热导率测试仪原理

仪器信息网热导率测试仪原理专题为您提供2024年最新热导率测试仪原理价格报价、厂家品牌的相关信息, 包括热导率测试仪原理参数、型号等,不管是国产,还是进口品牌的热导率测试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热导率测试仪原理相关的耗材配件、试剂标物,还有热导率测试仪原理相关的最新资讯、资料,以及热导率测试仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热导率测试仪原理相关的仪器

  • 稳态热导率测试仪 400-860-5168转3481
    稳态热导率测试仪 CTM 概 述:低温热导率测试仪采用小型低温制冷机作冷源,无需使用液氮/液氦,为测试系统提供73K-373K温度环境。基于稳态法,实现固体材料热导率(导热系数)测量。 系统特点 在一个以单台或多台制冷机为冷源的低温平台上,实现固体材料在低温中的热导率(导热系数)测量。在测试温度区间内无级连续控温,并进行连续测量,得到高密度的精确数据;系统自适应测量过程,适合新型材料物性研究;样品尺寸灵活,适用于不同尺寸样品的测量;全自动的测量过程,操作简单;低温平台与测量样品太分离设计,测试样品更换过程变得快捷、方便。利用专用样品安装工具安全、方便、快速的把样品到安装到样品托上。 测试原理 采用绝热稳态轴向热流法测量热导率。 温度控制采用制冷机直接冷却样品的方式,通过减震传热部件即减少制冷机的轻微震动可能带来的影响,又保证了样品能够快速冷却。通过独特的串极控制设计实现连续快速精准温度控制。温控范围:73K-373K(-200℃—100℃)连续控温;温度稳定性:±0.1K。技术参数物性测量:固体材料热导率(导热系数) 测量原理:稳态法温度范围:73K-373K(-200℃—100℃)测量范围:0.01W/mk—800 W/mk测量精度:≤5%测量重复性:≤5%样品尺寸:8×8×2mm (0.1-0.5W/mk) 6×5×5mm (0.5-5.0W/mk) 20×20×5mm (5.0-20W/mk) 40×4×1mm (≥20W/mk)测试材料:金属材料、陶瓷材料、高分子材料(泡沫绝热材料除外)低温技术:小型低温制冷机作冷源,无需消耗液氮/液氦应用领域:工程热物理、材料科学、固体物理及能源、环保等领域测试数据:304不锈钢热导数据测量对照(美国NIST)。最大相对差值小于5%;重复性小于5%。
    留言咨询
  • 产品介绍:DZDR-S热导率测试仪是南京大展仪器生产的,采用瞬态热源法,具备测量速度快,测试范围广泛等优势,可测液体、固体、粉末、胶体和膏体等,软件实时采集测试图谱,并进行计算导热系数,操作简单。测试范围:DZDR-S热导率测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了很大的方便,可以选配有粉末测试容器、液体杯。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;3.对样品实行无损检测,意味着样品可以重复使用;4.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;5.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;6.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍:DZDR-S热导率测试仪器是南京大展检测仪器生产一款瞬态热源法导热仪,具有测量速度快,适应不同材料的测量,软件和仪器双向控制,操作简单,应用范围广等优势。测试范围:DZDR-S热导率测试仪器是南京大展检测仪器生产一款瞬态热源法导热仪,具有测量速度快,适应不同材料的测量,软件和仪器双向控制,操作简单,应用范围广等优势。测试方法:DZDR-S导热仪采用的瞬态热源法是一种用于测试温度的方法,它可以准确地测量材料的热导率和热扩散系数。该方法通过在材料上施加瞬态热源并测量其温度响应来计算热传导性能。性能特点:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;3.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;4.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;5.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;6.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;7.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询

