当前位置: 仪器信息网 > 行业主题 > >

混合动力汽车原理

仪器信息网混合动力汽车原理专题为您提供2024年最新混合动力汽车原理价格报价、厂家品牌的相关信息, 包括混合动力汽车原理参数、型号等,不管是国产,还是进口品牌的混合动力汽车原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混合动力汽车原理相关的耗材配件、试剂标物,还有混合动力汽车原理相关的最新资讯、资料,以及混合动力汽车原理相关的解决方案。

混合动力汽车原理相关的资讯

  • 日本拟建混合动力及电动汽车国际安全标准
    据《日刊工业新闻》2010年9月29日报道,随着混合动力及电动汽车的普及,许多新问题浮出水面,如行驶途中过于安静,难以引起行人注意 车载铅电瓶、镍氢电池和锂离子电池的起火 电动汽车信息传输系统是否会遭雷击 随着智能交通系统发展,汽车电子化程度越来越高,每台车犹如一台计算机,招致病毒和黑客攻击如何应对等等。   对此,日产汽车公司高层领导认为,电动汽车技术历史悠久,不论行驶声音还是蓄电池等所有能够考虑的安全问题几乎全都解决了。然而,日本国土交通省还是提出,要尽快建立装载蓄电池等混合动力、电动汽车的安全标准。今年7月,Benesse Holdings, Inc.等60多家企业和团体与检测机构合作成立了“电动汽车普及协议会”,着手制定燃油车改装电动车的安全规格。本田汽车公司高层也表示,日本乃至全世界低价位车需求量很大,向国外采购廉价蓄电池等企业会逐渐增多,建立国际标准有助于保证国外采购产品的安全性和可靠性。
  • 新能源混合动力和纯电动车油液和冷却液锈蚀检测新仪器——CB10来啦!
    还记得CT10自动防锈性能试验钢棒分级测定仪吗?用于ASTM D665, D7548, GB/T 11143试验的精确评级。现在他的好搭档CB10自动防锈性能试验仪终于面世啦!CB10自动防锈性能试验仪&CT10自动防锈性能试验钢棒分级测定仪主要用于测量油品的防锈性能。在许多情况下水与润滑油混合,会导致零件生锈,为了评定润滑油防锈性能ASTM D665,GB/T 11143应运而生。CB10 & CT10符合ASTM D665和GB/T 11143试验要求。并在基础上扩展了用于NACE TM0172测定石油产品管道中介质腐蚀性的试验方法。CB10&CT10也是新能源混合动力和纯电动车油液和冷却液锈蚀检测有效方案。CB10自动防锈性能试验仪为测试实验提供了更高的测试精度,并且简化了试验准备工作,大量减少了人工操作。CB10可以自动进行样品定位,自动完成实验过程中的注水,同时可预先编程测试程序扩展测试条件,通过触摸屏界面可同时控制2个独立的测试位。使用CB10只需3步,1)将样品倒入烧杯中,2)将装有样品的烧杯放在CB10上,3)选择测试方法并开始测试。整个测试过程中,您无需惦念到达目标温度后加入钢棒,也无需担心忘记加入蒸馏水(或其他水)。CB10搭载1L储水量,以常规试验使用计算,可完成至少16次平行测试,同时配有自动蓄水监测系统,不必再为了是否加水而疑惑。如今有了CB10自动防锈性能试验仪的CT10自动防锈性能试验钢棒分级测定仪如虎添翼。将CB10测试后的钢棒,直接放入CT10中,高精度视觉评级系统为您快速出具精确客观的评级结果,同时可自动上传结果到LIMS系统,包括钢棒的分析图像方便您的后期溯源。CB10&CT10自动防锈性能试验系统给您防锈性能评估实验更方便更准确更省心的测试体验!
  • 新能源汽车飞速发展,电池质量决定优胜劣汰
    随着新能源技术的快速发展与环境污染压力的增大等众多因素影响,各国政府都陆续出台了对燃油车的相关限制,和对新能源汽车进行大力扶持。中国汽车工业协会的数据显示,2017年新能源乘用车全年累计销量57.8万辆,同比增长72%。其中,纯电动乘用车销量46.8万辆,同比增长82.1%;插电式混合动力乘用车销量11.1万辆,同比增长39.4%。新能源汽车市场的前景看似一片光明,但对于车企来说,这块蛋糕越做越大,越来越难分。也意味着新能源汽车市场的优胜劣汰。作为新能源汽车的重要组成部分,电池的性能在很大程度上决定了车辆的综合表现。目前,市面上的新能源车采用的电池种类各不相同,比如:磷酸铁锂电池、三元锂电池、镍氢电池氢燃料电池等;在竞争越来越激烈的新能源汽车市场,提高续航里程、增加电池寿命是提高竞争力的关键。在电池的生产过程中水分的高低对电池的质量有着非常大的影响,目前市场上电池水分测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度达不到,所以最准确的方法是采用卡尔费休水分测定仪+卡式加热炉来进行检测。 仪器与分析原理检测设备:AKF-BT2015C锂电池专用水分测定仪分析原理:样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。
  • 湃睿半导体完成数千万元A轮融资 用于传感与混合信号芯片研发
    近日,南京湃睿半导体有限公司(以下简称“湃睿半导体”)完成由毅达资本领投的数千万元A轮融资。本轮融资将用于传感与混合信号芯片的新产品拓展、新技术研发等。湃睿半导体成立于2020年,专注于高端ATDC(Analog-Time-Digital Converter,又称模拟-时间-数字转换)芯片的研发、生产和销售。ATDC芯片,是用于将真实世界产生的模拟信号(如温度、压力、声音或者图像等),转换成更容易储存、处理和传输的数字形式。湃睿半导体总部设立于南京,在无锡、厦门设有控股子公司,分别专注于MEMS技术和标准化技术开发,在深圳设有销售与技术支持办公室。此外,在德国法兰克福、多特蒙德分别设有后端设计与验证团队,致力于利用全球技术优势,同时立足本土制造与运营,打造融合传感与混合信号领域的创新品牌。ATDC芯片与传统的ADC芯片作用一样,主要用于模数转换,但两者在实现原理上有较大差异。ADC全称为AVDC,即“模拟-电压-数字转换”,ATDC则是“模拟-时间-数字转换”,两者的差别在于转换的介质从电压变成了时间。ATDC芯片引入时间要素作为中间变量,可以减少混合信号中的模拟部分,提高数字部分占比,实现更高精度、更低噪声、极低功耗和极低成本。同时,客户使用时,两种芯片的方案一致,并不会产生迁移门槛。因此,ATDC芯片有望逐步替代传统的ADC芯片。湃睿半导体创始人黄孙峰表示,此前,不少芯片巨头也尝试过ATDC路线,但由于本地工艺变异的影响,导致最终成片表现不佳。而湃睿半导体则凭借在前端VTC(电压-时间)、后端TDC(时间-数字)上的技术创新,使得ATDC芯片能够在更成熟的90-180nm芯片制程下实现,突破了困扰行业多年的技术壁垒。湃睿半导体拥有全球化的创始团队,四位联合创始人拥有慕尼黑工业大学(MUT)、卡尔斯鲁厄理工学院(KIT)、东南大学、浙江大学等高校硕士及以上学历,在传感器半导体领域都有着20年以上的经验,拥有研发和市场的复合背景。公司产品进展迅速,在2023年上半年正式流片了两款细分产品,截至目前,公司已出货接近五百万颗。此外,公司已经和新能源汽车、工业传感器、轨道交通系统等多个行业的头部客户完成了产品验证和导入,预计将在2024年进入快速增长阶段。毅达资本投资总监姚博认为,当前国内模拟芯片厂商面临需求不振、海外巨头低价倾销等多方面挑战。湃睿半导体在艰难的市场环境中仍能保持订单快速增长,并获得行业头部客户高度认可,充分展示出其颠覆式创新的巨大价值。毅达资本长期看好ATDC技术在消费、工业、汽车领域的应用,并相信其在医疗、通信等高端传感场景的延展价值。期待湃睿半导体未来能够依托自身的技术优势,持续增强研发力度,进一步为ATDC赛道的标准化发挥引领作用。
  • “新能源汽车”重点专项2022年度项目申报指南:拟拨5.08亿支持14项任务
    4月27日,科学技术部发布“新能源汽车”等一系列重点专项2022年度项目申报指南。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则, 围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台 6 个技术方向,按照基础研究类和共性关键技术类,拟部署 14 项指南任务,拟安排国拨经费 5.08 亿元。其中,围绕新体系动力电 池技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费不超过 800 万元,每个项目不超过 400 万元。围绕自进化学习型自动驾驶系统关键技术、智能汽车预期功能安全实时防护及测试验证技术方向,拟部署 2 个青年科学家课题,每个课题不超过 300 万元。原则上基础研究项目和青年科学家项目不要求配套经费,共性关键技术项目要求配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊说明外,每个项目拟支持数为 1~2 项,实施周期不超过 3 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题数不超过 4 个,项目参与单位总数不超过 6 家,共性关键技术类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。青年科学家项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日以后出生。原则上团队其他参与人员年龄要求同上。 项目下设青年科学家课题的,青年科学家课题负责人及参与人员年龄要求,与青年科学家项目一致。 指南中“拟支持数为 1~2 项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这 2 个项目。2 个项目将采取分两个阶段支持 的方式。第一阶段完成后将对 2 个项目执行情况进行评估,根据评估结果确定后续支持方式。1. 能源动力 1.1 新体系动力电池技术(基础研究,含青年科学家项目)研究内容:研发下一代锂离子电池关键材料与关键技术,包括新型高容量储锂电极材料的设计与低成本化制备方法,电极反应的电荷补偿、耦合机制和动力学提升技术,材料、电极的结构演化与稳定化策略,不燃性电解液、耐高温耐高电压隔膜的设计与应用技术,高面容量电极设计与制备方法;开展新体系电池的前瞻性研究,包括电池反应新原理与新机制,电极新材料与电池新结构,电极反应动力学调控机制与改善策略,电池性能衰退机 制与稳定化策略。1.2 固液混合态高比能锂离子电池技术(共性关键技术) 研究内容:研究高性能混合态电解质体系及高容量电极材料,正负极效率调控新原理和新技术;开发基于模型的极片/电池设计技术、极片/电池制造新工艺及新装备,研究内置传感器集成技术和高精度状态估计新方法;发展原位/实时表征新技术,研究失效机制和性能改进策略、热失控机理和防范机制,建立安全风险评估体系;开展配套应用和考核验证。1.3 无钴动力电池及梯次应用技术(共性关键技术) 研究内容:无钴低成本材料设计与制备,高强度隔膜和功能电解液开发;多孔电极结构和表界面的离子传输模型构建;适应于梯次利用的全新结构动力电池及系统设计与制造;研究多场景复杂工况下动力电池动态、快速、无损检测技术以及电池电性能与安全性能的演变规律,建立电池全生命周期性能评价方法和退役电池残值评估指标体系;研究动力电池梯级利用的指标和表征参数的健康阈值和安全阈值,建立退役电池梯次应用技术规范。1.4 乘用车用高功率密度燃料电池电堆及发动机技术(共性关键技术) 研究内容:开展高功率密度燃料电池发动机先进构型设计和匹配及系统仿真技术研究;研发适用于高功率密度燃料电池发动机的空压机、氢气循环系统等核心部件,以及先进热管理技术和低温快速启动技术;研究多维传感智能故障诊断和容错控制技术, 基于乘用车路谱的燃料电池动力系统测试评价及整车集成技术。 研究燃料电池发动机功率密度以及启动特性、稳态特性、动态响应特性等重要性能参数测试方法,并研究制定相关国家标准或指导性技术文件;研究乘用车燃料电池发动机批量化制造的装备技 术,形成批量化生产能力。 开展动态工况下电堆特性研究,采用高功率和高功率密度电堆架构与零部件的正向设计方法,研发适应高温低湿条件运行的 高性能、高动态响应膜电极技术,研发适应高电流密度的流场结 构、超薄低成本双极板技术,开发提高电堆一致性、可靠性以及装配效率的集成设计和密封设计方法,集成研发的催化剂、质子 膜、炭纸或扩散层、极板基材,研制燃料电池电堆,提出材料改进需求,形成批量化生产能力。1.5 商用车用大功率长寿命燃料电池电堆及发动机技术(共性关键技术) 研究内容:研发适用于重载车辆的大功率燃料电池发动机的高效长寿命供氢、供气、水热管理、DC/DC 等核心部件;研究重载车辆用大功率燃料电池发动机多功率模块控制技术;研究重载车辆燃料电池动力系统匹配与集成及系统仿真技术;开展大功率燃料电池发动机低温冷启动、环境适应性(高低温、高海拔)、电 磁兼容(EMC)等测试与评价方法研究,建立重载车辆燃料电池 发动机的快速测评规范。研究涵盖初始加载方法、循环工况加载方法、性能复测方法以及气密性和绝缘电阻复测方法,以及燃料电池发动机经耐久试验后的电压衰减、功率衰减、效率衰减等评价指标,并研究制定相关国家标准或指导性技术文件; 研究长寿命电堆的膜电极、双极板及其匹配技术,研究大功率电堆的高可靠集成和控制技术,研发电堆的长寿命控制策略和电堆高效运行操作边界设计方法及加速测试验证技术; 研究重载车辆燃料电池电堆及发动机批量化制造的装备技术,形成批量化生产能力。2. 电驱系统 2.1 先进驱动电机研发(共性关键技术)研究内容:开发驱动电机关键材料、零部件和驱动电机,具体包括:轻稀土或少(无)重稀土永磁体,低损耗高强度定转子铁芯,宽温变高速轴承,电磁线,高槽满率低交流电阻定子绕组, 高可靠绝缘系统及其高温耐电晕、高导热、兼容油冷介质的绝缘材料;开展电机性能、质量、成本平衡的关键设计技术,提升功率密度与效率和抑制振动噪声的优化设计,开展高效冷却技术与生产制造工艺研究等,开发高性价比车用电机并实现整车应用。2.2 先进电机控制器研发(共性关键技术) 研究内容:开展元器件关键技术及工艺和先进电机控制器关键技术的研发,具体包括:开发车规级碳化硅(SiC)功率芯片、 加压烧结封装和耐高温封装材料、高容积比耐高温电容器设计与封装技术以及电容膜;突破基于碳化硅—金属氧化物半导体场效 应管(SiC MOSFET)的电机控制器多物理场集成、驱动电机系 统高性能转矩控制、电磁兼容、振动噪声抑制控制和功能安全等 技术,开发基于高密度高能效 SiC 电机控制器,实现整车应用。3. 智能驾驶 3.1 自进化学习型自动驾驶系统关键技术(共性关键技术, 含青年科学家课题)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;研究自动驾驶感知—决策 —控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能训练平台,包括基于边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型和支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术, 包括测试流程、功能优化、故障诊断、远程监控、人机交互等辅助模块。3.2 智能汽车预期功能安全实时防护及测试验证技术(共性关键技术,含青年科学家课题) 研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全实时防护技术,构建基于车路云协同的预期功能安全实时监测与防护系统;研究降低预 期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。3.3 智能线控底盘平台及冗余控制技术(共性关键技术) 研究内容:研究满足自动驾驶、功能安全和信息安全的线控底盘平台系统的电子电气架构、高带宽实时通讯协议与技术;研究线控底盘的智能协同控制技术,包括不同典型场景(常规、越 野、极限)多余度底盘的非线性动态响应特性、多自由度动力学建模与解算方法、底盘集中信息处理方法、底盘全局状态识别方法、多执行系统协同与多目标优化的底盘智能控制算法;研究底盘失效运行技术,包括底盘系统失效模式、主冗切换及降级处理机制,底盘系统中的制动系统、转向系统的冗余设计,电控单元软硬件冗余设计,线控多执行系统协同容错控制技术;研究满足自动驾驶车辆需求的多余度线控执行系统集成优化技术,包括线控制动(如电机伺服助力、电磁阀)、线控转向(如六相电机、集 成电控动力单元)的关键部件技术;研制以底盘域控制器为核心的模块化、轻量化、集成化多余度线控底盘平台,形成智能线控底盘平台设计、建模、仿真和测评工具链,建立线控底盘平台多场景复杂工况、车云端结合的测试方法和评价体系。4. 