当前位置: 仪器信息网 > 行业主题 > >

数字芯片检测器

仪器信息网数字芯片检测器专题为您提供2024年最新数字芯片检测器价格报价、厂家品牌的相关信息, 包括数字芯片检测器参数、型号等,不管是国产,还是进口品牌的数字芯片检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字芯片检测器相关的耗材配件、试剂标物,还有数字芯片检测器相关的最新资讯、资料,以及数字芯片检测器相关的解决方案。

数字芯片检测器相关的资讯

  • 号外,号外,naica® 六通道微滴芯片数字PCR检测ctDNA方法被Lung Cancer 收录啦
    在2021最新版的Methods in Molecular BiologyLung Cancer第10章(127页开始)介绍了使用naica六通道微滴芯片数字PCR系统检测NSCLC患者ctDNA样本中的19种活化和耐药位点,并对检测方法进行了详细的描述。naica六通道微滴芯片数字PCR系统检测流程文中阐述,naica六通道微滴芯片数字PCR系统多重检测速度快,每个患者样本可获得大量突变信息,通过naica六通道微滴芯片数字PCR系统进行液体活检可实现高灵敏度和高效的治疗监测,早期发现治疗耐药性。Methods in Molecular Biology是Springer出版的权威分子生物学方法学系列著作,共1110册,涵盖了生物学的方方面面。包括生命科学、药物科学、化学、药学、材料学、细胞生物学、生物化学、人类基因组学、植物性、免疫学等。Lung Cancer就肺肿瘤生物学常用的实验方法进行了深入的讨论和细致的描述,包括用于建立肺癌诊断和预后的相关研究方法。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 【Seminar】naica® 六色微滴芯片数字PCR系统进行表观遗传学和基因编辑检测
    对于珍贵的生物样本来说,使用有限的生物样本获取更多的数据结果,能够帮助科研学者和诊断人员获得更全面的信息,同时降低运行成本,提高工作效率。11月18日,法国Stilla Technologies公司将举办naica六色微滴芯片数字PCR系统线上Seminar,本次Seminar邀请了Eugène Marquis癌症中心学者分享数字PCR在肿瘤基因PIK3CA突变检测方面的研究进展,免疫表型中心学者进行数字PCR在表观遗传学和基因编辑领域的应用研究报告;同时,还将举办线上naica数字PCR实验培训,届时欢迎大家前来学习。【关于Stilla Technologies】法国Stilla Technologies是总部位于巴黎的欧洲生物创新技术公司,具有跨学科专业知识的全球团队,利用先进的微流体化学,分子生物学和计算机科学等技术,拥有80多项全球专利,致力于提供突破性且灵活的naica系统来加速下一代基因检测的开发。为全球的研究人员和临床医生提供高精度的遗传分析解决方案来改善健康状况。【关于深蓝云】北京深蓝云生物科技有限公司作为法国Stilla Technologies公司在中国的数字PCR技术示范与服务中心,在北京和苏州建有标准PCR实验室,致力于为用户提供新型生命科学研究仪器和分析产品以及优化的整体应用解决方案。深蓝云生物配备着专业的技术支持和应用支持,依托生命科学产品和解决方案,专注为用户提供分析产品和完善的售前咨询和售后服务。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 单个大肠杆菌检测新思路| naica®全自动微滴芯片数字PCR系统提供最强支撑