热导率测试仪原理相关的方案

热导率测试仪原理相关的论坛

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

热导率测试仪原理相关的耗材

  • 硬度测试仪配件
    硬度测试仪配件和欧洲进口的便携式硬度测试仪,使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点,硬度测试仪配件结构更紧凑、合理,操作简单。 硬度测试仪配件特点 专用于配套SHORE A,SHORE D型橡胶硬度计, 其测试原理更科学,结构更紧凑、合理,使测试的稳定性和准确度进一步得到提高 使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点 。 硬度测试仪配件参数 E A/C型橡胶硬度计组合成专业的试验机; 外形尺寸: 100*212*250(mm) 便携式硬度测试仪参数 可选配SHOR结构更紧凑、合理,操作简单 净重:10 Kgs 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括硬度计,硬度测量仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 关于便携式硬度测试仪参数,硬度测试仪参数的更多消息,孚光精仪将在第一时间更新并呈现,想了解更多内容,关注孚光精仪等你来体验!
  • 泄漏与密封强度测试仪
    产品介绍: LT-03A泄漏与密封强度测试仪专业适用于各种热封、粘接工艺形成的软、硬金属、塑料包装件、无菌包装件等各封边的封口强度、蠕变、热封质量、以及整袋胀破压力、密封泄漏性能的量化测定,各种塑料防盗瓶盖密封性能、医用湿化瓶、金属桶及封盖的量化测定,各种软管整体密封性能、耐压强度、帽体连接强度、脱扣强度、热封边封口强度、扎接强度等指标的量化测定;同时也可对软包装袋所使用材料的抗压强度、耐破强度等指标,瓶盖扭力密封指标、瓶盖连接脱扣强度、材料的应力强度、以及整个瓶体密封性、抗压性、耐破性等指标进行评估分析。产品特点:● 智能全自动、功能齐全、高精度、高效率● 最大量程>1.8Mpa,符合最新国标要求(需定制)● 系统采用正压法测试原理,膨胀抑制、膨胀非抑制双重试验方法,满足多重任务● 防盗瓶盖脱离、泄漏、端盖脱离、瓶体耐内压、软包装破裂测试、蠕变测试、蠕变到破裂测试多种试验模式满足用户不同的测试需求● 专利设计,有效避免过冲● 自带针式打印机、结果永久保存● 双重压力保护,安全稳定● 试验量程可选,非标夹具可定制产品配置:标准配置:主机、测试架选购件:测试附件(约束板试验装置;开口包装试验装置;塑料防盗瓶盖密封性能试验装置;圆柱型复合罐端盖脱离装置;软管密封性能试验装置;气雾剂阀门密封性能试验装置)、药用泡罩密封性试验等装置备注:本机气源接口为Φ6 mm 聚氨酯管;气源用户自备
  • HL-6301 土壤湿度测试仪
    HL-6301 土壤湿度测试仪 HL-6301 土壤湿度测试仪本款仪器是园艺的好帮手,可以测试土壤的湿度,无需电池.工作原理: 通过土壤中有机营养物质的电解值测出植物土壤水份情况, 把探针插入根部就可读出,无需电池.精确有效的测出植物土壤里的湿度;准确掌握各种植物生长的适宜条件;把探针插入根部土壤中就可读出准确的土壤湿度,MOIST是水份键,对应表上的是MOIST, DRY是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了. 使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净. 如何测量湿度 1.将探棒尽量垂直插入被测土壤中。在测试盆栽植物土壤时,不要使探棒离植物过近,以免伤及植物根系; 2.在探棒插入被测土壤的过程中,你会发现刻度盘内指针所指位置不稳定,这是因土壤湿度不均匀所至。所以请测试两遍以最终确定结果; 3.读取结果; 4.将探棒从被测土壤中取出,请不要拉、拽白色连接线,以免使用时出现接触不良等故障; 5.用棉布将探棒完全擦净,以备下次使用。 如何读取结果 1.湿度标度尺上的数字1-10代表湿度的逐渐递增。没有任何植物可以长时间在1和10代表的两种湿度环境下正常生长。在附表中为您提供了所列植物的湿度环境要求。如果所测结果高于表中规定要求,在此情况下您不需继续浇水;若结果低于规定要求,提醒您应立即浇水。 2.浇灌次数(参考说明书): &mdash * 1周需检查一次 &mdash ** 每4到5天需检查一次 &mdash *** 3天需检查一次仪器读数表 3.特殊水分要求 以下数字代表: i 每天向叶面洒水; ii 不要让土壤变干; iii 保持土壤湿润,但不应过于潮湿; iv 土壤应始终保持湿润; v 在浇灌间隙可令土壤变干; vi 在浇灌前4到5天应使土壤变干; vii 在植物休眠期间应逐渐减少施水量; viii 将水倒入盆栽托盘中;不需洒水在叶子表面。

