当前位置: 仪器信息网 > 行业主题 > >

偏置电流源

仪器信息网偏置电流源专题为您提供2024年最新偏置电流源价格报价、厂家品牌的相关信息, 包括偏置电流源参数、型号等,不管是国产,还是进口品牌的偏置电流源您都可以在这里找到。 除此之外,仪器信息网还免费为您整合偏置电流源相关的耗材配件、试剂标物,还有偏置电流源相关的最新资讯、资料,以及偏置电流源相关的解决方案。

偏置电流源相关的资讯

  • 科学岛团队构筑新型二维磁性同质偏置器件
    近期,中科院合肥研究院强磁场中心盛志高研究员课题组与中国科学技术大学张振宇教授等人合作,成功研发了一种新型二维同质偏置器件。与三维同类器件相比,该二维偏置器件具有无老化、可延长、可恢复等特点,不仅为低维磁性器件设计和交换偏置效应机理的研究提供了新思路,且有望成为二维电子技术与装备中的核心磁性元器件。相关研究成果发表在国际期刊先进材料(Advanced Materials)上,并申请了发明专利。   二维范德瓦尔斯磁性材料,因其层状结构、无悬键表面、强磁各向异性等特性,为基础磁性研究和低维磁性器件开发提供了极佳的平台。但弱的层间耦合作用,极大限制了二维磁性材料的功能器件应用。因此,如何有效通过界面工程,实现强的磁交换作用(如交换偏置效应,ExB),已成为构建二维磁性器件的关键科学问题之一。   针对这一问题,盛志高课题组经过大量材料筛选与技术探索,最终发现通过单轴压力技术,可以将具有铁磁基态的二维铁锗碲(Fe3GeTe2)材料诱导成为具有铁磁-反铁磁共存的材料同质、磁性异质结构,且发现该结构具有实用级的交换偏置效应。这一压力诱导相变被磁光测试、高分辨透射电子显微镜测试、及第一性原理计算证实。由于该材料同质、磁性异质结构的铁磁-反铁磁耦合发生在同质结内部,其原子级平滑的磁界面使其交换偏置效应展现出无老化(non-aging)、可延长(extendable),可恢复(rechargeable)等三维器件中不存在的优良特性。这一结果为设计和开发高性能二维磁性器件开辟了一条新的途径,其优异的交换偏置特性为二维磁性器件的有效应用提供了机遇。   强磁场中心盛志高研究员和中国科学技术大学张振宇教授为本文的共同通讯作者。山西师范大学许小红团队,中科院合肥研究院固体所罗轩、强磁场中心孙玉平团队共同参与此项课题研究。该项研究获得了国家重点研发计划、国家自然科学基金、安徽省实验室方向基金、中科院合肥研究院院长基金、以及国家重大科技基础设施“稳态强磁场实验装置”(SHMFF)的支持。图1:(a)单轴加压处理后诱导FGT磁转变的示意图;(b)加压后FGT的磁光现象;(c)FGT无老化、可延长、可恢复的交换偏置效应示意图
  • 探寻微弱电流的律动:世健携超高精度皮安计模块亮相上海慕尼黑生化展
    p style="text-align: justify text-indent: 2em "2020年11月16日,2020慕尼黑上海分析生化展在上海新国际博览中心隆重召开。世健系统(香港)携新一代测试和测量应用方案亮相展会,吸引了众多业内观众围观和交流。本次参展的产品包含了超低失真任意波形发生器和采集模块、6位半数字电压表、宽压大功率SMU、多参数水质测量系统方案、小体积低功耗嵌入式电化学传感器测量模块和超高精度皮安计模块等。/pp style="text-align: center text-indent: 0em "script src="https://p.bokecc.com/player?vid=C4F4509D880788959C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=true&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: justify text-indent: 2em "据介绍,世健公司是亚太区领先的电子元器件分销商,曾被美国权威杂志EPSNews评为“全球电子元器件分销商25强”。世健是新加坡上市公司,总部在新加坡。目前,世健在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借优秀的研发团队,丰富的技术支持和优秀的销售经验,世健在业内享有领先地位。本次展会推出的超高精度皮安计模块由世健技术团队自主研发。/pp style="text-align: justify text-indent: 2em "设计工程师都知道,精确的微弱电流信号测量是各种科学分析仪器、环境监控和过程控制的系统设计核心,尤其是当输入的微电流信号达到pA级,甚至fA级的时候,这对他们来说,将是一个巨大的挑战。世健的新模块为用户提供了一种简单的方法来评估系统性能和完善原型开发。该模块拥有完整的信号链,输入电流通过fA级的输入偏置电流运算放大器ADA4530-1,经由ADA4522-1作为缓存和增益设置级输入到低噪声24位Sima-Delta ADC-AD7124-4采样结果传送到MCU并通过USB端口上传到上位机,通过特别设计的Labview GUI来进行模块配置,实时波形显示直方图和统计分析测试数据将以Excel文件等功能输出。/pp style="text-align: justify text-indent: 2em "此外,该模块具有以下特点,模块上的ADA4530-1,采用跨阻方式配置高达10G欧姆的通孔式反馈电阻;低泄漏及屏蔽技术;线性度好;在0~20pA的输入条件下,该模块以1pA计步达到0.9999的线性度;低均方根噪声;本底RMS噪声小于50μV;输入电流范围0~200pA。该模块的一些应用场合如下,分光光度计、色谱仪、质谱仪、pH计、皮安计以及PCB泄漏测量等。目前该模块已经在世健网店上线。/p
  • 首个诺奖就爆冷!新科得主帕博:可爱到犯规,偏执到疯狂
    “今年第一个诺奖,就爆了大冷门!”10月3日,2022年诺贝尔生理学或医学奖揭晓。瑞典科学家斯万特帕博(Svante Pääbo)获奖,以表彰他“在已灭绝古人类基因组和人类进化方面的发现”。不少关注者直呼“冷门”。执着,是付巧妹对他最大的评价。付巧妹是他曾经的博士生,如今已是中科院古脊椎动物与古人类研究所古DNA实验室主任,当《中国科学报》联系上她时,她给导师写的祝贺邮件还没来得及发送。2022年诺贝尔生理学或医学奖得主斯万特帕博(Svante Pääbo)图片来源:诺贝尔奖委员会官网《中国科学报》:你认识的诺奖得主是怎样的人?付巧妹:他非常执着,兴趣导向非常明确。1997年起,他就一直担任马普进化人类学研究所所长,古基因学可以说是他从无到有开创的,他一直坚定进行着这项研究。《中国科学报》:该研究为何能获诺奖?付巧妹:经过近十几年的发展,古基因学领域的研究产生了很大的辐射影响,除了基因组本身以外,还对我们现代人有很深的影响,比如功能性基因,以及解开其他一些人类未解之谜等。此外,古基因学还影响了其他领域的研究,包括人类、动物和病原菌等,可以说是辐射到了各个领域。《中国科学报》:他的哪些品质或者习惯,对你做科研有很深的影响?付巧妹:他的执着让我深受影响,尤其是发现重要研究时,他的第一反应从来不是有多开心,而是思考这个结果是否可靠,要用各种方式去验证,更多的是去证明这个发现是不是错了,是不是有问题。这对我们是一个很大的警醒。他,凭什么重塑尼安德特人的历史工作了一天的帕博特别疲倦,但5岁的儿子正是闹腾的时候。孩子睡着以后,一个疯狂的问题困住了他:如果今天所有人都带有1%~4%尼安德特人的基因,那么,在精子和卵子产生、结合过程中,DNA片段随机搭配,就可能产生一个奇怪的结果——有一个孩子一出生就完全是尼安德特人,而且这个孩子正好是他桀骜不驯的儿子?帕博特别认真地计算了这件事的概率,结果这个数字是一个零和小数点后76000个零,再加上一些数字。也就是说,期待未来有一个真的尼安德特人走进实验室为他提供血液样本的可能,不存在! 这是帕博在自己书中描述的自己。这样的他,简直“可爱到犯规”。如果有一个人的名字是与古DNA绑定在一起的,那非斯万特帕博莫属。帕博是瑞典演化遗传学家,也是德国马普学会演化人类学研究所所长。从学生时期第一个偷测千年木乃伊DNA,到史上第一次绘制出尼安德特人的基因组图谱,他用了30年把一段科研生涯推向极致。每一个杰出的科学家都携带着一部科学史20世纪80年代,一个尚未“出师”的在读博士,面对两条截然不同的职业道路时,会作何选择?一个是主流的前途可期的分子生物学,一个是神秘却难以看到未来的埃及古文物学。帕博并未听从多数同伴的建议选择前者,而是选择了13岁起就迷恋上的古老历史,继而走出了一条属于自己的路——把考古带进分子时代。为他引路的,是当时大名鼎鼎的演化生物学家艾伦威尔逊以及聚合酶链锁反应(PCR)的发明者、后来的诺贝尔化学奖得主凯利穆利斯。在帕博此后的研究生涯里,有三篇文章奠定了他在学术领域的地位。1984年,帕博悄无声息地成为了世界上第一个从死去两千多年的木乃伊身上提取DNA的人,一年之后,他的论文《对古代埃及木乃伊DNA的分子克隆》登上《自然》封面,引发了学界轰动。