车网融合 4.1 智能汽车云控平台关键技术(共性关键技术) 研究内容:研究车路云一体化云控平台架构,包括分析智能交通系统对边缘、区域、中心三级平台的需求,明确平台体系的迭代演进路线,构建平台逻辑架构和物理架构;研究云控基础硬件系统关键技术,包括边缘云智能运算硬件,车路云一体化通信及控制单元,非理想条件下的车路云信息交互及计算可靠支持技术;研究云控基础软件关键技术,包括车路云协同决策的多任务并行技术,车群控制协同及交通动态协同云控仿真技术,云端融合感知技术;研究面向高级别自动驾驶的车路云协同决策与控制技术,包括多层级群智决策机制,受限信息环境下车路云协同决策和规划方法,基于混合计算模式的边缘云协同技术;研究云控与非云控车辆混合交通云端优化技术,包括混合交通系统建模方法,云控性能随云控车辆渗透率变化的演化规律,不同渗透率下的混合交通系统云端优化技术;研究云控平台测试技术,包括建立多维度测试评价体系,覆盖车、路、云端的测试用例,测试评价规范和标准。5. 支撑技术5.1 智能汽车开发验证技术及装备(共性关键技术) 研究内容:研究典型交通参与者(含车辆、行人、非机动车 等)物理反射特性,研究高精度、高动态实时驱动控制技术,研发标准软体目标物及运动控制平台;研究抗信号干扰、耐碰撞的室内外高精度融合定位测量与驾驶机器人横纵向动态控制技术, 研发室内外多场景高精度运动参数测量系统与自动驾驶测试机器 人;研究多源传感数据高带宽、低延时、高同步采集与回注技术, 研究基于海量原始数据的自动驾驶算法测评技术,研发自动驾驶高保真数据采集回注与分析评价仪器;研究支持视觉、听觉、触觉的人机交互测试技术,研究智能座舱主客观量化评价方法,研发智能座舱集成测评系统。5.2 智能汽车场景库应用与多维测试评价技术(共性关键技术)研究内容:研究面向智能汽车通用功能设计运行域的场景库测试用例生成应用技术,建立基于不同来源场景库的场景分布和场景显著性分析方法,构建符合统一格式的基准测试场景库,提出驾驶场景评级理论方法和场景评价限值;研究光照、降雨、大雾等典型气象和复杂动静态交通流数字—物理融合模拟试验技术,开展模拟仿真技术拟真度研究,支持智能汽车整车及系统的安全性能测试;研究智能汽车信道衰落、电磁干扰等中国道路无 线环境物理模拟技术,基于智能汽车功能激活条件与失效表征分析,开发复杂无线环境下智能驾驶可靠性测试技术;研究面向网联车辆典型智能驾驶功能的封闭场地测试评价技术,研究智能汽车开放道路测试周期与场景覆盖度关联模型,提出智能汽车开放道路测试方法,开发高效率测试数据分析及评价工具集;集成融合气象、交通流、无线环境等多维复杂环境条件和封闭场地、开放道路等组合测试手段的智能汽车多维测试评价技术体系,研究制定相关技术规范和标准。6. 整车平台6.1 电动载货车多材料底盘结构轻量化关键技术开发(共性 关键技术)研究内容:突破电动载货车底盘与动力电池系统一体化全新构架集成设计技术;攻克电动载货车全铝车架纵、横梁断面多工况联合拓扑优化设计、车架疲劳寿命高精度预测与评价关键技术; 开发 2.0 吉帕高应力变截面钢板弹簧、低成本纤维增强复合材料板簧、热固性碳纤维复合材料传动轴、多材料电池箱设计制造关键技术;攻克电动载货车底盘系统超厚板异种材料连接接头高精度数值仿真、性能评价及耐蚀性处理核心技术;研发电动载货车混合材料底盘高精度、数字化全自动仿真预测软件及验证平台。“新能源汽车”重点专项2022年度项目申报指南.pdf“新能源汽车”重点专项2022年度项目申报指南形式审查条件要求.pdf
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1130T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法
  • 福田汽车节能减排重点实验室正式启动
    本月20日,由北京市科学技术委员会和北京新能源汽车产业联盟共同主办的“科技北京中国行”活动在福田汽车节能减排重点实验室正式启动。在仪式上,台湾成运汽车公司和福田汽车正式签订了采购75辆欧V混合动力新能源客车的购买合同,福田汽车还向北京市西城区环卫处等三家用车单位交付了新能源汽车产品。 北京市科委党组书记、副主任杨伟光表示,北汽福田新订单的签订,标志着北京市在新能源汽车产业化推广应用上又取得了新的进展。福田汽车党委副书记赵景光也称,国家政策的支持对福田新能源汽车的发展起到了很大的指引扶持作用。 行业专家们认为,福田汽车这样的企业是新能源汽车产业的领军者,其高速发展的同时,将自然地“甩掉”那些企图浑水摸鱼的行业“泡沫”企业。“新能源汽车产业正是需要福田这类领军企业高速先行,实现整个行业的跨越式发展。”一位政府相关领导这样对记者说。 “现在家家企业都在嚷着推出绿色环保的‘新能源车’,争先恐后,看着好像很热闹,但近看却大多是‘泡沫’。”一位业内知名人士对记者说,虽然新能源汽车是国家扶持的重点,这个行业的远景也不错,但也有太多名不副实的产品掺杂其中,让整个行业里充斥着泡沫。不过,该人士也同时表示,在大家的合力推动下,新能源产业正高速发展。泡沫散去后留下的才是赢家,行业新格局的雏形初现,新能源汽车产业即将出现跨越式发展。眼下提到我国在新能源汽车研发推广方面的成绩,有实际意义的多是指商用车,而客车更是行业力推的重点。 整个行业正享受“泡沫” 福田汽车“退潮时见真伪” 新能源汽车在研发、应用、推广等方面,国家无论是政策的出台,还是在财力、物力上,都给予了大力的支持。“正是这些支持让很多企业‘积极’起来,别管真的假的,都争抢着推出‘新能源车’。”一位专家告诉记者,现在不少企业推出的所谓新能源车都是“水货”,“随便从哪里买几个零配件装上就敢冠以新能源车之名,但真有实际意义的并不多”。国家对新能源车行业的支持使一些小企业看到了“机会”,他们对“新能源车”的变形解释,搞乱了行业,制造了大量泡沫。 “不久前,吉林一家企业推出了一款‘新能源车’,号称充电半个小时能跑300多公里……”一位现场专家与记者谈起这个事情,颇有些哭笑不得的意味。“姑且先不讨论这个‘技术’的真伪,我就想问问,一块手机电池,你充电半个小时,能用多久?”该专家称,行业里有太多这样的厂家企图浑水摸鱼,眼下福田这类大企业在技术、产品等方面的高速发展,正是清理行业的最佳利器。 据赵景光介绍,福田汽车从2003年开始研发新能源汽车,目前旗下新能源汽车已实现了产业化和商业化运营,氢燃料电池客车、混合动力客车、电动环卫车等产品处于国内领先水平。 福田欧V混合动力客车在各地的高质量运行,正式打开了福田新能源汽车产业化和商品化运营的大门,拓宽了福田新能源汽车走向全国乃至世界各地的道路。福田汽车正以实际行动为行业摒除杂质,推动新能源汽车走向正规化。 国家政策大力扶持 正处发展好时机 实际上,眼下我国新能源车的发展正处于初级阶段,这个阶段需要国家政策大力扶持。而国家及各地政府也在几年前就陆续出台税收等相关政策,支持鼓励企业发展新能源车。 据了解,北京市市委、市政府自“九五”开始,就高度关注新能源汽车研发、示范应用与产业化工作,持续支持新能源汽车研发及产业化推广工作。据政府相关人士介绍,在研发方面,自“十五”以来,北京市科技经费投入新能源汽车工作近3亿元;最近,又建立了新能源汽车联席会议制度;另外,北京经过“九五”、“十五”和“十一五”发展,已有50多家从事新能源汽车及关键部件技术研发的单位,研发力量已基本成体系。 “如何把北京的现有资源利用好,更好地实现科研成果向产业化的转化,是当前北京市重点关注的。”杨伟光表示,北京市科委今后将重点推进几方面的工作,“第一要着力提升生产企业自主创新能力;第二,重点培育和支持关键核心零部件的产业化,完善产业链;第三,建立技术支撑与服务体系”。杨伟光称,相信通过以上几方面的工作,北京新能源汽车的发展能够取得更大的成绩。 已取得一定成绩 新能源车将现大发展 国家的政策支持对企业的发展有很大的推动促进作用,福田及一批优秀的汽车企业正是受益者。据悉,在政府推动新能源汽车等交通节能技术发展,加快发展汽车产业等科技政策的支持和指引下,一批优秀的汽车企业已在新能源车研发、生产等方面取得了成绩。 赵景光说,福田汽车2003年开始布局“新能源”,并一直把“新能源的研发与应用”作为企业发展的核心战略。“近年来,福田投入了大量资金和科研力量致力于新能源的开发。历经多年努力,福田终于掌握了新能源领域的未来核心技术,在新能源汽车的研发和推广上领先了国内同行一步。” 目前,以福田欧V混合动力客车为主的一批汽车企业已在新能源汽车的发展上取得了较为明显的成绩。去年12月28日,由国家科技部和北京市政府牵头成立的北京新能源汽车设计制造产业基地在福田汽车成立;今年3月13日,北京新能源汽车产业联盟成立。 可以说,在政府相关部门的支持与业内产业联盟的推动下,集聚效应正在显现,并形成新能源汽车发展的强大合力,推动新能源汽车行业出现跨越式发展。
  • “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目
    5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线在20℃的电阻率≤1.90×10-8Ωm,180℃的电阻率≤2.57×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.5V@250A/150℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线学习系统的更新周期≤30min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿真测评和管理工具软件1套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线图不少于3项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿真任务执行成功率≥99.9%,达到10000个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿真、状态机建模等不少于3项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线充放电系统双向功率≥30kW, 工作间隙≥20cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿真验证平台1套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf
  • 2022世界新能源汽车大会共识发布
    8月25-28日,2022世界新能源汽车大会在北京、海南两地召开,受全国政协副主席、中国科协主席、世界新能源汽车大会主席万钢委托,清华大学汽车产业与技术战略研究院院长、世界汽车工程师学会联合会终身名誉主席、世界新能源汽车大会科技委员会联合主席赵福全于28日在北京发布了《2022世界新能源汽车大会共识》。“共识”准确把握产业发展新趋势,广泛凝聚与会各方观点与智慧,为加快推进碳中和愿景目标下的汽车产业全面电动化转型、深化全球合作进一步明晰了方向路径,将为新能源汽车科技创新和产业发展提供新的重要指引。“共识”指出,全球新能源乘用车市场渗透率突破全面市场化拐点,各方将以用户需求为中心,加快开发包括纯电动、插电式混合动力(含增程)、燃料电池等多元化汽车产品,营造良好的政策及应用环境,持续扩大新能源汽车应用规模。“共识”强调,商用车是全球汽车产业碳减排的重点与难点,各方将进一步加强氢能燃料电池、纯电动、零碳燃料等关键技术研究与产品开发,积极探索低碳零碳商用车市场化推广路径,持续加速商用车电动化进程,推进产业绿色低碳转型。“共识”呼吁,各方要加强电池、芯片等产业链关键环节的科技创新与全球合作,不断优化供应链的资源配置,加强循环利用体系建设,努力构建合作共赢的全球汽车产业链供应链新生态。“共识”提出,各方将加强各国汽车产业碳管理体系的协同,共同研究包括动力电池在内的碳足迹评价方法,推动碳排放数据的互通、互认与互享。“共识”指出,各方将积极推进跨部门、跨行业的大联合、大协同,加快推动新能源汽车与能源、交通、信息通信等领域的深度融合,努力构建安全、高效、低碳、智能、愉悦的新出行生态。“共识”认为,人才是支撑产业变革的根本,各方将以产业需求为导向,积极探索新型汽车人才的培养模式,广泛开展科普宣传,吸引更多人才投身汽车产业,为产业创新发展持续注入新动力。“共识”倡议,共同发起成立世界新能源汽车大会国际科技合作组织,汇集全球优势资源,进一步凝聚发展共识,深入推进交流合作,共享机遇、共应挑战,共创绿色低碳发展新格局。全文如下:2022年8月,全球汽车产业主要相关方再次聚首,共议碳中和愿景下的全面电动化与全球合作,与会各方达成以下共识:一、坚定推进汽车产业全面电动化转型。全球新能源乘用车市场渗透率突破全面市场化拐点,与会各方将以用户需求为中心,加快开发包括纯电动、插电式混合动力(含增程)、燃料电池等多元化汽车产品,营造良好的政策及应用环境,持续扩大新能源汽车应用规模。二、加速推进商用车绿色低碳发展。商用车是全球汽车产业碳减排的重点与难点,与会各方将进一步加强氢能燃料电池、纯电动、零碳燃料等关键技术研究与产品开发,积极探索低碳零碳商用车市场化推广路径,持续加速商用车电动化进程,推进产业绿色低碳转型。三、着力构建安全稳定的汽车产业链供应链体系。全球汽车产业链供应链加速重构,与会各方一致认为要加强电池、芯片等产业链关键环节的科技创新与全球合作,不断优化供应链的资源配置,加强循环利用体系建设,努力构建合作共赢的全球汽车产业链供应链新生态。四、加强汽车产业碳管理体系协同。加快迈向碳中和是全球汽车产业共同的愿景目标,产品碳足迹已成为产业关注的热点,与会各方将加强各国汽车产业碳管理体系的协同,共同研究包括动力电池在内的碳足迹评价方法,推动碳排放数据的互通、互认与互享。五、充分发挥汽车与智慧能源、智能交通、智慧城市深度融合的协同效益。与会各方将积极推进跨部门、跨行业的大联合、大协同,加快推动新能源汽车与能源、交通、信息通信等领域的深度融合,努力构建安全、高效、低碳、智能、愉悦的新出行生态。六、加强新型汽车人才培养。人才是支撑产业变革的根本,汽车产业的转型升级亟需跨学科、跨产业的综合型人才,与会各方将以产业需求为导向,积极探索新型汽车人才的培养模式,广泛开展科普宣传,吸引更多人才投身汽车产业,为产业创新发展持续注入新动力。加强全球合作、推动全面电动化转型是汽车产业应对气候变化、加快产业转型升级、实现可持续发展的关键举措,与会各方倡议发起成立世界新能源汽车大会国际科技合作组织,汇集全球优势资源,进一步凝聚发展共识,深入推进交流合作,共享机遇、共应挑战,共创绿色低碳发展新格局。2022年8月
  • 迎利好!《新能源汽车废旧动力电池综合利用行业规范条件(2024年本)》公开征求意见
    为加强新能源汽车废旧动力电池综合利用行业管理,推动行业高质量发展,我们修订形成了《新能源汽车废旧动力电池综合利用行业规范条件(2024年本)》,现向社会公开征求意见。如有意见或建议,请于2024年8月29日前反馈至工业和信息化部节能与综合利用司。电话:010-68205363传真:010-68205337电子邮箱:zyzhly@miit.gov.cn工业和信息化部节能与综合利用司2024年8月14日征求意见稿中对企业布局与项目选址、厂区条件、设施设备、技术工艺、溯源能力、资源利用、能源消耗、产品质量、环境保护等提出要求。其中多次提到仪器设备,在梯次利用企业要求中提到“应具备废旧动力电池拆分的技术手段和能力,配备吊装、绝缘测试、焊点铣削、切割、清洗等设备……”“应具备检测动力电池性能指标的技术手段和能力,配备充放电测试、电压内阻测试等设备……”“应具备拆分电池自动化重组和梯次产品质量检验的技术手段和能力,配备机械辅助搬运、激光焊接、高低温试验、短路测试、激光打码或喷码等设备,对拆分后的电池进行二次组装形成梯次产品,并对梯次产品的质量、安全等性能进行检验……”在再生利用企业要求中提到“具备废旧动力电池安全拆解机械化作业平台及工艺,配备放电、自动化破碎、分选等设备,鼓励采用精细化、智能化拆解设备……”“积极开展针对正负极材料、隔膜、电解液等再生利用技术、设备、工艺的研发和应用……”等全文如下:新能源汽车废旧动力电池综合利用行业规范条件(2024 年本)(征求意见稿)一、总则(一)为加强新能源汽车废旧动力电池综合利用行业管理,提高废旧动力电池综合利用水平,依据《中华人民共和国循环经济促进法》《中华人民共和国固体废物污染环境防治法》等法律法规,制订本规范条件。(二)本规范条件中的综合利用是指对新能源汽车废旧动力电池进行多层次、多用途的合理利用过程,主要包括梯次利用和再生利用。1.梯次利用是指对废旧动力电池进行检测、分类、拆分、重组等处理,制造符合有关标准的梯次利用电池产品(以下简称梯次产品),使其可应用至其他领域的过程。2.再生利用是指对废旧动力电池进行拆解、破碎、分选、冶炼(或材料修复)等处理,进行资源化利用的过程。(三)本规范条件中的综合利用企业(以下简称企业)是指开展新能源汽车废旧动力电池梯次利用或再生利用业务的企业。(四)本规范条件适用于在中华人民共和国境内已建成投产的综合利用企业。本规范条件是促进行业技术进步和规范发展的引导性文件,不具有行政审批的前置性和强制性。二、企业布局与项目选址(一)企业应当符合国家产业政策和所在地区城乡建设规划、生态环境分区管控及规划环评、生态保护红线、生态环境保护规划、土地利用总体规划、主体功能区规划等要求,其施工建设应满足规范化设计要求。(二)企业布局应当与本企业废旧动力电池处理规模相适应。