    导读尽管各国卫生系统发展迅速,但由病原菌引起的传染病仍然是人类健康的主要威胁之一。据报道,全世界每年有220多万人死于水传播大肠杆菌病原体。尽管大多数大肠菌群是无害的,但某些大肠杆菌的存在可能会导致甚至威胁到人类健康,例如,大肠杆菌O157:H7和其他产志贺毒素的大肠杆菌菌株(非O157 STEC)是食源性疾病的常见因素,可能对健康造成严重后果,尤其是对幼儿。因此,检测大肠杆菌对于生物医学应用以及食品、水和空气质量监测非常重要。大连理工大学环境科学与技术学院,工业生态学与环境工程教育部重点实验室的科学家,开发出基于naica全自动微滴芯片数字PCR系统的单细菌检测方法,该方法可以在1.5小时内以单细胞灵敏度选择性检测临床尿液样本中的大肠杆菌 。该方法发表在《Analytical Methods》,题为“Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification”。应用亮点:▶ dDRCA系统,能够快速、选择性地检测具有单细胞敏感性的大肠杆菌 ,dDRCA系统的检测灵敏度比之前报道的PAD高1000倍。▶ 证明了dDRCA系统在尿路感染诊断中的潜在临床适用性,dDRCA能够在不到1.5小时内,从20份临床尿液样本中成功识别出5名UTI患者,而传统的基于培养的方法需要数小时。文中采用naica️全自动微滴芯片数字PCR系统液滴微流控技术,快速精准的检测到复杂样本和高背景样本中的致病大肠杆菌。通常扩增需要约4小时进行定量大肠杆菌检测。在这项研究中,我们描述了DNA酶偶联滚圈扩增(RCA),这是一种高效的等温酶DNA复制过程,可在naica️全自动微滴芯片数字PCR系统上进行,以建立液滴DNA酶偶联RCA(表示为dDRCA)系统。我们进一步证明,该系统能够在1.5小时内以单细胞敏感性选择性检测临床尿液样本中的大肠杆菌。▲图2(a)通过琼脂糖凝胶电泳分析RCA产物(RP)。(b) 反应混合物在指示反应条件下的荧光响应:+RFD-EC1/+ RDS/+ E. coli (blue line) RFD-EC1/+ RDS/+ E. coli (green line) RFD-EC1/+ RDS/-E. coli (red line) + RFD-EC1/+ RDS/-E. coli (pink line)。(c) Naica Prism3阅读器图像(左)、CLSM图像(中)和荧光显微镜图像(右)为微晶芯片液滴的大小。比例尺:1.4 mm(左)和100 mm(中、右)。指示反应条件下dDRCA系统的荧光图像和荧光滴数:(d)+RFD-EC1/+ RDS/+ E. coli (e)-RFD-EC1/+ RDS/+ E. coli (f) -RFD-EC1/+ RDS/ E. coli (g) + RFD-EC1/+ RDS/ E. coli.使用Naica Prism3阅读器对生成的荧光液滴进行成像和分析。dDRCA系统能够在75分钟内选择性计数具有单细胞敏感性的大肠杆菌,包括20分钟的细胞裂解时间、12分钟的液滴生成时间和43分钟的液滴反应时间。通过比较其他三种常见细菌,包括枯草芽孢杆菌(B.subtilis)、酸性乳片球菌(P.acidilactici)和唐菖蒲伯克霍尔德菌(B.gladioli)存在时的信号反应,也检查了dDRCA检测大肠杆菌的选择性。当用缓冲液或尿液中的这些意外靶点测试每个dDRCA系统时,未观察到明显的荧光液滴(图4c和S4†)。▲图4(a)不同大肠杆菌浓度(每毫升细胞数)下dDRCA反应的荧光图像。比例尺:1.4 mm。(b) 不同浓度下计数的液滴数与大肠杆菌之间的关系。提供了计数的液滴数量,插图显示了1–104大肠杆菌范围内的线性反应。误差条代表三个独立实验的标准偏差。(c) dDRCA的特异性。最终证明了dDRCA系统在尿路感染(UTI)诊断中的潜在临床适用性。分析了20份患者和健康献血者的临床尿样。整个操作程序包括:(1)细胞收集和裂解(25分钟);(2) 液滴生成(12分钟);(3) 液滴反应(43分钟)。如图5c所示,五个尿样,即ID 6、8、9、12和14,比其他尿样产生大量荧光液滴(3000)。使用传统的大肠杆菌培养方法进一步确认了这些有无大肠杆菌感染的样本(图5d)。因此,对UTI的诊断有很大的希望。▲图5(a)检测尿液样本中的大肠杆菌。(b) 显示尿液样本中计数数与大肠杆菌细胞在1-104范围内的线性相关性的曲线图。(c) 20份临床尿液样本中阳性液滴的数量。(d) CLED(胱氨酸、乳糖电解质缺乏)琼脂细菌尿液培养板。黄色菌落代表大肠杆菌在37℃的CLED琼脂中培养22小时后的生长。该系统能够在不到1.5小时的分析时间内,从20份临床尿液样本中成功识别出5名UTI患者,而传统的基于培养的方法需要数小时。原文:https://doi.org/10.1039/D2AY00656Anaica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • naica®微滴芯片数字PCR系统精准检测不同西瓜种质之间CITST2基因拷贝数的差异