重要的是,他对非正统思想和项目超乎寻常的热情,让他注定成为一个与众不同的开创者。12年之后,帕博在自己一手打造的跨学科实验室,首次从已经灭绝的古人类——尼安德特人身上提取到线粒体DNA并成功进行了测序,他的团队在《细胞》杂志报告了尼安德特人的测序结果,为艾伦威尔逊“走出非洲”的现代人起源理论提供了铁证。而到了2010年,尼安德特人的基因组草图完成,那个有关人类起源的故事发生了戏剧性的转折。帕博及其合作的50位科学家一起在《科学》上揭示了,今天除非洲以外的所有人都带有尼安德特人的遗传密码,这种古老的人类从未消失!酷爱在阿尔卑斯山滑雪的帕博曾经说过,比那周围陡峭的雪景更为壮观的,是他们描述尼安德特人DNA序列的论文。那是生命的天书。如果把古DNA研究领域比作阿尔卑斯群山,那么在后来者眼里,帕博无疑是在这个年代登顶勃朗峰的人。对待科研,他寸步不让 1987年,扩增特定DNA片段的聚合酶连锁反应(PCR)技术兴起,这使得扩增古代材料中微量DNA成为可能,但这项技术对研究人员挑战巨大。老旧样本的保存条件不利,含有可获取的DNA非常有限,甚至完全没有,即便通过PCR也很难做到。因此,从科学的角度,系统建立可靠的DNA扩增流程非常重要。但帕博很快意识到,现代外源DNA污染实验是个严重的问题。它甚至造成了古DNA研究领域此后长达十几年的低谷期。所谓外源DNA污染,指的是任何接触过古代标本的人、检测仪器甚至是环境中的DNA片段都可能进入样本,并被当成是残存的古DNA,从而毁掉整个实验。1990年,来到慕尼黑大学开始独立科研生涯的帕博做的第一件事,就是“为人类历史研究注入新的严谨风貌”。他用近乎疯狂的偏执,建起了世界上第一个古DNA研究的洁净室,他为实验制定“可靠性准则”,以及一系列工作铁律。那些步骤要求看上去就像充满神圣感的仪式内容,不容丝毫亵渎。团队尽力做到一丝不苟,帕博依旧夜不能寐地担心污染问题,即便如此虔诚,他们仍旧一次又一次无功而返。然而,就在帕博团队煞费苦心地开发方法进行检测和消除污染时,他发现,《自然》《科学》却发表了一系列华而不实的论文,争相寻找超级古老DNA,这在当时的技术条件下简直是天方夜谭。团队千辛万苦得到的那点可怜的数万年之久的DNA序列,在那些文章面前不值一提。他不止一次地看到,科学的进步是一个痛苦的过程,“说服你最亲密的伙伴以及全世界的大部分人好好考虑新的想法需要很长的时间”。作为帕博的学生,坚持以事实为导向的严苛作风,对中科院古脊椎所古DNA实验室主任付巧妹确立科研态度,也产生了重要影响。她说:“每当得到一个可能改变之前认识的结果时,我的第一反应经常都是‘我是不是犯了什么错误’,担心样本有污染或者分析方法有错,接着就是不停地自我找碴和论证。所有找碴的办法都试过了,确信无疑后,我才能高兴地放松下来。”科学发展的反复无常20世纪90年代末,随着帕博团队成功提取并测序尼安德特人的线粒体DNA,“线粒体夏娃”的假说得到了证实,支持所有现代人都是从非洲走出的智人进化而来,而不是多地起源。可实际上,关于人类起源模式的对峙并未减弱,因为这个证据并不完整。线粒体DNA的局限在于,它只能通过母系遗传,要找到现代人类与尼安德特人的准确关系,必须依靠核DNA。可是,在提取物中,核DNA的数量只有线粒体DNA数量的1/1000~1/100,除非扩增技术出现巨大进展。在这之前,帕博团队只能一边努力改进提取技术,一边祈祷实验室成员能活得足够长。2000年初,“第二代测序法”诞生,它被寄希望于从根本上改变古DNA以及其他许多生物学研究。帕博于是决定在他一手创建的德国马普学会演化人类学研究所,正式启动尼安德特人基因组计划。可这个计划很快便遇到了瓶颈,当时的二代测序法尽管使获得DNA序列的效率得到提高,但仍需要基于足够多的骨骼样本。如何从当年的东欧国家取得珍贵的标本,是一场科学以外的较量,但对帕博来说,他甚至不清楚对手究竟是谁。最令人失望的是,他倾尽人脉以及所有的斡旋能力,得到的骨头根本无法支撑他完成测序工作。那一刻,所有的努力化为乌有。除了等待下一次技术的重大革新以外,他们已经无计可施了。但也只有帕博相信,那还不是他们的极限。他想起了年轻时曾在瑞典接受过的军事训练,包括战犯审讯训练,其中一个手段就是一遍又一遍重复询问同一个问题。他用这种近乎“残忍”的方式,逼迫自己的团队,提取和扩增技术无法突破,唯一的办法就是如何减少实验过程中的DNA损失。最终,他们找出并改进了造成DNA损失的步骤,而这是实实在在逆转乾坤的进步。但好景不长,让帕博再次陷入绝望的,是他们的实验结果受到了来自外源DNA污染的质疑… … 这不仅有来自人类本身探索未知的局限,还如帕博所揭示的,“科学研究是一项社会工作,其中位高权重的人和具有影响力的学者所主张的教条,经常决定了科学的‘常识’”,这会阻碍更多科学家客观地、不偏不倚地追求真理。但与此同时,这一过程也让人看到到,唯有包容、开放、合作的心态,才能在科学研究的危机笼罩之时,将团队凝结成冲破阴霾的最终力量。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520 nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • Nat. Commun. :无液氦低温磁光克尔助力金属-绝缘体转变研究
    具有特功能特性的材料可以替代大型复杂电路,大地提高电子设备的可扩展性和能效。例如,使用电压应用诱导电阻开关的材料,可以在仅由几个元件组成的电路中模拟突触可塑性和不同的神经元峰行为。相比之下,传统互补金属氧化物半导体(CMOS)则需要数十个晶体管来实现类似的功能。深入了解此类先进电子材料的物理特性及其对外部刺激的响应对于后续设计应用程序至关重要。迄今为止已有许多研究探索了基于离子电迁移的非易失性开关的特性,这在存储器中具有广阔的应用前景。 近期,人们对一种不同类型的电阻开关产生了大的兴趣。该类型的电阻开关是由金属-缘体转变的电触发变化而产生的易失性开关,即改变材料电荷传输特性的本征相变(例如,莫特或佩尔斯转变)。这种易失性切换是通过向金属-缘体转变材料施加并保持电刺激而诱发的,并且在关闭刺激后,这种开关自动重置回初始状态(因此称为“易失性”)。基于金属-缘体转变的开关通常伴随着电阻率和光学特性的巨大变化,这使得其在射频电子学、光电学和受生物启发的人工神经元中的应用具有吸引力。 近期,加利福尼亚大学圣地亚哥分校物理科学与先进科学中心的Pavel Salev,Ivan K. Schuller等利用无液氦低温磁光克尔效应系统-CryoMOKE研究了基于La0.7Sr0.3MnO3(LSMO)薄膜器件中金属-缘体转变电触发的易失性电阻开关,从金属到缘体,发生在一个相应的特征空间模式中,形成一个垂直于驱动电流的缘势垒。这种势垒的形成导致电流-电压特性中出现不寻常的N型负微分电阻。作者进一步证明电诱导横向势垒能够实现电压控制磁性的特方法。通过触发磁性材料中的金属-缘体电阻开关,使用施加到整个设备的全局电压偏置实现铁磁性的局部开/关控制。该成果以《Transverse barrier formation by electrical triggering of a metal-to-insulator transition》为题发表在Nature Communications. 图1 金属-缘体电阻开关的磁光成像 a.磁光测量示意图,在器件区域的每个xy点处获得MOKE磁滞回线。沿器件长度方向在平面内施加磁场。在整个测量时间内,电压偏置保持不中断。b. 同时记录I–V曲线(中心)和MOKE xy成像图(侧面)。图中的亮区对应于铁磁LSMO。总视场为90×140μm2。在MOKE成像图中,电流沿着水平方向。随着I–V穿过负微分电阻,在器件中心出现横向缘顺磁势垒,并随着外加电压的增加而不断扩展。I–V图中的插图显示了势垒尺寸d,作为施加电压的函数,V。c. 在24 V下的MOKE成像图和对应于记录的三个器件区域(使用罗马数字标记)的局部磁滞回线。当器件两侧(区域I和III)显示铁磁响应时,中心(区域II)的MOKE信号为零。所有测量均在100 K下进行。 为解释金属-缘体电阻开关的潜在微观机制,该工作的研究者利用金属-缘体转变与磁跃迁同时发生的事实,对LSMO器件进行了操作成像。使用扫描磁光克尔效应(MOKE)显微镜(图1a),绘制了施加电压偏置时铁磁区域的空间分布图。测量过程使用5 μm大小的激光束记录设备区域上每个点的MOKE磁滞回线,通过绘制MOKE回线量(即大克尔旋转角)的xy图来表示数据。在传统的MOKE图像中,对比度来源于不同磁化方向的区域。在这篇工作中,亮区对应于铁磁性区域,而暗区表示没有铁磁性。 该研究发现金属-缘转换是通过在垂直于电流的方向上形成横跨整个器件宽度的缘势垒来实现的。图1b显示了不同电压下的MOKE图和相应的I–V曲线。该器件在15 V以下仍保持均匀的铁磁(金属)状态,但施加更高的电压会导致LSMO转变为性质不同的状态。在16 V时,I–V曲线显示出一个小的跳跃,同时在器件中心附近出现一个~5 μm宽的无磁性畴。磁畴横跨整个器件宽度,其尺寸随着外加电压的增加而增大,直到电压升至48 V时覆盖整个器件(图1b中I–V图中的插图)。 值得注意的是,本工作中低温下的磁光克尔测试使用了DMO和Montana公司联合研发的低温磁光克尔效应系统- CryoMOKE,该设备可以实现在4~350K范围的高灵敏度磁滞回线及磁畴成像测试,Montana提供了超低振动的无液氦低温恒温器,该恒温器可以连接多种电学测试,可以在测量磁光克尔的同时在样品上施加电流/电压。 图2 DMO和Montana公司联合研发的CryoMOKENanoMOKE3主要技术特点:☛ 温度范围:4~350K☛ 振动:小于5nm☛ 纵向/向磁光克尔☛ 纵向磁场:>0.4T,向磁场>0.3T☛ 高灵敏度磁滞回线测试及磁畴成像 CryoMOKE国内客户: 南方科技大学中国科学院化学研究所 参考文献:[1] Pavel S, Ivan K. S,et al. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nat. Commun.12,5499(2021)