(三)企业不得位于国家法律、法规、规章和规划确定或县级以上人民政府规定的自然保护区、风景名胜区、饮用水源保护区、永久基本农田、湿地保护区和其他需要特别保护的区域内。(四)新建综合利用企业应按要求进入开发区、工业园区等产业园区,建设用地应为工业用地(新型产业用地除外)。已经建成投用和在建的综合利用企业不符合上述要求的,应在 2 年内搬迁。三、综合利用能力(一)通用要求企业应依据相关的国家标准、行业标准,对废旧动力电池进行综合利用。厂区条件、设施设备、技术工艺、溯源能力、资源利用、能源消耗等应满足以下要求:1.土地使用手续合法(如土地为租用,租用合同续存期限不少于 10 年),厂区面积、作业场地面积应与企业综合利用能力相适应,作业场地满足硬化、防渗漏、耐腐蚀等要求。2.应选择生产自动化程度高、能耗低、环保水平和资源利用水平先进的生产设施设备,采用节能、节水、环保、清洁、高效、智能的先进适用技术与工艺。3.开展新能源汽车动力电池综合利用的企业应按照新能源汽车动力电池溯源管理有关要求建立溯源系统,具备信息化溯源能力并开展溯源工作,将溯源信息及时准确地上传至新能源汽车国家监测与动力蓄电池回收利用溯源综合管理平台。4.应设立专门的废旧动力电池贮存场地,配备红外热成像监控、烟雾报警等安全防护设施。5.对于综合利用过程中产生的固体废弃物,应采取相应措施实现合理回收和规范处理。6.应按照《固定资产投资项目节能审查办法》要求开展项目节能评估,建立用能考核制度,配备必要的能源(电、天然气、水等)计量器具。加强对运输、拆卸、储存、拆解、检测、利用等各环节的能耗管控,降低综合能耗,提高能源利用效率。工艺废水循环利用率应达 90%以上。7.每年用于研发及工艺改进的费用不低于废旧动力电池综合利用业务收入的 3%。鼓励企业申报省级及以上独立研发机构、工程实验室、技术中心或高新技术企业资质。(二)梯次利用企业要求1.应核实废旧动力电池来源,确保用于梯次利用的废旧动力电池来自新能源汽车退役动力电池。2.应具备废旧动力电池拆分的技术手段和能力,配备吊装、绝缘测试、焊点铣削、切割、清洗等设备,按照《车用动力电池回收利用 拆解规范》(GB/T 33598)要求进行电池包(组)和模块的拆解,并将拆分后的零部件分类存放。3.应具备检测动力电池性能指标的技术手段和能力,配备充放电测试、电压内阻测试等设备,开展电池状态评估,按照《车用动力电池回收利用 梯次利用 第 3 部分:梯次利用要求》(GB/T 34015.3)判定其是否满足梯次利用要求。4.应具备拆分电池自动化重组和梯次产品质量检验的技术手段和能力,配备机械辅助搬运、激光焊接、高低温试验、短路测试、激光打码或喷码等设备,对拆分后的电池进行二次组装形成梯次产品,并对梯次产品的质量、安全等性能进行检验,梯次产品需符合所在领域法律、法规、规章以及强制性标准。5.应按照《汽车动力电池编码规则》(GB/T 34014)及锂电池编码规则有关政策和国家标准要求对梯次产品进行重新编码,保留并不得损毁或遮挡原动力电池编码。在产品显著位置贴示符合《车用动力电池回收利用 梯次利用 第 4部分:梯次利用产品标识》(GB/T 34015.4)要求的梯次产品标识。6.应具有关键技术或主要产品的技术发明专利或 3 项以上实用新型专利。年梯次利用的废旧动力电池量应不低于实际废旧动力电池回收量的 60%(其中利用量和回收量均按重量计算)。7.应承担本企业生产销售的梯次产品的保修和售后服务,并在产品使用说明或其他随附文件中提示使用防护、运行监控、检查维护、报废回收等有关注意事项及要求。8.应承担梯次产品全生命周期的管理责任。自建或与用户共建梯次产品在线监测平台,监测产品运行状态和流向。(三)再生利用企业要求1.具备废旧动力电池安全拆解机械化作业平台及工艺,配备放电、自动化破碎、分选等设备,鼓励采用精细化、智能化拆解设备,按照《车用动力电池回收利用 再生利用 第3部分:放电规范》(GB/T 33598.3)、《车用动力电池回收利用 单体拆解技术规范》(QC/T 1156)要求对废旧动力电池进行放电、拆解、破碎及分选。若企业具备带电处理技术,可在保证安全的前提下进行带电处理。2.具备产业化应用的湿法、火法或材料修复等工艺,可实现元素提取或材料修复,对电子元器件、金属、石墨、塑料、橡胶、隔膜、电解液等零部件和材料可合理回收和规范处理,具有相应的污染控制措施,以及对不可利用残余物的规范处置方案。再生利用企业应当兼顾处理电动自行车废锂离子电池等。3.积极开展针对正负极材料、隔膜、电解液等再生利用技术、设备、工艺的研发和应用,努力提高废旧动力电池再生利用水平,通过冶炼或材料修复等方式保障主要有价金属得到有效提取回收。其中,铜、铝回收率应不低于 98%,破碎分离后的电极粉料回收率不低于 98%,杂质铝含量低于1%,杂质铜含量低于 1%;冶炼过程锂回收率应不低于 90%,镍、钴、锰回收率不低于 98%,稀土等其他主要有价金属综合回收率不低于 97%,氟固化率不低于 99.5%,碳酸锂生产综合能耗低于 2200 千克标准煤/吨;采用材料修复工艺的,回收利用的材料质量之和占原动力电池所含目标材料质量之和的比重应不低于 99%。四、产品质量(一)企业应设立专门的质量管理部门和配备专职质量管理人员,构建完善的质量管理制度,编制岗位操作守则、工作流程,明确人员岗位职责、工作权限,配备经检定合格、符合使用期限的相应检验、检测设备,建立产品可追溯、责任可追究的质量保障机制,并通过质量管理体系认证。(二)梯次产品应符合所应用领域相关法律法规、政策及标准要求,经具有相应资质的检测机构检验合格,并通过相应的强制认证、市场准入或行政许可等。梯次产品不得用于电动自行车领域。鼓励企业制定和执行高于国家标准或行业标准的产品技术标准或规范。(三)再生利用的产品应符合国家标准、行业标准要求,并经具有相应资质的检测机构检验合格。所采用的标准包括但不限于:《电池级碳酸锂》(YS/T 582)、《无水氯化锂》(GB/T 10575)、《氟化锂》(GB/T 22666)、《单水氢氧化锂》(GB/T 8766)、《电池用硫酸钴》(HG/T 5918)、《精制氯化钴》(GB/T 26525)、《电池用硫酸镍》(HG/T5919)、《电池用硫酸锰》(HG/T 4823)、《硫酸镍钴锰》(HG/T 6238)、《镍钴锰三元素复合氧化物》(GB/T 26029)、《镍钴锰三元素复合氢氧化物》(GB/T 26300)、《磷酸铁锂》(YS/T 1027)、《再生磷酸铁》(HG/T 6262)等。五、环境保护(一)企业应严格执行环境影响评价制度。按照环境保护“三同时”要求建设配套的环境保护设施,并在建设项目竣工后组织竣工环境保护验收,验收通过后方可投入生产。企业应按照《排污许可管理条例》《固定污染源排污许可分类管理名录》和《排污许可证申请与核发技术规范废弃资源加工工业》(HJ 1034)等有关管理规定和标准要求取得排污许可证或排污登记表,并按照排污许可规定排放污染物。(二)企业应按照相关法律法规要求履行环境保护义务,落实生态环境保护措施,建立健全企业环境管理制度,并通过环境管理体系认证。1.配备具有耐腐蚀、坚固、防火、绝缘特性的专用分类收集储存设施,废水、废气、固体废物污染防治等环境保护设施。贮存设施的建设、管理应根据废物的危险特性满足《一般工业固体废物贮存、处置场污染控制标准》(GB 18599)和《危险废物贮存污染控制标准》(GB 18597)等要求。2.在综合利用过程中产生的工业固体废物应当按照国家有关规定进行管理,属于危险废物的按照危险废物进行管理。3.在再生利用过程中的污染控制技术要求、污染物排放控制与环境监测要求、运行环境管理要求应符合《废锂离子动力蓄电池处理污染控制技术规范(试行)》(HJ 1186)等标准规定,并按照有关要求对主要污染物排放情况进行自动监测。4.噪声应符合《工业企业厂界环境噪声排放标准》(GB12348)要求,并对产生噪声的主要设备采取基础减振和消声及隔声措施,具体标准应根据当地人民政府划定的区域类别执行。(三)纳入环境信息依法披露企业名单的再生利用企业,应按照《企业环境信息依法披露管理办法》依法披露环境信息,健全企业相关管理制度。(四)再生利用企业应按照《中华人民共和国清洁生产促进法》定期开展清洁生产审核,并通过评估验收。(五)企业应设有专职环保管理人员和完善的环保制度,建立环境保护监测制度并制定监测方案,在开展环境风险评估和应急资源调查的基础上编制突发环境事件应急预案,并储备必要的应急物资。六、安全生产和人身健康(一)企业应严格遵守《中华人民共和国安全生产法》《中华人民共和国职业病防治法》等法律法规,安全生产条件和职业病危害防护条件符合有关标准、规定,依法履行各项安全生产行政许可手续。具备相应的安全生产、劳动保护和职业危害防治条件,对作业环境的粉尘、噪声等进行有效治理,符合国家卫生标准,配备相应的安全防护设施、消防设备和安全管理人员,建立健全安全生产责任制,开展安全生产标准化建设,并按规定限期达标。(二)企业安全设施和职业危害防治设施必须与主体工程同时设计、同时施工、同时投入生产和使用;企业安全设施和职业病防护设施投入生产和使用前,应依法实施审查、验收。(三)企业运输或委托其他单位运输废旧动力电池的,应对承运单位的主体资格和技术能力进行核实,确保运输管理符合《车用动力电池回收利用 管理规范 第 1 部分:包装运输》(GB/T 38698.1)等有关国家标准、行业标准的要求。(四)企业应具有健全的安全生产、职业卫生管理体系,建立职工安全生产、职业卫生培训制度和安全生产、职业卫生检查制度,并通过职业健康安全管理体系认证。(五)企业作业环境应符合《工业企业设计卫生标准》(GBZ 1)、《工作场所有害因素职业接触限值 第 1 部分:化学有害因素》(GBZ 2.1)、《工作场所有害因素职业接触限值 第 2 部分:物理因素》(GBZ 2.2)要求。(六)企业应按照国家有关要求,建立健全安全生产标准化和隐患排查治理体系。近三年内未发生较大及以上安全事故。七、社会责任和职业教育(一)企业外购废旧动力电池及废料(如废极片、废电芯、废粉末及浆料、边角料等)作为原料的,应加强供应商管理,确保原料来源合法、供应方的加工过程符合安全和环保要求。(二)企业的用工制度应符合《中华人民共和国劳动合同法》规定。(三)鼓励企业建立电池信息管理系统,构建完善的生产过程信息化管理体系,对废旧动力电池来源、主要参数(类型、容量、产品编码等)、拆解检测、资源利用、产品流向及废弃物处置措施等进行有效跟踪和管理,提高信息化管理水平。(四)鼓励企业建立职业教育培训管理制度及职工教育档案,管理人员、工程技术人员、生产工人等应定期接受培训和考核,特种作业人员应具备相应资格(如电工证等),做到持证上岗。八、监督管理(一)规范条件的申请、审核及公告1.工业和信息化部负责对符合本规范条件的企业名单予以公告,并对符合本规范条件的企业实行动态管理。2.企业可依据本规范条件自愿申请公告。申请企业需编制《新能源汽车废旧动力电池综合利用行业规范公告申请书》(见附 1),通过“工业节能与绿色发展管理平台”提供相关材料,并对申请材料的完整真实性负责并承担相应责任。企业申报时应投产 1 年及以上。3.《规范条件》公告的申请工作以具备独立法人资格的企业为申请主体。集团公司或母公司旗下具有独立法人资格的子公司,需要单独申请。4.省级工业和信息化主管部门负责接收本地区相关企业的申请,并按本规范条件要求对申报企业进行核实,提出具体审核意见,将符合本规范条件要求的企业申请材料和审核意见报送工业和信息化部。5.工业和信息化部根据省级工业和信息化主管部门的审核意见,组织专家对企业申请材料进行复审和现场核查。对符合本规范条件的企业名单进行公示,无异议的予以公告。(二)公告企业的动态管理1.进入公告名单的企业要按照本规范条件的要求组织生产经营活动,且应在每年第一季度结束前通过“工业节能与绿色发展管理平台”上年度的提交《新能源汽车废旧动力电池综合利用行业规范条件执行情况和企业发展年度报告》(以下简称《年度报告》,见附 2)。2.地方工业和信息化主管部门应对列入公告名单的当地企业进行监督检查,督促企业规范各项管理,加快技术改造,并将监督检查结果报送工业和信息化部。3.充分发挥社会舆论监督作用,鼓励社会各界对企业规范情况进行监督。任何单位或个人发现申请公告企业或已公告企业有不符合本规范条件有关规定的,可向工业和信息化部投诉或举报。4.已公告企业应在企业名称、经营范围及其他与本规范条件相关的情况发生变化时,向所在地工业和信息化主管部门提出变更申请,在发生变化 1 年内补充必要的证明材料,由省级工业和信息化主管部门组织相关机构和专家验收核实后,报工业和信息化部。工业和信息化部对验收意见进行核实,对仍符合本规范条件的,予以公告。5.已公告企业有下列情况之一的,由企业所在地的工业和信息化主管部门责令其限期整改。1 年内整改不到位的,经省级工业和信息化主管部门报请工业和信息化部将其从公告名单中撤销:(1)不能保持符合本规范条件要求的;(2)不按要求提交《年度报告》的;(3)报送的相关材料或生产经营有弄虚作假行为的;(4)拒绝接受监督检查或监督检查不合格的;(5)主体生产设备连续 2 年关停或开工负荷不足 10%的。发生较大及以上安全、环保等事故,或严重违反国家法律、法规和国家产业政策行为的,工业和信息化部将其从公告名单中撤销。拟撤销公告的,工业和信息化部将提前告知有关企业。听取企业的陈述和申辩。被撤销公告的企业,原则上自整改完成之日起,2 年后方可重新提出申请。6.支持国家或地方相关管理部门依据本规范条件制定相应的配套管理措施。九、附则(一)本规范条件涉及的法律法规、国家标准、行业标准和行业政策若进行修订,按修订后的规定执行。(二)本规范条件自 2024 年 月 日起施行,《新能源汽车废旧动力蓄电池综合利用行业规范条件(2019 年本)》《新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法(2019 年本)》(工业和信息化部公告 2019 年第59 号)同时废止。(三)本规范条件实施前已取得公告的综合利用企业,应在本办法实施后 1 年内达到本办法要求,并补充必要的证明材料,由省级工业和信息化主管部门组织相关机构和专家验收核实后,报工业和信息化部。(四)本规范条件由工业和信息化部负责解释。
  • 工信部发布2022年汽车标准化工作要点(附汽车测试技术网络大会)
    3月18日,工业和信息化部装备工业一司发布2022年汽车标准化工作要点,含五大方面,15项内容。全文如下:2022年汽车标准化工作要点2022年汽车标准化工作坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,按照《国家标准化发展纲要》《新能源汽车产业发展规划(2021—2035年)》等文件要求,紧贴汽车技术发展趋势和行业实际需求,践行使命担当,奋力开创汽车标准化工作新局面,为汽车产业高质量发展提供坚实支撑。一、持续完善标准顶层设计,加强各方统筹协调1.健全完善汽车技术标准体系。进一步优化汽车行业“十四五”技术标准体系,持续完善新能源汽车、智能网联汽车等重点领域标准体系建设指南,研究制定智能网联汽车测试装备标准体系,加快构建汽车芯片标准体系。2.统筹推进汽车标准化工作。高度重视汽车标准的交叉融合问题,推动建立跨行业跨领域工作协同机制,进一步强化行业协同、上下联动,大力推动电动汽车充电、汽车芯片、智能网联汽车等重点领域标准的统筹协调,不断提升标准工作开放性和透明度。3.强化标准全生命周期管理。加强标准技术来源和行业需求研究,鼓励行业机构、业界企业、社会公众等提出标准需要和意见建议;持续加大标准宣贯的广度和深度,通过深度解读标准内容和要求支撑做好贯彻实施工作;开展重点标准实施效果阶段性评估,立足我国政府管理及产业发展趋势持续提升标准质量水平。二、加快新兴领域标准研制,助力产业转型升级4.新能源汽车领域。启动电动汽车动力蓄电池安全相关标准修订工作,进一步提升动力蓄电池热失控报警和安全防护水平;加快推进电动汽车远程服务与管理系列标准研究,修订燃料电池电动汽车碰撞后安全要求标准,进一步强化电动汽车安全保障。开展混合动力电动汽车最大功率测试方法标准预研,推进纯电动汽车和混合动力电动汽车动力性能试验方法、驱动电机系统技术要求及试验方法等标准制修订,持续完善电动汽车整车及关键部件标准体系。开展动力蓄电池耐久性标准预研,推进动力蓄电池电性能、热管理系统、排气试验方法及动力蓄电池回收利用通用要求、管理规范等标准研究,促进动力蓄电池性能提升和绿色发展。全面推进燃料电池电动汽车能耗及续驶里程、低温起动性能、动力性能试验方法等整车标准以及燃料电池发动机性能试验方法、车载氢系统技术条件等关键系统部件标准研究,支撑燃料电池电动汽车关键技术研发应用及示范运行。加快构建完善电动汽车充换电标准体系,推进纯电动汽车车载换电系统、换电通用平台、换电电池包等标准制定;开展电动汽车大功率充电技术升级方案研究和验证,加快推进电动汽车传导充电连接装置等系列标准修订发布。5.智能网联汽车领域。开展汽车软件在线升级管理试点,组织信息安全管理系统等标准试行验证,完成软件升级、整车信息安全和自动驾驶数据记录系统等强制性国家标准的审查与报批。推动智能网联汽车自动驾驶功能要求、设计运行条件及车载定位系统等L3及以上通用要求类标准草案编制,完成封闭场地、实际道路及模拟仿真等试验方法类标准的制定发布,面向L2级组合驾驶辅助系统开展标准验证试验,有力支撑智能网联汽车企业及产品准入管理工作。