    导读西瓜 (Citrullus lanatus, 2n=22)是世界第三大水果,是世界各地种植的重要经济作物,也是一种受欢迎的新鲜水果,含有糖、番茄红素和瓜氨酸等有益人体健康的化合物。研究人员通过杂交开发了大量西瓜品种以满足消费者的偏好。但长期栽培和对果实品质性状的筛选,不同地理区域采集的栽培西瓜显示出较低的遗传多样性,因此需要更多的遗传种质资源用于可持续生产西瓜的创新品种。参考基因组对于性状和基因发现是必不可少的。西瓜基因组测序工作始于十几年前。除西瓜基因组初稿外,自2019年以来已经发布了三个高质量的西瓜参考基因组。然而,每个基因组仍然不完整,存在许多空白。高质量的参考基因组与从相同遗传库产生的突变体数据相结合,将有助于发现和分离遗传和育种所需的突变体。无缺口参考基因组是基因组组装的最终目标,为识别“暗物质”区域中的独特基因和结构变异带来了新的机会。北京大学高等农业科学研究所科研人员在Molecular Plant(最新JCR分区Q1,影响因子21.9496)上发表了题为《A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding》的文章。研究者使用西瓜优良近交系G42组装了一个T2T(telomere-to-telomere)无缺口参考基因组,弥补了当前可用参考基因组中所有剩余的组装缺口。通过基因组信息比对识别了甜西瓜种质中一个包含ClTST2(液泡膜糖转运蛋白)基因的17.5 kb串联重复序列(sv04611)。该研究应用naica微滴芯片数字PCR系统对西瓜CITST2基因的拷贝数进行检测,证实了不同西瓜种质之间CITST2基因拷贝数存在差异,甜西瓜种质中CITST2基因的拷贝数增加可能是造成糖含量增加的原因。应用亮点:▶ 使用naica微滴芯片数字PCR系统对甜西瓜和不甜西瓜种质之间CITST2基因拷贝数的差异进行准确定量。▶ 甜西瓜和不甜西瓜种质中CITST2基因分别为两个拷贝和单个拷贝。▶ CITST2基因的拷贝数变异可能会改变西瓜糖含量。G42基因组组装比其他参考基因组组装具有更高的完整性和准确性,为更准确地描述基因结构变异(SVs)提供了更多的数据支撑。数字PCR技术已被证明可以灵敏可靠地检测拷贝数变异的核酸绝对定量工具。该研究采用naica微滴芯片数字PCR系统精确定量不同西瓜种质之间CITST2基因拷贝数的差异,验证了无缺口参考基因组识别SVs的准确性。研究成果:本研究成功组装出G42 西瓜的T2T无缺口参考参考基因组,包括所有22个端粒和11个着丝粒的信息。利用无缺口参考基因组数据,研究者识别了甜西瓜种质(97103和G42)sv04986结构中一个包含ClTST2基因的17.5 kb串联重复序列(sv04611)。这是不甜西瓜种质(PI 595203和PI 296341-FR)基因组中不存在的。ClTST2基因编码一种定位于液泡的糖转运蛋白,其表达与西瓜果肉中的糖积累呈正相关。▲图1. (A)sv04986 结构在甜西瓜(97103和 G42)和不甜西瓜(PI 595203和PI 296341-FR)种质中含有 ClTST2 基因。甜西瓜种质中存在一个17.5kb的串联重复序列sv04611,包含2bp的CA插入突变。红色箭头代表引物 ClTST2-R8/ClTST2-F3的位置。(B)使用ClTST2-R8/ ClTST2 -F3 引物扩增四个西瓜种质DNA 样本的结果。随后作者使用naica微滴芯片数字PCR系统对甜西瓜和非甜西瓜种质之间CITST2基因拷贝数的差异进行了准确定量。FAM通道仅能检测到存在CA插入突变的区域。HEX通道用于检测ClTST2基因。CY5通道检测的是西瓜中的单拷贝内参基因Actin。