当前位置: 仪器信息网 > 行业主题 > >

离子色谱基本原理

仪器信息网离子色谱基本原理专题为您提供2024年最新离子色谱基本原理价格报价、厂家品牌的相关信息, 包括离子色谱基本原理参数、型号等,不管是国产,还是进口品牌的离子色谱基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子色谱基本原理相关的耗材配件、试剂标物,还有离子色谱基本原理相关的最新资讯、资料,以及离子色谱基本原理相关的解决方案。

离子色谱基本原理相关的资讯

  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 质粒抽提的基本原理及操作流程
    质粒抽提的基本原理及操作流程⒈质粒抽提基本原理在其中采用几种水溶液及其硅酸化学纤维膜(超滤膜柱)。 水溶液Ⅰ:50 mM果糖 / 25 mMTris-HCl/ 10 mMEDTA,pH 8.0;水溶液Ⅱ:0.2 N NaOH / 1%SDS; 水溶液Ⅲ:3 M 醋酸钾/ 2 M 醋酸/75%乙醇。水溶液Ⅰ果糖是使飘浮后的大肠埃希菌不容易迅速堆积到水管的底端;EDTA是Ca2+和Mg2+等二价金属材料正离子的螯合剂,其关键目地是以便鳌合二价金属材料正离子进而达到抑制DNase的特异性;可加上RNase A消化吸收RNA。水溶液Ⅱ此步为碱解决。在其中NaOH关键是以便融解体细胞,释放出来DNA,由于在强偏碱的状况下,细胞质产生了从两层膜结构工程向微囊构造的转变。SDS与NaOH联用,其目地是以便提高NaOH的强偏碱,一起SDS做为阳离子表活剂毁坏脂两层膜。那步要记牢二点:首位,时间不可以太长,由于在那样的偏碱标准下基因组DNA-p段也会渐渐地破裂;其次,务必温柔混和,要不然基因组DNA会破裂。水溶液Ⅲ水溶液III的功效是沉定蛋白质和中和反应。在其中醋酸钾是以便使钾离子换置SDS中的钾离子而产生了PDS,由于十二烷基硫酸钠(sodium dodecylsulfate)碰到钾离子后变为了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS不是溶水的,一起1个SDS分子结构均值融合2个碳水化合物,钾钠正离子换置所造成的很多沉定大自然就将绝大多数蛋白沉定了。2 M的醋酸是以便中合NaOH。基因组DNA如果产生破裂,要是是50-100 kb尺寸的片段,就没有方法再被 PDS共沉淀了,因此碱解决的时间要短,并且不可猛烈震荡,要不然蕞终获得的质粒上都会有很多的基因组DNA渗入,琼脂糖电泳能够 观查到这条浓浓总DNA条带。75%乙醇关键是以便清理盐分和抑止Dnase;一起水溶液III的强酸碱性都是以便使DNA尽快融合在硅酸化学纤维膜上⒉质粒抽提流程⑴应用质粒提取试剂盒获取质粒时请参照实际试剂盒的操作指南。如Omega企业的E.Z.N.A.? Plasmid Mini Kit I, Q(capless) Spin (质粒提取盒)。⑵碱裂解手提式法:此方式适用少量质粒DNA的获取,获取的质粒DNA可立即用以酶切、PCR测序、银染编码序列分析。方式给出:①接1%含质粒的大肠埃希菌体细胞于2mlLB培养液。②37℃震荡塑造留宿。③取1.5ml菌体于Ep管(离心管),以4000rpm抽滤3min,弃上清液。④加0.lml水溶液I(1%果糖,50mM/LEDTApH8.0,25mM/LTris-HClpH8.0)充足混和。⑤添加0.2ml水溶液II(0.2mM/LNaOH,1%SDS),轻轻地旋转搅拌,放置冰浴5min.⑥添加0.15m1预冷水溶液III(5mol/LKAc,pH4.8),轻轻地旋转搅拌,放置冰浴5min.⑦以10,000rpm抽滤20min,取上清液于另翻新Ep管。⑧添加等容积的异戊醇,搅拌后静放10min.⑨以10,000rpm抽滤20min,弃上清。⑩用70%酒精0.5ml清洗一回,吸干全部液体。待沉定干躁后,溶解50ulTE缓冲液中(或60℃温育双蒸水)。
  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 戴安公司离子色谱培训班
    培训名称:戴安公司F0830期ICS90/1000/1500型离子色谱培训 培训时间:3月12-14号 培训地点:广州 培训内容:1.离子色谱基本原理及典型应用 2.离子色谱结构与操作 3.常见故障简单维护 4.CHROMELEON色谱工作站 5.上机操作 6.样品前处理 培训报名方式:如要参加此次培训请与戴安公司培训部汪小姐联系,联系电话:010-64436740, 传真:010-64434148/010-64432350 Email:wangqiong@dionex.com.cn 手机:15810270184 或者到戴安公司网站下载报名表报名,网址为:www.dionex.com.cn 本活动解释权在戴安中国有限公司培训部。 screen.width-300)this.width=screen.width-300" border=0
  • 青岛普仁吉林省质监系统离子色谱技术交流会圆满落幕
    为更好的服务吉林省质监系统用户,切实提高离子色谱应用水平,青岛普仁仪器有限公司于2018年8月2日-5日在青岛成功举办吉林省质监系统离子色谱技术交流会。技术服务部总工杜晓磊为大家详细讲解了离子色谱的基本原理,在质监领域的典型应用及所涉及的前处理技术,仪器的操作流程及维护保养等。在互动环节,吉林省质监系统专家用户结合自身工作经验,对离子色谱的应用方法及技巧做了分享交流,并提出一些具体问题,针对用户提出的问题,杜工一一做了详细解答,并给出了切实有效的解决方案,大家纷纷表示此次培训班为质监系统用户提供了相互交流学习的平台,每个人都受益良多。培训结束后,大家参观了普仁化学调试实验室,近距离的了解了普仁PIC系列离子色谱的产品特点,技术工程师现场演示了实验室离子色谱操作流程,介绍了在线离子色谱的技术优势及关键部件,专家用户对普仁离子色谱的运行稳定性,检测精确性给予充分肯定,尤其对普仁成功研制国内首台在线离子色谱仪的技术创新能力及行业地位予以高度评价。通过本次技术交流会,切实有效提升了用户的离子色谱操作和应用水平,让用户对普仁有了更全面的了解和更深刻的认识。普仁将不忘初心,矢志创新,一如既往的为广大用户提供更好更完善的产品和服务。
  • 青岛普仁第十届离子色谱仪研讨会成功举办
    http://www.qdpr.com/gb2312/products/   青岛普仁仪器有限公司第十届离子色谱仪研讨会于2013年9月8日至12日在青岛卧龙山水大酒店成功举办。本次会议我们有幸邀请到青岛科技局领导出席,培训安排了离子色谱行业的权威专家、用户代表及普仁的工程师为大家讲解仪器的研究应用及使用技巧等,中间我们安排了有奖竞答、仪器演示等环节,与会人员积极参与,切实做到了学有所获。   出席会议的领导及专家:中国分析仪器学会理事、离子色谱专业委员会主任、浙江大学朱岩教授 青岛市环境监测站总工谭丕功先生、山东省出入境检疫检验局崔鹤博士 青岛大学余季金教授 青岛市李沧科技曹局长及刘主任出席了本次会议,并认真听课,参与培训。   朱岩教授讲解:离子色谱的基本原理和仪器介绍 崔鹤博士讲解:离子色谱的应用。   青岛大学青岛大学余季金教授讲解:离子色谱的校准曲线及其通用性能扩展。      用户互动环节,吉林环境监测站工程师祝琳琳讲解了自己使用普仁离子色谱的心得体会,长城钻探工程有限公司工程师郑新卫讲解了滤液分析技术在录井中的研究与应用。   普仁技术主管杜晓磊工程师讲解:离子色谱仪的故障发现及解决方案 孙建工程师讲解:离子色谱工作站反控软件的使用方法 刘会工程师讲解:离子色谱分析结果的质量保证 岳敬伟工程师讲解:离子色谱样品预处理方法 王存进工程师讲解:透析液的PIC-10型离子色谱仪分析法 徐同超工程师讲解:普仁PAS-Ⅱ型自动进样器的使用与维护。   课程中间我们安排了有奖竞答活动,每位老师讲完课提问2-3个问题,回答正确的用户可以获得普仁公司精心准备的一万毫安移动电源和崂山绿茶,用户积极参与。   本次会议我们安排了仪器操作演示,用户现场提出使用中遇到的问题及难点,普仁工程师用心解答。 晚宴剪辑:
  • 2019青岛盛瀚离子色谱线下培训交流会(广西站)顺利举办
    导读2019年3月28日,青岛盛瀚离子色谱线下培训交流会(广西站)在南宁湘桂国际大酒店顺利举办。会议吸引了来自广西各地的第三方检测公司、环境监测站、疾控、水质等多家单位用户前来参加,大家围绕提高离子色谱分析技术展开交流学习。盛瀚秉承以客户为中心的理念,时刻关注客户实际需求。2019年将在全国举办15场大型客户线下培训班活动,真正做到服务好客户。广西南宁第一站,今天如火如荼拉开序幕。会议现场此次交流会我们荣幸的邀请到了原广西分析测试中心叶开富主任为这次交流会做了开幕致词。随后由盛瀚市场经理孙旭光为大家详细介绍了公司的发展历程,青岛盛瀚专业从事离子色谱仪及核心部件的研发、生产、销售和技术服务。专注于为各行业用户提供领先的离子色谱应用解决方案和技术服务,公司拥有国内领先的研发、营销、生产运营、应用支持及售后服务团队。公司自2002年成立以来坚持以明德惟馨的品质、厚德载物的品行,积极拼搏奋进,取得了不菲的成绩与市场客户的认可。公司介绍过后,盛瀚产品经理兼首席讲师王永文对离子色谱基本原理、关键技术及离子色谱标准这三方面进行了深入解读。为解决用户在实验操作过程中遇到的难点问题,盛瀚售后工程师李赛现场为大家讲解了离子色谱操作与常见故障排除及仪器维护知识。李工就离子色谱仪结构,连接反控软件、设置参数等上机操作,以及常见故障排除方法等与参会用户进行了分享交流。在实操答疑环节中,参会用户提问、学习的热情高涨,盛瀚技术人员黄伟明针对大家的提问逐一分析,讲解,并给出一对一解决方案。整个交流过程,参会人员学习热情高涨。会后大家普遍表示在与技术人员的交流互动过程中,无论是基础理论还是实际应用,都对离子色谱分析技术有了进一步更全面的认识,获益良多。
  • 赛默飞带您全方面解析石化领域中离子色谱的应用