加快推进信息安全工程、应急响应、数据通用要求、车载诊断接口、数字证书及密码应用等安全保障类重点标准制定,进一步强化智能网联汽车信息安全、网络安全保障体系建设。优化完善车辆网联功能技术标准子体系,推进基于LTE-V2X的车载信息交互系统、基于网联功能的汽车安全预警场景应用以及相应交互接口规范等标准的研究和立项,协同推动智慧城市网联基础设施相关标准制定,支撑智能网联汽车与智慧城市基础设施、智能交通系统、大数据平台等的互通互联。分阶段完成智能网联汽车操作系统系列标准制定,开展符合我国交通特征的测试设备等标准研制工作。6.汽车电子领域。完成无线通信终端、毫米波雷达、主/被动红外等关键系统部件标准审查和报批,加快推进免提通话和语音交互标准制定,启动车载事故紧急呼叫系统、车载卫星定位系统、抬头显示系统、激光雷达等标准研制立项,满足不断增长的车载电子系统标准需求。推进整车及零部件电磁兼容基础通用标准修订立项,启动整车天线系统射频性能评价、整车辐射发射限值、人体电磁曝露、车辆雷电效应和整车天线系统通信性能等标准预研。完成车辆预期功能安全、车辆功能安全审核及评估方法、电动汽车用驱动电机系统功能安全等标准制定,进一步完善功能安全与预期功能安全标准体系。7.汽车芯片领域。开展汽车企业芯片需求及汽车芯片产业技术能力调研,联合集成电路、半导体器件等关联行业研究发布汽车芯片标准体系。推进MCU控制芯片、感知芯片、通信芯片、存储芯片、安全芯片、计算芯片和新能源汽车专用芯片等标准研究和立项。启动汽车芯片功能安全、信息安全、环境可靠性、电磁兼容性等通用规范标准预研。三、强化绿色技术标准引领,支撑双碳目标实现8.能源消耗量领域。完成轻型、重型商用车第四阶段燃料消耗量限值标准征求意见,加快推进乘用车第六阶段燃料消耗量、电动汽车能量消耗量限值标准制定。开展高效电机等乘用车循环外技术装置评价方法标准研究,启动乘用车道路行驶能源消耗量监测规范标准预研。完成轻型汽柴油车、可外接充电式混合动力电动汽车和纯电动汽车能源消耗量标识标准审查和报批。9.碳排放领域。开展道路车辆温室气体管理通用要求、术语定义、碳中和实施指南等基础通用标准研究和立项。推进车辆生产企业及产品碳排放及核算办法相关标准研究和立项。启动汽车产品碳足迹标识、电动汽车行驶条件温室气体碳减排评估方法标准预研。四、完善整车基础相关标准,夯实质量提升基础10.汽车安全领域。推动燃气汽车燃气系统安装规范、间接视野装置性能和安装等标准发布,加快灯光系列标准整合以及机动车乘员用安全带及固定点、机动车儿童乘员用约束系统等标准修订。推进乘用车制动系统、前后端防护装置、顶部抗压强度、行人碰撞保护、侧面碰撞乘员保护、后碰撞燃油系统安全要求、防盗装置等标准制修订,进一步强化乘用车安全要求。做好商用车驾驶室乘员保护标准宣贯实施,推动客车座椅及其车辆固定件强度标准发布,加快商用车驾驶室外部凸出物标准、专用校车安全、专用校车学生座椅及其车辆固定件强度等标准制修订,持续推进危险物品运输车辆、爆炸品和剧毒化学品车辆等危化品运输车辆标准整合,开展轻型汽车/商用车辆电子稳定性控制系统(ESC)标准实施评估及强制性实施的可行性分析,不断提高商用车安全水平。进一步完善车辆事故与质量评价标准体系,启动汽车故障模式和事故分类等标准预研。11.传统整车领域。围绕自卸半挂车栏板高度、45英尺集装箱列车长度等内容进行调研,适时启动GB 1589《汽车、挂车及汽车列车外廓尺寸、 轴荷及质量限值》标准修订工作。配合GB7258《机动车运行安全技术条件》标准修订,启动空气悬架车辆评价、提升桥车辆技术要求等支撑性标准的研制。加快推进汽车列车性能要求和试验方法标准修订,开展主挂自动连接、连接装置强度、货物隔离装置及系固点等标准预研。开展3.5t以下轻型挂车标准体系研究,根据行业需求开展相关标准制修订。推进车辆操控、主动降噪、结构耐久、车内外提示音等方面标准预研。12.零部件领域。推进空气悬架、推力杆、高度控制阀、自动变速器、电子辅助转向系统(EPS)、多种类型传感器、执行器和控制器等关键零部件标准研究与制修订。开展新型塑料及复合材料的车辆零部件质量标准研究制定。加快压缩天然气(CNG)汽车35MPa压力关键部件等标准升级。五、全面深化国际交流合作,提高对外开放水平13.加强全球技术法规制定协调。全面跟踪联合国世界车辆协调论坛(WP.29)动态及趋势,切实履行《1998年协定书》缔约国义务及自动驾驶与网联车辆工作组、电动汽车安全工作小组副主席等职责,牵头先进驾驶辅助系统部件、自动驾驶功能要求、自动驾驶测评方法、数据记录系统、电动汽车安全、氢燃料电池车辆安全、车载电池耐久性等重点法规项目规划与研制工作,适时提出中国提案。推动1-2项中国标准进入全球技术法规候选纲要,持续提升国际法规协调工作的参与度与贡献度。14.深度参与国际技术标准制定。切实履行国际标准化组织道路车辆委员会(ISO/TC22)自动驾驶测试场景、车载雷达特别工作组召集人以及国际电工委员会电动车辆电能传输系统委员会(IEC/TC69)等相关国际标准项目负责人职责,加快推进自动驾驶测试场景、车载毫米波雷达探测性能评价、动力蓄电池系统功能安全、汽车电子/电气部件传导骚扰试验方法等国际标准研究,重点推动乘用车外部保护、负压救护车、安全玻璃、燃料电池汽车低温冷启动及最高速度等国际标准立项并新建1-2个国际标准工作组,持续提升中国标准国际化影响力。15.务实推进中外标准交流合作。充分利用多双边合作机制与平台,巩固并扩大在新能源汽车、智能网联汽车等领域的国际标准和法规协调工作成果,共同提出国际标准法规提案,联合开展相关标准法规制定活动,推动形成国际标准化共识。贯彻落实“一带一路”倡议,与重点沿线国家开展汽车标准化交流、培训等活动,促进国内外标准化机构间的对话合作,推动中国标准“走出去”。汇集行业多方资源力量,不断扩充国际协调专家队伍,实现国际协调资源共享和专家有序管理。第四届“汽车检测技术”网络大会我国是世界汽车产销第一大国,据中汽协预测,2021年中国汽车总销量为2610万辆,同比增长3.1%;与之相对应的汽车召回量也有所增长,据国家市场监督管理总局统计,2021年国内乘用车企召回缺陷汽车851.91万辆。面对严峻的市场环境,主机厂和零部件厂高度重视整车品质的提升。针对整车和组件的测试及质量监控,已经贯穿汽车产品开发的各个环节。基于此,仪器信息网联合中国汽车工程学会汽车材料分会,将于4月13-14日组织举办第四届“汽车检测技术”网络大会,为汽车产业链用户搭建一个即时、高效的交流和学习的平台,推动我国汽车测试行业健康发展,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造。免费报名:https://www.instrument.com.cn/webinar/meetings/automobile2022/扫码免费报名参会会议赞助:15718850776(微信同号)刘老师会议日程报告时间报告题目报告人4月13日上午 零部件失效分析09:00-09:30机械传动零部件失效诊断技术研究及其制造设计的改进应用潘安霞中车戚墅堰机车车辆工艺研究所有限公司09:30-10:00更新中欧波同10:00-10:30高强度零部件延迟开裂问题探讨唐刚比亚迪汽车工业有限公司10:30-11:00电子探针在汽车材料分析中的应用岛津11:00-11:30检验分析报告中的图片表达问题探讨刘柯军汽车工程学会材料分会理化及失效专业委员会4月13日下午 零部件测试技术14:00-14:30汽车橡胶材料测试(拟)苍飞飞国家橡胶轮胎质量监督检验中心14:30-15:00汽车零部件清洁度测试技术谢宇中汽研汽车检验中心(天津)有限公司15:00-15:30赞助席位15:30-16:00汽车几何尺寸测量(拟)邵双运北京交通大学理学院16:00-16:30赞助席位16:30-17:00更新中冯继军东风商用车技术中心工艺研究所17:00-17:30车内空气污染检测技术胡玢北京市劳动保护科学研究所 4月14日上午 新能源汽车测试技术(上)09:00-9:30动力电池全生命周期测评技术研究谢先宇上海机动车检测认证技术研究中心有限公司9:30-10:00动力电池安全性测试技术马天翼中国汽车技术研究中心有限公司10:00-10:30更新中基恩士10:30-11:00驱动电机测试技术与研究(拟)吴诗宇重庆车辆检测研究院有限公司11:00-11:30赞助席位11:30-12:00电动汽车车载充电机(OBC)与充电桩电源新技术王正仕浙江大学4月14日下午 新能源汽车测试技术(下)14:00-14:30数字射线成像(DR)及工业CT检测技术在新能源汽车关键零部件上的应用郑小康中车戚墅堰机车车辆工艺研究所有限公司14:00-16:30更新中
  • 新能源汽车相关检测仪器将出现新的需求
    p   近日,工信部装备工业司发布《2019年新能源汽车标准化工作要点》(以下简称:要点)。要点突出抓好重点急需标准的研究与制修订工作,主要内容涉及3个部分:优化标准体系,推动标准创新发展 研究重点领域,满足产业发展需求 强化国际参与,提升国际影响力。要点在5个重点领域的标准化工作做出详细描述,涉及安全、能耗、电磁兼容、充电、电池回收等几十项标准的制定和实施。要点中特别强调,将采取多项工作和措施,提升这些标准的国际影响力,支撑国内标准和国际标准法规的协调推进。 /p p   同时,仪器信息网编辑也注意到,5月20日,中国石油消费总量控制和政策研究项目在京发布《中国传统燃油车退出时间表研究》报告 综合中国汽车业发展及排放目标,对燃油车的退出时间进行了分析,提出中国有望在2050年以前实现传统燃油车的全面退出。其中,一级城市私家车将在2030年实现全面新能源化,而全国范围内的全面退出将在2040年。 /p p   综合可见,中国新能源汽车市场的发展速度有望进一步加快;随着这些标准的制定和颁布实施,相关的检测市场和检测仪器市场有望呈爆发性增长。 /p p br/ /p p   strong  附录: /strong 《2019年新能源汽车标准化工作要点》 /p p   为深入贯彻落实党中央、国务院关于建设制造强国的战略部署,切实把握产业融合发展趋势,持续优化新能源汽车标准体系,突出抓好重点急需标准的研究与制修订工作,工业和信息化部装备工业司组织全国汽标委编制了2019年新能源汽车标准化工作要点。主要内容如下: /p p   一、优化标准体系,推动标准创新发展 /p p   1.持续优化新能源汽车标准体系。建立新能源汽车强制性和推荐性国家标准相协调的体系框架,加快燃料电池电动汽车、动力电池回收利用等标准子体系建设,以《新能源汽车产业发展规划(2021-2035年)》的编制为契机,深入研究新能源汽车与能源、交通、通信等融合发展趋势,不断优化完善新能源汽车标准体系。 /p p   2.及时更新电动汽车标准化路线图。根据产业发展现状和实际需求,结合在研标准项目进展情况,适时修订《中国电动汽车标准化工作路线图》,保持时效性、科学性和准确性,持续发挥路线图对标准体系的基础支撑作用。 /p p   二、研究重点领域,满足产业发展需求 /p p   1.电动汽车安全领域:完成电动汽车碰撞后安全、充电连接安全和动力电池管理系统功能安全等标准的征求意见 完成燃料电池电动汽车安全标准的技术审查。开展《电动汽车安全要求》《电动汽车用动力蓄电池安全要求》《电动客车安全要求》三项强制性国家标准的宣贯实施。 /p p   2.电动汽车能耗领域:结合中国工况及乘用车第五阶段燃料消耗量标准的研究成果,完成电动汽车能量消耗量和续驶里程、混合动力汽车能量消耗量试验方法以及插电式混合动力乘用车技术条件等标准的征求意见,开展增程式电动汽车能量消耗量试验方法标准的预研工作。 /p p   3.燃料电池电动汽车领域:完成燃料电池电动汽车定型试验规程标准的技术审查,加强低温起动性能、能量消耗量及续驶里程试验方法等标准的试验验证,加快车载氢系统、加氢口、加氢枪、加氢通信协议等标准的制修订,开展燃料电池电动汽车碰撞后安全标准的预研工作。 /p p   4.充电设施及加氢系统领域:完成传导式车载充电机、充电耦合系统电磁兼容等标准的技术审查,启动无线充电系统及互操作性、车辆传导放电要求等标准的制定。基于对大功率传导充电技术的研究,推进充电连接装置通用要求、电动客车接触式充电系统等标准的制修订工作。 /p p   5.动力电池回收利用领域:完成动力电池的材料回收要求、包装运输规范、拆卸要求、梯次利用要求等标准的报批工作,完成汽车用废旧动力单体电池拆解技术规范的技术审查,加快推进放电规范和梯次利用产品标识等标准的制定,开展回收拆解指导手册和可梯次利用设计指南等标准的预研和立项工作。 /p p   三、强化国际参与,提升国际影响力 /p p   1.深入参与全球技术法规制定。履行联合国世界车辆协调论坛(WP29)框架下的电动汽车安全(EVS)、电动汽车与环境(EVE)和燃料电池电动汽车(HFCV)等法规制定工作组副主席职责,继续深入参与电动汽车安全第二阶段、混合动力汽车功率测试方法等全球技术法规的研究与验证工作,组织并承办好第六次燃料电池电动汽车工作组会议。 /p p   2.积极参与国际标准化工作。系统参与国际标准化组织(ISO)和国际电工委员会(IEC)框架下电动汽车国际标准的制定和协调工作,积极组织召开国际标准注册专家会议,组织研提国际标准提案,不断加大我国在电动汽车传导充电、无线充电机以及电动摩托车等相关国际标准的参与力度。 /p p   3.持续强化国际交流与合作。利用已经建立的中欧、中德、中法、中日等双边合作机制以及APEC、“一带一路”等多边交流平台,继续加强在电动汽车安全、能耗、关键部件及充电基础设施等重点领域的交流与合作,共同开展相关技术研究和测试验证工作,支撑国内标准和国际标准法规的协调推进。 /p p br/ /p
  • 哥本哈根喧嚣暂平静 中国汽车业遭遇暗算
    喧嚣的哥本哈根终于平静下来,但带给中国汽车市场的却不是什么“好消息”。   正处于高速成长期的中国汽车工业不仅要面临未来更加严格的排放标准,还要面对各国高高筑起的二氧化碳减排法案出口壁垒。   一家自主品牌的技术研发人员刘克很担心:“未来几年,汽车业肯定是被重点关注的对象。”   2009年8月11日,国家环保部办公厅下发了关于征求国家环境保护标准《环境标志产品技术要求轻型汽车(征求意见稿)》(以下简称《意见稿》)意见的函。这份《意见稿》中最值得关注的是首次列出了首个乘用车二氧化碳排放标准。   《意见稿》根据整车质量和类别、变速箱类别划分了16档共32个不同的二氧化碳排放量限值。   《意见稿》规定整备质量在1430公斤和1540(含)公斤之间的车辆,手动挡车型的每公里二氧化碳排放量必须控制在219克之内,自动挡车型每公里二氧化碳排放量必须控制在233克之内。   尽管负责制定该标准的环保部科技标准司的工作人员一再强调,这只是一项优选标准,不会对汽车生产企业准入及销售环节造成影响,但在各方利益平衡下的方案却凸显了当前国内汽车行业二氧化碳排放标准的“苍白”。   据欧盟议会通过的标准乘用车二氧化碳排放标准,从目前的140克/公里,到2012年要达120克/公里,2020年要达到95克/公里,并以此为标准设置不同的汽车碳税。   以2009年汽车市场为例,中国以超过40%的增长速度傲视全球,但中国的千人汽车保有量仍只有30辆,远远低于千人保有量600辆的美国。欧美日传统汽车强国已进入稳定增长期,再加之消费观念成熟,一些能有效降低二氧化碳排放的技术更容易被他们所接受。   欧盟通过的二氧化碳排放法案,与其说是在减排方面做了表率,倒不如说是给当前的中国汽车工业戴上了“紧箍”。   到2012年,欧盟将对碳超标的新车,按超标比例递增的原则实行惩罚措施。超过目标3克以内每1克罚5欧元,超2克罚20欧元,超3克罚45欧元,要是超标4克将罚140欧元 而从2015年开始,每超标1克,都将被罚95欧元。   “这样的标准,不要说中国车企,就连欧洲自己,实施都很困难。”刘克所在的企业正准备进入欧洲市场,但由于碳排放筑就的技术壁垒,让他们只能在短时期内放弃这个想法。   解决方案并不是没有。福特的一项研究表明,到2010年,同车型的混合动力车、插电式混合动力车和纯电动车与汽油发动机相比,可以分别减少26%、31%和33%的二氧化碳排放。   但迄今为止,国内对新能源车的补贴细化方案并未出台 而在企业层面,新能源车的技术储备尚无法满足阶段性的碳排放标准。已经在传统动力领域受制于人的中国汽车工业,在“碳时代”来临之际,将再次面临更加严峻的挑战。   小资料   欧盟:从2012 年开始将对CO2排放量超过130克/公里的M1类新车进行惩罚。   日本:3年期的政策,对低排放车型实施全免、减免75%和减免50%不等的优惠。   美国:到2016年将把小轿车和卡车的排放量减少30%,新车的平均燃油使用效率要从目前11km/升提高至15.44km/升。
  • 全国首家新能源汽车动力质检中心12月将建成