当CITST2基因为双拷贝时,FAM/HEX/CY5拷贝数比约为1:2:1。当CITST2基因为单拷贝时,FAM/HEX/CY5拷贝数比约为0:1:1。数据显示两个不甜西瓜的种质仅包含单拷贝CITST2基因,而甜西瓜种质在包含两个拷贝CITST2基因。▲表1.利用dPCR技术估算甜和不甜西瓜种质中CITST2基因拷贝数期刊介绍:Molecular Plant (《分子植物》)是由中科院上海生命科学研究院植物生理生态研究所(IPPE)与中国植物生理与植物分子生物学学会(CSPP)主办,中科院上海生命科学信息中心生命科学期刊社承办的学术期刊,创刊于2008年。2022最新JCR分区Q1,影响因子21.9496。
  • 文献速递 | naica®微滴芯片数字PCR系统助力肺炎克雷伯菌的高灵敏检测
    导读在新型冠状病毒感染咳嗽的诊断与治疗专家共识(2023,46)中针对咳黄脓痰或外周血白细胞增高提示可能存在细菌感染,在2021年发表的95例COVID-19患者合并细菌及真菌感染的临床分析中,结果表明,COVID-19危重型患者易合并鲍曼不动杆菌和肺炎克雷伯菌等细菌和真菌的感染,肺炎克雷伯菌(Klebsiella pneumoniae)属于肠杆菌科克雷伯菌属,是一类重要的医源性感染革兰氏阴性条件致病菌,对多数抗菌药物易产生耐药性,占临床分离菌的13%,成为仅次于大肠埃希菌 (19%)的院内感染第二大致病菌。上海交通大学生命科学技术学院微生物代谢国重实验室科学家基于naica微滴芯片数字PCR系统建立了肺炎克雷伯菌的数字PCR检测方法。数字PCR检测灵敏度最低检出限可达到3.37copies/μL;方法的相对标准偏差(relative standard deviation,RSD)均小于25%;本研究利用优化后的数字PCR方法共检测了28 株临床菌株,检测到14株为肺炎克雷伯菌,14株为其他种属,该方法特异性好、灵敏度高、准确度高,适合肺炎克雷伯菌的核酸检测和定量分析,也为其他临床病原菌的分子检测提供了新的技术参考。应用亮点:▶ 数字PCR (digital PCR,dPCR)作为第3代 PCR技术,具有简便快速、灵敏度高、精确度高的特点,可检出微量的细菌核酸分子。▶ 与传统的qPCR 相比,dPCR不受扩增效率的影响,无需依赖扩增曲线、无需标准曲线即可进行绝对定量,同时对低浓度的核酸定量更加准确可靠。实验结果:1、通过数字PCR的检测范围和灵敏性实验得到,cdPCR样品后续可在S5&minus S9样本检测范围内进行。▲图1.数字PCR对不同稀释度标准品灵敏度测试结果。蓝色:阳性微滴;灰色:阴性微滴;NTC:阴性对照2、数字PCR与荧光定量PCR的检出范围和灵敏性实验,得到cdPCR对低浓度样品的检测更准确。此外,cdPCR的最低检出限(3.37copies/μL),较qPCR (194.9 copies/μL) 有更高的检测灵敏度。▲图2: pUC57-16S的数字PCR (A)和荧光定量PCR (B)的标准曲线图 2B不同稀释倍数标准品检测的Ct值:S1:9.84;S2:12.89;S3:16.21;S4:19.74;S5:22.34;S6:25.69;S7:28.11;S8:32.56;S9:35.423、同时对3株肺炎克雷伯菌和4株其他菌株进行特异性评估验证,cdPCR方法对肺炎克雷伯菌的特异性检测有效。4、利用cdPCR对28株临床菌株进行检测,有14株菌为肺炎克雷伯菌,14株为其他菌株,说明cdPCR具有临床菌株检测应用潜力。综上所述,本研究建立了检测肺炎克雷伯菌的数字PCR方法。与qPCR技术相比,cdPCR可以精准地对核酸进行绝对定量分析,检测下限低至单拷贝,不依赖于标准曲线, 具有较好的数据重现性,在稀有样品或痕量样品的检测方面具有独特的优势。因此,该方法为提高肺炎克雷伯菌的早期核酸检测提供了新方法,也为核酸绝对定量提供了新的数据支持。同时naica六通道数字PCR系统为新冠病毒合并细菌感染的多重检测提供可能。naica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 中国汽车芯片标准检测认证联盟正式成立