    石化行业,上涵油气勘探、开采与炼制,下衔材料加工、合成与催化等相关产业,既是主要能源供应,又是材料行业支柱,占据国民经济重要地位。离子色谱是卤素化合物、氮硫磷形态、有机羧酸、金属离子等元素离子形态与价态的理想分离分析手段,已广泛用于石化行业中的油气勘探和开采、石油炼制及加工、三废排放等生产环节中,进行质量表征与工艺控制。赛默飞领xian的离子色谱技术,为石化行业提供了完整的应用解决方案。 水质分析水之于石化,犹如鱼与水。回注驱油水质,直接影响采收率与地质断层位面保护;循环冷却水质,直接影响企业生命线——生产设备的腐蚀与安全… … 高效快速分析,是生产效率提高的重要基础。《SYT 5523-2006》、《GBT 14642-2009》和《GBT 15454-2009》等标准方法中,相继推荐采用离子色谱方法完成其质量控制和工艺监控。 赛默飞独jia高压高效离子分析方案基于行业领xian的4μm聚合物基质离子交换填料,可在8min之内完成水质中常见阴、阳离子化合物分析。此方法方案完全覆盖地表水、地下水、回注水、循环水等各类复杂基质水样分析,将传统离子色谱分析效率提升3倍以上。赛默飞专利“只加水”技术在高压高效快速分析的同时,只需添加超纯水,即可实现离子色谱的正常运转,不仅提供了无背景污染的淋洗系统,更是使离子色谱真正实现了持久稳定、少人照管式运行。淋洗液自动发生器原理示意图??淋洗液浓度正比于施加电流,高精确度、高准确度??仅需超纯水,无溶液配制过程,方法可重复性高??高压等度/梯度淋洗,方法兼容性强 电解抑制器原理示意图??电解抑制,简化流路,消除试剂配制过程??淋洗液与再生液两通道物理分离,无交叉污染??连续再生,无限容量 石化产品品质分析一.石化原油气及下游产品卤素和硫的测定原油气存含的卤素和硫,不仅会导致生产设备的腐蚀,也会造就严重的环境污染,同时会随产业链向下游产品传递。迄今,脱硫工艺仍是石化行业产业链的重要攻关难题,卤素残留依然是催化剂和催化工艺的短板。卤素和硫元素的完全释放,通常推荐激烈的燃烧方式,如《SNT 3185-2012》。传统的氧瓶或氧弹燃烧方案,诸多环节存在操作误差和污染引入,致使测定结果存在较大的不确定度,对于重整催化剂中痕量卤素的测定等需求,几乎无能为力。 赛默飞在线燃烧离子色谱系统(CIC)采用管式炉在线燃烧释放-在线吸收-在线进样的全自动化测定方案,在持续的高纯氩气和高纯氧气交替吹扫氛围中,卤素和硫被高温燃烧裂解释放,尾气被吸收液完全吸收后,触发自动进样,注入离子色谱完成卤素和硫含量的同时分析。燃烧-离子色谱仪组成较高的自动化程度,较低的系统空白,赛默飞燃烧离子色谱(CIC)方案也被广泛应用于石化行业相关原材料或产品中痕量卤素和硫的监测,如重整催化剂中痕量卤素、冰醋酸中痕量碘化物、合成橡胶中痕量卤素的测定、RoHs指令检测等。燃烧-离子色谱基本原理典型样品(石脑油馏分)分析谱图 二.有机化工产品中杂质离子的测定醇、醛、酮、腈类化合物,是石化行业的重要产品,也是下游的半导体制造等行业所需的高纯清洗剂和溶媒作用剂重要源头。无机离子的残留量,可造成下游材料制造过程沾污,致使成品缺陷率增加,是高纯试剂品质的重要指标之一。 赛默飞“谱睿”技术方案以纯水为媒介,将样品从样品阀(阀1)完全转载入富集阀(阀2),待测化合物被富集于离子浓缩柱上,而样品基质则流入废液。随后,富集柱被切换进入色谱分离系统,完成待测化合物的分离测定。通过调节样品阀上定量环的体积,便可以轻松测定不同浓度级别的杂质离子。赛默飞“谱睿”技术原理示意图在样品阀和富集阀之间引入固相萃取柱,即可实现Online SPE;在样品阀和富集阀之间引入色谱分离系统,即可实现2D-IC,完成更加复杂的样品基体消除和超痕量离子杂质测定。 三废分析卤素和硫元素残留,横贯整个石化行业产业链产品。“三废”肆意排放,将导致生态环境酸化,危害生态平衡。《GB 31571-2015》提供了权威排放依据。参照《SYT 7001-2014》,选用赛默飞高容量高选择性离子交换柱IonPac AS18,35min之内即可完成三废中卤素、硫形态以及氮氧化物的快速分离测定。醇胺脱硫溶液中热稳定盐阴离子组成分离谱图色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 廖洪柱:我的离子色谱世界(上篇)
    p   今天早上起来,有一些对离子色谱的感触。借此平台,发表一点对离子色谱的肤浅看法,一点新生代的声音,请不要见笑。 br/ /p p   离子色谱若以1975年作为起点,发展历程上已过了40多个春秋。许多原创的ideas以及技术的突破在前20年已经发挥得淋漓尽致。之后的20年,基本上是产品或技术改良与改进。今天,在西方世界里,已经少有对它的研发给予特别的关注,比如北美的一个国家可能也就那么1-2研究组做些相关方面的工作。 /p p   两年前,我有幸见到离子色谱的发明人Hamish Small,老先生已经90多岁的高龄,仍在从事一些科研工作,而且不断有文章发表。聊到他最近所做的工作,他说在合成些新材料,但是与离子色谱无关。或许对他来讲,离子色谱这个金矿已经没有太多的矿产了。 /p p   然而,在今天的东方国家,离子色谱仍然方兴未艾,这主要得益于以下三个方面:极其广泛的应用领域、东西方仍存的技术落差以及巨大的市场需求。在上述三个因素的刺激下,离子色谱的研究工作在东方国家呈现出一个百花齐放的局面。但是,这种局面是持续健康地发展,还是过早地凋谢或变得不温不火,却全然在于我们的态度。在离子色谱领域,假设,任凭戴安(今赛默飞旗下品牌)把一切都专利保护起来,同时保密能保密的东西,技术垄断,一家独大,很快就会让它停滞不前。每年的PITTCON会议都开设离子色谱的专场,多少能感受到戴安品牌之外科研工作者对技术垄断的不满。今天,中国自主研发的各品牌IC系统,借着价格的优势,也争得一席之地。总之,寸有所长,尺有所短,各放异彩,才能让离子色谱在东方再续辉煌。 /p p   要做到是离子色谱界持续健康的发展其实也容易,那就是“扬尊师重道,抑论资排辈”。这两个成语有些许接近,有时让我们难以区分。“尊师”就是对领域里的前辈们,特别是做出卓越贡献的人,有十分的尊重。“重道”则是看重技术与专利,看重原创,看重对离子色谱基本原理、基本概念的理解。举一个例子,如果是行业领头人的会议报告,听众基本上是鸦雀无声,仿佛沉寂,没有人玩手机或中途离场,而且报告结束时还报以持续不断的掌声以及提各样激发性的问题,这就算是“尊师重道”。“论资排辈”的表现则是比资历、比年龄、比人脉,轻创新、轻人才、轻年轻人。一位知名的分析化学教授曾多次讲到:“我们在我们熟悉的专业领域之外的无知是一样的”。今天,离子色谱的发展需要更多地广开言路,遍地开花,敢于发出自己的声音。前辈们经验丰富,有解决难题之强,新生代天马行空,却有不畏艰难之志,二者结合,或能再续二十年的辉煌。年轻人如果不敢发声,提出各种不切实际的idea,仅仅遵循前人的脚步,听从教授的安排,最终只能使离子色谱发展之路的“交通堵塞”,无法前行,倒下一批又一批。但若前辈们不愿意听年轻人的声音,给予鼓励与支持,也只能导致万马齐喑。 /p p   要破这个局也有办法,就是“寻天马行空,行脚踏实地”。年轻人能发自内心地称前辈们为“老师”、“老总”,却同时能彼此以朋友相待。年轻人无需过于高看、仰视以致于畏惧前辈们,前辈们也不需要鄙视年轻人不成熟的想法和其无畏无惧的心。 /p p   在我的博士期间,我的导师亲力亲为的态度与追求卓越与极致的心让我感动,然而我却更感激他给了我自由发挥的空间。刚进组里时,他给了我充分发声的机会,让我为我的无知辩解。两周一次的组会报告,平均大家的时间是三十分钟不到,可我往往要花一个多小时。并非做出了什么新的发现,只是给了我辩解发声的机会。慢慢的,我才回到正常作报告的时间。这段时光,尝试了各种稀奇古怪的实验,也留下了许多关于离子色谱的未解之谜,我很怀念,以后如果有机会再与大家分享。此外,在导师的盛名之下,有机会认识了分析化学界知名的专家与教授,尤其是离子色谱领域,当然是借着接送他们的各种机会。他们的盛名不能带给我丝毫的益处,除非能帮你写推荐信,但是他们的思想与科研的品质却可以传承年轻一代。从态度上来讲,基本上,他们都没有架子,愿意倾听年轻人的声音,既像导师对学生,也像朋友对朋友。另外,在美国工业界,互相之间都是直呼其名,没有人叫老总,也没有叫DOCTOR (无意反对我们自己中国人这样叫,这是优良传统,只是想说大家故意消除TITLE带给思想交流的阻隔,从来带来更多的创意与利益)。这些逐渐改变了我的性格,使我敢于乱发声,敢于提出自己不成熟的想法。因此,如果对前辈们多有得罪之处,还请见谅。 /p p   年龄越大,我们的思想越成熟的同时也越来越禁锢。年轻人则会天马行空,无所畏惧。这些看似稀奇古怪的想法,如果没有被轻视或忽略,仍会有些能开出惊艳的花朵,至终结出果实。手比头高,愿意将想法付诸行动,多次的失败必换来宝贵的经验与最终的成功。同时,如果前辈们能有同行相重的心,能够有倾听的耳朵,并伸出大力扶持与鼓励的手,我想离子色谱界能成为一个更加美好的可居可乐之地。 /p p   总之,离子色谱的世界看似很小,但它的应用却很广泛。理论上讲,它能看见、分辨与度量一切在溶液可电离的离子。离子分析是一个更大的舞台,那是一片更广阔的天地。同时,静电作用与离子交换,就如宏观世界中的重力一样,无形之中,影响着微观世界的聚散离合。离子交换最早的记录出现在圣经《出埃及记》中摩西用柳树枝子将苦水变甜的故事,这事在多篇离子色谱的综述中有提到。离子交换树脂的应用也大大超过了离子色谱本身。例如,我现在所从事的制药行业,用它作缓释药的载体就是一个很好的例证。然离子色谱作为一项成熟的技术,在未来一段时间内仍将释放它的光辉,也不会被取代。离子色谱能否像信息技术一样,起源于西方,却在东方生根发芽,长大成熟,至终繁盛至极?能否超过它在西方世界所取得的成就?全在于我们今天的态度与理念。那就是“抑论资排辈”, “扬尊师重道”,“寻天马行空”,“行脚踏实地”。最后,与各位同仁共勉,愿我们都愿意发出自己的声音,一起探索这可居可乐之地! /p p br/ /p p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 廖洪柱: /span /strong /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " img src=" http://img1.17img.cn/17img/images/201803/insimg/65c8b3b4-5cc1-4df9-bed6-b66e27ad0112.jpg" title=" 廖洪柱.jpg" / /span /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " & nbsp & nbsp 德克萨斯大学阿灵顿分校分析化学博士,博士期间主要是借助离子色谱仪与柱后碱引入方法实现对极弱酸的灵敏检测。先后开发出小体积高混合率的在线混合器,挥发性弱酸(硫化氫与氰化氢等)的转移与检测装置,以及挥发性胺的引入装置并申请了相关国际专利。 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 现就职于德克萨斯州NEOS Therapeutics公司,该公司主要开发ADHD(专注力失调与过度活跃症)类缓释药物,主要利用离子交换树脂来吸附与缓释药物有效成分,目前公司已有三款新药上市。作为研发部门的一员,一方面专注于药物分析方法的开发与验证,另一方面专注于新药的研发工作,在离子色谱,高效液相色谱,液质联用,扫描电镜仪等仪器的应用方面有较深入研究。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span br/ /p p br/ /p