    襄阳市质监局11月7日透露,全国第一家新能源汽车动力系统总成综合质检中心12月将在襄阳建成。   襄阳市作为国家新能源汽车示范推广城市和国家火炬计划汽车动力与零部件产业基地,聚集了以东风天翼、宇清、骆驼等知名汽车品牌为代表的近30家企业,产业集群效应明显,在电动汽车技术领域取得了一批科技成果和20项专利。但一直缺少电动汽车技术领域检测机构,企业只能将产品送到北京、上海等地进行检测。   今年4月,国家动力电池质检中心正式破土施工,建设动力电池检测实验室、驱动电机及控制器检测实验室、动力系统综合检测实验室等5大实验室,涉及电子、电磁、精密计量等专业领域,涵盖动力电池和新能源汽车动力系统的各项技术参数的全项检测。   该中心建成后,襄阳新能源汽车领域大部分企业可直接在本地完成产品检验。
  • 可用于检测大气中有机污染物的混合材料
    p   混合材料的发展是材料科学的一个新兴领域。研究人员解释说,对这些材料的兴趣源于“将无机成分的稳定性与有机成分的多功能性相结合的成功,将它们混合起来,使两者的性质相结合甚至改善。”她指出。“更重要的是,混合材料可以以凝胶,薄膜,纤维,颗粒或粉末的形式加工。有机和无机组分的组合在生产混合材料方面几乎没有限制,其在医药,微电子,传感器,光学系统,汽车工业和装饰性表面涂料方面具有大量的应用。 /p p   Paula Moriones采用允许合成混合材料的方法(称为溶胶 - 凝胶),这产生具有在环境温度下可控属性的多孔材料,与其他工艺相比节约了成本。这些混合材料的合成导致干凝胶的生成——一种处于脱水状态的凝胶,其内部没有任何液体。 /p p   研究人员证实,凝胶形成时间和所得材料的性质受合成这些材料的条件和有机物的比例的影响。尽管材料总是以纳米尺寸呈现,但是它可以具有更小或不那么小的孔,她指出:“这些材料的应用中,孔径是至关重要的,因为它们可以用来控释药物。 /p p   包括留在里斯本大学(葡萄牙)的Paula Moriones的研究也得出了其他结果。“某些合成材料是高疏水性和排斥水的,这种性质使它们能够用作制药工业中的元素,用于选择性地捕获其表面上的其他材料或保留它们,并在玻璃工业中用作保护涂层。”研究员总结到。 /p
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • Nanoscribe客户成就 |3D打印微流控混合器研发
    研究背景微流控技术广泛应用于不同领域,例如分析化学、微生物分析和即时医疗应用的芯片实验室设备(lab-on-chip)等,来帮助控制微小流体。集成化是微流控设备的关键所在,而小型化的微流体系统不能实现液体的湍流混合,扩散式混合作为主要的混合流程则需要借助很长的微通道来实现。这会占用设备的面积,或者实施耗时的微纳加工技术来制造复杂的混合元件。Nanoscribe微纳加工技术助力微流控混合器研发近日,来自不来梅大学微型传感器、致动器和系统(IMSAS)研究所的科学家们发明了一种全新的微流道混合方式,即通过堆叠彼此交替的液流来减少扩散长度,并提出了微流控混合的新概念:多级互换混合器。科学家们使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中。该微型混合器可以处理高达100微升/分钟的高流速样品,适用于药物和纳米颗粒制造,快速化学反应、生物学测量和分析药物等各种不同应用。上图:在预制的二维微流道中3D打印制作壁厚约为2 µm的螺旋状结构三级微流控混合器。图片来自于Martin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen通过使用Nanoscribe的 Photonic Professional系列打印系统制作的微流控元件完全嵌入进预制的二维微流道系统中,换句话说,科学家们运用3D微纳加工技术将自由形式的3D微流体混合器直接做成微流体芯片。每个微纳混合器都能在30秒内制作完成,从而确保了在一小时内完成加工整个晶圆。这要归功于3D微纳加工技术,可以实现混合器的快速制作,即从电脑模型设计(CAD)到打印样品的一步式操作流程。当双光子聚合原理应用到传统光刻技术互换式混合器是通过Nanoscribe的双光子聚合技术(2PP)结合光刻技术来实现制作的。第一步,使用SU-8光刻胶在硅晶圆上利用光刻技术制作二维微通道系统;第二步,运用双光子聚合技术将3D混合器元件集成到开放式为通道中;打印结束后在显影阶段将残留的未聚合材料冲洗掉,除去通道中所有抗蚀剂残留物;最后,通过将聚二甲基硅氧烷(PDMS)片压在微通道的顶部来密封微流体装置。这种制造方法将3D微纳结构集成到了预制的晶圆级二维微流体通道中,突出了传统光刻和双光子聚合技术的完美兼容性和卓越性能。研究人员能够利用系统的高设计自由度和超高精度的特点,将复杂形状的3D微流体混合器定位到二维微流体通道中。使用Nanoscribe微纳加工技术打印的三阶微流控混合器电镜图。图片来自于MMartin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备
  • 重庆市建设世界级智能网联新能源汽车产业集群发展规划 (2022—2030年)
    重庆市人民政府关于印发重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)的通知渝府发〔2022〕38号各区县(自治县)人民政府,市政府各部门,有关单位:现将《重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)》印发给你们,请认真贯彻执行。重庆市人民政府  2022年8月19日  (此件公开发布)重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)为推动我市汽车产业新能源化、智能网联化、高端化、绿色化发展,加快建成世界级智能网联新能源汽车产业集群,根据《新能源汽车产业发展规划(2021—2035年)》(国办发〔2020〕39号)、《重庆市国民经济和社会发展第十四个五年规划和二○三五年远景目标纲要》,特制定本规划。规划期为2022—2030年。一、发展趋势和现状当前,新一代科技革命驱动汽车从交通工具向智能终端转变,促使汽车产业与互联网、信息通信、能源等行业深度融合,并加速向新能源化和智能网联化发展,为全球经济发展注入新动能。从发展趋势来看,纯电动、增程式混合动力、插电式混合动力、燃料电池是未来汽车动力系统的主要技术路线。汽车软件和人工智能的技术和价值将越来越成为汽车产品的核心竞争力。以单车智能实现高度自动驾驶、完全自动驾驶的技术路线,将逐步向“车、路、网、云、图”一体协同发展。加快发展新能源汽车,是推动汽车智能网联化的重要基础,智能网联将赋能新能源汽车比传统汽车更具竞争力和吸引力。从国内形势来看,全球智能网联新能源汽车产业发展相关的新能源、大数据、电子信息等资源正加速向国内集聚,我国智能网联新能源汽车已经进入快速发展新阶段,市场渗透率持续快速攀升,预计到2025年,将达到40%以上;到2030年,智能网联新能源汽车将成为市场主流。从我市形势来看,重庆是全国主要汽车生产基地之一,传统汽车产业已形成“1+10+1000”优势集群,正加快向新能源化、智能网联化转型升级,智能网联新能源汽车产销规模增长迅速,“大小三电”(电控系统、驱动电机、动力电池,电制动、电转向、电空调)等核心配套已有较好基础,具有西部地区最为完整的智能网联新能源汽车产业链。我市拥有复杂的山地地形交通场景,智能网联新能源汽车的测试、应用在全国处于领先水平,正加快推进国家级车联网先导区、国家电动汽车换电模式示范城市、国家氢燃料电池汽车示范城市三大应用场景建设。在机械、电子、材料、工业互联网等领域具备较好产业基础和丰富资源。拥有适合于人才宜居宜业的产业、住房、医疗、教育等支持政策。总体看,我市智能网联新能源汽车产业已具备加快发展的基础和条件,但仍面临档次不高、规模不大、配套不强等问题。二、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届历次全会精神,全面落实习近平总书记对重庆提出的营造良好政治生态,坚持“两点”定位、“两地”“两高”目标,发挥“三个作用”和推动成渝地区双城经济圈建设等重要指示要求,认真贯彻落实市第六次党代会精神,服务国家战略,加快汽车整车和零部件向新能源化、智能网联化、高端化、绿色化转型发展,聚焦智能网联新能源汽车整车及零部件、智能网联创新应用、汽车软件和人工智能、基础设施及服务等核心领域,以科技创新为动力,以关键技术为支撑,以龙头企业为带动,以融合发展为重点,以特色园区为载体,形成特色鲜明、相对完整、服务全国、辐射全球的产业链供应链体系,打造高水平汽车产业研发生产制造基地,努力建成世界级智能网联新能源汽车产业集群。(二)基本原则。政府引导,市场主导。充分发挥市场在资源配置中的决定性作用,坚持企业市场主体地位,更好发挥政府宏观调控引导作用,完善产业政策,规范产业发展秩序,推动产业协调发展。创新驱动,重点突破。深入实施创新驱动发展战略,完善以企业为主体、市场为导向、产学研用协同的技术创新体系,推进技术、管理、体制和模式等创新,全面提升创新能力,实现重点领域和关键核心技术的突破发展。跨界融合,协同推进。推动汽车与互联网、大数据、云计算、智能交通、人工智能等领域跨界融合,推进研发、制造和服务一体化发展,注重整车与零部件协同发展,突出全产业链协同创新,创新业态模式,构建新型产业生态。统筹布局,集群发展。进一步优化汽车产业布局,构建市级层面统筹推进、各区县(自治县,以下简称区县)特色发展的产业格局,着力建设一批特色产业园区,加快推进产业集聚向集群发展转型提升。开放包容,合作共赢。持续扩大高水平对外开放,坚持国内国际市场“双循环”,加强“走出去”和“引进来”结合,促进国际国内合作,深度融入全球产业链和价值链体系。绿色转型,低碳发展。落实国家碳达峰、碳中和战略部署,探索汽车产业碳达峰、碳中和目标和路径,推动汽车产业绿色低碳发展。(三)发展愿景。到2025年,初步形成世界级智能网联新能源汽车产业集群雏形,智能网联新能源汽车产销量占全国比重达到10%以上。打造一批全国领先的智能网联新能源汽车整车企业和品牌、引育一批关键零部件企业、创建一批创新平台、突破一批关键技术、搭建一批应用场景,基本形成智能网联新能源汽车产业新生态,智能网联新能源汽车产业链、供应链服务全国,并具有一定国际辐射能力。到2030年,建成世界级智能网联新能源汽车产业集群,智能网联新能源汽车产销量在全国的占比进一步提升,产业规模达到全球一流水平。打造1—2家全球一流的智能网联新能源汽车企业和品牌;聚集一批先进的零部件企业,形成全球一流的智能网联新能源汽车产业链生态;引育一批具有突出创新实力的研发机构,打造全球一流的智能网联新能源汽车技术创新体系;营造“近者悦,远者来”的宜居宜业环境,建成全球一流的智能网联新能源汽车创新人才集聚高地;建设全球一流的基础设施,打造全球一流的智能网联新能源汽车体验之都,智能网联新能源汽车产业链、供应链、创新链具备较强的国际辐射能力。三、重点任务(一)提升整车新能源和智能网联化水平。1.持续扩大生产规模。根据国家政策导向,继续加强优质项目招商引资,聚集更多市场竞争力较强的智能网联新能源汽车整车企业。支持我市整车企业围绕智能网联新能源汽车领域,加快推动新项目建成投产、新产品投放上量、新品牌发展壮大,进一步加大市场拓展力度,持续扩大产销规模。2.全面加快向新能源动力转型。加快推动以化石燃料为动力的传统汽车制造向新能源汽车转型升级,落实国家汽车新能源化的相关技术路线。乘用车重点发展纯电动、增程式混合动力和插电式混合动力汽车,商用车重点发展纯电动、增程式混合动力和燃料电池汽车。3.提升汽车智能网联水平。推动整车企业坚持软硬件协同攻关,提升自动驾驶技术研发应用水平,加快实现组合驾驶辅助、有条件自动驾驶向高度自动驾驶、完全自动驾驶升级。鼓励企业积极探索发展飞行汽车。4.提升企业研发能力。支持整车企业实施软件定义汽车研发策略,与信息通讯技术(ICT)、互联网等行业公司跨界协同,大力提升集成控制水平和正向开发能力。鼓励整车企业研发新能源化、智能网联化关键技术,开发先进适用的智能网联新能源汽车产品,研发投入达到全国领先水平。5.强化标准引领作用。支持整车企业建立健全企业自主的研发、制造、质量、服务等技术和管理标准,打造企业标准竞争优势。支持整车企业积极参与国家和地方智能网联新能源汽车相关标准制定,争取将企业标准转化为行业标准。6.建立新型“整车—零部件”合作关系。发挥整车企业龙头带动作用,进一步开放配套市场,吸引零部件企业集聚。推动零部件企业根据整车企业需求,提升同步开发能力,积极开展超前研发。支持整车企业深化与核心供应商在研发、技术、产品、资本等层面的协同,建立优势互补、风险共担、收益共享的利益共同体,打造全新智能网联新能源汽车平台和品牌。专栏1 加快突破智能网联新能源汽车整车关键技术新能源方向。以纯电动汽车、增程式混合动力汽车、插电式混合动力汽车、燃料电池汽车为技术创新方向,加快研发新一代模块化高性能整车平台,攻关纯电动汽车底盘一体化设计、多能源动力系统集成技术,突破整车智能能量管理控制、轻量化、低摩阻等共性节能技术,提升电池管理、充电连接、结构设计等安全技术水平,提高新能源汽车整车综合性能。智能网联方向。研发复杂环境融合感知、智能网联决策与控制、信息物理系统架构设计等关键技术,突破车载智能计算平台、高精度地图与定位、车辆与车外其他设备间的无线通信、线控执行系统等核心技术。(二)完善汽车零部件供应链体系。1.壮大新能源汽车零部件产业。聚焦“大小三电”关键零部件及基础原材料,加快重大项目引育、产业化落地,做大新能源汽车零部件产业规模,构建中高端新能源汽车配套产业链。2.培育智能网联汽车零部件产业。引育车规级芯片、传感器、雷达等核心零部件企业,提升感知、决策、交互、执行等关键总成配套能力,形成可满足高度自动驾驶需求的零部件供应链。支持ICT零部件企业积极融入汽车行业,发展“汽车+信息通讯”融通的新型零部件企业。3.推动传统零部件企业转型升级。加快实施传统零部件体系再造工程,支持传统汽车零部件企业发挥自身优势,转型生产智能网联新能源汽车零部件。支持重点零部件企业申报国家级和市级“专精特新”企业、“小巨人”企业、单项冠军企业等称号,打造全球领先的汽车零部件企业。专栏2加快突破智能网联新能源汽车零部件关键技术新能源汽车零部件。突破高集成度电池、电池包封装、电池管理控制等技术,加快下一代电芯技术研发及产业化。探索新一代车用电机驱动系统解决方案,研发高效高密度、多合一电驱电机等技术及产品,突破高压平台架构关键技术。加强燃料电池系统短板攻关,加快高可靠燃料电池电堆及其关键材料研发。智能网联汽车零部件。突破高算力车载芯片、低成本高性能激光雷达、4D成像毫米波雷达、车载摄像头等复杂环境感知产品技术,加强车机系统、车载大屏、抬头显示等技术研究,推进车载网关、车载智能网联终端(T—BOX)等车用通信产品研发。传统零部件转型升级。加快高效增程式混合动力、插电式混合动力发动机技术以及高效率集成电驱动系统研发,突破高效节能热管理、电制动、电转向等技术,开展高性能镁铝合金、高强度钢、碳纤维复材等关键材料产业化应用,突破热成形、激光拼焊、边缘软化等材料加工工艺技术。(三)加快推进自动驾驶及车联网创新应用。1.建设技术研发创新体系。加快基础平台和技术创新平台建设,突破自动驾驶及车联网关键核心技术。推动车联网与智慧城市融合发展,打造高度自动驾驶功能的技术支撑体系,推进智能化与网联化深度融合,实现车路云一体化协同发展。组织实施重大科技成果转化示范项目,推动自动驾驶及车联网科技成果加速产业化。2.推动自动驾驶及车联网规模化应用。推动自动驾驶和车联网应用场景统一规划、建设、运营。持续推进重庆(两江新区)国家级车联网先导区建设,打造车路云协同创新样板区。统筹推进全市自动驾驶政策先行区建设,率先开展无人驾驶汽车商业化运营,支持在渝开展首创性、全球化、特色鲜明的运营示范项目,实现自动驾驶汽车和车联网场景大规模应用,打造全球领先的应用示范区。3.推进自动驾驶及车联网数据应用。支持建设和扩容各类综合、专业车路云网图数据中心,促进各类数据平台互联互通,推动道路基础设施、通信基站、车联网平台和应用服务等信息交互与数据共享。推进智慧出行、智能调度、先进感知监测等系统综合应用,探索数据商业化应用模式,提升智慧交通建设管理水平。引育一批高精度地图、数据分析、出行服务、金融保险等领域数据服务企业,持续提升数据应用和增值服务能力。专栏3 加快突破智能网联关键技术突破新型电子电气架构、多车型适配的标准化硬件平台、智能网联汽车操作系统、智能驾驶算法、智能座舱等车端关键技术。突破高可靠、低时延的多源信息融合边缘计算技术,长时域、高可信的多目标识别与跟踪等路端关键技术,以及混合交通情况下的多层级群智决策与控制等车路协同关键技术。强化边云协同与动态交通大数据赋能研究,保障基础平台充分发挥跨域融合、分层解耦、分级共享的支撑作用。重点突破蜂窝车联网(C—V2X)单播组播、业务连续性、规模化运维等关键技术。推进高精度地图和北斗高精度定位、超宽带室内定位及相关新型定位定姿技术深度融合。(四)加快培育汽车软件与人工智能产业。1.积极培育关键软件。鼓励整车企业承担汽车软件领域的国家科技重大专项和重点研发计划,加强智能座舱、视觉算法、操作系统、自动驾驶等技术研发,培育一批具有自主知识产权的软件产品和解决方案。鼓励整车企业打造应用生态,推进定位导航、远程车控等车载应用集聚发展。大力发展基于空中下载技术(OTA)的增值服务。