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称扫描探针显微镜宽动态范围电流测量系统的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。应用前景:扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 国网河北电力新投用检定装置 可兼容检定多品类低压电流互感器
    近日,国网河北省电力有限公司营销服务中心投用宽量程低压电流互感器人工检定装置,完成了90只互感器设备的检定工作,标志着国网河北电力营销服务中心具备宽量程低压电流互感器检定能力。   分布式光伏发电客户在夏、冬两季容易受自身负荷波动影响,出现一次电流超过常规低压互感器量程的情况。宽量程低压电流互感器能够保证一次电流在额定电流的0.1%~200%时的准确计量,提高分布式光伏发电客户上网电量计量的精准性。   2022年以来,国网河北电力营销服务中心从优化标准设备配置、提高电流源输出能力方面开展宽量程低压电流互感器检定技术研究。该中心创新融合标准直流互感器、半波发生装置和大容量电流源的测量功能,解决高线性和小微差检定技术难点,形成多品类低压电流互感器检定装置兼容性设计方案,实现传统低压电流互感器、抗直流偏磁低压电流互感器与宽量程低压电流互感器兼容检定,满足宽量程低压电流互感器检定需求。   国网河北电力营销服务中心还贯通了宽量程低压电流互感器人工检定装置与省级计量生产调度平台系统数据接口贯通,实现任务数据、结论数据系统间自动交互。目前,该中心完成了8种变比的宽量程低压电流互感器的检定测试,检定装置运行平稳,各项指标满足规程要求。   低压电流互感器是一种可以把高交流电流转化为容易控制的低电流的设备,具有性能优良,精度稳定的特点。低压双绕组电流互感器,用于多回路低压智能配电中电流测量,可远传,或遥测装置配套使用,是低压智能配电低成本方案理想的智能化配电元件。   低压双绕组电流互感器作为低压配电系统监控电流的采集元件,具有两个绕组,其一(1S1、1S2)用于电流表指示,额定二次电流为AC5A或AC1A,其二(2S1、2S2)用于远传遥测,可与远端监控现场信号、工业设备的测控装置ARTU-M32遥测单元配套使用,额定二次电流为AC0-20mA;亦可用于电动机保护回路中使用,但由于电流保护回路过载电流为5-8倍,所以确保低压双绕组电流互感器的线性至8倍,且电流在8倍时,能保证双绕组电流互感器的误差在0.2-0.5%。
  • 同步源测量一体化解决方案,轻松实现高灵敏度测量!
    传统的电学输运测量和表征应用通常需要结合专用的直流和交流源表并匹配对应的电压或电流测量表,这种不同仪表和线缆的搭配中往往涉及到各类仪器复杂的设置方案。通常在仪表和被测样品之间测量线缆较长,随着测量通道数的增加,如何将系统噪声降至最低并确保各个通道之间的频率同步的挑战也随之而来。而M81同步信号源测量系统的出现提供了一种采用高度同步的交直流信号源和测量模块,并利用远程模块来实现超高灵敏度和噪声抑制的方案,能够让客户更轻松、方便的对样品的特性进行准确表征。 M81同步信号源测量系统 MeasureReady&trade M81-SSM系统采用模块化设计,并利用MeasureSync&trade 特殊的信号同步技术实现信号源模块和测量模块的所有通道高达100kHz的信号实时同步。利用MeasureSync&trade 技术M81系统可以在同一时间对所有通道进行采样,确保在相同条件下对被测器件或样本进行测试,获得一致性的数据。 MeasureSync&trade 特殊的信号同步技术 M81主机是M81 SSM系统的核心。根据订购的型号,仪器支持 2、4 或 6 个通道,分别包括 1、2 或 3 个信号源和 1、2 或 3 个测量单元。每台 M81 仪器可管理 1 至 3 个信号源通道和 1 至 3 个测量通道,以便在单个测试序列中测试多个被测器件或样品,而不会因线路复杂化和信号切换造成信号劣化。此外还可以将多台仪器组合起来,进一步提高信号源和测量通道的能力,而不会降低模拟性能,同时利用 MeasureSync&trade 对系统内所有信号通道进行定时同步。 M81采用主机与模块的搭配方案 该主机以 MeasureReady&trade 仪器平台为基础,采用图形化触摸屏界面进行编程控制和监测。其符合人体工程学设计的前面板具有 TiltView&trade 显示屏,无论是在工作台上还是安装在机架上,都能获得更佳的可视性。它还支持标准 LAN、USB 和 GPIB 通信。M81主机 M81-SSM采用主机和模块搭配使用的方案,一个主机可以同时扩展至多3个源表模块以及至多3个测量模块,每个模块均可以适配直流以及最高100kHz的测量范围。具体有以下模块可供选择:1. VM-10 电压测量模块 该模块提供分辨率从低纳伏到 10 V 的直流至 100 kHz 电压测量,包括振幅、相位和谐波检测功能。专有的无缝量程技术允许在增减量程时进行连续测量。 VM-10 电压测量模块2. CM-10电流测量模块 该模块可在直流至 100 kHz 范围内,以接近零的输入偏移电压测量 fA 至 100 mA 的电流,包括幅值、相位和谐波检测功能。该模块还具有可配置的硬件和软件滤波功能。 CM-10电流测量模块3. BCS-10电流源模块 该模块提供 1 pA 至 100 mA 的可编程电流,最大符合 ±10 V 的直流输出至 100 kHz 正弦输出。BCS-10 源自 Lake Shore 业界领先的 372 型交流电阻电桥,采用差分或平衡设计,有助于减少或消除低温恒温器和其他研究设备中经常遇到的接地回路。它扩展了 372 型平衡源的功能,增加了可变频率和振幅编程能力,在保持出色噪声性能的同时,提高了灵活性。 BCS-10电流源模块4. VS-10电压源模块 该模块可提供 ±1 nV 至 ±10 V 的可编程电压,最大符合 100 mA 的直流至 100 kHz 正弦输出。VS-10 适用于栅极偏置、电压扫描 I-V 曲线剖析,以及需要高稳定电压并结合电流、电阻/电感和其他材料或电子器件测量的应用。 VS-10电压源模块不同的模块搭配也为不同应用场景提供了不同的解决方案,常见的测量搭配有: 综合以上这些测量方案, M81-SSM 的强大功能不言而喻,能够为广大科研工作者提供表征多种测试结构(包括纳米结构、单层和多层原子结构、MEM、量子结构、有机半导体和超导材料)的超卓解决方案。
  • 以超越致敬经典 : 世健超高精度皮安计模块 EPSH-PAM2.0正式上线