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 浅谈离子对色谱法
    小伙伴们在做日常检测,会发现有些项目,测试标准上使用的流动相中加入了像庚烷磺酸钠、四丁基氢氧化铵、四丁基溴化铵等试剂,这类试剂我们称为离子对试剂,它可以用来改善分离和峰形、缩窄样品的保留范围等。离子对试剂可以看成是在高效液相色谱法中引入了离子色谱方法的一种表现。今天小编和小伙伴们聊聊离子对色谱法的保留基本原理和一些特殊问题。离子对色谱法(IPC)可被看做是以分离离子样品为目标的反相色谱法的改良形式。IPC和RPC唯yi不同的条件是IPC在流动相中添加了离子对试剂R+或R-,这些试剂能在平衡过程中,与酸性化合物的A-或碱性化合物的BH+发生相互作用: 离子化溶质 离子对(酸)A-+R+ ⇔ A-R+(碱)BH++R- ⇔ BH+R- 亲水性溶质 疏水性离子对(在RPC保留较少) (在RPC保留较多)使用IPC可令样品的保留行为产生类似于改变流动相pH的变化,但是IPC能更好地控制酸性溶质或碱性溶质的保留行为,而且无需使用极端的pH(如pH8)。典型的离子对试剂包括烷基磺酸盐R-SO3-(R-)和四烷基铵盐R4N+(R+),以及强羧酸(通常是离子化的)(四氟乙酸、TFA;七氟丁酸酐、HFBA(R-)),还有所谓的离液剂(BF4-、ClO4-、PF6-)。有关IPC的保留机理目前有两种说法。一种说法是离子对在溶液中形成,然后被保留在色谱柱上,溶质保留平衡过程如下(以离子化的酸性溶质A-和四烷基铵盐R+形成离子对为例):A-R+(流动相) ⇔ A-R+(固定相)根据这个说法,溶质保留由以下因素决定:① 溶质分子A在流动相中已电离的部分(取决于流动相pH和溶质的pKa);② IPC试剂的浓度和它形成离子对的趋势;③ 离子对复合物A-R+的k值。另一种说法则认为,IPC试剂先被固定相保留,然后溶质的保留是离子交换的过程,例如,离子化的酸性流动相A-和IPC试剂R+X-:A-(流动相)+ R+X-(固定相) ⇕ A-R+(固定相)+ X-(流动相) 即是,离子对试剂 R+X-先吸附到固定相上,然后样品离子A-代替固定相上的反离子X-。这两种IPC的保留过程都可能在任一个给定的分离中占优势,但是哪一种机制起着更为重要的作用既不容易确定,对实际操作也不重要。在IPC中,可以用于控制选择性的分离条件包括:➩ pH;➩ IPC试剂的类型(磺酸盐、季铵盐、离液剂);➩ IPC试剂的浓度;➩ 溶剂强度(B%);➩ 溶剂类型(甲醇、乙腈等);➩ 温度;➩ 色谱柱类型;➩ 缓冲溶液的类型和浓度。无机试剂(或“离液剂”)如ClO4-、BF4-和PF6-可用于代替常用的烷基磺酸盐作为IPC试剂。无机试剂在固定相上的保留较少,它的保留机理更接近上述的di一种说法,在流动相中形成离子对。离液剂能更好地用于梯度洗脱(有较小的基线噪音和漂移),且当B%较高时也能较好的溶解在流动相中。但是使用离子对试剂也有一些特殊问题,在某些情况下需要严格控制流动相pH;温度控制的重现性必须较高(比RPC更需要),此外,IPC中的某些问题不会在RPC分离中出现或与其他RPC有所不同。还有就是出现伪峰、改变流动相周柱平衡缓慢、有不明原因造成的糟糕的色谱峰型等。首先是伪峰。当把样品溶剂(不含样品)注入到IPC中(即空白实验),我们有时会观察到正峰和负峰同时出现的情况。导致伪峰的原因通常是由流动相和样品溶剂的组成之间存在差异引起的。而使用不纯的IPC试剂、缓冲液或其他的流动相添加剂都会使伪峰的问题更为严重。其次是缓慢的柱平衡。当使用新的流动相时,必须用足够体积的流动相冲洗色谱柱以使色谱柱达到平衡。在IPC中,IPC试剂在色谱柱上的吸附和解吸附在某些情况下非常缓慢,这会造成色谱柱不能被新的流动相完全平衡。所以,无论是旧的流动相还是新的流动相含有IPC试剂时,我们必须确定改变流动相后样品的保留具有重现性(需要以新的流动相进行几小时的冲洗色谱柱才能达到完全平衡)。更换IPC试剂时,先用特殊的洗脱剂把先前吸附在色谱柱上的IPC试剂洗脱下来,再用新的流动相对色谱柱进行平衡。阴离子试剂(如烷基磺酸盐)能用组成为50%~80%甲醇-水的洗脱剂洗脱下来;季铵盐需要使用50%甲醇-缓冲液(如,pH为4~5的100mmol/L的磷酸氢二钾溶液,加入磷酸氢二钾是为了减少季铵基团与固定相上离子化的硅醇基间的相互作用)。任一情况下,首先应使用至少等于20倍柱体积的洗脱剂来冲洗色谱柱,然后再使用新的流动相进行柱平衡。另外,像较弱的离子对缓冲液三氟乙酸(TFA)以及离液剂,不会减缓柱平衡的过程,通常用10~20倍的含TFA或离液剂的流动相冲洗色谱柱足以达到柱平衡。用含IPC试剂的流动相进行色谱柱的初始平衡,则平衡过程可能会非常缓慢。为了避免在开展常规实验的每个新系列之前都要进行12h的平衡,我们建议在完成每个系列的实验后把色谱柱浸泡在流动相(含IPC试剂)里储存。这个权宜的方法使得以IPC做含量测定时能更快的达到柱平衡;假如需要每天或每两天重复一次,我们也建议使用这个办法,然而,当以这种方式储存时,其使用寿命可能会缩短。由于IPC试剂与色谱柱的缓慢的平衡过程,即使用较剧烈的洗脱程序,也不可能把IPC试剂完全从色谱柱上洗脱下来。基于这个原因,我们建议已用IPC分离的色谱柱不要再用于开展不含IPC试剂的RPC分离(TFA和离液剂例外)。假如在IPC中观察到糟糕的峰型和(或)柱塔板数的N值较低时,可以考虑改变柱温。以上就是离子对色谱法的保留原理,和一些特殊问题的解决方法,希望对小伙伴们以后用离子对色谱法能有所帮助。
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 忆国产离子色谱筑梦之路——访第一台国产离子色谱仪研制专家
    1983年6月,我国第一台国产离子色谱仪诞生,创造了我国国产商品化离子色谱从无到有的里程碑。30年来一批致力于离子色谱研究的专家们为了心中的梦想倾注了毕生心血,即使已经退休多年,还始终心系国产离子色谱的发展。   为了让更多的年轻人了解中国离子色谱30年来的发展历史以及老一辈科研工作者的工作经历,仪器信息网编辑特别于中国离子色谱30周年之际采访了三位国产离子色谱领域的开拓者:核工业部北京化工冶金研究院教授级高级工程师刘开禄、北京矿产地质研究院教授级高级工程师蒋仁依、核工业北京化工冶金研究院高级工程师赵云麒。 核工业部北京化工冶金研究院教授级高级工程师刘开禄(左)、北京矿产地质研究院教授级高级工程师蒋仁依(中)、核工业北京化工冶金研究院高级工程师赵云麒(右)   梦起1981,那一句刺痛人心的话   1975年H.Small等人创立了离子色谱法,同年第一台商品化离子色谱仪问世。70年代末一些科研单位就将该类仪器引进了中国的实验室。那时,我国虽然也有人做了一些研究工作,但没有成型的仪器,这让一些专家萌生了&ldquo 自己动手&rdquo 的想法。   谈起开始做离子色谱仪的缘由,国产离子色谱的开拓者之一刘开禄给我们讲了一个小故事,他说,&ldquo 1981年秋天,我在天津举办的多国仪器展览会中第一次见到了Dionex公司的Dionex14型离子色谱仪,该仪器可以很好地解决当时我国急需解决的微量多组分阴离子分析问题,引起了我和众多参观者的极大兴趣。但是,该公司一位美籍华人经理傲慢的一句话刺痛了我的心,他说,&lsquo 这是DOW化学公司科学家的最新成就,你们几十年内不会搞出来的。&rsquo &rdquo 这句话深深刺痛了刘开禄的心,回来之后他就埋头查阅文献,仔细分析,也就是在那个时候一个中国离子色谱的研制计划在他脑中形成了。   对蒋仁依来说,他的梦要更早一些,据其介绍,1980年他就一直寻找地质样品矿物气液包裹体液相成分中F-、Cl-、SO42-以及K+、Na+、Ca2+、Mg2+的测定方法,而且在一个朋友的实验室中利用DINEX&mdash 5型离子色谱仪很好的解决了问题,但苦于没有外汇,所以一直盼望能有自己的离子色谱仪。&ldquo 终于在1982年10月,在无锡召开的中国环境科学学会环境分析监测第二次学术报告会上听到刘开禄老师的《简易离子色谱的研制与应用报告》&rdquo 。蒋仁依说,&ldquo 当天晚上我就去找了刘老师,也就是那个时候我们约好回北京之后我去刘老师所在的北京五所有机室做实验。&rdquo   赵云麒,1972年调到核工业北京化工冶金研究院工作,和刘开禄在一个实验室。赵云麒介绍到,&ldquo 虽然我学的是化学,但由于我的兴趣比较广泛,而且有大连化物所仪器室的工作背景,对电路比较熟悉,主要负责电路设计方面的工作。&rdquo   此外,据以上三位介绍高级工程师苏程远、刘开禄的夫人袁斯鸣等也相继加入离子色谱仪的研发团队。至此,中国离子色谱的筑梦团队就自发组合了!赵云麒说,&ldquo 我们这个组合可谓&lsquo 全能&rsquo ,一方面有分别做填料、应用以及电路设计的专业人员,另一方面每个人对专业外的相关问题也很熟悉,也正是我们这种综合的组合团队为最后的成果奠定了基础。&rdquo   筑梦之路几多辛苦不言弃  离子色谱的研制承载了许多人的梦想,也花费了研发者的很多心血。那个年代,无论物资条件还是技术水平比现在都差很多,在这种环境下,国产离子色谱的筑梦之路经历了很多辛苦,但是他们从未放弃过。   &ldquo 资金匮乏是当时面临的首要问题,每一笔钱都要算计着花&rdquo ,刘开禄说,&ldquo 那时所有配件都要求国产化,为了一个阀门我都要找好久,可以说把当时全国所有能找到的国产技术都用上了。虽然有单位给的2万块钱的经费,但泵花了4000块,阀门又是1000多块,钱很快就用没了。不过,尽管很困难,最终还是克服了。&rdquo   除了资金匮乏的问题,有时候技术方面的难题更考验人的心智和耐力。赵云麒说他印象最深的是环境温度的控制,&ldquo 电导对环境温度的变化非常敏感,刚开始做的时候基线漂移非常厉害,我们为此也纠结了很久,想了很多办法,尝试了各种温度控制装置,最后直接将柱子放在水箱里,虽然不好看,但是实验数据好多了。之后在此基础上,又改成了密闭恒温环境。&rdquo   采访过程中我们还得知,蒋仁依为了国产离子色谱的研制工作放弃了去德国留学的机会,其工作的痴迷程度让我们为之感慨。