发展工业软件,提升汽车智能制造水平。2.推动人工智能在汽车领域应用。鼓励加强算法研究,建设公共算法服务平台,构建从研发到应用的算法生态。推进智能网联汽车云控基础平台建设,实现人、车、路、环境的数据融合,提升车辆对动态交通环境的数据感知能力。通过交通基础设施之间的数据互联与协同,实现从局部到整体的行车策略优化。3.加快基础硬件产业化突破。以整车需求为牵引,聚焦车规级芯片,重点支持设计、制造、封装和材料项目建设。加快高算力车规级芯片的研发、应用,推动高性能车载计算平台发展。积极引育优势企业,做大做强智能传感器产业。大力发展T—BOX项目,推进T—BOX装配应用。专栏4 加快突破汽车软件与人工智能关键技术汽车软件。推进智能网联汽车操作系统、整车分布式硬件抽象与虚拟化、高可信运行环境、编译工具、车载容器、中间件等底层核心技术攻关,加强自动驾驶、智能座舱、智能车控、智能云控平台、OTA等关键软件产品研发,突破汽车研发设计软件、生产控制软件、业务管理软件等工业软件技术。汽车人工智能。加快智能座舱芯片、自动驾驶芯片、毫米波雷达、微波雷达、激光传感器、导航传感器等基础硬件研发,推进机器学习、知识图谱、类脑智能计算、模式识别、自然语言处理、生物特征识别等关键技术攻关,实现复杂环境下的智能视觉感知、多传感器融合、决策规划及控制等技术突破。(五)加快打造体验之都。1.丰富试车场测试体验。提升现有汽车试验场在智能网联、人工智能等领域的测试水平,支持新建汽车试验场按照自动驾驶封闭测试场地的有关标准开展建设,为自动驾驶和车联网的开发、测试、验证提供全面服务。2.提升道路智能化体验。基于重庆复杂山地、高温气候的条件特征,在主要城市道路和高速公路部署感知、联网、交互、计算设备,加快现有道路网联化改造,实现蜂窝车联网基本覆盖,形成城市级的智能化道路环境,打造全国最具特色、最为丰富的车路协同体验场景。3.打造汽车文化赛事体验。整合汽车消费、试乘试驾汽车服务等主要功能,融合旅游地产、商务办公、文化体验、餐饮住宿、购物休闲等配套服务,建设汽车主题公园。支持举办国际汽车论坛、国际汽车赛事等,提升产业发展软实力和国际影响力。4.提升充换电加氢服务体验。推动充换电加氢综合能源站与新零售业态融合共建,创新商业模式,重新定义用户体验及充换电加氢生态,打造多元化服务业态共生的充换电加氢服务生态圈。5.优化新兴技术应用体验。推动5G、人工智能、大数据等新兴技术在智能网联新能源汽车领域广泛应用,加快智能网联新能源汽车产业与能源、交通、金融等行业深度融合,提升汽车改装、二手车交易等传统汽车后服务市场的数字化水平,发展汽车健康管理等新业态,构建模式创新的体验场景。专栏5 加快突破各类场景体验支撑技术充分依托现有数字经济产业园、协同创新区等创新平台,坚持软硬件协同攻关,突破新型电子电气架构、多源传感信息融合感知、功能安全和信息安全、车用无线通信网络、高精度时空基准服务等共性交叉技术,持续加强自主学习控制、边缘计算、大数据分析、类脑计算、机器视觉、语音识别等核心技术研究与攻关。(六)加快基础设施及服务体系建设。1.加强规划布局。加快制定完善充换电站、加氢站、储能设施、泊车场所等基础设施建设的相关规划和实施意见,加强政府引导,鼓励市场主体积极参与,协同推进基础设施建设。2.推进“三网”融合。通过在能源互联、交通电气化及数字化等方面统筹规划、协同建设和高效运营,推动能源网、交通网、信息网平台融合、数据互通,形成广泛互联、开放共享的新能源汽车基础设施体系。3.加快充换电和加氢基础设施建设。加快推动高速公路、乡村场镇、停车场站、居民小区等区域充电设施全覆盖。鼓励建设综合能源站,布局新一代800伏以上大功率高压充电站,持续提升成渝“电走廊”充电能力,形成“适度超前、布局合理、智能高效”的充电服务网络。推进国家电动汽车换电模式示范城市建设,加速换电站布局,推动换电标准化、共享化,形成与换电汽车推广应用相匹配、适度超前、区县全覆盖的换电网络。创建国家氢燃料电池汽车示范城市,支持重点区县在园区、高速公路服务区、港口等示范区域布局建设加氢站,扩容成渝“氢走廊”,提升氢燃料电池汽车示范运营的支撑能力。专栏6 加快突破基础设施及服务体系关键技术加快有序充电、反向补能、化工余热与废气资源高效制氢等关键技术突破,提升优化大功率充电,储氢、运氢与加氢,一体化大功率氢燃料电池系统技术。开展新一代废旧动力电池自动智能化拆解技术研发。建设以新能源为主体的新型智慧电力系统,发展车网互动等储能技术。加快智慧车库系统改造建设,推广代客泊车技术应用。(七)构建全面高效的智能网联新能源汽车安全体系。1.强化安全监管。全面落实企业负责、政府监管、行业自律、社会监督相结合的安全生产机制,强化生产者责任延伸制度。加强对充换电和加氢设施建设和运营单位的安全监管。支持汽车整车和汽车软件企业提升系统安全防护能力,完善数据安全管理制度。鼓励行业组织加强技术交流,指导企业不断提升安全水平。2.保障产业链供应链稳定。聚焦车规级芯片、应用开发软件等“卡脖子”环节,加快提升智能网联新能源汽车配套能力。支持整车企业加强与核心供应商的利益协同,加快零部件配套体系集聚发展,适当扩大核心零部件的应急仓储规模,建立极端情况下供应链备份预案,确保维持正常生产能力。四、重点工程(一)实施科技创新工程。1.打造重要创新载体。引导重点企业联合科研院所、高等院校,完善和组建技术创新联盟,推进产学研协同创新。积极培育智能网联新能源汽车领域的国家级产业创新中心、技术创新中心、制造业创新中心等研发机构,加快建设国家车联网信息安全技术创新中心、国家氢能动力工程研究中心、西部科学城智能网联汽车创新中心、5G融合创新中心等重点项目。鼓励企业积极争取国家级技术创新项目,大力引进国内外知名研发机构。2.加强关键人才引育。支持企业与高校、科研院所加强合作,加快引进和培养软件架构师、车规级芯片设计师、卓越工程师等紧缺高级人才,以及汽车软件、轻量化和电池原材料等基础研发人才。鼓励高校围绕产业发展需求,推进汽车与计算机、软件、新材料等跨学科建设,加快建设重庆高等工程师学院。孵化科技型初创企业、创新团队,培育领军型、成长型、初创型企业家。3.提升创新转化能力。推动企业与科研院所、高等院校形成更为紧密的合作创新关系,建立以企业为主体、市场为导向、产学研相结合的研发创新和专利技术转移转化运作机制。完善市、区两级企业创新公共服务平台体系,建立企业高价值专利培育中心,发展企业与科技创新机构的融合发展平台,提升专项服务能力,为企业技术创新和研发机构创新成果转化提供精准高效服务。(二)实施智能制造工程。1.加快提升智能制造基础能力。加快在产品研发、生产制造等关键环节实施数字化改造,建设应用计算机辅助设计、产品生命周期管理等信息系统,加大数字化装备应用力度,提升企业关键环节数字化水平。支持整车企业搭建智能制造平台,助推企业间产能共享,提升全市汽车整车产能利用率。2.加强新一代信息技术融合应用。推动企业信息系统与生产设备互联互通,开展系统间集成应用。鼓励龙头企业建设“一链一网一平台”,建设工业互联网平台,构建数据协同网络,建设供应链协同等应用服务平台,带动上下游企业协同发展。支持“5G+”工业互联网、创新示范智能工厂等创新应用示范项目,鼓励企业创建全球灯塔工厂,打造创新示范标杆。(三)实施质量提升工程。1.提升质量控制能力。推进企业加强技术研发、质量监测、成本控制、营销服务等能力建设。引导企业实施质量提升计划,以全面提高服务水平为突破口,以降低汽车故障率和稳定达标排放为目标,充分利用互联网、大数据等先进技术,建设汽车质量评估体系,持续提升产品品质和服务能力。2.加强品牌培育和产权保护。引导企业实施品牌战略,强化品牌内涵设计和推广工作,提高品牌竞争力和品牌价值。加强专利、商标等知识产权保护,严厉查处违法侵权行为,严厉打击假冒伪劣产品。充分发挥宣传媒体的舆论正向引导作用,助力企业提升品牌影响力。3.增强质量服务能力。发挥中国汽车工程研究院、招商局检测车辆技术研究院在测试评价、研发验证等领域的技术资源优势,完善计量标准、检验检测等质量基础设施建设,推进质量基础设施“一站式”服务。(四)实施绿色低碳工程。1.打造标杆示范企业。支持重点企业积极参与国家汽车产品生态设计评价标准制定。在汽车产品设计、生产、使用、回收等环节,落实绿色发展理念,打造行业绿色发展的标杆示范企业。2.加快建设零碳工厂。支持企业推进能源结构调整,建设工厂储能、利用的内循环体系,加快低碳工艺应用,严格污染物排放管控,提升污水、废气、废料的处理和回收利用水平,建设零碳工厂。3.开展产品再制造。支持企业围绕车辆制造的全生命周期,扩大可再生、轻量化材料使用规模。采用大数据、智能化手段,开展零部件再制造示范试点。加强旧件回收、制造及检测管控,建立循环再生体系。4.发展动力电池回收利用产业。鼓励开展废旧动力电池安全梯次利用。支持电池产业链企业与科研机构联合攻关,开展新一代废旧动力电池回收利用技术和自动智能化拆解技术研发及产业化示范。(五)实施融合发展工程。1.推动与物流运输业加快融合。支持整车企业充分整合产业链上下游物流需求,进一步优化提升运输效率,与物流企业建立互利共赢的长期战略合作关系,推动双方设施设备衔接、业务流程协同,标准规范、信息资源等关键环节深度融合。2.推动国内国际市场加快融合。推动智能网联新能源汽车企业加强国内国际交流合作。持续引进优质整车、零部件、研发、测试、应用、运营、基础设施建设等领域企业。支持企业利用市外优质人才资源设立研发中心,加强出口目标国相关标准、认证、检验监管等制度研究,加大国际市场开拓力度,推动产品出口逐步向品牌及技术输出等价值链高端环节转移。3.推动与智慧出行加快融合。深化智慧城市基础设施与智能网联汽车协同发展,构建智慧出行服务平台。建立完善全程电子化、智能化的出行服务体系,探索推进自动驾驶客运出行服务,建设具有全球竞争力的智慧出行服务生态。4.推动与金融保险业加快融合。支持整车企业抢抓市场机遇,围绕智能网联新能源汽车的购车、用车、修车、卖车等环节,发展汽车金融、汽车租赁、汽车保险等业务。加快扩大市场参与主体范围,推动绿色信贷创新,鼓励企业持有电池、储能设施、充电桩等资产,探索绿色资产融资新模式。五、保障措施(一)强化统筹协调。建立由市政府分管副市长任召集人的全市智能网联新能源汽车产业发展协调机制,研究解决有关问题,定期向市政府专题汇报。市推动汽车产业转型发展工作专班负责统筹相关单位,推动落实具体工作。(二)加强人才保障。充分发挥企业主体作用,强化行业主管部门服务保障,用好用实“鸿雁计划”“重庆英才计划”等人才政策,研究完善智能网联新能源汽车产业人才专项政策。支持职业院校与企业结对发展,推动职业教育与智能网联新能源汽车产业深度融合。鼓励和引导高校进行学科调整和新工科建设,培养智能网联新能源汽车行业急需人才。(三)强化金融支持。加强政银企合作,构建多元化投融资体系。建立重点企业和重大项目推介机制,做大直接融资规模。发挥政府产业投资基金引导作用,设立汽车行业专项基金。鼓励金融机构增加智能网联新能源汽车行业的中长期贷款投放额度。支持企业通过发行企业债券等方式拓宽融资渠道。大力推动优质企业上市融资。(四)加大政策扶持。市经济信息委、市发展改革委、市科技局、市交通局、市商务委、市大数据发展局等部门要从部门专项资金中安排预算,支持世界级智能网联新能源汽车产业集群建设。市经济信息委加强政策统筹,对智能网联新能源汽车产业重大项目按照“一企一策”“一项目一政策”给予支持。鼓励重点区县制定相应的专项支持政策。(五)打造宣传平台。持续办好重庆国际车展、自动驾驶挑战赛等品牌活动,策划举办全球性、全国性的智能网联新能源汽车专业会议。围绕我市智能网联新能源汽车产业发展的重大政策、成果等,积极开展新闻发布、企业走访等宣传活动,支持企业开展产品发布、试乘试驾等推广活动,积极营造我市智能网联新能源汽车产业健康有序发展的良好舆论氛围。(六)加强招商引资。市经济信息委加强招商统筹,市招商投资局做好招商服务协调工作,市级有关部门要将智能网联新能源汽车产业的招商引资工作作为重要任务,按职能分工加快推动落实。重点区县要根据产业基础和资源禀赋情况,建立专业招商团队,全力推进智能网联新能源汽车产业的招商引资工作。市、区两级加强联动,提高智能网联新能源汽车产业的招商引资效率和水平。(七)创建特色园区。鼓励和支持有条件的区县和开发区积极创建优势突出、特色鲜明的智能网联新能源汽车特色产业园区,打造形成“1”个整车、“N”个配套的“1+N”园区体系,强化示范带动,优化空间布局,形成区域联动、优势互补、协调发展的良好格局。
  • C8+SCX混合床固相萃取柱使用方法解析
    众所周知固相萃取柱广泛应用在药物代谢及动力学、药物分析、生物检测、毒品和兴奋剂检测、食品安全分析、环境分析等众多领域,这导致固相萃取型号各异、种类繁多,但是以硅胶基质的C8+SCX混合床固相萃取柱是所有固相萃取产品中应用最为广泛的,就像液相色谱中C18一样,C8+SCX混合床固相萃取柱占有统治地位.   Chrom-Matrix 公司生产的硅胶基质的C8+SCX混合床固相萃取柱及SCX固相萃取柱拥有其他固相萃取柱(包括聚合物固相萃取柱例如MCX)不可比的许多优点: (1)Chrom-Matrix 公司研发出 C8+SCX混合床固相萃取柱及SCX固相萃取柱有通用的应用方法, 针对具体的应用, 客户不必要在方法研发上花费大量的时间。(2) 对碱性化合物萃取级分背景清除效果最好。(3) C8+SCX混合床固相萃取柱特别适用在“全盲”条件下对血样、尿样、组织等生物介质萃取后全部小分子化合物(碱性、中性、酸性及两性化合物)"无一遗漏"的捕获, 以用作进一步的GC-MS或LC-MS/MS等分析。(4) 硅胶基质的C8+SCX混合床固相萃取柱和硅胶基质的C8+SAX混合床固相萃取柱搭配使用, 构建了“全盲”条件下预临床药物代谢研究, 临床药物代谢研究, 兴奋剂检测、刑侦、国际禁毒组织及海关毒品检测、赛马、食品安全分析、未知样品的成分分析、中草药有效成分分析等非常完全、清晰的图象。(5) 彻底消除LC/MS或LC-MS/MS分析中的介质效应(这一应用为Chrom-Matrix公司PCT专利保护)。   针对不同的应用,硅胶基质的C8+SCX混合床固相萃取柱有三套完整的使用方法:   第一套:“全盲”条件下的全扫描   应用范围:兴奋剂检测、刑侦、国际禁毒组织及海关毒品检测、赛马、食品安全分析、药物代谢研究、未知样品的成分分析、中草药有效成分分析等。   第一步: 1克/6毫升C8+SCX固相萃取柱先用6毫升甲醇再用6毫升0.1M HCl活化   第二步:将血浆、尿样和0.1M HCl等体积混合上样(组织样品或食品等须先以有机溶剂萃取)   第三步:用6毫升0.1M HCl洗涤至干   第四步:用6毫升甲醇洗涤,收集酸性和中性化合物成分, 吹干后供测试。   第五步:用6毫升甲醇-氨水(95:5)洗涤,收集碱性和两性化合物成分,吹干后供分析测试。   第二套: LC-MS或LC-MS/MS或GC-MS定量分析(Chrom-Matrix公司PCT专利保护)   应用范围:大多数碱性和两性化合物。   第一步: 300毫克/3毫升或100毫克/1毫升Chrom-Matrix C8+SCX固相萃取柱或100毫克96-well固相萃取板。先用3毫升甲醇再用3毫升10mM醋酸铵(pH4-6)活化(注:100毫克体积仅用1毫升甲醇,1毫升醋酸铵)   第二步:将血浆、尿样和10mM醋酸铵(pH4-6)等体积混合上样(组织样品或食品等须先用有机溶剂萃取,萃取液与10mM醋酸铵混合)   第三步:用3mL10mM醋酸铵(pH 4-6)、3mL 0.1M醋酸、3mL甲醇先后洗脱杂质(注:100毫克体积用1mL醋酸铵,1mL醋酸,1mL甲醇)   第四步:用3mL甲醇-氨水(95:5)洗涤(注:100毫克体积用1mL甲醇-氨水(95:5)洗涤,吹干后供分析测试。   第三套:LC-MS或LC-MS/MS或GC-MS定量分析(Chrom-Matrix公司PCT专利保护)   应用范围:极性两性化合物、极性或弱碱性化合物,在pH4时, 如果化合物回收率低, 应该使用第三套方法:   第一步: 300毫克/3毫升或100毫克/1毫升Chrom-Matrix C8+SCX固相萃取柱或100毫克96-well固相萃取板。先用3毫升甲醇再用0.1M醋酸(pH 3) 或0.1M盐酸活化(注:100毫克体积仅用1毫升甲醇,1毫升酸)。   第二步:将血浆、尿样和0.1M醋酸或0.1M盐酸等体积混合上样(组织样品或食品等须先用有机溶剂萃取,萃取液与0.1M醋酸或0.1M盐酸混合)   第三步:用3mL0.1M醋酸或0.1M盐酸,3mL甲醇先后洗脱杂质(注:100毫克体积用1mL醋酸或盐酸,1mL甲醇)。   第四步:用3mL甲醇-氨水(95:5)洗涤(注:100毫克体积用1mL甲醇-氨水(95:5)洗涤,吹干后供分析测试。
  • 重庆市建成电动汽车整车及关键零部件测试平台
    近日,依托中国汽车工程研究院建设的电动汽车整车及关键零部件测试平台正式建成并投入使用。   该平台具备电动汽车电池、电机测试能力,针对全市新能源汽车产业发展需求,探索并形成了《插电式混合动力汽车和增程式电动汽车能量消耗率与污染物排放试验方法》、《电动汽车车内噪声振动试验方法》、《电动车辆的电磁场发射强度(150kHz-30MHz)试验方法》、《电动汽车制动能量回收与制动安全试验方法》等4项试验方法,保障了长安标致雪铁龙汽车有限公司、重庆长安新能源汽车有限公司、重庆科学技术研究院等科研院所和生产企业的新产品开发,提升了电动汽车整车和零部件开发水平,为全市电动汽车的研发及产业化提供了有力支撑。 文章转载自:重庆市科委