    p style="text-align: justify text-indent: 2em "在模拟的世界里,微弱电流信号的测量通常是工程师需要面对的棘手挑战。随着各种仪器仪表的产品性能迭代以及各种新应用的层出不穷,对于微弱电流的测量范围已经从微安级(μA)提升到了皮安级(pA),提升了足足一百万倍!br//pp style="text-align: justify text-indent: 2em "为了测量微弱的电流,通常工程师将运放进行跨阻方式连接,见图1所示。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture1.png"/br//ppbr//pp style="text-align: center "图 1 跨阻放大器br//pp style="text-align: justify text-indent: 2em "理想运算放大器的反相输入端处于虚地,输入端所有电流流经反馈电阻 R f ,因此输出电压Vout = R f × I d 。/pp style="text-align: justify text-indent: 2em "所以工程师只需要选择一个Rf为10GΩ的电阻,就可以将1pA的电流信号变换成10mV的电压信号了吗?答案是否定的。工程师会面临非常多的挑战:来自运放自身的偏置电流误差,环境温度与湿度的变化,PCB板的泄漏电流,输入端与线路噪声,电磁干扰等等,这些都是摆在精密测量方面的难题。/pp style="text-indent: 2em text-align: justify "选择一款超低偏置电流的放大器成为了工程师挑战系统性能的关键。1987年,一款JFET放大器AD549横空出世,成为了精密电流测量应用三十年来经久不衰的经典产品。光谱仪,气相色谱仪,静电计应用中处处可见其身影。其低至100-250fA的输入偏置电流(图2)以及优异的温漂曲线以今天的眼光来看,都是几无对手。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture2.png"//pp style="text-align: center "图2 摘自AD549数据手册/pp style="text-align: justify text-indent: 2em "以超越致敬经典,这成为了ADI人对技术的一种追求。2015年底,ADA4530-1正式亮相。以CMOS的工艺实现了JFET的性能挑战。其失调电压最大50μV,偏置电流在?40° C 至+85° C范围内均不超过20fA —— 高温性能比AD549提升了几百倍。 br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture3.png"//pp style="text-align: center "图 3 摘自ADA4530-1数据手册/pp style="text-align: justify "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture4.png"//pp style="text-align: center "图 4 ADA4530-1与AD549对比表/pp style="text-indent: 2em text-align: justify "有了优异的器件,如何将其性能发挥出来,从系统设计的角度去满足皮安级电流测量的性能要求?针对中国工程师的需求,世健上海技术团队挑战难关,在原有设计的皮安级电流计量评估套件的基础上做了大幅度的改进,于2020年10月正式发布了可商业化的超高精度皮安计模块 EPSH-PAM2.0 (以下简称PAM2.0模块)。 br//pp style="text-indent: 2em text-align: justify "世健技术支持部的高级副总裁戈一新表示道:“精心的模块设计,严格的工艺制作,保证了PAM2.0模块的性能与质量。50µ V(相当于5fA)的RMS底噪,能满足绝大部分微弱电流信号测量用户的需求。” br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture5.png"//pp style="text-align: center "图5 外观与软件界面br//pp style="text-indent: 2em text-align: justify "PAM2.0模块采用4层板布局及FR-4 PCB板材。工程师巧妙的采用了AD549国内经典的反相端悬空柱接方式,使得FR-4板材的效果依旧可以媲美ROGERS4350板材而成本大大降低。PAM2.0模块的输入端子为SMA接口。模块套件包含了一根BNC转SMA高性能屏蔽线,便于与各种电流输入源对接。模块采用了双金属屏蔽罩降低各种噪声和干扰。在设计和生产过程中,工程师对不同供应商的10GΩ电阻进行了全方位的评估测试,从中挑选出性能优异的电阻确保模块的性能。PAM2.0模块简化了电源设计,使用LTC3260 双路低噪声LDO为ADA4530-1供电。在次级信号的放大选择上,客户既可以使用ADA4522-1与ADG1608的组合进行硬件电路放大,亦可使用AD7124-4片内PGA软件程控放大,从而灵活的比较两种方式的性能和成本。ADC选择了最新的AD7124-4, 它具有24位19.2KSPS最高输出数据率,并提供三种功耗模式(低/中/全性能),从而让客户在设计便携式测量应用时无需更改硬件。若客户需要更高的采样率ADC,亦可从TP2端与各种ADC评估板进行对接。精心设计的LABVIEW GUI提供了模块配置、实时波形显示、直方图和统计分析、测试数据导出成Excel文件等功能。/pp style="text-align: center text-indent: 0em "img src="https://excelpoint.com.cn/sites/default/files/PAM2-picture6.png" style="text-align: center max-width: 100% max-height: 100% "/br//pp style="text-align: center "图6 系统框图/pp style="text-indent: 2em text-align: justify "匠心设计的收获是显而易见的:使用Keithley 6220源表进行测试,PAM2.0模块在0-20pA的I-V曲线测试中,线性度达到了0.9999x;在0-100pA的测试中,线性度达到了0.999999x。PAM2.0每款模块均进行出厂线性度评估并配发85点测试报告。br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://excelpoint.com.cn/sites/default/files/PAM2-picture7.png"//pp style="text-align: center "图7 0-100pA 21点I-V线性度测试图br//pp style="text-align: justify text-indent: 2em "世健的超高精度皮安计模块旨在从系统设计角度出发,提供给客户快速设计原型,让产品迅速推向市场。 /pp style="text-align: justify text-indent: 2em "该模块将会在11月16-18日,于上海新国际博览中心的慕尼黑上海分析生化展上展出。目前该模块已经上线世健网店,感兴趣的朋友可以在线咨询购买。/p
  • ​思达科技宣布全球首款量产型微间距大电流MEMS垂直探针卡上市
    半导体测试系统与探针卡知名厂商-思达科技宣布,推出牡羊座Aries Optima MEMS探针卡,是全球首款应用在大量制造的微间距大电流MEMS垂直探针卡。Aries Optima是MEMS探针卡技术的最新巅峰,不仅制订新标准,满足了晶圆级测试的新需求,且进而促使思达科技成为MEMS探针卡技术的市场领导供应商。十多年来,思达科技致力在开发以及部署高价值的垂直探针技术,研发了一套系统和方法,以快速适应市场兴起的需求。思达科技在过去20年间定期推出新产品,满足不断变化、各方面的市场需求,持续实现对于半导体测试行业的承诺,包括增进测试效率、降低测试成本,以及测试精度的优化、达成最佳市场价值等等。Aries Optima系列的MEMS垂直探针卡,设计方面除了满足不断发展的大电流需求外,探针间距也降至45um,可将投资回报率最大化且减少支出,具有更高的价值。思达拥有批量生产的MEMS探针,负载力为550mA,适用于标准应用;在汽车和高功率方面,则可达700mA、最高至150摄氏度。根据半导体市调机构VLSI的报告,受惠于景气回温,其5G拓展、IT基础建设等,推升芯片需求持续成长。这些市场因素驱动MEMS技术更加重视生产效率、减少测试时间与成本,市场占有率也正逐渐提高。相较于传统的Cobra探针,AriesOptima系列稳定的DC和泄漏电流表现,非常适合应用在RF、AP、高功率等等的测试。思达科技执行长刘俊良博士表示:「Aries Optima探针卡是全球第一张微间距MEMS垂直探针卡,支持大电流测试,同时减少客户的测试频率、时间、人力成本等,是下一个世代半导体测试的最佳选择。」
  • 中科院科研装备研制项目“晶片级器件辐照 及辐射效应参数提取设备”顺利验收