蒋仁依介绍说,当时单位有很多样品分析任务,工作太忙了,没有时间去做实验,但是为了自己的梦他宁可放弃春节与家人团聚的时间,大年初二就赶到青岛做实验。即使患病期间还不忘工作。不仅如此,由于是他南方人,吃不惯北方的馒头,在青岛做实验的时候,就拿张烈生高工提供的大米,用实验室的电炉煮稀饭。平常工作的时候,中午基本不休息,即使是吃饭的时候也是趁着进样品以后的间隙去食堂打饭。连春节茶话会时他心里还惦记着实验,每隔一会就去进一个样品。   研发过程几多艰辛,但是他们从未言退。就像赵云麒告诉我们的,&ldquo 那段时间确实很辛苦,我们经常加班加点地干活到深夜,但是心里没有一点怨言,当时只有一个念头:不管怎样,都要将第一台仪器做好!为此,所有的付出都是值得的。&rdquo   终于梦圆了!但他们的追梦之旅还在继续   1983年,第一台国产离子色谱样机研制成功,但是他们的故事并没有结束,在之后的时间中,他们继续进行了一系列创造性的研究工作&hellip &hellip   终于,在多方面努力下,第一台国产离子色谱样机于1983年研制成功,并由青岛崂山电子实验仪器成功进行产业化生产。仪器研制成功了,但是他们的工作并没有停止。1983年6月28日-30日,ZIC--1型中国离子色谱仪在北京五所举行技术鉴定会,蒋仁依在会上做了ZIC--1型离子色谱仪性能测试和在无机阴离子微量分析中的应用报告。之后又与刘开禄、单嫣娜等多次往返青岛召开离子色谱培训班等。特别是1983年10月14日&mdash 17日,在承德召开的《全国阴离子与易挥发元素分析》学术会议,蒋仁依与会议主办、承办及青岛厂家多方电报联系,将第一台国产离子色谱仪商品样机从青岛崂山运到承德,并在会议现场进行应用展示,得到会议代表的重视与肯定,使得ZIC--1型离子色谱仪很快在我国地质、矿产、科研系统中推广与应用。 ZIC--1型离子色谱仪   按照蒋仁依的话说,自1983年初开始,他在完成自己单位的本职工作之外,做足了离子色谱仪性能和应用开发的实验研究。同时,他也解决了很多重要的问题,如地质样品中矿物包裹体液相成分分析,解决了F-、Cl-、 SO42-、NO3- 及 K+、Na+、Ca2+、Mg2+的检测,1983年10月以后,在地矿科研系统全面推广。1986年的包裹体液相成分分析研讨会上一致认为:国内首创,与国际同步。   据刘开禄介绍,&ldquo 1984年初仪器交货量就达到30台,在之后的五年中,用国产离子色谱仪发表的论文就超过了100篇,创造了&lsquo 空前&rsquo 的效果,而且当时国家环保部公开发文认定本仪器为酸雨检测仪器,配到县一级城市。&rdquo 在采访过程中,我们还意外得知,当时由刘开禄提供技术支持的ZIC-2 型国产离子色谱仪的核心技术已经用在了我们国家的核潜艇上。   除了应用推广之外,他们又继续研究了ZIC-2型的仪器。此外,为了跟上世界离子色谱的步伐,他们又开展了一系列创造性的研究工作。1986年,刘开禄对国际上已有的抑制型离子色谱仪和单柱子离子色谱仪的原理进行理论研究,推导出统一两种模式的检测下限公式 1987年,刘开禄的夫人袁斯鸣研制成高效阳离子分离柱实现了国产仪器的阳离子分析,赵云麒和苏程远研制成功五电极式电导检测器,在此基础上刘开禄、赵云麒、苏程远联合研制了ZIC-2和ZIC-2A型双模式离子色谱仪 此外,刘开禄又研制成功连续自再生式高效离子交换装置,并获中国专利(专利号:ZL 00 2 01227.8)。对此,刘开禄说,&ldquo 这是我们中国人创造的一项离子色谱技术,而且事实证明此项技术在中国得到了广泛应用,使得中国的离子色谱在21世纪得到快速发展。&rdquo   即使退休之后,他们的工作仍未停止。特别是刘开禄,退休之后进行了高分子色谱填料和工业色谱的开拓性研究工作,并获得了十二项专利。   寄语:希望国产离子色谱可以做的更好!   30年前,他们凭借一个向往和一份坚持实现了心中的梦想。30年后,两鬓花白的他们又有着怎样的感慨?   从全球来看,当前离子色谱仪的技术发展达到了一个平台期。但就我国的现状分析,虽然国产离子色谱在柱子、材料、工艺等方面还存在一定的问题,但刘开禄、蒋仁依、赵云麒都认为,国产离子色谱还有很大的发展空间。   未来国产离子色谱的路该怎么走?对此,刘开禄说,&ldquo 我认为要想把我国的离子色谱做好,就不能一味地模仿国外的技术和产品,不能人云亦云。如果只是模仿,我们就永远被落在后面,同时也耽误了很多宝贵的时间。我们必须从科学原理的角度进行自主创新,走自己的路。&rdquo   &ldquo 另外,我国离子色谱的发展还要和国家的需求结合起来。仪器研发要以使用为主,解决国家现有问题,比如环境监测和超纯水的检测等问题。当然,在研发过程中也要有一定的远见性,如食品工业方面的需求等。此外,我们还要把仪器的可靠性做得更好一些。&rdquo   蒋仁依将对国产离子色谱也寄语了厚望,他将这么多年所保留下来的有关离子色谱的所有材料都奉献给了青岛盛瀚色谱技术有限公司。蒋仁依说也许这些对他已经没有多少作用了,但是对于离子色谱行业发展来说还是很有记忆性保存和参考的价值。同时,他还感慨到,&ldquo 我们当时是凭一个&lsquo 向往&rsquo ,三个单位的技术人员自愿地结合在一起的,各自都有自己单位的任务与工作。如果我国能打破体制的束缚将各方面够硬的技术汇集起来,离子色谱的发展速度会比以前更快。&rdquo   值中国离子色谱30周年之际,赵云麒也表达了自己的期望,他说,&ldquo 现在研究单位的资金比较充裕,国家也很支持,希望国产离子色谱可以做的更好,走向国际!&rdquo 聚会在中国离子色谱30周年活动现场 (从左至右依次为:刘开禄、赵云麒、袁斯鸣、蒋仁依、苏程远)   编辑手记:梦想对于一个人来说具有神圣的力量,三位专家为了追逐心中的梦想自发组合,一路走来经历了资金短缺、同事误解、自身疾病等多方面的困扰。但是那个时代的人都有一颗无私的心,就像他们说的,那个时候只想把事情做好,一心为国家做贡献,没有考虑个人的利益。   采访中,仪器信息网编辑还有幸见到了见证三位老专家一路走来的离子色谱仪老照片和获奖证书及奖章等。更多详情请见专题:中国离子色谱30周年专家系列采访栏目。   采访编辑:叶建
  • 2023离子色谱标准解读上:从国标看IC新的市场机会
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。敬请期待!!!(点击可查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。(点击进入离子色谱专场)1983年,中国核工业第五研究所刘开禄研究员带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1。经过40年的发展,我国离子色谱行业已经步入高质量发展阶段。2018年6月7日,国家标准GB/T 36240-2018 离子色谱仪发布。该标准规定了离子色谱仪的要求、试验方法、检验规则和标志、包装、运输和贮存等,适用于所有的离子色谱仪,包括电导检测器、紫外-可见光检测器和电化学检测器。该标准为离子色谱仪的生产、检测和使用提供了统一的要求和规范,有助于提高产品的质量和可靠性,减少不同厂家、不同品牌之间的差异和矛盾,进一步规范了离子色谱仪的市场。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。这些标准主要涉及石油化工、冶金、环保/水工业、矿业/地质、农业、食品、公共安全、电子/电气、卫生/医药等行业。详细的行业分布如下图。一、国标:新增了多项检测指标2023年3月17日,国家市场监督管理总局(国家标准化管理委员会)批准发布《GB/T 5750-2023生活饮用水标准检验方法》(以下简称“饮用水检验新标”),代替GB/T 5750-2006《生活饮用水标准检验方法》,自2023年10月1日起实施。1985年首次发布为GB/T 5750—1985,2006年第一次修订为GB/T 5750.1~GB/T 5750.13—2006,本次为第二次修订。饮用水检验新标作为生活饮用水检验技术的推荐性国家标准,与GB 5749-2022《生活饮用水卫生标准》配套,是GB 5749-2022的重要技术支撑,为贯彻实施GB 5749-2022、开展生活饮用水卫生安全性评价提供检验方法。该标准新增了多项离子色谱检测指标,其中无机非金属指标部分增加高氯酸盐指标;有机物指标丙烯酸新增离子色谱检测方法;农药指标草甘膦新增离子色谱检测方法;消毒副产物指标一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸新增离子色谱检测方法,进一步扩大了离子色谱行业的应用范围。二、离子色谱新的市场机会(1)对于供水行业,2023版GB/T 5750的实施带来了水质分析工作全流程要求更加规范、实现新增指标的方法全覆盖的时间窗口期短且要求高、新增高效检测方法对水源水检测覆盖不足等挑战。供水行业需覆盖从原水到用户龙头的全过程,并兼顾检测能力和检测效率,对实验室现有的检测方法进行全面优化和替代。(2)对于供水行业检测部门,应加快推进标准应用实施工作,深入理解新标准下的质量控制要求,将其贯穿于供水检测工作全流程中,对拟选用的标准方法进行方法的适用性验证,加强优化离子色谱技术的应用,以确保新增指标检测方法全覆盖。(3)第三方检测实验室需依据新标准尽快完成新增方法的验证工作,扩大检测能力范围。三、新增指标对于饮用水安全具有重要意义(1)高氯酸盐高氯酸盐是近两年才引起社会高度关注的污染物。2022年3月,国家卫健委发布《生活饮用水卫生标准》(GB 5749—2022),首次将高氯酸盐纳入管控指标,并设定标准限值70 微克/升。环境中的高氯酸盐污染基本上是人为活动导致的。其中,最主要的是将高氯酸盐作为强氧化剂,用于火箭推进剂、烟花制造、军火工业、爆破作业等领域,以及将其作为添加剂的润滑油、染料涂料等产品的生产过程,通过各种方式进入环境中,导致污染分布与产业布局紧密相连。此外,用智利阿塔卡马沙漠硝石等为原料的化肥,施加后也会将部分高氯酸盐带入环境中。高氯酸盐的主要危害是影响人体甲状腺的正常功能,原因在于高氯酸盐的电荷和离子半径与碘离子非常接近,可以与碘离子竞争直接进入人体的甲状腺,阻碍人体对碘的吸收,使人体缺碘而导致甲状腺肿大,俗称“大脖子病”。因此高氯酸盐的检测对于人体健康具有重要意义。(2)丙烯酸水中丙烯酸的来源包括生物来源和人为污染源排放,生物来源主要是浮游植物分解DMSP产生,人为来源主要是人为将含有丙烯酸的工业废水排入河流以及近岸海域。丙烯酸是一种重要的基础有机原料,我国丙烯酸产能已达到19.5万吨/年。丙烯酸的危害主要是对水体和生物体的危害,丙烯酸对眼睛、鼻粘膜有刺激性,对淡水藻类等生物也有较大毒性,其急性毒性L(E)C50值甚至能够达到0.1 mg/L。