    2023年9月1日,在工业和信息化部、国务院国资委、国家市场监督管理总局以及天津市政府的大力支持和具体指导下,中国汽车技术研究中心有限公司(以下简称“中汽中心”)牵头筹备的中国汽车芯片标准检测认证联盟(以下简称“联盟”)在天津正式成立。联盟由汽车芯片全产业链的120余家企事业单位组成,中汽中心担任理事长单位和秘书处单位。成立大会上,天津市副市长朱鹏,中国科学院院士、中国密码学会理事长王小云,中汽中心总经理陆梅,工业和信息化部装备工业一司副司长郭守刚、电子信息司副司长史惠康,国家市场监督管理总局认证监管司副司长李春江,以及来自汽车整车及芯片企业、行业组织、科研机构等共计200余名嘉宾现场参会,会议由天津市工业和信息化局局长尹继辉主持。朱鹏充分肯定了联盟成立的重要性和必要性,希望联盟立足职责定位,在促进中国汽车芯片标准建立、产品上车应用、行业生态建设、服务全产业链上发挥积极作用,有效助力产业发展。陆梅全面回顾了联盟策划筹备的背景和成立的重要意义。她表示,中汽中心将积极发挥中央企业的引领带动作用,勇担联盟理事长的组织牵头职责,高效细致做好秘书处单位的统筹协调工作,以标准为引领,以检测认证为核心,加快推动汽车芯片产业的关键共性体系完善,与联盟各单位一道,共同为我国汽车芯片产业高质量可持续发展作出重要贡献。史惠康表示,集成电路产业已成为新一代信息技术的核心组成部分,希望联盟加快推动集成电路和汽车产业的协同创新、跨界融合,打造汽车芯片发展新高地。李春江表示,希望联盟切实发挥认证认可和检验检测对产业发展的基础性、先导性、战略性、引领性作用,为汽车芯片产业发展作出更大贡献。会议期间,政府领导、行业专家以及联盟理事长和副理事长代表,共同宣布联盟正式成立。会上,王小云院士作了题为《密码技术与数字经济高质量发展》的主旨报告,聚焦数据要素市场与安全、密码技术及发展、区块链技术及应用,关联密码技术与密码芯片的汽车行业应用,并为行业高质量发展提出建议。天津市经济技术开发区党委书记、管委会主任洪世聪作汽车产业集群发展规划报告,从经开区汽车产业发展规划、支持汽车芯片产业集聚的属地政策等方面进行了介绍。成立大会前,联盟召开了第一次代表大会,完成了对联盟章程、联盟工作计划、联盟倡议书的审议表决,举行了联盟理事长、副理事长及专家委员、秘书处负责人的聘任。未来,联盟将坚持以“让测试有据可依,让行业有芯可选”为宗旨,以检测促进中国汽车芯片标准建立、促进产品上车应用、促进行业生态建设、服务全产业链为总体思路,聚焦新能源和智能网联汽车领域,构建基础检测规范,支撑汽车芯片产业链高质量发展。中汽中心将继续践行汽车行业“国家队”的使命担当,立足独立、公正、第三方的行业定位,扎根汽车芯片行业关键共性需求,发挥汽车全价值链技术服务核心优势,为推动汽车芯片产业链发展、构建国家现代化产业体系和建设汽车强国作出更大贡献。
  • naica® 微滴芯片数字PCR助力华盛顿大学科学家在同时监测HIV病毒载量和检测SARS-CoV-2感染研究
    COVID-19大流行中断了对艾滋病病毒感染者的常规护理,严重影响了对艾滋病病毒感染者的诊断和治疗。如果感染SARS-CoV-2, 艾滋病病毒感染者的发病率和死亡率会增加。据报道,近日在南非发现新冠新型变异毒株Omicron可能由艾滋患者体内进化而来。因此密切监测HIV血浆病毒载量(VL)并筛查SARS-COV-2感染就显得尤为迫切。近日,来自华盛顿大学的Gaurav K Gulati和Nuttada Panpradist等科学家在medRxiv平台上提交文章《Inexpensive workflow for simultaneous monitoring of HIV viral load and detection of SARS-CoV-2 infection》的预印本。通过开发一种新的工作流程,同时定量艾滋病毒载量和检测SARS-CoV-2。文中使用naica微滴芯片数字PCR系统对RNA浓度进行精准定量,用于新方案的评估。文章中作者基于Boom方法开发了一种内部RNA提取方法,从血浆、鼻腔分泌物(NS)或二者混合物中进行RNA提取,对HIV长末端重复序列(LTR) 、SARS-CoV-2核衣壳基因区域(N1、N2)和人类核糖核酸酶 P(RP)进行RT-qPCR分析,估计血浆病毒载量并对HIV/SARS-CoV-2状态进行分类(HIV为病毒学失败或抑制,SARS-CoV-2为阳性、假定阳性、阴性或不确定)。