    p 5月26日,中国科学院条件保障与财务局组织专家对中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“晶片级器件辐照及辐射效应参数提取设备”进行了验收。/pp  验收专家组现场考核了仪器设备的技术指标,认真听取了项目工作报告,经质询和讨论,专家组一致认为该设备同时实现了晶片级器件辐照试验、器件特性参数在线提取功能,在国内率先突破了晶片级器件加电偏置辐照技术,为器件辐射效应精确建模、商用代工线的抗辐射性能评估提供了有效的测试手段 研制的设备可适用不同种类器件的辐照,具有结构一体化、操作自动化的特点,全部技术指标均达到或优于预期目标。之前国内由于不具备适用于器件辐射效应提参建模的试验平台,无法在器件设计、流片阶段给出加固建议,评估抗辐射性能,一定程度上增加了研发成本,延长了生产周期。该设备突破了这一技术瓶颈,填补了该领域的国内空白,为晶片级器件辐照、提参提供试验条件,形成面向抗辐射器件研制全过程的辐射效应试验评估、提参建模共性技术服务平台,为元器件设计加固工艺的发展提供试验技术支撑。/pp  该设备已成功应用于中科院微电子研究所、中电集团44所、杭州电子科技大学、长光辰芯光电公司等单位的微纳MOS器件、CCD器件、CMOS图像传感器、半导体射频电路的辐射效应评估验证,获得了用户的高度认可,为国产抗辐射器件的研制与试验评估提供了有效的试验手段。/ppbr//p
  • 天津市市场监督管理委员会废止《直流标准电流源检定规程》等6项地方计量技术规范
    依据《中华人民共和国计量法》及相关规定,为提高我市地方计量技术规范的科学性、规范性和有效性,经有效性跟踪确认,现废止《直流标准电流源检定规程》等6项天津市地方计量技术规范。特此公告。附件:废止的6项天津市地方计量技术规范2023年6月7日(此件主动公开)附件废止的6项天津市地方计量技术规范序号计量技术规范编号计量技术规范名称1JJG(津)02-2018直流标准电流源检定规程2JJG(津)64-2021直流标准电能表检定规程3JJF(津)57-2021无创呼吸机校准规范4JJF(津)01-2019激光投线仪校准规范5JJF(津)71-2022医用离心机温度参数校准规范6JJF(津)08-2020碳平衡油耗仪校准规范
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 北理工在红外光电探测器暗电流抑制技术方面取得新进展
    红外光电探测器广泛应用于气体传感、气象遥感以及航天探测等领域。然而目前,传统的红外探测材料主要基于碲化铟、铟镓砷、碲镉汞等,需要分子束外延方法生长,以及倒装键和等复杂工艺与读出电路耦合。虽然探测性能高,但是却受限于成本与产量。胶体量子点(CQD)作为一种新兴的红外探测材料,可以由化学热注射法大规模合成,“墨水式”液相加工可以与硅读出电路直接耦合,大大加快红外焦平面阵列(FPA)的研发进度。目前北京理工大学郝群教授团队已实现320×256、1K×1K百万像素量子点红外焦平面。然而,目前红外胶体量子点暗电流噪声较大的问题限制了成像仪的分辨率和灵敏度。近日,北京理工大学研究团队提出了量子点带尾调控方法,通过量子点成核生长分离的再生长技术,成功得到了形貌可控(如图1)、分散性好、半峰宽窄、带尾态优的红外量子点。图1 不同前驱体合成量子点形貌示意图研究人员基于三种胶体量子点制备了单像素光电导探测器,大幅度降低器件的暗电流和噪声30倍以上,室温下2.5 μm延展短波波段比探测率达到4×10¹¹ Jones,响应时间为0.94 μs(如图2)。图2 光电导探测器结构示意图以及形状控制量子点与两组参考样品的器件性能对比在此基础上,研究人员将HgTe胶体量子点与互补金属氧化物半导体 (CMOS) 读出集成电路 (ROIC) 相集成,制备了640×512像素的焦平面阵列成像芯片,有效像元率高达99.997%。成像过程示意图和成像结果如图3所示。图3 成像过程示意图以及形状控制量子点640×512像素的焦平面成像结果图综上所述,这项研究开发了量子点带尾调控方法,通过单像素光电探测器及红外焦平面验证了该方法在暗电流和噪声抑制上的可靠性,在高性能胶体量子点红外光探测器发展中具有重要意义。相关研究工作于2023年11月发表于中科院1区光学顶刊ACS Photonics。该论文的共同第一作者为郝群教授、博士生薛晓梦和罗宇宁,通讯作者为陈梦璐准聘教授和唐鑫教授。论文链接:https://doi.org/10.1021/acs p hotonics.3c01070
  • 高温大电流1200V/100A SiC 肖特基器件首次研制成功 填补国内空白
    p 碳化硅与其他半导体材料相比,具有高禁带宽度、高饱和电子漂移、高击穿强度、低介电常数和高热导率等优异的物理特点。在同样的耐压和电流条件下,SiC器件的漂移区电阻比硅要低200倍 SiC肖特基二极管具有超快的开关速度,反向恢复电流几乎为零,具有超低的开关损耗等优点。/pp  在国家重点研发计划“新能源汽车”重点专项项目“高温车用 SiC 器件及系统的基础理论与评测方法研究”支持下,中国科学院微电子研究所与株洲中车时代电气股份有限公司研究团队针对高温下SiC芯片存在的高温电流导通能力退化,大面积芯片电流集中引起的热电强耦合导致的电流降低(损耗增加)性能退化等问题,开展了高温SiC芯片载流子的输运机理与行为规律的基础科学问题研究,从载流子传输路径优化、电流/电场均衡分布的芯片设计思路出发,利用外延层、有源区、精细化终端结构等综合优化技术,突破高温下SiC芯片电流输运增强技术,成功研制车用高温、大电流、高可靠1200V/100A SiC SBD器件,并通过该器件的静态、动态等全参数测试,以及可靠性摸底试验。结果显示,该项目研制的SiC肖特基器件与Cree公司的第五代同电压等级的CPW5-1200-Z050B产品的电流密度208A/cm2相比,在电流密度方面具有优势,在国内处于领先水平,即将应用于车用SiC模块的研发。/p
  • 红外物理国家重点实验室在纳米结构中电子非平衡特性检测方面取得突破
    p  电子被发现一个多世纪以来,人类社会对它的依赖程度越来越大,如今,它已成为微电子和光电子技术的物理基石。随着微电子器件尺度按摩尔定律不断向纳米尺度减小,对于电子运动规律的认识将面临着从平衡态理论向非平衡态理论的发展。正如美国基础能源科学顾问委员会报告中指出,当前科学上面临的5大挑战之一就是对非平衡态尤其是远离平衡态的表征和操控。/pp  按平衡态理论,人们预测在微电子器件中电流最大的位置往往会是电子温度最高的地方。中国科学院上海技术物理研究所红外物理国家重点实验室陆卫研究员和复旦大学安正华研究员的科研团队共同合作,利用非平衡输运热电子的实验检测在技术,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,发现在纳米尺度结构中,电子温度最高之处并非局域在电流最大位置,而是明显地向电流的流动方向偏离了,而且电子的温度高于晶格温度很多倍。从理论和实验两方面证实了这种奇异特性就来自热电子的非平衡态特征。/pp  该研究工作的最大挑战来自于非平衡输运热电子的实验检测技术上。实验室采用了自主研发的超高灵敏甚长波量子阱红外探测器的扫描噪声显微镜(SNoiM)技术,称为扫描噪声显微镜技术。其基本机理是非平衡态电子的电流强烈涨落形成的散粒噪声会直接导致近场甚长波红外辐射,通过高灵敏的红外近场检测可实现仅测量到非平衡态电子特性,从而为直接观察在纳米结构中电子的非平衡态乃至远离平衡态的特性提供了独特的方法。/pp  相关研究成果“Imaging of nonlocal hot-electron energy dissipation via shot noise”(DOI: 10.1126/science.aam9991)已于2018年3月29日获得《Science》杂志在线发表,将对认识和操控非平衡热电子进而增强器件功能发挥重要作用。/pp  这项研究工作得到了科技部国家重点研发计划、国家自然科学基金委、上海市科委重大项目、中国科学院海外科学家计划等资助。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/a4df0693-4a72-453f-81b5-9f6fe7165ff9.jpg" title="1.jpg"//ppbr//pp  应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz)噪声的纳尺度成像,(A)扫描噪声显微镜的实验装置示意图。(B) GaAs/AlGaAs量子阱纳米器件的电子受限区域的SEM图。(C和D)相反偏置电压(6V)下二维实空间的近场噪声强度信号成像,近场信号由针尖高度调制模式获得,其中彩色表达了电子的等效温度。(E) 近场信号与针尖高度关系,近场信号是由电压调制模式获得。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/8edf4c2f-af08-4a76-9da3-10ee26f8f1fb.jpg" title="W020180506601359218862.jpg"//ppbr//pp  噪声强度随偏置电压增大的演变。(A-F)由针尖高度调制模式获得的二维成像图。(G)y方向(平行于[100])一维近场信号随位置变化图。(H)近场(圆和三角形点表达)和远场(方形点表达)探测到的噪声强度随着偏置电压的变化规律。/ppbr//p
  • 网络研讨会‖3月10日,快速电流脉冲相关介绍,立即报名!