  • 泰克公司:改善汽车生态学、安全性和舒适性,四大测试分析是关键
    改善汽车生态学、安全性和舒适性,四大测试分析是关键   中国汽车产量已超过美国跃居全球第一,未来5-10年还将保持不断增长的态势。中国汽车工业协会预计,2010年汽车产量增速在10%左右,有望达到1500万辆。中国目前已涌现不少知名的企业,包括汽车制造商、模块化系统供应商和元器件供应商、电子设备商等,特别是一汽、二汽、比亚迪、奇瑞、吉利、航盛、长安等本土厂商在自主开发和创新上取得的长足进步带动了中国汽车电子产业的快速发展-。   然而,面对日益复杂的汽车设计需求,特别是要推出中高端和商用的新能源汽车之时,自主创新和开发之路并非坦途。泰克科技的专家曾在不久前举办的一场汽车电子技术论坛上以拥有“100多个ECU、软件代码已经达到700万行”的丰田Lexus460汽车为例,强调了电子部件在汽车特别是高端汽车中所占据的比例越来越高。“如图1,汽车电子关乎目前汽车设计的三大市场挑战,即如何满足生态(环境保护)、更舒适方便和增强安全性的要求,而围绕解决这些挑战的系统和子系统正是目前汽车电子设计的热点和难点。”他指出。“而局域网、动力系统、电子控制单元和数字RFID的应用在改善汽车生态学、安全性和舒适性方面扮演了重要的角色。 图1:汽车设计的三大市场挑战引发更多设计热点。   四大测试分析,一个也不能少   泰克的专家在演讲中强调,无论对于需要改善燃油效率或采用新能源的动力传动系统,还是有助于提升驾车和娱乐舒适性的车身及影音娱乐系统,抑或制动、转向等安全驾驶系统,局域网(LAN)的使用量正不断提高,以实现传动控制、车身控制或各种线控操作(X-by-wire control) 由于需要提高汽车的能耗效率,因此汽车的引擎控制单元和电源系统变得更加复杂,而混合动力和清洁燃料柴油机技术要求高级电子控制系统,以保证安全及环保 利用电子控制单元(ECU)控制基本汽车系统和非基本汽车系统正成为新的行业标准,这些ECU基于数字技术(MCU、FPGA等器件),要求更深入地了解复杂的定时和信号完整性问题 汽车安全系统采用胎压监测(TPMS)和RFID系统,需要开发和测量实时RF系统,要能够高效监测汽车操作和状态。   (一)局域网测试分析   泰克的专家在演讲中阐述到,汽车设计中正集成各种串行数据技术和应用来实现LAN,如CAN、LIN、MOST和FlexRay。串行通信可改善电路板设计,因为串行接口集成到处理器、ASIC、FPGA等器件中,使得连接数量减少、元件总成本下降。最终汽车设计通常包含多个串行标准、混合信号、混合数据速率、单端信号和差分信号,这就需要一种集大成且易用的高品质测试分析解决方案,以完成信号之间定时、信号完整性测试分析和调试。   对于汽车中常用的CAN、LIN这类低速串行总线的调试,泰克的DPO/MSO4000系列示波器提供了简单、易用、完整、高品质的触发、捕获和解码解决方案。如图2,该示波器系列提供了搜索和标记功能,可在事件表显示解码后的带有时间标记的CAN消息帧,这一功能是其他竞争性产品所不具备的。 图2:泰克的DPO/MSO4000系列示波器CAN解决方案。   对于方兴未艾的高速差分串行总线FlexRay,DPO/MSO4000系列也提供调试解决方案。泰克公司的FlexRay物理层分析软件DPO4AUTOMAX还全面支持物理层分析,提供完整的一套工具评估物理层性能,包括眼图分析、同步测量、定时测量、时间间隔误差 (TIE),并可通过USB或以太网与外部计算机一起运行   (二)动力系统测试分析   动力系统无疑是汽车的心脏,而与动力系统相关的电子电路的高质量稳定运行将很大程度上决定整车的性能表现,其中既包括通过ECU实现的电子控制部分,还包括汽车电源电路,特别是新能源汽车。   汽车ECU根据放在汽车各处的传感器传回的数据实时计算信息,确定最佳的引擎控制参数值。由于ECU内置到汽车引擎室中,噪声环境更加恶劣,同时由于对更高频率的分析需求也在不断上升,特别是对微秒级、毫秒级以及甚至纳秒级瞬态信号或尖峰的抗扰能力,对传统示波器和探头分析纳秒级的高频噪声提出了挑战。泰克专家建议降低测量系统的电气负荷,包括使用低输入电容的差分探头。泰克专家还针对部分工程师希望利用信号源进行动力系统电子控制单元现场仿真测试提供了基于信号源的测试方法,例如利用AFG3000系列函数信号发生器仿真各种汽车传感器信号, 如压力、温度、速度、旋转和角度位置,对汽车应用中的引擎控制单元进行功能测试和优化。 图3:利用AFG302xB和AFG3011测量和优化引擎控制单元。   汽车电源电路的测试与其他电子系统上的电源测试类似,需要进行包括开关损耗、传导损耗、平均功率损耗以及安全工作区(SOA)在内的主要性能测试。目前,业界已经具有完整、方便易用的电源测试解决方案,例如泰克公司就提供了业内最完整的集成电源分析解决方案DPO4PWR和DPO3PWR电源分析应用模块,可实现开关损耗测量、安全工作区、谐波、波纹、调制、转换速率等全面的测试,并能实现自动测量功能,可极大地简化汽车电源应用的功率分析工作。   针对汽车电子测试中完全浮地测试的特点,泰克的专家建议工程师在测试中采用相对价格较高但同时性能更高的差分探头来确保消除共模部分的影响。“有时候我们进行单板测试很顺利,但是在系统中运行时就出现问题,很多时候都可能是测试时未能考虑到共模部分的影响造成。”他指出。他进一步与工程师分享了泰克在探头上的领先技术:“例如,TDP探头就特别适合进行浮动电压测量,其输入电容小于1pF,而且具有业内独有的探头可编程控制特性,适合于自动测试系统的实现。”   (三)数字器件分析   在汽车中的电子控制单元、信息娱乐系统和安全子系统中,越来越多的使用MCU、FPGA等数字IC,形成了各种嵌入式系统。泰克的专家分析指出,与需要用逻辑分析仪进行多条通道、复杂触发、条件存储、反汇编、源代码级软件调试的CPU不同,对于MCU和FPGA的调试,一台性能优良、功能配置齐全的混合信号示波器(MSO)就足够了。   以下是嵌入式系统中两种常见的定时测量:事件时间相隔很远——要求在长时间内以高定时分辨率(高采样率)采集多条通道(长记录长度) 数字状态跳变——要求在短时间内捕获信号,但定时分辨率要非常高。实时MSO,如采用MagniVu应用模块的MSO4000,就特别适合监测随时间变化情况。另外,MSO4000的16个数字通道可以分别设置电平,可以在一个设计中使用不同的逻辑类型,并可在多条通道中触发建立时间/保持时间违规。   对于FPGA的调试挑战,泰克专家列举了以下几点:1.设计规格和复杂程度日益提高、接入内部信号受限 2、上市时间压力迫使产品开发和调试周期日益缩短 3、在FPGA中增加调试电路会影响设计性能和占用宝贵的芯片空间等等。 图4:经济高效的FPGA实时逻辑调试解决方案。   泰克公司提供了经济高效的FPGA实时逻辑调试解决方案来应对这些挑战:MSO4000混合信号示波器或TLA系列逻辑分析仪 (v4.3)+ FS2 FPGAView控制软件,配套FPGA厂商的复用器和JTAG电缆,可4步轻松完成:创建接口模块à为调试环境配置FPGAViewà将FPGA引脚映射到MSO4000或TLA系列逻辑分析仪à进行测量。   另外,泰克公司还提供了DPOxAudio音频分析模块,可对车载娱乐系统音频总线I2S进行译码分析。   (四) 数字RF测试   一些新的安全和监测系统技术将RFID广泛地应用于在汽车电子系统中,如胎压监测(TPMS)、防盗器、无键输入系统、倒车雷达元件和系统。RFID的应用日益增多,部分在过去高级轿车中应用的技术将成为未来大部分汽车的标配,例如今年轮胎气压监测系统强制性标准立项的呼声日益高涨,监测泰克专家也指出,在倒车雷达应用中,过去国内汽车厂多采用直接购买模块进行应用,而现在很多自己开始设计,将必然促进在更多汽车中的广泛应用。   如前文所述,近年来汽车电子系统越来越复杂化、更多具有较强EMI特性的开关电源进入汽车电子系统中,这些对RF的测试带来了挑战,使用传统的频谱分析工具来对这些瞬态信号进行测试。泰克专家对于汽车RF测试给出了一些建议供工程师参考:可采用泰克公司的双通道信号发生器AFG3022B进行,以生成4位RFID码型信号和同步触发信号,实现对134.2kHz的RFID接收机IC进行功能测试 利用任意波形和函数发生器来产生汽车内的复杂信号环境,例如对于倒车雷达脉冲式噪声系数测量,可采用简便易用的双通道AFG3252来生成两个同步脉冲信号,为RF放大器供电,在频谱分析仪上触发噪声系数测量。   小结   近年来,中国汽车电子设计领域日益活跃,与以前整车厂商主要直接使用国外成熟的模块产品相比,很多厂商加大了自主研发的力度,本土汽车电子设计企业也在积极寻求与整车企业合作。   然而市场调研公司的数据表明,目前在中国大陆活跃的汽车电子设计企业整体实力仍然偏弱,在市场排名中前十位仅有一家本土企业。作为后来者,本土汽车电子设计企业必须加强与领先技术提供商的合作,以加强产品开发能力。,目前泰克已与国际和国内领先汽车电子设计商建立了广泛的技术合作。作为领先的测试测量技术提供商,泰克的仪器仪表将帮助广大的工程师克服汽车电子的设计挑战,满足生态(环境保护)、更舒适方便和增强安全性的市场需求。
  • 新能源汽车重点专项2021申报指南:拟6个技术方向启动19个任务
    2月1日,科技部发布“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱gxs_njc@most.cn。附件:“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿).pdf关于“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。按照分步实施、重点突出原则,2021年度指南拟在能源动力、电驱系统、智能驾驶、车网融合、支撑技术、 整车平台6个技术方向,启动19个指南任务。1.能源动力1.1 全固态金属锂电池技术(基础研究)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电化学场以及失效破坏等实验表征技术及固态电池综合评价方法。1.2 高安全、全气候动力电池系统技术(共性关键技术)研究内容:研究动力电池低温环境充放电性能衰减的电化学机理,研究加热方式、加热策略对电池安全、电池寿命的影响机制,研发动力电池系统无损极速加热新结构、新方法及其加热安全控制技术;研究全气候环境条件下动力电池系统安全充放电方法和控制管理技术,极端低温和高温条件下的耐候性,研发全气候电池系统技术;研究动力电池可靠性与车载振动、环境温度、动态载荷等交变应力的耦合关系及其疲劳损伤规律,高挤压强度下的安全性防护方法,电池系统故障诊断、安全评估与预警方法;研究动力电池系统热失控爆炸当量估计方法、热失控扩展路径及特性、热失控延缓和阻断控制机制;研发基于以上关键技术的高安全、全气候的新结构动力电池及动力电池系统。1.3 车用固体氧化物燃料电池关键技术开发(基础研究)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能高可靠长方形电池结构设计及可控制备技术;优化连接体结构及流场设计,开发低成本连接体加工及涂层致密化技术;开发一致性长寿命电堆组装技术,形成电堆批量制造能力;研发不同燃料处理技术及关键部件;开发不同燃料场景应用的SOFC冷热电联供系统,研究与SOFC耦合的快速启动响应技术,提出效率优化与冷热电管控策略。1.4 高密度大容量气氢车载储供系统设计及关键部件研制(共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律, 获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。2.电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础研究)研究内容:研究基于铜合金和铜/纳米管等复合材料的高性能超级铜线及电机绕组制备技术,探索大电流 SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模块与组件协同优化技术,实现材料与器件优化。研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:高密度轮毂电机:研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技术(包括冷却结构、动密封等)。轮毂驱动系统集成:突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑。2.3 混合动力专用发动机及高效机电耦合技术(共性关 键技术)研究内容:研究结构优化、高压喷射、高压缩比、高效燃烧、电动气门、低摩擦和低噪声等混合动力发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究结构集成优化、动态协同控制、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性。搭载专用动力电池,通过整车高效优化控制实现整车级行业领先动力和能耗指标。3.智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础研究)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,研究高内聚、低耦合架构技术,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信技术,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余技术,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知-决策 -控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括结合系统开发“V”字流程的正向危害分析、风险辨识以及机器学习算法不确定性及可解释性研究,构建预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。4.车网融合4.1 智能汽车信息物理系统(CPS)技术(基础研究)研究内容:面向车路云网的智能汽车信息物理系统通信与系统动力学融合构型建模技术,研究异构可组合模型形式化表达和模块化开发技术,建立系统设计模型库;研究智能汽车和智能交通系统高效协同的体系架构框架构建技术,突破智能汽车信息物理系统架构设计和构型优化关键技术,建立系统需求、功能、逻辑和物理架构;研究智能汽车信息物理系统并发组件设计技术,研发可溯源连续传递数据库,建立系统云协作总体设计软件工具;研究实验系统评估和验证 技术,研发智能汽车信息物理系统在环半实物试验装置及测试案例集;研究智能汽车信息物理系统应用实现技术,研究建立智能汽车与智能交通系统协同的示范平台。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术 (共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车-路-云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车载定位、导航、授时一体化系统, 研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人-车-路-环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制, 研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术, 开发场景批量生成与高并发大规模云计算测试平台;车-云-场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人-车-路-环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。5.支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具, 实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技术,研究车端感知、线下检测、云端数据协同的在役动力电池系统安全性风险评估技术;开发智能无损检测装备及软件。 研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车-桩(站)-云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于新能源汽车运行应用大数据的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车-桩-云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。6.整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。6.2 智能电动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构, 研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统,研究多尘、颠簸等场景下大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究连续大长坡、大幅变载荷等工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的主辅一体式永磁电机驱动系统拓扑结构,研究多态湿滑大坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展露天矿山等典型场景下智能电驱动重载车辆的无人化协同作业示范应用。