离子色谱法测定丙烯酸,操作简便,无需复杂前处理,灵敏度高、选择性好、重复性佳,且所用试剂绿色环保,成本低。(3)草甘膦水中草甘膦主要来源于农药残留。据部分科学家认为草甘膦对4000多个基因产生损伤影响,导致很多严重的疾病(如阿尔海默症,帕金森症,自闭症等),因此生活饮用水及水源中草甘膦的检测显得尤为重要。草甘膦是许多使用广泛除草剂中的有效活性化学成分,对多年生根杂草非常有效,广泛用于橡胶、桑、茶、果园及甘蔗地。草甘膦在全球130个国家广泛的使用在杀虫剂领域,美国大约占20%的使用量,约2.8亿磅,人均1磅。研究发现,全美70%的家庭饮用水中检测到草甘膦,浓度在0.085-0.33ppb,美国环保部设置了0.4ppb的上限。采用阴离子交换色谱法分离水样中的草甘膦,经柱后衍生,用荧光检测器检测,简便高效。(4)卤代乙酸类(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)自来水厂采用的饮用水消毒工艺在保障居民供水安全和降低介水传染病方面发挥了重要作用,被誉为20世纪公共卫生领域内最伟大的成就之一。然而,饮用水消毒工艺过程中所使用的氯、二氧化氯、氯氨、臭氧等消毒剂能够与水中的有机前体物发生反应而生成消毒副产物(disinfection byproducts,DBPs)。饮用水中DBPs的出现使人们对其暴露所带来的健康危害产生了很大的担忧。目前,研究已发现卤代乙酸类具有发育毒性,主要表现为吸收胎和畸形发生率增加、软组织和各种器官发育异常、胎仔出生体重和身长降低等。因此为了保障生活饮用水的卫生安全,对饮用水中卤代乙酸进行监测非常重要。附表 2023年发布的离子色谱检测国标(部分)序号行业标准名称发布日期1水工业GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-172石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-233冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-06
  • 施超欧:我的离子色谱之旅
    施超欧华东理工大学分析测试中心从我真正从事离子色谱分析至今已经有20多年了,我一生的大好时光都献给了中国的离子色谱事业,现在回顾总结一下蛮有意义,或许给人以启发。一 离子色谱初始之蒙我正式做离子色谱大概是2001年的10月,在以前的回忆中已经提起,但现在回想起来,其实更早的时候就接触了离子色谱。1995年2月,我调入测试中心工作,大约在1995-96年之间,曾做过1-2天的离子色谱实验,当时所用的仪器是Dionex 2010i,王萍负责,用记录仪记录图谱,抑制器用柱方式,做一段时间必须停下来再生,大概就记得这些。后来离子色谱陈国祥接收,似乎也一起做过,等陈国祥出国,离子色谱就废了,这仪器后来送给了朱岩。Dionex 2010i2000年底,我们中心主任李桂贞作为离子色谱的老用户代表,收到戴安中国有限公司成立的二张请帖,她让我和冯学伟一起代表测试中心,参加新公司的成立大会。我清晰的记得2000年12月31日下午一点,在上海锦江饭店,举行戴安中国有限公司的成立大会,在这之前是天美代理戴安的产品。我第一次聆听了牟世芬老师的关于离子色谱的讲座,那天也是DX-80的首发仪器,一台仪器一万美元,至今记忆犹新。临走时,还带走了一份蛋糕点心。当心我并不知道,这次的会议开启了我的离子色谱生涯的第一站。二 我的第一台离子色谱及以后诸多的离子色谱在介绍我用过的离子色谱之前,先说下这一台离子色谱,它是我们学校原来环境学院的一台DX14离子色谱仪,用了近30年,一直到新的ICS1100到来,这是我见过的最早的离子色谱。第一台 DX600和试用RFC-30应该是2001年5月,学校给测试中心一笔资金用于采购大型仪器,当时总共购买了八台大型仪器,主任让我负责离子色谱仪的采购,从那天起,我以几天一遍的速度阅读牟老师的《离子色谱方法及应用》,拼命想弄明白离子色谱能干什么,凭着我的液相色谱的基础去理解离子色谱,所以考虑了电导和安培检测器,四元梯度泵,唯一的区别是我放弃了碳酸盐体系,采用OH体系去分析阴离子,这对我的研究工作的影响是非常大的,这个选择是非常正确的。这是国内第二台DX 600,当时负责安装的是刘克纳和周宏山,刘克纳是资深的戴安应用工程师,在早期给了我很多的指导。2004年在RFC-30 进入中国市场之际,我首先试用了RFC-30,当时与DX 600绑定进行测试,并参与到当时的博物馆被动采样离子色谱课题研究中,后期用科研经费购买了一台。说个插曲,这台机器曾带到武汉,唯一一次帮戴安公司做外出的技术指导,试用者是崔海容,他当时在武汉的一个检验检测机构工作,我和梁立娜一起在那里,呆了不到一个星期,开发面粉中溴酸盐的检测,后来我发现,标准中一张图谱是我做的。随着工作的进行,一台离子色谱远远无法满足需求,从此走上自购自研自组装的方式,由于当时国产离子整体质量并不好,实在无法满足科研的需要,只能转向进口设备。 DX 600 (照片拍摄时间2001.10.23)第二台 Tosoh 2001第二台离子色谱是Tosoh 2001,时间大约是2005年的10月,当时先是试用,由于这台设备针对日本的离子色谱进行优化,不太适合戴安的离子色谱柱,加上是等度以及抑制器的原因,在试用半年后还给了东曹公司,但写了数千字的试用心得,这在后来的TOSOH 2010型号中有所体现。第三台 DX 120这是一台双通道的DX-120,购置时间是2006.4.30,由于可以进行二路切换,这在我博物馆被动采样离子色谱分析研究馆藏环境污染气体中起到了重要的作用,当时的二个标准开发主要在这台上进行,由研究生左颖和李静负责。第四台 DX 320具体时间大概是2007年,这是我第一台改装的离子色谱,从2mm系统改成4mm系统,加上另外购买的RFC-30,可以组成梯度分析,同样主要用于博物馆被动采样离子色谱分析研究馆藏环境污染气体。二个标准主要是用DX 120和DX320完成的。其实还用过另一台DX320,帮人家调试完成后给别人了。第五台 DX 500 具体时间大约在2008年的10月,自己组装的一台离子色谱,当时主要用于研究和验证代文彬开发的抑制器。本台仪器配置不低,LC30温控,ED40电化学检测器,GP40四元梯度泵。第六台 ICS3000这台仪器经费来自上海博物馆,当时由于实验基地还没有造好,临时放在我学校的实验室,这是当时国内第一豪华的离子色谱仪,由于人民币升值以及免税的缘故,最后购买经费达到了130万,加上戴安公司的优惠,购买的配置远远超出最初的设置,这台超豪华国内配置最高的双系统离子色谱,我经过二年时间才消化,对我应用水平的大幅度提升起到了关键的作用。仪器具体配置是,单元四元梯度泵,带脱气机;AS自动进样器,双塔带稀释系统;四波长紫外检测器;DC模块,带二个电导检测器,一个安培检测器,二个六通阀,二个十通阀,二个低压阀;EG OH淋洗液发生器。以及一批色谱柱抑制器。2009年1月安装,至今仍在使用,虽然目前仪器已经有点老化。今年有望更换成ICS6000。第七台 ICS 1500+RFC-30这台离子色谱是生工重点实验室的,那里负责老师,经常让我帮她处理分析和使用中的各种问题,因此对这台仪器也非常熟悉,另外化工学院也有一台ICS1000+RFC-30,我帮他们处理维修过很多次,没专人维护,状态并不好,不够还一直使用到今天,最近大概趴下了。第八台DX500/600 这一台是混装的,包括了DX500和DX600的不同组件,我拿来与ICS3000组成不同的多维系统,给学生做论文用。第九台ICS 5000+这是我自己改装的一台高端离子色谱,目前配置为双四元梯度泵,DC模块,(电导+安培,都可以双模块),紫外检测器,AS-AP温控自动进样器。第十台 ICS5000这是改装的另一台高端离子色谱,配置为单元四元梯度泵,DC模块,(电导+安培,都可以双模块),带阀切换的柱温箱,AS-AP温控自动进样器。目前在博物馆,用于阳离子的分析。第十一台 ICS3000 这台原来是双系统,但是由于泵坏了二次,换成了5000的双泵,加上AS50 自动进样器,用于一般的分析。第十二台 两台DX 600 这二台离子色谱是人家送给我的,也没有卖出去,整修后,目前其中一台在学校另一个学院使用,另一台闲置。第十三台 GI 3000 自研发的离子色谱这是我使用时间很长的离子色谱,属于DIY性质跟人家一起做的,四元梯度泵,自动进样器,电导和安培检测器。在这台仪器完成了多篇论文,其中一篇获得了仪器信息网原创征文大赛特等奖。 在这几年的研发过程中,我对离子色谱的认识有了质的飞跃,从一个使用者到维修维护者到开发者角色的改变,尤其对安培的使用维护有了非常深的认识。三 我与离子色谱网络在本世纪初,国内色谱网络最出名的是中国色谱网(www.sepu.net),作为早期积极参与者,投入了很多心血。国内第一个离子色谱论坛,是我2002年3月6日在北京建立的,并担任第一任的版主,当时我正在北京培训DX600。大约一年后仪器信息网也建立了离子色谱论坛,我在其中也担任过一段时间的版主。在2003年,我建立了一个独立的网站,离子色谱网(www.ionchrom.com),当时挂在中国色谱网的服务器。最近我找到相关的内容,看看蛮有意思,有不少的信息在后来的网上是找不到的。不过因时间精力有限,运行时间不长就关闭了。 我与仪器信息网长时间关联的是参加原创大赛,在网络上发表了一些列的相关论文和心得,获得过各种奖项无数。2022年关于国产离子色谱安培检测器测定糖的论文获得了特等奖。2023年第二次获得了一等奖。2023年5月20日在北京获奖大会上领奖 2019年,受仪器信息网的邀请,担任离子色谱系列课程的主讲教师,经过长达一年半时间精心准备,完成了500多分钟的系列课程讲座。这门课被列为精品课程。虽然我目前上网时间不多,但仍会不时去看看。四 我与离子色谱相关的学术会议2002年9月,因我女儿快出生,无法参加在北京举行的第九届全国离子色谱学术报告会。第一次参加的是2004年5月17-19日在威海举行的第十次全国学术报告会,大约70余人。之后我负责了11届(杭州),12届(厦门),13届(青岛),14届(西安),15届(成都)的会议筹备工作。全国离子色谱学术报告会,是分析仪器分会中举办效果,连续性最好的学术报告会。最近一次是2023年5月在海口举行的第18届(因疫情延期了很久)。在当时除了全国离子色谱学术报告会,还有相关的其他专门学术会议,其中早期是戴安华东地区离子色谱用户协作组会议,2003年在我们学校举行过一次,后来改为戴安用户会议,早期是独立举办,后期与全国离子色谱学术会议同步举行。