    网络研讨会‖3月10日,快速电流脉冲相关介绍,立即报名!时间:2023年3月10日(周五)14:00腾讯会议号:394-988-179主讲人:赵健伟 教授 北京大学学士(1996),期间发表研究论文士余篇,获北京大学“挑战杯"一等奖 中科院长春应化所硕士(1999),获中国科学院伟华科技奖学金 北海道大学博士(2003),获日本文部科学省奖学金 北海道大学博士(2003),获日本文部科学省奖金;牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。 在获得博士学位的同年 参加南京大学第一次全球招聘,获聘教授(2003~2016),为其最年轻教授之一,次年评为博士生导师。2016起任嘉兴学院教授,“南湖学者"(2019续聘),“浙江省纱线材料成形与复合加工技术重点实验室"主任,嘉兴学院“尖峰计划"团队带头人,浙江省二级教授。 发表学术论文 230 余篇,被引总数超过 4500余次,单篇最高引用270 余次(2014年英国皇jia化学会杂志 1%高引用作者),H-index为35。主办国际学术会议4次。会议内容快速电流脉冲的基本原理快速电流脉冲的应用范围及特点快速电流脉冲的具体应用
  • 以电源为起点 为质谱仪量身打造“最佳部件”——“创新100”访大连奥远电源有限公司
    2022年初,一家致力于全方位解决质谱仪核心零部件的厂商,大连奥远电源有限公司(以下简称:奥远电源)“横空出世”,公司成立的初衷是为了改变国产质谱仪严重依赖进口零部件组装的局面。本期“创新100”特别对话大连奥远电源创始人,听他讲述奥远电源选择精密仪器赛道背后的故事。——企业概况奥远电源共有几个创始股东,其中有大连奥远电子股份有限公司和奥远电源的公司法人谷宏芳。奥远电子成立于1995年,专注于“智慧应用产品与服务”,以自有知识产权的产品为引导,力图为客户提供“IT+运营”服务。奥远电源隶属于新三板上市公司——大连奥远集团2022年,公司选择质谱仪电源赛道并创立了奥远电源,希望在高端仪器制造领域帮助国产企业真正实现国产替代。奥远电源前期的产品配件主要销往全世界的石油石化实验室以及第三方检测机构;中期的产品配件主要销往全国各地的空气监测站;当前的产品主要销往各大科研院所以及质谱生产企业。由于有着20多年创业的经历,公司与大连化学物理研究所、四川大学、大连理工大学、大连民族大学等多家产学研机构均有着多年的合作。创始人更是坦言道,公司目前正在隐秘而健康的发展,经营状况良好,技术方股东自2013年起的研发重点就是攻克质谱仪的各个核心零部件,并在未来10-15年计划完成所有质谱仪部件的研发、生产和销售。——产品创新奥远电源主推高压直流、高压脉冲、高压运算放大器、射频电源,以及相关的OEM定制,着力为客户解决根本问题。当前公司主要推广全系列的质谱仪器电源,以及相关解决方案,致力于以质谱仪电源为原点,慢慢向X光电源,高压运放芯片设计,FIB,EBM等领域进发。奥远电源研发实验室一角在提供电源及模块的基础上,公司自主研发了一款高压运算放大器,这是一个内含多级放大电路的电子集成电路,其输入级是差分放大电路,具有高输入电阻和抑制零点漂移能力;中间级主要进行电压放大,具有高电压放大倍数,一般由共射极放大电路构成;输出极与负载相连,具有带载能力强、低输出电阻特点。运算放大器的应用非常广泛,通常的运算放大器供电电压在40V一下,通常供电电压在100V以上的运算凤毛麟角,当前仅有美国的公司在进行生产。奥远电源定制产品生产制作中奥远高压运算放大器HOP 有着广泛应用,在高压仪表、压电驱动、质谱LENS、以及RF上都有着广泛的应用。通常好多高压调压应用都是使用变压器调节,这样会产生一个致命问题,有纹波噪声,电压转换慢,输出阻抗高亢负载能力低,鉴于以上种种的缺点,高压运算放大器可以解决上述问题,它具有低偏置电压,低偏执电流,低缺省电压,低缺省电流,压摆率高,共模抑制比高,噪声低等优点。在谈到与市场上同类型产品相较的话题时,创始人认为,国外厂商的产品普遍是多条战线齐头并进,且产品价格偏高。奥远的高压电源,现阶段主要为质谱仪研究机构和生产厂商提供。因此我们更专注,更了解我们目标客户的需求。目前奥远的产品线覆盖高压直流,高压脉冲,高压运算放大器,射频电源等产几乎所有质谱仪上使用的电源。不仅如此,公司还将以高压直流,高压脉冲为起点,着力打造高压运算,以及射频电源。我们的产品是为质谱仪量身定做的,而且我们能够提供质谱仪全产业链的解决方案,从而更大程度上提高了质谱仪的性能。——未来发展谈到接下来的产品规划及公司的发展,创始人表示,公司目前已经完成高压直流电源1kv-30kv 30种电压型号、单输出/双输出两种输出类型的电源和模块。所有产品经大连化物所、四川大学等机构测试使用,各项目指标都比肩进口产品。接下来,公司将以高压电源以及压电技术为基础研发全系列电镜,并利用已有的光学基础以及压电控制基础研发出飞秒激光器。奥远电源研发工作实验室未来,在踏实完成技术迭代后,公司计划完成国家专精特新企业评定,并冲击IPO。附:“创新100”介绍秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,借助报道、走访、调研等方式,在企业发展的关键时期“帮一把”。项目自启动以来,已收到超过180家企业的踊跃申请,通过输出公益性的宣传报道,组织企业研学、参观交流、主题讨论等各类资源对接活动,得到广大科学仪器企业与用户单位的高度关注与一致好评,现已成为中国科学仪器市场颇具影响力的特色活动,对于提升国产仪器品牌影响力,为行业筛选优质仪器企业贡献重要力量。为延续“国产科学仪器腾飞行动”精神,筛选和服务更多国产科学仪器潜力企业,“创新100”将于2022年继续进行,为国产仪器企业输送更多公益资源。诚邀具备实力、符合条件的创新企业扫码申报“创新100”。报名通道及活动专题:https://www.instrument.com.cn/zt/chuangxin100-2021
  • 【网络研讨会】5月10日,动电流相关介绍,立即报名!
    时间:2023年5月10日(周三)14:00腾讯会议号:970-205-287主讲人:赵健伟 教授 北京大学学士(1996),中科院长春应化所硕士(1999),北海道大学博士(2003),牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。南京大学教授(2003~2016),博士生导师。2016 起任嘉兴学院教授,“南湖学者"(2019,2022续聘),嘉兴学院“尖峰计划"团队带头人。研究工作集中在金属纳米材料的分子动力学模拟、分子电子传递、电化学、电化学工程等。发表学术论文230 余篇,授权发明专利 10 余件。会议内容动电流的基本原理动电流的应用范围及特点动电流的具体应用
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率:0.02um,扫描区域:200um×200um(40x物镜下)激光器532nm(蕞大100mW,可调DPSS激光器)滤波器低波数低至70cm-1 光谱仪 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:0.02um, 激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的 混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。图一:IV曲线图图二:量子效率量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。图三:系统整体图先进的光源配置:系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。图四:普通卤素灯的光谱图图五:普通氙灯的光谱图独特的测试光路设计:大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。强大的偏置光配置:为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。功能全面高效的软件:软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。图六:功能强大的图标管理功能特点总结:1、实现内外量子效率同步测试2、双光源测试,契合IEC标准,提高测试准确性3、双路可调偏置光,轻松实现三节电池测试4、功能强大的测试软件
  • 我国成功研制系列高准确度宽带大电流计量仪器
    近日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重大科学仪器设备开发专项“宽带大电流测量仪开发与应用”(2016YFF0102400)项目顺利通科技部高技术发展研究中心组织的项目综合绩效评价。光纤宽带大电流测量仪宽带标准电流传感器及测量分析系统 大电流计量技术在冶金、电力、高端制造、大科学装置前沿研究等领域应用广泛。由于生产连续运行,设备庞大,拆装不便,运行环境等特殊条件,现场大电流测量控制和监测设备一般无法到计量实验室校准,实验室的计量标准也很难下沉至现场,量值传递难以实现。   该项目研制的超大和高频电流校准装置,形成了产品化的标准工艺流程和质量体系,为产品的技术就绪度和可靠性提供了支撑保障。项目相关成果通过了第三方测试,测量准确度、线性度、带宽、噪声和环境适应性等技术指标实现了与国际先进产品的并跑或局部领跑,并且使我国大电流核心校准和测量能力(CMC)通过了国际同行评审,进入国际计量局等效互认数据库。   项目编制了一系列国家、行业和地方标准和计量技术规范,培养了一批高水平的研究和研发人员,帮助了承担工程化计量仪器仪表企业的发展壮大。   项目研究成果应用于EAST(全超导托卡马克装置)、ITER(国际热核聚变实验堆)大科学装置、电解铝、高压直流输电、电气设备性能检测、大型航空航天设备焊接制造、仪器仪表计量检测等领域,解决了行业用户关注的产品价格高、核心部件依赖进口,工业用不起或用不了的痛点和难点问题,以及长期未能解决的宽带大电流在线校准难题,取得了显著的经济和社会效益。   据悉,该项目自2016年立项,历时5年,由中国计量院联合国内10家单位共同攻关。项目基于Faraday磁光、电磁效应,突破了椭圆双折射传感光纤、小型化直波导相位调制器关键工艺,攻克了宽带高线性光纤电流传感,容性误差补偿、组合电磁屏蔽、分布阻抗消振、高频分流器校准方法、宽频矢量电量正交积分算法等关键技术,成功研制了最大电流450 kA,带宽高于100 kHz的柔性光纤宽带大电流测量仪和最大电流2000 A,最高频率1 MHz的宽带电磁式电流传感器及自动测量分析系统,实现了工程化。
  • 网络研讨会‖11月10日,赵教授在线介绍计时电流法相关知识,立即报名!