首先,作者将包含HIV LTR检测扩增区域或N1/N2检测的DNA片段作为RNA生成的起始DNA构建体。使用 T7 RNA聚合酶将DNA构建体转化为RNA。为了对体外转录的RNA浓度进行精准定量,作者使用naica微滴芯片数字PCR系统对RNA浓度进行绝对定量(图1)。从图中可以看出通过检测OD值并不能对RNA浓度进行精准定量,因此最终利用数字PCR的结果对RNA的浓度进行了校正。图1:数字PCR量化体外转录的RNA标准浓度随后将合成的不同浓度的HIV RNA与血浆样本进行混合构成人造血浆样本,合成的不同浓度的SARS-CoV-2 RNA与NS进行混合构成人造NS样本,分别采用内部提取方法和标准提取方法对血浆样本中HIV、NS样本中SARS-CoV-2和血浆和NS混合样本中HIV和SARS-CoV-2进行灵敏度检测。同时采用133个临床样本,其中40个血浆样本(30个HIV血清阳性),67个NS样本(31个SARS-CoV-2阳性)和26个血浆和NS混合样本(26个HIV阳性,10个SARS-CoV-2阳性)进行评价(图2)。结果表明:内部提取对HIV的检测限为200拷贝/mL,对SARS-CoV-2的检测限为100拷贝/mL。对于血浆样本,两种方法测量的HIV病毒载量水平呈正相关(人造样本的R2:0.98, 临床样本R2: 0.81)。在对NS样本使用内部提取方法时,排除不确定结果,与标准提取方法相比,95%的一致性(25个阳性,6个假定阳性和31个阴性)。对于血浆和NS混合样本,两种方法测量的HIV病毒载量水平呈正相关(人造样本的R2:0.98, 临床样本R2: 0.71)。SARS-CoV-2检测结果显示阳性和阴性分类是100%一致性。图2:使用两种不同提取方法从血浆和NS混合样本中共同提取的RNA中获得的HIV LTR 和SARS-CoV-2 Cq值的比较.(a)比较标准与内部提取方法性能的实验设计方案。(b)来自内部提取方法的SARS-CoV-2 LTR、N1、N2和人 RP (阴性样本的对照)测定的Cq值。(c)基于两种提取方法的结果对样本进行分类。通过两种方法提取的样本中测得的(d)LTR、(e)N1和(f)N2的散点图。综上所述,作者开发的内部提取方法可以从单独的血浆或血浆和NS混合样本提取RNA来确定艾滋病病毒感染者是否存在SARS-CoV-2感染,从而有可能简化HIV管理和SARS-CoV-2检测。将这两种病毒的检测结合起来可以有效的减少COVID-19对艾滋病毒治疗的影响。medRxiv是由耶鲁大学(Yale University)、非营利研究和教育机构冷泉港实验室(The Cold Spring Harbor Laboratory,CSHL)和BMJ出版集团(英国医学会下属专业医学出版机构,British Medical Journal)创建的,服务器由CSHL拥有和操作。medRxiv为研究人员在期刊出版前分享、评论和接收有关其工作的反馈提供了一个平台。medRxiv旨在提高科学发现的开放性和可及性,加强研究人员之间的协作,记录想法的来源,并通过更及时地报告已完成的研究,为正在进行和计划的研究提供信息。原文:https://doi.org/10.1101/2021.08.18.21256786naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 苏州医工所周连群团队在芯片式数字PCR检测技术和仪器研制方面取得系列进展