2004年12月15日在日本名古屋举行了第一届中日韩三国离子色谱学术会议,我有幸第一次出国参加了学术会议,会议二年一次在中日韩之间举行。2006年第二届中日韩三国离子色谱学术会议与第十一届全国离子色谱会议一起同步在杭州举行。2011年11月3-6日在桂林举行,改为第六届亚太地区离子色谱会议。2004年12月15日在日本名古屋举行的第一届中日韩三国离子色谱会议,中国代表合影五 我的离子色谱论文与专著我的第一篇关于离子色谱的论文是《离子色谱法测定丙烯酸废液中丙烯酸和甲基磺酸的含量》,2003年11月发表在《分析仪器》(2003(04)),这也是我极少数采用国产离子色谱柱,同时采用碳酸盐体系分析的论文,色谱柱是从袁思敏那里购买的NJ-SA4阴离子分析柱 ,淋洗液为 1.5mmol/L NaHCO3,比我当时采用的进口柱AS11-HC的OH体系做的效果要好。统计下来,至今累计发表60余篇有关离子色谱的论文,占已发表总论文数的三分之二。与离子色谱相关的专著是当时中国色谱网负责出版的《实用色谱技术问答》,我负责液相色谱部分,离子色谱部分是我跟朱岩共同负责。当然最重要的是《离子色谱仪器》,耗费了一年多的时间。我的主要内容是撰写了前言,抑制器这一章在胡荣宗的基础上内容有了较大的增加,重点是免试剂离子色谱这一章,并参与整本书的统稿工作。关于离子色谱的专利并不多,实际授权的发明专利仅仅有二项。在早期更多的原因在于对专利认识不清,浪费了不少的机会,这主要在被动采样-离子色谱检测方面,很多的配方都是我独创的,等学生毕业硕士论文一公开就失效了。后期对硕士论文进行了一段时间的保密,一方面是专利申请的需要,更重要的是涉及仪器开发的核心技术,不过目前大多并没有申请。六 在离子色谱领域取得的主要成就从2001年开始使用离子色谱到现在,我从开始仅仅的仪器使用者,到仪器自己维护维修,到后期的DIY离子色谱,最后进入研发。可以说是少数,从头到尾历练的人。离子色谱从1975年诞生到现在,仅仅不到五十年时间,其中目前大部分的原创性技术都来源于戴安,这是一条主线。但是在旁路其实还有很多不同的做法。20多年的离子色谱工作,总结起来,勉强有点小成绩,当然这些成就大多在应用层面的,真正的原理性的发现还是很难的。概括起来主要的工作有:1 建立了一系列的被动采样器-离子色谱法测定博物馆馆藏环境相关行业标准从2002年开始,一致持续到现在,长达20多年,完成了相关博物馆微环境的污染气体的被动采样-仪器分析系列分析方法。包括甲酸和乙酸(WW/T 0046 - 2012) 、氨(WW/T 0047- 2012)、NO2和SO2( WW/T 0120—2023)、O3(WW/T 0121—2023)、HCHO(WW/T 0122—2023)、H2S,其中前面五个已经有相关的行业标准,四个离子色谱一个液相色谱。目前第二代新型采样器已经开始投入使用,分析方法已经在继续优化,已经满足商业化的要求。2 离子替换色谱测定阴阳离子的研究离子替换色谱就是在抑制器之后再接一根色谱柱,将被测离子转换成另一种离子进行检测的方法。这种方法相关文献极少,即使有也基本只测定一价离子,二价离子转换率不高(阳离子),我们选择一种特殊的离子交换树脂,将一价二价的转化率几乎提升到100%,这种方法有一个特殊的优点,对于没有标样的强电离的离子,可以用这种方法进行定量,另一个优点是,多种离子基本只用一条线性曲线,就可以定量了。还有一个特殊的地方,检测离子不再使用常规的电导检测器,而是采用紫外检测器。但是,这种方式仅仅适合一些特殊的场合。本方法在理论上有一定的意义,但在实际中应用的难度不低。离子替换色谱紫外检测器检测常见阴离子3 基于石墨碳柱基质的涂覆改性离子色谱柱的研发目前商品化的离子色谱柱大多数是聚合物材质,少数是硅胶基质。其实还有一种基质可用于离子色谱,就是以石墨碳为基质,这方面是离子色谱以后的一个突破点。目前商品化的石墨碳柱仅仅热电有,是用于液相色谱的Hypercarb柱。无法直接用于离子色谱分析。国外关于用石墨碳涂覆改性用于离子色谱的论文也极少,即使有几篇,大多无法与主流的离子色谱兼容,分析效果欠佳,稳定性不好。但经过我们的处理改性,采用碳酸盐体系分析阴离子的效果好于聚合物柱,OH体系效果并不是很好。整个分析体系与聚合物柱完全兼容,没有任何区别。在常规离子的出峰次序与聚合物柱体系一致,唯一例外的是碘离子,出峰远快于聚合物柱,这与石墨碳柱没有Donnan排斥密切相关,也说明CTAB涂覆的确是形成阴离子交换体系。涂覆后的色谱柱的一大特点是可以调节涂覆强度,用于不同保留强度的离子色谱分析,由于对三价以上的离子的强保留,此色谱柱可同时用于单糖和二糖的分析,梯度的话可以用于多糖分析(没有进一步研究添加剂的作用)。分析不同浓度Na2CO3-NaHCO3 淋洗液下阴离子出峰示意图1-F- 、2-Cl- 、3-NO2- 、4- Br-、5- NO3-、6- PO43-、7-SO42-当此色谱柱,效果不佳,可以进行解涂,并进行二次涂覆,朱岩在C18柱上可以实现良好的分离效果,但C18色谱柱无法进行二次涂覆,色谱柱仅仅只能用一次。石墨碳柱可以多次涂覆和解涂。显示其独特的性质。我们也尝试了用石墨碳柱分离常见的阳离子,国内外相关的论文仅仅只有一二篇,而且分离效果并不佳,尝试了很多种类的涂覆剂,无法找到我们心中的理想涂覆剂,在商品化的阴离子表面活性剂中,也只发现少数能勉强使用,实验的结论是有一定的效果,但不如阴离子分析体系,因为无法将NH4与钾分离。我们也尝试了一种动态的离子交换体系,用于分析阴阳离子,用常见的阳离子的离子对试剂可以分析常规的阴离子,但只能碳酸盐体系的等度模式,无法采用梯度模式,没找到合适的阴离子离子对试剂能用于阳离子的分析。此色谱柱的一个特点,可以作为二维离子色谱和液相色谱的切换捕获柱,市场上很难找到一个捕获柱,既能在液相色谱中使用,又能在离子色谱柱中使用。我们在石墨碳柱上实现了不涂覆(可分离常见阴离子但时间不长)、动态涂覆和静态涂覆分离阴离子,其中静态涂覆效果很好,有一定的实用价值,但是由于Hypercarb柱目前本身不便宜(最便宜的时候2500元/根,现在9000元/根还半价),实际使用大打折扣了。目前尝试用国产的球形石墨碳填料看看能不能分离常见的阴离子,如果可以的话,有希望。不过石墨碳的在使用上有一个很大的问题,就是强保留物质很难洗脱。在液相色谱中使用的一个问题是不同化合物分析的重复性差,其本质是材料结构特性所致。石墨碳柱涂覆,用于不同的分析场合,以后看看谁会继续这方面的探索。4 安培测糖相关技术的开发从2017年夏天开始尝试开发相关的离子色谱仪器,在疫情期间差不多中断了,经过几年的努力,对安培部分有了比较深刻的认识,从逆向角度,理解了安培测定的原理特点特性,开发的替代品可以完全兼容进口配件,这样被学生用坏也不心疼了,金电极、银电极和参比电极在部分客户中使用效果良好。目前重点在研究铜电极在离子色谱中的应用,实现了直流安培分析糖,同时首次开发了脉冲、积分脉冲模式,目前稳定性和重复性问题基本解决,但从灵敏度讲,除了个别糖外,铜电极不如金电极的灵敏度高,但是铜电极不用抛光,可连续使用很长时间。铜电极虽然能用于糖的分析,但不如金电极效果好,能否开发其他有机化合物的分析,目前并不清楚,有待进一步研究。5 开发了一些离子色谱仪从2017年以后,离子色谱的应用研究不多,大多在相关的仪器中,这几年其实跟别人合作研发了二款专用在线离子色谱仪,由于保密,只能简单说下。第一个是纯水的在线双通道离子仪,可24小时连续不断测定,以超纯水为淋洗液,色谱柱和抑制器合二为一,无泵脉动。在线监控水质,在特殊的场合有一定的实际意义。另一个是设计了一个超高浓度样品在线自动多步稀释系统,可实现自动智能稀释,连续检测阴阳离子。但整个系统到大规模实际应用还有相当的距离。总的来讲,大多数是应用性研究,实战性比较多,有一些拓展性开发,但基础理论上并没有成就。七 结束语从2001年从事离子色谱分析到现在整整23年了,我也见证了国产离子色谱的历史发展,回顾这二十多年来,国内离子色谱的用户不断增加,应用范围不断扩大,国产离子色谱的在仪器性能功能和应用上,最近几年获得了不少的进步。在可预见的将来,国内厂家会进一步增加,在中低端离子色谱上与国外差距会越来越小,竞争会更加激烈。(最新戴安在离子色谱上并没有大的实用性突破,如果热电在石墨碳离子色谱柱的开发上获得突破,这种柱子很容易实现超高压,抑制器的小型化并不是关键,会拉开与国内的差距)几年后,等我退休,作为曾经的离子色谱骨灰级的发烧友,再以旁观者的角度,注视着未来的后起之秀,见证中国离子色谱的未来。本文供稿作者:施超欧
  • 聚焦第十三届全国离子色谱学术报告会
    仪器信息网讯 2010年9月8-9日,中国仪器仪表学会分析仪器分会主办,山东省检验检疫科学技术研究院承办,青岛盛翰色谱技术有限公司、青岛普仁仪器有限公司协办的“第十三届全国离子色谱学术报告会”在山东青岛顺利召开,200余位行业内专业人士参加了此次会议,仪器信息网作为支持媒体应邀参加。 会议现场   中国科学院大连化学物理研究所张玉奎院士,中国仪器仪表学会分析仪器分会闫成德理事长,全国离子色谱学术报告委员会主任委员、中国科学院生态环境研究中心牟世芬研究员,山东省检验检疫局技术中心主任、山东省检验检疫科学技术研究院院长昃向君先生,山东检验检疫局技术中心技术总监、山东检科院常务副院长林黎明先生,中国仪器仪表学会分析仪器分会刘长宽秘书长,山东省分析测试学会副理事长、青岛分析测试学会副理事长兼秘书长王琦研究员等领导与专家出席开幕式,昃向君院长、牟世芬研究员分别致辞,大会开幕式由山东省检验检疫科学技术研究院崔鹤博士主持。 昃向君 张玉奎 闫成德 牟世芬 林黎明 刘长宽 王琦 崔鹤 出席开幕式的领导与专家   特邀院士报告 中国科学院大连化学物理研究所 张玉奎院士 报告题目:蛋白质样品预处理方法进展   张玉奎院士在报告中首先介绍了蛋白质组学分析面临的动态范围宽、非冗余蛋白与变异体数目大、物理化学性能差异大等方面的挑战,以及低丰度蛋白质检测难度大,选择性去除高丰度蛋白质的同时,会夹带了大量中低丰度蛋白质等问题 重点介绍了目前所研究的样品预处理中低丰度蛋白质富集(通用性富集、选择性富集)与膜蛋白预处理方法 在通用性富集方法中,介绍了基于两性电解质的蛋白质均衡器与介孔杂化C8磁性纳米颗粒两种方法 在选择性富集方法中,介绍了蛋白质印迹材料、杂化固载金属亲和色谱(IMAC)整体材料与金属氧化物气溶胶三个方面 并介绍了基于离子液体的膜蛋白质样品预处理技术等一些研究进展。 