    主题:计时电流法 时间:2022年11月10日(周四)14:00腾讯会议号:973-486-620主讲人:赵健伟教授 北京大学学士(1996),期间发表研究论文士余篇,获北京大学“挑战杯"一等奖 中科院长春应化所硕士(1999),获中国科学院伟华科技奖学金 北海道大学博士(2003),获日本文部科学省奖学金 牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。在获得博士学位的同年 参加南京大学第一次全球招聘,获聘教授(2003~2016),为其最年轻教授之一,次年评为博士生导师。2016起任嘉兴学院教授,“南湖学者"(2019续聘),“浙江省纱线材料成形与复合加工技术重点实验室"主任,嘉兴学院“尖峰计划"团队带头人,浙江省二级教授。发表学术论文 230 余篇,被引总数超过 4500余次,单篇最高引用270 余次(2014年英国皇.家化学会杂志 1%高引用作者),H-index为35。主办国际学术会议4次。内容简介 本次交流会议包含如下内容:计时电流法的基本原理计时电流法的应用范围
  • 2016年瑞士万通电化学工作站专题讲座暨培训(北京站)成功举办
    瑞士万通中国于2016年10月27-28日在北京分公司举办电化学工作站应用培训。北京大学李美仙教授作为特邀嘉在培训会上做了电化学原理和应用的讲座。产品经理雷涛为大家分享了Autolab电化学工作站的应用,并进行了实战演练。来自多所高校研究院的近50多名电化学研究者参与了此次培训讨论。北京大学李美仙老师讲座产品经理雷涛讲解操作软件NOVA2.0 PGSTAT204PGSTAT204是Autolab系列中新的一员,是一款研究级的紧凑型电化学工作站。PGSTAT204的槽压为20V,最大输出电流为400mA。PGSTAT204预留一个扩展插槽,可用于一个功能模块的扩展。PGSTAT204可用于与外部设备的模拟/数字信号的输入/输出。PGSTAT204内置模拟积分器,用于电量的实时采集和 积分电流的测量。可配套的功能模块FRA32M、BA、pX1000、MUX、EQCM主要技术参数 模拟积分器有支持积分电流循环伏安是最大响应电压±20 V最大输出电流±400 mA恒电位仪/恒电流仪是电位扫描范围±10 V电位精度±0.2%电位分辨率3 μV电流档10 nA-100mA,8档电流精度±0.2%电流分辨率电流档的0.0003%-10nA档30fA恒电位仪带宽1MHz输入偏置电流/25℃ 1 pA模拟积分器积分时间0.01s,0.1s,1s和10s电极连接2、3或4电极模拟信号输出电位与电流外部电位输入电脑接口可以USB应用领域小功率锂离子电池、超级电容器染料敏化太阳能电池腐蚀与防护导电聚合物及膜科学涂层研究介电材料及半导体材料电催化电沉积等
  • 深圳先进院等开发出基于光电晶体管架构的X射线直接探测器
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。研究工作得到国家自然科学基金、深圳市科技计划等的资助。
  • 海尔欣发布DFB-2000 半导体激光器屏显驱动新品
    DFB-2000是海尔欣推出的新一代DFB激光器驱动控制器,整合了全新设计的触摸屏UI界面,激光电流源,以及温度控制功能,极大的方便了用户的操作、使用及测量。海尔欣自主研发的电路,具有极低的电流噪声与极低的温度漂移,最适合精密光学测量。驱动器包含散热单元,TEC温度控制电路和低噪声电流驱动,支持外部任意波形的模拟信号调制,并将状态监控实时显示于驱动器触摸屏上。与QC750-TouchTM量子级联激光驱动器类似,考虑到激光器芯片的昂贵成本,海尔欣特殊设计的最大电流软钳制功能,可有效规避异常情况下大电流对激光管造成的损伤。除此以外,DFB-2000同时具备多种安全保护机制,zui大限度保证激光器的安全。该产品可被广泛使用在基于实验室和现场部署的多种近红外光谱测量系统,集成度高,稳定可靠。产品特色• 一体化集成电流源及温控驱动,功能完备• 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命• 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等• 最大电流软钳制功能,避免误操作大电流损坏激光管• 全液晶触控UI界面,便于用户操作使用及数据观测• 全自主研发,集成度高,性价比高参数指标电流源驱动性能 输出电流范围 10 ~ 250mA 漂移24hr(@25℃) 1mA 最大偏置电压 5V 模拟调制带宽 DC - 100kHz 缓启动时间 3 ~ 4s 电流噪声密度 (10kHz~100kHz@250mA) 4nA/(Hz)1/2TEC温控性能 TEC最大控制电流 ±2A TEC最大控制电压 5V 最大热功率耗散 12W 设置温度范围 10 ~ 50℃ 控温范围 10 ~ 50℃ 控温稳定度 0.01℃(环境温度25℃恒温) 0.05℃(室温环境) 温度传感器类型 适用10 kΩ或20kΩ热敏电阻模拟外调制 输入阻抗 10 kΩ 调制系数 100mA/V ±1% 3dB带宽 DC -100kHz 调制电压范围 ±2.5V通用参数 供电电源 5V DC,15W (含电源适配器) 工作环境温度 10 ~ 40℃ 储存环境温度 -10 ~ 85℃ 输出接口 RS232通讯(含模块通讯线缆) 人机界面(含触控笔) 全液晶触摸屏显示与控制,报警,日志记录功能 尺寸(长*宽*高) 16.2×11.56×5.37 cm3 重量 <1.5kg结构尺寸(单位:mm)接口定义序号名称备注1. 液晶显示屏 显示界面,详见用户手册3. 旋转编码器微调电流、温度、快速开机等,详见用户手册232 通讯接口6. 电源接口供电输入8. 触控笔 方便进行屏幕操作 表1 壳体面板说明(部分)1. TEC+14. TEC-2. Thermistor13. Case3. NC12. NC4. NC11. LD Cathode5. Thermistor10. LD Anode6. NC9. NC7. NC8. NC注:可根据客户实际需要更改引脚定义。 表2 DFB发射模块接口说明(部分)界面视图(部分)图1 主界面1)激光器电流:显示了实际的激光器电流值。2)TEC温度:显示了实际的TEC温度值。3)激光器电流和TEC温度左边的选择按钮:一旦选中相应的选项可以用旋转按钮进行微调。4)激光器开关:控制激光器电流源开启/关闭。开启状态时开关为橙色,关闭状态时为灰色。图2 设备连接创新点:• 一体化集成电流源及温控驱动,功能完备• 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命• 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等• 最大电流软钳制功能,避免误操作大电流损坏激光管• 全液晶触控UI界面,便于用户操作使用及数据观测• 全自主研发,集成度高,性价比高DFB-2000 半导体激光器屏显驱动
  • 超快多维成像:同时测量坐标数破千
