可以多次重复进样而其保留值无可觉 察的变化的方法。实验证明:在洗脱液远离突跃点时,蛋白质可以多次重复进样而其保 留值与常规分离无明显的变化。 这种累加进样分离法在蛋白质的制各纯化中有重要的应 用价值,它可以提高有效柱容器,节省大量时间和消耗,在一次色谱分离中完成聚集和 分离两步操作,可用分析型仪器制各数量较大的样品。9、凯氏( K j e l d a h 1 ) 定氮法 将被测试的样品与浓硫酸在硫酸铜和硫酸钾存在下共热消化, 含氮有机物即分解产生氨、二氧化碳和水, 氨与硫酸反应变成硫酸铵。消化后向消化液中加入强碱碱化使之分解放出氨,用水蒸气将氨蒸至硼酸液中, 用标准强酸溶液滴定收集氨的硼酸溶液, 即可计算出样品的氮含量, 从而折算出样品的蛋白质含量( 通常由含氮量乘以系数 6 . 2 5计算出( 该系数为蛋白质平均含氮量的倒数) , 乳制品通过乘以系数 6 . 3 8计算出( 该系数为乳制品中蛋白质含氮量的倒 数) ) 。这种方法是K j e l d a h l 在 1 8 8 3年发明的, 当时他只使用硫酸分解试样, 测定谷物中的蛋白含量, 需要较长的反应时间。后来 G u n n i n g 搞清楚了消化机理, 在消化时加入 K s O 使反应温度由原来的3 8 0 ~ C( 硫酸沸点) 上升到4 0 0 ~ C, 并加入硫酸铜为催化剂, 提高了消化速度, 改进了凯氏定氮法。该方法的缺点是耗时长, 灵敏度低, 样品中的含氮化合物会影响蛋白含量的测定。要想准确测定出蛋白含量, 可以先测定出总含氮量。再用三氯乙酸将样品溶液中的蛋白沉淀除去, 然后测定溶液的非蛋白含氮量, 最后从总含氮量中扣除非蛋白含氮量就可以比较准确地测定出样品的真正蛋白含量。10、

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制