中国科学院生态环境研究中心 江桂斌院士 报告题目:典型全卤代有机污染物的分析方法   江桂斌院士在报告中首先从元素周期表中氟(F)、氯(Cl)、溴(Br)、碘(I)等卤族元素十分活跃谈起,重点介绍了全氟辛烷(PFCs)、短链氯化石蜡(SCCPs)、十溴联苯醚(PBDEs)、全氟碘烷(PFIs)四类环境中广泛存在的全球性有机污染物,对四类污染物的基本特性以及环境污染现状与毒性效应进行系统分析,并举例讲解了其课题组在环境样品的采集、预处理、目标物分离和纯化、相关仪器分析方法优劣比较等一些最新研究进展。最后,江桂斌院士还针对本届会议主题特别指出:色谱-质谱技术已经成为现代分析最为重要和可靠的工具,各种色谱分离技术(气相、液相、离子色谱)是现代分离科学的基础 样品的制备技术和QA/QC技术在很大程度上决定分析水平。   会议论文统计   本届会议强调离子色谱理念的更新,强调高水平论文的交流,强调学术交流与解决实际问题相结合。本届会议共收到论文310篇,创历史新高,这些论文既有行业技术回顾与展望、应用技术总结,也有新理论与“热点”技术的探讨,内容涉及离子色谱理论研究与综述、阴离子分析、阳离子分析、联用技术以及其它应用等。 本届会议收录论文构成统计   会议除了以上特别邀请了中国科学院张玉奎院士、江桂斌院士作专题学术报告之外,离子色谱专业委员会共推荐了近50篇论文作者做大会报告,近10家离子色谱及相关仪器生产企业参会并作技术创新宣讲与仪器应用介绍。   部分大会报告 中国科学院生态环境研究中心 牟世芬研究员 报告题目:复杂基体中痕量阴阳离子的离子色谱法分析中的几个问题   离子色谱中常见到的一个问题是高浓度的基体离子对待测离子的干扰,牟世芬研究员在报告中通过一些实例详细讨论稀释法、阀切换、两维离子色谱(2D)等几种去除高浓度基体离子干扰方法的原理及其优点。将样品适当稀释后再进样是最简单的方法,但多数情况稀释之后,待测离子浓度太低 阀切换,主要是指经过分离柱与抑制器之后,将大量高浓度的干扰基体成分切换到废液,将痕量待测离子保留于浓缩柱,由流路的巧妙设计与分离柱及淋洗液的选择,可将保留于浓缩柱的待测离子进到原来的分离柱或者另一支分离柱完成高灵敏度分离与检测 2D是近几年发展起来的解决复杂基体中痕量阴阳离子的测定的新方法,主要是用氢氧化物作淋洗液,在抑制器的抑制反应中可将淋洗液转变成没有洗脱力的水,并在第一维与第二维选用不同选择性与尺寸的分离柱。 浙江大学理学院化学系 朱岩教授 报告题目:离子色谱柱切换技术联用测定高浓度有机基体中的痕量阴离子   柱切换技术作为一种简单精确的在线样品前处理技术,通常需要多台色谱仪器,过于复杂,对实验室条件要求甚高 朱岩教授在报告中介绍利用离子色谱仪中的抑制器和一个十通阀,在同一台色谱仪上实现离子色谱柱切换技术。该简化的单泵柱切换系统,利用抑制器将KOH淋洗液转化为水,作为前处理柱的淋洗液,在同一个色谱系统中产生两种淋洗液,实现色谱分离与前处理柱再生同步进行。该新型的柱切换系统大大简化了仪器设备,节省了分析试剂和分析时间,提高分析效率。对于不同的有机物样品采用不同的前处理柱,基本上能够实现各种类型高浓度有机样品基体中痕量阴离子的检测。 厦门大学化学化工学院化学系 胡荣宗教授 报告题目:离子色谱电导检测器的进展   胡荣宗教授在报告中谈到,传统的离子色谱检测器多采用两电极,双脉冲或方波等交流激励的方法,虽然池体结构简单,但存在脉冲激励信号电路复杂,检测电路无法脱离交流激励转化为直流输出的复杂电路结构,需要高信噪比的信号放大电路等缺点 两电极直流电导检测池虽然电路简单,但难以避免电极极化和电解产物的影响。并重点讲解了自主研制的一种四电极、直流恒电流激励方式的离子色谱电阻检测器,将原来复杂的交流激励电导检测方式改为简单的直流激励的电阻检测模式,有效地简化了电路结构,完全避免了直流检测模式中的电极极化和电解产物的影响 该抑制式电阻/电导检测器可方便地自组离子色谱,扩展已有的高压液相色谱兼有离子色谱功能,还可组成抑制式单柱离子色谱仪。 华东理工大学药学院 杨丙成教授 报告题目:电渗微泵-毛细管离子色谱的联用   杨丙成教授在报告中介绍了一种电渗微泵-毛细管离子色谱联用技术,电渗泵(EOP)是利用电渗原理来实现液体的驱动,由于所产生的电渗流与施加电场直接相关,因此通过控制电流的方向和大小即可实现对电渗流方向和大小的精确控制 EOP还具有易于制作、无活动活塞、流量稳定、输出压力高等优点。采用溶胶—凝胶技术制备了一种高柱压硅胶整体柱为泵体、以离子交换微球替换传统的离子交换膜发展了一种新型的隔离电场高压接口,从而构建了一种新型高压电渗泵(EOP)。以水为工作介质,EOP驱动纯水通过一微型电致淋洗液发生器在线转化为毛细管离子色谱(CIC)所需要的淋洗液。杨丙成教授还介绍了EOP-CIC联用技术应用于阴离子分析的实例。 广东省疾病预防控制中心 钟志雄研究员 报告题目:化妆品中烷基胺的离子色谱仪测定法   钟志雄研究员在报告中谈到,烷基胺有特殊的刺激气味,对皮肤、眼睛、上呼吸道以及肺具有强烈刺激作用,并且其是化妆品禁用物质,因此检测烷基胺具有重要的现实意义。用传统的液相、毛细管电泳法、气相色谱法等测定烷基胺样品一般要经过衍生处理,容易受复杂基体的干扰,或要经过繁杂的前处理操作;我们建立了化妆品中甲胺、二甲胺、三甲胺、乙胺、丙胺和丁胺离子色谱分析方法,优化样品前处理方法和检测方法,能有效去除干扰,方法便捷、灵敏,可同时准确测定多种组分,实用性强。 华东理工大学分析测试中心 施超欧高级工程师 报告题目:被动采样-离子色谱法在博物馆微环境污染气体检测中的应用   施超欧高级工程师在报告中谈到,有机酸(如甲酸、乙酸等)、臭氧、氮氧化物等对馆藏文物影响较大,由于博物馆环境的特殊性,在现有的国家标准中缺少对应的有效检测手段。被动采样由于无需电源、操作简单、可重复使用、适合长时间检测等特点,因此非常适合博物馆特定环境的污染气体的采集。针对博物馆环境,我们设计了无动力扩散采样器,建立了被动采样-离子色谱法,根据不同类型的被测对象,选择不同的吸收液,采集一定时间后,用离子色谱法检测。 建立了对应的酸性污染气体、氧化性气体、碱性气体、氮氧化物和硫氧化物气体的被动采样-离子色谱检测体系,并将之应用到全国各地的博物馆,以及上海世博会文物展览的现场采样分析。 合影留念   附录:第十三届全国离子色谱学术报告会厂商活动集锦
  • 俄歇第一课答疑:AES基本原理、主要功能和应用
    1.问:求问电镜分辨率1.6nm和0.8nm在实际效果差多少?主要观测半导体芯片,具体差别在哪里? 回复:当然总的来说空间分辨率越高,成像特征越清晰;但实际应用与样品基体效应、分析需求、电镜优势性能、操作条件比如加速电压、电流、工作距离,真空环境等都有关系,由具体情况决定。通常供应商提供分辨率指标都是在特定条件比如高加速电压下低电流由标准样品测试得到的。如果观测半导体芯片,如果看浅表形貌特征,需要低加速电压,这时候可能电镜分辨率1.6nm和0.8nm的实际差异不大,要看此电镜在低加速电压的分辨能力;当分析对象尺度接近电镜空间分辨能力的时候,比如几个纳米的形貌特征(小于10nm),可能分辨率1.6nm和0.8nm的不同电镜能体现出成像差异;但当分析特征的尺度远大于空间分辨率的时候,比如100nm,从成像上两者的差别不会很明显。以上是经验浅谈,毕竟PHI不是电镜供应商,仅供大家参考。 2.问:请问AES和SEM-EDS测试的元素分布的区别? 回复: AES 和 EDS成分分析的主要区别:3.问:这种AES化学态的分析和XPS有什么区别?回复: 总的来说化学态分析主要用XPS,而AES主要获得元素信息,也有一定的化学态信息: 1) 俄歇激发本身涉及不同轨道能级三个电子的行为,俄歇电子动能与三个电子对应的轨道的结合能相关,比较难预测动能变化与化学态的相关性,不像XPS是单电子激发,原子得电子和失电子带来的结合能位移有一定的原则,有助于判断化学态;2) 俄歇是电子源入射,电子源本身对化学态尤其是有机材料的化学键有一定的破坏作用;电子源激发出的图谱里有较大的背景(背散电子弹性散射和非弹性散射背底、二次电子背底等)影响谱峰判定,给化学态判断带来影响;3) AES能量分辨率没有XPS能量分辨高,AES谱峰宽、谱峰分裂多(多种终态),不对称性等都影响化学态判断。而XPS谱峰(能量分辨好、背底干扰小、对称性好、 特征峰比如轨道分裂峰、卫星峰等)有化学态特征性。 4.问:请问AES在钙钛矿太阳能电池上有何应用嘛? 回复:只要样品有一定导电性或通过样品制备改善荷电效应,都可以用AES进行分析,所以AES可以分析钙钛矿太阳能电池材料(采用导电铜胶固定样品),但因为钙钛矿材料主要是有机金属卤化物半导体材料,AES电子束对有机化学键有一定损伤,不能用于化学态判定,但可以用俄歇表征元素定性和半定量结果(里面有特征元素比如Pb/I(Br)等), 但也有谱峰重合问题(比如I和O谱峰);所以总体来说AES对钙钛矿材料成分表征有一定局限性。 5.问:请问不导电的样品可以测试AES吗? 回复 : 俄歇主要用于测导体,半导体,对于绝缘材料除非改善荷电效应可以用俄歇分析,但对于有机材料本身电子束对化学键损伤,即使测出有机材料的元素比如C/O/N/S对有机材料的成分分析来说信息非常有限,意义不大。 6.问:硅酸盐粘土矿物可以吗?也是绝缘性的?AES可以区分出来不同羟基吗? Si-OH Al-OH可以区分出来吗? 回复: 同上,除非能改善荷电效应才能分析绝缘材料,本来荷电效应大就会使谱峰信号差,谱峰变形严重(展宽、能量位移等),不能进行化学态判定,所以主要获得元素信息,不能识别化学态(比如羟基等)。对课程感兴趣的小伙伴请扫描下方二维码,PHI小助手将会拉您入微信群,快来一起玩耍吧~
  • 国标蜂蜜中掺假淀粉糖浆的测定-离子色谱法