  • 国家电动汽车试验示范区有望成国家检测试验中心
    记者从近日召开的国家电动汽车试验示范区成立12周年座谈会上获悉,我国唯一电动汽车试验基地――国家电动汽车试验示范区迎来了新一轮发展契机,有望建设成为国家电动汽车检测试验中心,目前已被列入广东省电动汽车发展行动计划。   国家电动汽车试验示范区于1998年6月在广东汕头市正式启动,至今已走过12年创业历程。经过12年的不懈努力,示范区不仅全面地出色地完成国家交赋的各项科研与建设任务,而且全面地经历了电动汽车从研究、开发到产业和运行、示范、试验、检测的过程,采集了大量的技术数据,积累了丰富的经验,为我国电动汽车产业决策提供真实有效的数据依据,为我国其他城市开展电动汽车运行示范提供有益的借鉴。试验示范区建成了3个电动汽车专有的检测实验室和1个数据中心,具备了部分电动汽车的检测试验能力,成为我国目前唯一建设电动汽车检测能力的基地。   据了解,试验示范区至今已获取专利技术9项,参与了国家数拾项标准制定,并作为主编单位编制《电动公共汽车通用技术条件》标准,为广东省内以及外省45家电动汽车、电池生产厂家研发的电动汽车与动力电池进行检测试验,为这些厂家加速研发进程、修正技术路线和改进产品,提升技术水平发挥了积极作用。   试验示范区已成为电动汽车研究、开发的前沿,国内外合作交流的窗口,人才培养的平台。12年来,试验示范区同美国电动汽车(亚洲)公司中国一汽合作,开展混合动力汽车的研发,同国内相关单位合作开展纯电动汽车的研发。上万人次各级领导、国内外专家、业界人士、国际友人莅临示范区视察、考察、开展调研、学术研究和交流活动,并已成为清华大学、北京交通大学、南航大学、上海交通大学、湖南大学、长沙交通大学、中山大学、华南理工大学等本科生、研究生实习和实践基地,被誉为“世界最优秀、功能齐全的示范区”,被称为“中国电动汽车的摇篮”。   据国家电动汽车试验示范区主任孙兆祺和“国家863”重大项目专家王璟琳认为,面对我国经济持续快速增长所面临能源和环境问题的双重压力,特别是能源问题已逐渐成为影响国家安全的重要因素的新动态,发展节能与新能源汽车是我国国民经济可持续发展的战略需要,也是对应世界汽车工业发展的激烈竞争,提高我国汽车工业核心竞争力,建设自主创新体系的迫切需求。   据介绍,推广使用电动汽车有利于调整车用能源结构,实现多元化,减少(轻)对石油的依赖,乃至最终不再依赖。从能源利用率上讲,电动汽车节能作用也是显而易见,从原油到车辆车轮驱动、电动汽车能量转换率比燃油车辆高约50%,节能意义重大。从使用环节上,电动汽车的环保特性不容置疑,对环境几乎不造成污染,尤其是纯电动汽车和燃料电池电动汽车。电动汽车的推广应用是节能,改善城市空气质量,保护生态环境的必然要求。对于用户而言,电动汽车以其无排放或低排放(混合动力汽车)低噪声、安全、舒适和使用的经济性的优点,将提高人们的生活质量,提高人们环保意识起到应有的作用。   “广东已经明确在国家电动汽车试验示范区的基础上,建设国家电动汽车检测试验中心。这是汕头,也是试验示范区新一轮发展的战略机遇。”他们如是说。   他们表示,试验示范区将按汕头市委、市政府决策和要求,努力推进四大方面的工作:一是积极配合汕头市委、市政府在汕实现电动汽车产业的目标,协助即将在汕启动建设电动汽车关键零部件产业基地的民营企业,推进这朝阳产业早日建成 二是尽快落实广东省政府批转《广东省电动汽车发展行动计划》的建设内容,把落户汕头建设的国家电动汽车试验示范区建设成为国家电动汽车检测试验中心 三是利用试验示范区具备的条件、能力和12年来从事的电动汽车运行、试验、示范积累的经验,积极推进汕头市电动汽车的示范推广,希望汕头电动汽车运行示范能够形成规模化 四是按照汕头管辖的南澳县的发展思路,以保护南澳生态环境的主旨,以构建南澳原生态型产业体系为命题,以电动汽车项目为载体,发展海岛低碳经济,促进海岛经济建设,,会同有关方面就项目建设和引资工作付之积极努力。
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • SK海力士,盯上了混合键合
    SK 海力士突破 HBM 堆叠层数限制,MR-MUF 和混合键合封装两手抓。近日,SK 海力士封装研发副社长李康旭(Kangwook Lee)于 9 月 3 日出席“2024 年异构集成全球峰会”,发表了名为“面向人工智能时代的 HBM 和先进封装技术”的演讲。HBM 是克服 “存储墙”(Memory Walls)的优化解决方案,通过 I/O 并行化能力,使 HBM 成为人工智能系统中用于训练和推断的最高规格动态随机存取存储器(DRAM)。根据应用产品不同,使用的 HBM 数量也不同。随着 HBM 世代发展,在训练和推理人工智能服务器中搭载 HBM 的平均数量也会增加,如近期训练服务器需要 8 个 HBM3E、推理需要 4 - 5 个,长远估算可能分别需要 12 个和 8 个 HBM4/HBM4E 存储器。李康旭表示,SK 海力士计划 2025 年推出 12 层 HBM4 产品,通过自家研发的封装技术,在 HBM 产品的能效和散热性能方面具有优秀的产品竞争力。有趣的是,SK 海力士到 HBM3E 仍是以动态随机存取存储器基础裸片(Base Die),采用 2.5D 系统级封装,到 HBM4 考虑将动态随机存取存储器基础裸片改成逻辑基础裸片(Logic Base Die),使性能和能效获得提升。此外,到了 HBM5 架构可能出现改变,SK 海力士目前正在评估包括 2.5D 和 3D 系统级封装(SiP)在内的各种方案。 SK海力士技术朝两个方向进行:封装MR-MUF和混合键合(Hybrid Bonding)MR-MUF技术由SK海力士多个团队共同开发,该技术能够同时对HBM产品中所有的垂直堆叠芯片进行加热和互联,比堆叠芯片后填充薄膜材料的TC-NCF技术更高效。此外,与TC-NCF技术相比,MR-MUF技术可将有效散热的热虚设凸块数量增加四倍。MR-MUF技术另一个重要特性是采用了一种名为环氧树脂模塑料(EMC, Epoxy Molding Compound)的保护材料,用于填充芯片间的空隙。EMC是一种热固性聚合物,具有卓越的机械性、电气绝缘性及耐热性,能够满足对高环境可靠性和芯片翘曲控制的需求。由于应用了MR-MUF技术,HBM2E的散热性能比上一代HBM2提高了36%。从开发HBM2E开始,MR-MUF技术及随后推出的先进MR-MUF技术的应用,使SK海力士能够生产出业界最高标准的HBM产品。时至2024年,SK海力士已成为首家量产HBM3E的公司,这是最新一代、拥有全球最高标准性能的HBM产品。在应用先进的MR-MUF技术后,与上一代8层HBM3相比,HBM3E在散热性能方面提高了10%,成为人工智能时代炙手可热的存储器产品。SK 海力士的高带宽存储器(HBM)产品采用 MR-MUF 封装技术,具有低压、低温键合和批量热处理的优势,在生产效率和可靠性方面优于热压膜非导电胶(TC-NCF)制程。此外,具有高热导特性的填充空隙材料(Gap-Fill 材料)和高密度金属凸块(在垂直堆叠 HBM 动态随机存取存储器时起连接电路作用的微小鼓包型材料)的形成,在散热方面比 TC-NCF 制程有 36% 的性能优势。 由于堆叠将面临高度限制,目前 SK 海力士不断寻找新方法,在有限高度下装入更多堆叠层数。李康旭指出,公司 8 层 HBM3/HBM3E 使用 MR-MUF 技术;12 层 HBM3/HBM3E 采用先进 MR-MUF 技术;明年下半年准备出货的 12 层 HBM4 同样采用先进 MR-MUF 技术;至于 16 层 HBM4/HBM4E 将同步采用先进 MR-MUF 和混合键合(Hybrid Bonding)两种技术,未来堆叠 20 层以上产品(如 HBM5)则将转向混合键合技术发展。混合键合是一种先进的集成电路封装技术,主要用于实现不同芯片之间的高密度、高性能互联。这种技术的关键特征是通过直接铜对铜的连接方式取代传统的凸点或焊球(bump)互连,从而能够在极小的空间内实现超精细间距的堆叠和封装,达到三维集成的目的。在混合键合工艺中,两个或多个芯片的金属层(通常是铜层)被精密对准并直接压合在一起,形成直接电学接触。为了保证良好的连接效果,需要在芯片表面进行特殊的处理,例如沉积一层薄且均匀的介电材料(如SiO2或SiCN),并在其上制备出微米甚至纳米级别的铜垫和通孔(TSV)。这些铜垫和通孔将芯片内部的电路与外部相连,使得数据传输速度更快、功耗更低,同时极大地提升了芯片的集成度。李康旭指出,SK 海力士正在研发 16 层产品的相关技术,最近确认对 16 层产品可应用先进 MR-MUF 技术的可能性。此外,该公司也强调,从 HBM4E 开始会更强调 “定制化 HBM”,以满足各种客户需求,如提升芯片效率。
  • 高效混合 一键搞定丨MTV3000多管涡旋混合仪新品上市
    在科研的道路上,每一步都很重要MTV3000多管涡旋混合仪您的前处理“加速器”让实验前处理变得简单快捷作为一款理想的可以进行大批量样品处理的混合设备,主要用于快速、均匀地批量混合各种液体,一次最多可处理66个样品(2mL EP管)。多种不同规格海绵架子以适配不同规格的容器。通量高、应用范围广、操作简单✔ 7寸彩色触摸屏控制,实时显示当前运行的速度、剩余时间等✔ 预约启动,循环设置,多段不同速度及时间运行,可根据应用需要设置不同的方法✔ 三种运行模式,满足不同性状样品✔ 通量高,最多可同时处理66个样品✔ 可选配100mL、50mL、15mL等多种规格样品架,以满足不同应用,样品架可定制应用领域食品农兽残、致病菌检测等样品提取、溶液快速混匀等食品理化检测溶液混匀、提取等生物实验室:蛋白质溶液混合、细胞培养实验中,用于混合培养基、细胞悬浮液等化学实验:用于混合试剂、催化剂等应用标准举例◆《中华人民共和国药典(2020年版)》2341农药残留量测定法 第五法 药材及饮片(植物类)中禁用农药多残留测定法◆GB23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱法-质谱联用法◆GB23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气质联用法◆GB23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法 ◆GB 31613.1-2021 食品安全国家标准 牛可食性组织中氨丙啉残留量测定 液相色谱-串联质谱法和高效液相色谱 ◆GB 31613.2-2021食品安全国家标准 猪、鸡可食性组织中泰万菌素和 3-乙酰泰乐菌素残留量的测定液相色谱-串联质谱法◆GB 31656.1-2021 食品安全国家标准 水产品中甲苯咪唑及代谢物残留量的测定 高效液相色谱法 ◆GB 31656.11-2021 食品安全国家标准 水产品中土霉素、四环素、金霉素和多西环素残留量的测定 ◆GB 5009.208-2016 食品安全国家标准 食品中生物胺的测定
  • Techwin邀您参加2023汽车测试及质量监控博览会(中国)
    汽车测试及质量监控博览会(中国)(Testing Expo China – Automotive)汽车测试及质量监控博览会(中国)(Testing Expo China – Automotive)是引领世界的国际博览会,展示汽车测试、开发和验证技术的各个方面,每年在上海举行,并在底特律和斯图加特举办年度姊妹展会。在中国——与其他地方一样——它是展示面向整车、零部件和系统开发的各种技术和服务的领先盛会,涵盖ADAS(高级驾驶辅助系统)和自动驾驶汽车测试、电动和混合动力总成测试、电池和续航里程测试、EMI(电磁干扰)和NVH(噪声、振动和舒适性)测试及分析,以及所有其他测试和验证技术。由于有超过300家参展商展示各自的最新产品和服务,参观者可以看到ADAS和自动驾驶汽车测试、NVH测量工具、测试台、模拟程序包、耐久性测试技术、碰撞测试、测功机、排放测量系统和动力性评估工具等领域的最新技术,以及试验场和测试设施等众多服务提供商。
  • 天津检验中心新能源汽车仿真平台开发成功,实现零突破!
    仿真分析是汽车研发过程中的重要手段,仿真分析工具是汽车研发强国的重要工业基础。多年来,汽车仿真分析平台,特别是新能源汽车仿真平台,主要由国外公司开发,关键核心技术受制于人。日前,中汽中心检测认证事业部天津检验中心相关技术团队历经数年技术攻关,开发出具有自主知识产权的新能源汽车仿真平台(VPAT2021,以下简称“平台”),实现了国内自主开发此类汽车仿真平台“零”的突破,打破了国外技术掣肘。平台以“人、车、路、云”四层架构为基础,进行机、电、热、液多场融合,控制域和物理域模型相互组合,实现了整车级、部件级的物理系统仿真。平台模型库涵盖整车和部件两个层级:整车级模型包括乘用车和商用车,覆盖传统车、电动车、混合动力汽车、燃料电池车20余种车辆构型;部件控制域超过18个子类,物理域超过30个子类。与国外同类平台不同的是,该平台底层模型完全开源,各部件库即插即用,可实现自由组合不同构型的车辆、配置和自定义各种循环行驶工况、批处理以及矩阵计算。平台仿真结果能够直接输出车辆动力性、驾驶性、经济性、参考成本,兼备仿真结果与实车测评数据库对比功能,快速定位车辆的技术优缺点,有效缩短车型的研发周期。在内测阶段,已完成了30辆车的模型入库,预计每年将新增20辆以上新能源车模型。平台计划于2021年6月投入市场。新能源汽车仿真平台的成功开发为行业提供了丰富的车辆测评数据和模型,解决了国内此类汽车开发工具链条缺失的“卡脖子”难题,同时为中国工业软件自主化发展提供了重要支撑,对于我国新能源汽车技术发展与进步具有重要意义。
  • 德国元素 | 新能源汽车行业车用半导体中碳硫氧氮的测定
    近年来有关第三代半导体的市场题材相当多,其中最令人瞩目者,当属碳化硅(SiC)功率器件在电动汽车的应用商机了。碳化硅器件在电动汽车的系统应用主要是逆变器、车载充电器(OBC)和DC-DC转换器等。相较传统的硅基模块性能,其可减少约50%电能转换损耗、降低20%的电源转换系统成本,并能提升电动汽车4%左右续航能力。目前电动汽车技术在世界各国净零碳排放政策强力带动下,已成为未来10年全球汽车产业的发展重点,许多大厂争相投入此领域布局。特斯拉,通用汽车,雷诺日产等公司都积极在碳化硅研发领域布局,建立对应的研发中心。碳化硅是一种无机碳化物,化学式为 SiC,是用石英砂、石油焦(或煤 焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温 冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。在 C、N、B 等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一 种,可以称为金钢砂或耐火砂。碳化硅是由科学及艾奇逊在 1891 年电熔金刚石实验时,在实验室 偶然发现的一种碳化物,刚开始被认为是金刚石的混合体,故取名 金刚砂,1893 年艾奇逊研究出来了工业冶炼碳化硅的方法,也就是 大家常说的艾奇逊炉,一直沿用至今,以碳质材料为炉芯体的电阻 炉,通电加热石英 SiO2 和碳的混合物生成碳化硅。碳化硅中碳硫氧氮的含量对于器本身的晶体结构,以及相关性能影响极大。这里使用了来自德国元素Elementar的inductar CS cube 红外碳硫仪以及inductar ONH cube 氧氮氢分析仪对于碳化硅样品中碳硫氧氮的含量进行测量。实验部分inductar CS cube 红外碳硫仪:碳化硅粉末中碳硫的测定inductar CS cube 红外碳硫仪:碳化硅负极材料中碳硫的测定inductar ONH cube 氧氮氢分析仪:纯碳化硅粉末中氧氮的分析inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制