    近日,来自韩国科学技术院的Jungwon Kim团队,通过利用频率梳的电光采样,展示了一种能够同时测量超过1000个空间坐标的飞时变化的相机。这一研究成果能够对三维设备中的复杂结构和动力学过程进行精确而快速的成像,具有极高的研究与应用价值。该文章发表在国际顶尖学术期刊《Light: Science & Applications》,题为“Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multidimensional imaging”,Yongjin Na为论文的第一作者。光学成像和测量技术在现代科学技术中至关重要,其应用范围及其广泛,诸如振动模式测量,体内生物医学成像和自动驾驶技术等技术的发展,都离不开光学成像和测量技术的进步。尤其是快速准确地实现对微米和纳米级设备的表面轮廓的成像,对研究这类设备的静态和动态属性起着关键性作用。在静态属性方面,在越来越大的晶圆面积上进行更高动态范围和更高数据量的尺寸测量对半导体工业愈发重要。到目前为止,已经使用了使用干涉测量法和共聚焦显微镜来实现对表面的测量,但是,这些方法在测量范围(通常小于几微米)和速度(通常需要数百秒来完成成像)方面都仍然具有相当的局限性。而在动态特性方面,准确表征微和纳米机械设备中的振动和动态行为对于理解基础物理学和推进其应用至关重要。尤其是新近被发现的各种非线性、瞬态和复杂的机械动力学,例如微米和纳米机械谐振器中的非谐振动、脉冲光机械等等,都需要具有更精细的轴向和横向分辨率、更高速度和更高动态范围的实时表面变形成像。在这一问题上,相干干涉仪和白光干涉仪因其纳米级的轴向分辨率和可靠性而被广泛使用。但是,这些技术也存在亚微米的模糊范围和低动态成像的速率等局限性。因此,无论是静态还是动态的微观表面成像,都存在着成像质量和速率上的缺陷,如果能解决这个问题,无疑能让光学测量技术以及微机械技术向前迈进可观的一步。在本研究中,研究人员搭建了一种基于电光采样的新型线扫描飞行时间 (TOF) 成像技术,能够捕捉具有高动态范围的微型设备的静态和动态特性(图一)。该方法能够实现高像素率(高达 260 兆像素/秒)、高轴向分辨率(低至 330 pm)(图二,图三)和高动态范围(高达126dB)(图四),并且能够同时检测数毫米视场(FOV)上超过1000 个空间坐标的TOF变化范围。这种前所未有的性能优势不仅可以在不需要太多先验知识的情况下对复杂结构进行快速和精确的成像,还可以实时观察微型设备和机械谐振器中快速和非重复的机械运动,对微测量领域的发展具有极其重要的意义。图一:基于电光采样的线扫描TOF相机的工作原理。将锁模Er-光纤振荡器作为光学频率梳的源。使用MUTC光电二极管生成的超低抖动光电流脉冲,来生成时间尺。在目标成像过程中,光脉冲被扩展,并进行谱色散以实现空间-波长编码。从目标物体反射后,TOF编码的子脉冲被收集并在 EOS-TD中进行TOF到强度的转换。最后使用线扫描相机分析EOS-TD输出光谱,以同时重建超过1000个空间点的TOF信息。图二:线扫描TOF方法的轴向和横向分辨率的分析。(a) 对TOF精度的测量,重叠艾伦偏差(overlapping Allan deviation)关于采集时间的函数。图中展示了 4 V、8 V和16 V(不饱和和饱和相机条件)的三个MUTC 光电二极管偏置电压。插图:相对于光脉冲和光电流脉冲上升沿之间的相对时间的归一化 EOS-TD 输出,展示了4 V、8 V 和 16 V(不饱和)和 16 V(饱和)偏置电压的可测量范围分别为 3 毫米、1.6 毫米、1.2 毫米和 0.4 毫米。(b) 在10 ms采集时间(16 V 偏压,不饱和相机)每个像素位置的TOF 精度测量。(c)以30毫米焦距聚焦时测得的光束轮廓。(d)分辨率目标的显微成像。右上图中显示了第6组和第7组的放大图像(左侧图中的红色框)。如单线扫描轨迹所示,第6组中元素 6 的三个条具有约23%的对比度,从而产生约 114 lp/mm(4.38μm)的横向分辨率。图三:3D表面轮廓成像结果。(a) 相同材料(碳化铬)的两个量块的表面轮廓成像。如从点 A到 A' 的横截面图所示,可以清楚地测量到300 μm的台阶高度。灰色区域表示量块的边缘,由于来自两个表面的反射,TOF 在此处具有模糊性。台阶高度(点 I和II之间)确定为 300.029 μm,重复误差(在100 μs 采集时间下 100 次连续测量的标准偏差值)为 31 nm,与校准干涉仪结果的误差为 +31 nm。(b) 不同材料组装成像结果;附在陶瓷光学平面上的两个钢量块。测得的500μm 阶高 (II - I) 具有93 nm 的重复误差(100 μs 采集时间)和校准干涉仪结果的-22 nm 误差。(c) 复杂周期结构的表面轮廓成像(涂有100 纳米厚的银的硅样品)。一对f = 60 mm 镜头用于得到更好的空间分辨率。区域 I 中TOF点的直方图展示了10.039 μm平均高度差,与共聚焦显微镜结果相比有-14 nm 误差。插图:样品的显微图像 (2.5X)。图四:动态成像结果。(a) 两个附有PZT的镜子之间的相互作用。f = 75 mm镜头用于约10 mm的水平FOV。两个PZT的驱动持续时间约为100毫秒,延迟约为25毫秒。下方的图依次显示了调制开始、相互作用瞬态、稳态和调制结束时重建的TOF迹线。(b) 对MEMS 桥弯曲模态形状的实时观察。14 束光束尺寸约为 8 μm,FOV约为880 μm的光束沿桥的长边入射。测量了前五个弯曲模式(从4.0 kHz 到80.9 kHz)的共振运动。14 个局部位置的TOF用红点表示,点之间的TOF曲线是用样条法插值的。插图中展示扫描电子显微镜的成像结果。
  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • 我国高温超导电流引线试验获世界最高纪录
    本报合肥12月19日电 记者从中科院合肥物质科学研究院获悉,即将用于人类首座热核聚变试验堆ITER的高温超导大电流引线的研发获重要进展。该院等离子体所的科研人员,在高温超导大电流引线试验中获得了通过90千安电流的成果。这是迄今世界各国获得的最高纪录。用于本次试验的电流引线是ITER协议签署后的第一个原型尺寸的重要部件。此举表明我国正在顺利执行ITER计划并迈出了关键一步。   ITER试验堆的超导电流引线系统又称超导馈线系统,是ITER及未来核聚变反应堆不可或缺的重要系统之一,其加工、制造的质量直接影响到将来ITER的主机磁体能否正常运行。按照ITER各参与国之间采购包的划分,中国将独立承担ITER所有超导馈线系统的设计与制造。ITER主机内部大型超导磁体线圈能产生稳定的磁场来约束等离子体,但为之供电、供冷及测量诊断的低温系统、电源系统以及控制测量系统等,却在主机外部而且距离较远,因此需要设置一个独立的磁体传输线系统即超导馈线系统,来连接磁体线圈与各子系统,实现磁体系统电流、低温冷却和数据信号等的传输。   符合ITER要求的是45—68千安的超大电流引线型超导馈线系统。这次用于试验的是一个符合ITER要求的原型尺寸的电流引线,这也是参加ITER计划的七国中第一个成功通过试验的原型尺寸的部件。这种高温超导大电流引线的成功研制,不但使中国可以按时交付ITER所需的超导馈线系统,而且有利于解决聚变堆巨型超导磁体致冷节能的科学问题。
  • 上海交大张月蘅课题组在新型超宽谱光电探测器方面获进展
    近日,Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。A. 量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图. 近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。A.暗电流随温度变化 B. 暗电流与常用太赫兹探测器对比 C. 零偏压下微观响应机制 D. 量子棘轮探测器光响应谱. 应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。 该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。 该工作近日发表于Science Advances (Sci. Adv. 8, eabn2031 (2022))上。共同第一作者北京应用物理与计算数学研究所助理研究员白鹏和张月蘅课题组博士研究生李晓虹,共同通讯作者为应用物理与计算数学研究所楚卫东研究员、上海交通大学张月蘅教授和清华大学赵自然教授。研究工作得到了国家自然科学基金、上海市科技自然科学基金、博士后基金和上海交通大学“人工结构及量子调控”教育部重点实验室开放课题的经费支持。上海交通大学张月蘅课题组承担并参与了器件设计、器件性能测试表征及论文写作方面的工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制