    国标GB/T21533-2008蜂蜜中掺假淀粉糖浆的测定-离子色谱法 国标GB/T21533-208检测蜂蜜中普遍掺假而加入的淀粉糖浆。该检测常见糖类的简单方法是配有氨丙基硅与高分子相或键合金属的阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱,等浓度淋洗分析,但这种方法由于糖从糖醇和有机酸中分离不充分、缺乏 特异检测、灵敏度不足等问题的存在,不能满足某些应用的要求,改进糖的分析方法已受到关注,自从规定食品中总糖的含量必须在标签中注明后,糖类的分析显得尤为重要,DIONEX戴安公司提供了与该国标的一致的一种全新而且成熟的方法,方法为:在高pH条件下,使用配有脉冲安培检测器(HPAE-PAD)和高效阴离子交换柱的离子色谱使上述问题得到了解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生,并且可以定量到P摩尔 (10-12 mol)水平。该技术已广泛应用于常规检测和研究中,且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器、金工作电极、以四电位波形检测。 戴安公司有关于蜂蜜检测的操作视频,欢迎索取010-64436740(汪小姐/汤先生) 蜂蜜中淀粉糖浆的测定--离子色谱法 1 该国标中规定了蜂蜜中果葡糖浆、麦芽糖浆、异麦芽糖浆、饴糖浆等淀粉糖浆的测定方法。本标准适用于蜂蜜中淀粉糖浆的测定。 本标准检出限:5%淀粉糖浆。 2 检测原理:蜂蜜中不含5糖(DP5)以上的寡糖,而各种淀粉糖浆中均含5糖(DP5)以上的寡糖,使用凝胶 体积排阻法去除样品中果糖、葡萄糖,将寡糖富集后直接经阴离子交换色谱-电化学检测器检测,将 5糖(DP5)以上寡糖的存在作为蜂蜜中淀粉糖浆的判定指标。 3 试剂和材料 3.1 聚丙烯酰胺凝胶微球,粒径45&mu m~90&mu m,分级分离的相对分子质量范围 100~1800,按使用 说明书进行水化和脱气。 注:可使用Bio-Gel® P-2 Gel 型聚丙烯酰胺凝胶或同等性能的凝胶材料。 3.2 凝胶层析柱:将聚丙烯酰胺凝胶(3.1)湿法装入1.5 cm× 15 cm 空柱管中,装入的凝胶高度为10cm,上端保持1cm 以上的水层,避免干涸。 3.3 层析柱架。 3.4 麦芽糖标准储备液:分别称取色谱纯麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦 芽七糖标准物质各10.0mg,用水分别溶解定容至10mL,配制成浓度为1mg/mL 的储备液,于棕色瓶中4℃下储存。 3.5 麦芽糖标准混合使用液:吸取一定量的糖标准储备液(3.4),按表1 用水配制麦芽糖标准混合使用液,在4℃下保存不超过30 天。该溶液用于样品色谱图中寡糖保留时间的定位。 3.6 50%氢氧化钠储备液:符合离子色谱使用纯度。 3.7 无水醋酸钠:符合离子色谱使用纯度。 3.8 0.45&mu m 样品滤膜:水性。 3.9 除非另有说明,所用试剂为分析纯,所用水符合GB/T 6682 规定的一级水。 4 仪器 4.1 离子色谱仪:配电化学检测器。 4.2 分析天平: 0.1mg 。 5 试样制备 5.1 称取混匀的蜂蜜2.0g 作为试样,用水溶解后定容至20mL,用0.45&mu m 水性滤膜过滤,滤液备 用。 5.2 将准备好的聚丙烯酰胺凝胶层析柱(3.2)中的水放尽,至下端无水珠滴下时,将样品滤液(5.1) 2.0 mL 沿柱壁慢慢加入层析柱中,恰好流至凝胶上方无液时,加入3.0mL 水冲洗柱壁,又至凝胶上 方无液时,再加入5.0mL 水冲洗凝胶柱。注意每次在层析柱上方加液(或水)的时机,应是前次加 液(或水)的层析柱体上端液体恰好流尽、下端恰好无液体滴出。弃去上述三次共10.0mL 流出液后, 于层析柱下方接一只2mL 具塞塑料离心管,从柱上方加入2mL 水,收集这2mL 流出液至离心管中, 盖紧离心管塞,摇匀后作为待测样品溶液,24 小时之内测定。层析柱中加入50mL 水冲洗,至全部流出后,该柱直接用于处理下一个样品。 5.3 将纯蜂蜜作为阴性对照品,蜂蜜中掺入5%市售果葡糖浆、蜂蜜中掺入5%市售麦芽糖浆的样品 作为阳性对照品,按照5.1 和5.2 进行操作。 6 测定 6.1 离子色谱条件 6.1.1 色谱柱:CarboPac&trade PA200 3 mm× 250 mm (带CarboPac&trade PA200 3 mm× 50 mm 保护柱) 或相当性能的分离柱,柱温30℃; 6.1.2 流动相:A:100%水;B:200mmol/L 氢氧化钠,200mmol/L 醋酸钠。梯度洗脱条件见表2。 6.1.3 检测器:电化学检测器;Au 工作电极;Ag/AgCl 参比电极。检测池温度30℃。糖检测波形 参见表3。 6.1.4 进样量:20&mu L 6.2 样品测定 依次将麦芽糖标准混合使用液(3.5)、纯蜂蜜阴性对照品(5.3)、含5%果葡糖浆的蜂蜜(5.3)和含5%麦芽糖浆的蜂蜜等阳性对照品(5.3)的寡糖收集液注入离子色谱仪中,观察离子色谱图, 当谱图与附录中参考谱图基本吻合时,方可进行实测样品的测试。 7 结果判定 分析比较纯蜂蜜阴性对照样品和含5%糖浆的蜂蜜阳性对照样品的寡糖谱图,找到两者之间有明 显差异的&ldquo 指纹区&rdquo ,并以此作为纯蜜中掺入淀粉糖浆的判定指标。任一掺入果葡糖浆的蜂蜜样品, 在麦芽五糖~麦芽六糖之间和麦芽六糖~麦芽七糖之间有两个典型的&ldquo 指纹峰&rdquo P1和P2,根据这两个峰的出现可判断蜂蜜中掺入果葡糖浆。任一掺入麦芽糖浆的蜂蜜样品,在麦芽五糖~麦芽六糖之 间、麦芽六糖~麦芽七糖之间以及麦芽七糖之后,有三个典型的&ldquo 指纹峰簇&rdquo P1、P2和P3,根据这三个峰簇的出现可判断蜂蜜中掺入麦芽糖浆(包括高麦芽糖浆、异麦芽糖浆和饴糖糖浆)。除了描述出的基本特点外,不同工艺条件下生产的糖浆还可见到其他出峰位置有其他峰形特征的微量寡糖峰,但不影响&ldquo 指纹区&rdquo 的基本特征和判定。附录A中的图A1为麦芽糖标准混合使用液的定位谱图;图A2为纯洋槐蜜、枣花蜜、椴树蜜、荆条蜜、油菜蜜的寡糖谱图;图A3为不同蜜种掺入5%的不同果葡糖浆时的寡糖谱图、图A4为不同蜜 种掺入5%的不同麦芽糖浆时的寡糖谱图。 附录A (资料性附录) 蜂蜜中淀粉糖浆测定的相关色谱图 DIONEX戴安中国市场部
  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 离子色谱,助你心中有谱
    小伙伴们在药物分析研究中,是否对无机、有机阴阳离子的分析感到头疼,这类离子在传统高效液相色谱中保留不佳或无紫外吸收,如溴离子、亚硝酸根离子、碱土金属和有机酸离子、有机胺离子等的分析。 用传统液相色谱进行检测存在一定难度,而我们今天的主角离子色谱主要利用离子在水溶液中电离产生电导的特性,可以用于无机、有机阴阳离子的分析,便捷高效的完成上述分析检测。 离子色谱按分离原理可分为离子交换色谱、离子排斥色谱和离子对色谱3 种,目前应用广泛的是离子交换色谱法。 离子色谱仪通常由输液系统、进样系统、分离系统、检测系统(通常为电导检测器)和数据处理系统5个部分组成,其中电导检测器为了提高检测灵敏度和选择性通常还会联用抑制器,降低淋洗液的背景电导,增加被测离子的电导值,改善信噪比。岛津目前有配备化学型阴/阳离子抑制器和电渗析型阴离子抑制器的不同离子色谱仪以应对不同的检测需求。 近年来由于离子色谱法分离机制的独特性,可弥补液相色谱或气相色谱对离子型药物分析时的不足,使得其在药品检测领域中的应用越来越广泛。特别是《美国药典》31 版和《欧洲药典》6. 0版首次对妥布霉素等 7 个氨基苷类抗菌药物品种使用离子色谱法检测,标志着其正式被法定的药品标准收载和使用。《中国药典》从2010 版开始,增加了离子色谱法的指导原则, 最新的2020版《中国药典》中涉及离子色谱检测项目如下: 岛津的应用工程师与医药行业监管、研发及生产单位合作,开发了应对离子色谱检测需求的检测方法,汇集成检测方案和应用文集,我们关注的药物离子色谱检测常见问题都包括其中。 岛津离子色谱应用方案 # 01甲硝唑氯化钠注射液中亚硝酸盐分析 甲硝唑是常见的一类硝基咪唑类药物,硝基咪唑类药物的一类降解产物为亚硝酸盐。参考2020年版《中国药典》甲硝唑氯化钠注射液中亚硝酸盐含量测定的方法,采用搭载阴离子电化学自再生膜抑制器的岛津离子色谱仪Essentia IC-16,建立了甲硝唑氯化钠注射液中的NO2-的含量的测定方法并完成了方法学验证。2020版《中国药典》甲硝唑氯化钠注射液中亚硝酸盐含量测定的推荐进样体积为25 μL,本方法条件下进样体积仅为2 μL小进样量也能获得高灵敏度;亚硝酸根的标准曲线线性相关系数均>0.999;在三个浓度下加标平行测定6次,亚硝酸根的保留时间和峰面积的RSD分别为0.19%-0.21% 和0.18%-1.04%,系统精密度良好;亚硝酸根在三个浓度下加标回收率在87.1~100.1%之间,均符合中国药典9101 分析方法验证指导原则要求。该方法可以为定性、定量分析甲硝唑注射液、甲硝唑葡萄糖注射液及甲硝唑氯化钠注射液三种注射剂中的NO2-提供准确、有效的检测依据。 岛津Essentia IC-16离子色谱仪 # 02丁酸氯维地平中的残留哌啶分析 丁酸氯维地平是一种短效的新型静脉注射用二氢吡啶类钙拮抗剂。丁酸氯维地平合成中需要哌啶做催化剂,哌啶具有中等毒性,因此必须控制最终产物中哌啶的残留量。哌啶极性很大且无紫外吸收,其pKa=11.1,水溶液为碱性, 使用岛津HIC-ESP离子色谱仪,建立丁酸氯维地平中哌啶的测定方法并完成了方法学验证。结果表明哌啶在1-20 μg/mL范围内,线性良好,线性相关系数均0.999;在三个浓度下加标平行测定6次,保留时间和峰面积的RSD 分别为0.01%-0.02%和0.41%-2.89%;哌啶在1ug/mL的加标浓度下, 回收率为108.5%,处于75%-120%范围内,均符合中国药典9101 分析方法验证指导原则要求。实验结果表明系统适用性实验、专属性、线性及精密度实验结果均满足哌啶的测定要求,可用于丁酸氯维地平中哌啶含量测定。 岛津HIC-ESP离子色谱仪 # 03葡萄糖酸钙锌口服溶液中葡萄糖酸钙、葡萄糖酸锌、盐酸赖氨酸的分析 葡萄糖酸钙锌口服溶液为复方制剂,包含葡萄糖酸钙、葡萄糖酸锌及、盐酸赖氨酸。用于治疗因缺钙、锌引起的疾病,对葡萄糖酸钙锌口服溶液中三种成分的含量测定是对其进行质量控制的关键指标。常用滴定法、比色法、AAS法、ICP-MS法对葡萄糖酸锌口服溶液进行质量检验,该类方法只是对葡萄糖酸钙、葡萄糖酸锌定量检测,未能同时对盐酸赖氨酸进行准确分析,而使用岛津Essentia IC-16离子色谱仪可同时对葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸定量检测。葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸分别在各自范围内,线性良好,相关系数大于0.999;在葡萄糖酸锌150 μg/mL、盐酸赖氨酸50μg/mL和葡萄糖酸钙300μg/mL的浓度下连续测定6次,三种目标物保留时间和峰面积的相对标准偏差分别为0.03%~0.07%和1.10%~1.94%之间 在上述浓度下,进行三种目标物的加标回收率测试,回收率在95.8%-101.9%之间,均符合中国药典9101 分析方法验证指导原则要求。该方法专属性强、灵敏度高、操作自动化等特点,适合葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸的同时检测。 岛津离子色谱技术为您提供更精准、快速、合规的分析检测方案,离子色谱助您心中有谱! 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制