热导率测试仪原理相关的资料

热导率测试仪原理相关的资讯

  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 泡罩药板密封性测试仪的工作原理
    泡罩药板密封性测试仪的工作原理在医药包装、食品封装等领域,产品的密封性能直接关系到其保质期、安全性和使用效果。因此,对包装材料的密封性进行准确、高效的检测显得尤为重要。泡罩药板密封性测试仪,作为一种采用色水法原理的检测设备,凭借其直观、可靠的检测方式,在行业内得到了广泛应用。本文将详细介绍基于色水法原理的泡罩药板密封性测试仪的工作原理、操作流程及其在评估试样密封性能中的关键作用。一、工作原理泡罩药板密封性测试仪MFY-05S通过模拟包装物在特定条件下的压力变化,检测其密封完整性。其核心在于利用色水(常选用亚甲基蓝溶液以增强观察效果)作为介质,在真空室内形成一定深度的水层。当测试样品置于该水层之上,并对真空室进行抽真空操作时,样品内外形成显著的压力差。这一压力差促使空气(如果存在泄漏通道)从样品内部通过潜在泄漏点逸出,并在释放真空后,通过观察样品形状的恢复情况及色水是否渗入样品内部,来评估其密封性能。二、济南三泉中石的MFY-05S泡罩药板密封性测试仪操作流程准备阶段:首先,向真空室中注入适量的清水,并加入适量的亚甲基蓝溶液,搅拌均匀,使水呈现明显的蓝色,便于后续观察。同时,将待测样品按照测试要求放置在真空室上方的指定位置。抽真空过程:启动真空泵,对真空室进行抽气,直至达到预设的真空度。在此过程中,随着真空度的增加,样品内外压力差逐渐增大,可能存在的微小泄漏通道将被放大,使得空气或气体从样品内部向外逸出。保压与观察:在达到所需真空度后,保持一段时间(根据测试标准设定),以便充分观察样品在压力差作用下的反应。此时,若样品密封良好,则形状基本保持不变,色水不会渗入;若存在泄漏,则可能观察到样品形状发生变化,且色水会沿泄漏路径渗入样品内部。释放真空与评估:释放真空室内的真空状态,恢复至常压。仔细观察样品表面是否有色水渗入痕迹,以及样品形状的恢复情况。根据观察结果,结合测试标准,判定样品的密封性能是否符合要求。三、济南三泉中石的MFY-05S泡罩药板密封性测试仪优势与应用直观性:色水法的应用使得泄漏现象一目了然,无需复杂的数据分析即可快速判断样品的密封性能。高效性:测试过程简单快捷,提高检测效率。广泛适用性:不仅适用于泡罩药板包装,还可用于其他类型包装材料的密封性检测,如瓶盖、软管等。总之,济南三泉中石的MFY-05S泡罩药板密封性测试仪以其独特的色水法原理,为包装材料的密封性检测提供了一种高效、直观且可靠的解决方案。
  • 包装密封性测试仪的检测原理与应用
    包装的密封性直接影响到产品的质量和安全性,尤其是在制药、食品、化妆品等行业中。包装密封性测试仪通过一系列可靠的检测手段,有效评估包装的密封性能,确保产品在生产、运输和存储中的安全性。了解更多包装密封性测试仪产品详情→https://www.instrument.com.cn/netshow/C572455.htm检测原理解析包装密封性测试仪的核心检测原理基于内外压差的变化。通过对真空室进行抽真空操作,试样内外产生了显著的压差。将包装试样浸入水中,观察其中的气体是否有外逸现象,以此判定包装的密封性能。如果包装在压力变化下没有发生气体泄漏,说明其密封性良好;相反,如果有气泡产生,则表明存在泄漏点。另一个检测方法是观察试样的形变和恢复过程。将试样放置在真空环境中,观察其膨胀情况。随后,解除真空环境,观察试样是否能够恢复原状。这一过程可以有效评估包装材料的耐压性和结构稳定性。广泛应用领域包装密封性测试仪在以下行业和包装类型中有着广泛的应用:制药行业:药用玻璃瓶、西林瓶、塑料固体瓶、注射器、滴眼剂瓶、药包材医疗器械:医疗器械包装、移液管、扎盖食品行业:真空包装袋、罐头、奶粉袋、果冻杯、铝箔袋化妆品与日化行业:化妆品瓶袋、铝塑软袋通过针对这些领域的不同包装类型进行密封性和微生物侵入检测,确保产品的安全性和质量。行业应用价值包装密封性测试仪已经成为制药厂家、药包材生产企业、药检中心、医疗器械公司、食品企业以及化妆品企业中重要的检测工具。通过严格的密封完整性检测,这些行业可以确保产品的质量符合标准,减少因包装缺陷导致的安全隐患,提升消费者对产品的信任度。无论是在制药还是食品、化妆品等领域,包装密封性测试仪都扮演着至关重要的角色,保障了产品的安全性和可靠性。

热导率测试仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制