    核酸检测逐渐成为病原体诊断的“金标准”,随着新型冠状病毒疫情的持续蔓延,核酸检测的重要性正不断被大众认知和认可。作为高灵敏度、绝对定量、高耐受性的新一代核酸检测技术,数字化聚合酶链式反应(数字PCR,dPCR),在稀有突变检测、拷贝数变异检测、液体活检、单细胞分析、转基因检测、病毒载量检测、微生物定量分析、NGS文库制备等应用领域发挥着重要作用。   苏州医工所周连群课题组聚焦生物传感器领域,深耕十余年,在生物传感方法开发、生物芯片设计加工、生命科学仪器研制等方面积累了坚实基础。在数字PCR研发方面,基于隔离稳定性高、温度均匀性好、检测速度快的芯片式数字PCR(cdPCR)方法,自主研发了高通量数字化芯片及高通量数字化核酸分析仪,围绕高通量数字化核酸检测方法、芯片、试剂和仪器等方面取得了一系列重要进展。   在高通量数字化芯片的加工与改性方面,周连群课题组的李金泽、邱亚军等人在Analyst上发表题为Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction的论文,提出了针对数字化芯片三维异质性改性的新策略,通过内壁亲水、表面疏水的异质性化学改性,实现了高填孔率、低残留的数字化样品分割。通过深硅刻蚀可以得到高密度蜂窝状微孔阵列,如何保证待测生物样本能高效的填充入微孔,并且降低液体在表面残留导致的孔间连通,是数字化样品分割的关键。针对该问题科研人员提出了对于均质硅材料的三维异质性改性策略,即通过微接触印刷只在特定的空间位置发生化学修饰,进而在均质材料的三维空间上形成具有不同化学性质的界面。通过工艺优化消除了样本挥发导致的扩散效应,实现了芯片表面的选择性疏水修饰。三维异质性改性后的芯片可以达到91%以上的填孔率以及小于5%的液体残留率,优于商业化的数字PCR芯片。利用该芯片可以实现高效准确的dPCR检测,定量结果的线性相关性达到0.999以上。该核心技术的突破为自研cdPCR的精准定量奠定了坚实基础。 图1 高通量数字化核酸检测芯片的三维异质性改性效果图   在样本的数字化分配与封装方面,周连群课题组的高旭等人在Biomicrofluidics上发表题为High filling rate digital PCR through-hole array chip with double independent S-shaped flow channels的论文,提出了针对数字化芯片的微流控进样封装方法,通过双S型流道夹心数字化芯片的结构,有效提高的样品的填孔率和装载重复性。传统的刷样方式,受限于操作的繁琐性,存在耗时长、重复性差、易污染的问题,限制了芯片式数字PCR的应用。通过微流控结合标准化仪器设备,可以实现进样封装的标准化和自动化,简化用户的手动操作步骤和整体样品装载和封装时间。本文主要通过流体力学仿真结合试验验证,解决了流体样本与微孔相互作用过程中的稳定性、均匀性和重复性问题,通过合理的结构设计和优化的进样条件,实现了填孔率大于99%、填孔液体体积CV达6%的高效、高均匀性进样与封装。该成果的突破有效提升了自研cdPCR的易用性,为产品的临床应用推广奠定了良好基础。 图2 数字化芯片的微流控进样封装结构:(a)结构装配图;(b)结构爆炸图   在芯片式数字化核酸检测的应用方面,周连群课题组与华山医院检验医学科关明课题组合作在Sensors & Actuators: B. Chemical(中科院I区)上联合发表题为Establishment of scalable nanoliter digital LAMP technology for the quantitative detection of multiple myeloproliferative neoplasm molecular markers的论文,对骨髓增殖性肿瘤(MPN)的多重标志物实现了超敏、多靶标、定量检测,从而为这种罕见病的早期诊断和靶向治疗提供新的方法。Ph染色体(费城染色体)阴性的经典骨髓增殖性肿瘤是以一系或多系分化相对成熟的骨髓造血干细胞持续克隆性增殖为特征的恶性血液疾病。随着分子生物学技术的迅速发展,越来越多的分子标志物被不断发现。根据世界卫生组织(WHO)最新的骨髓增殖性肿瘤诊断标准,JAK2、MPL 和CALR三个基因的突变已被作为骨髓增殖性肿瘤诊断的重要参考指标。周连群研究员课题组与关明教授课题组“医-工”结合,将环介导等温扩增(LAMP)技术快速等温扩增的优势、微流控技术高通量的优势和数字PCR技术准确定量的优势进行整合,成功开发了一款数字LAMP检测平台,并基于纳米粒子的特殊功能,对现有的LAMP检测体系进行了改良,可在60分钟内实现骨髓增殖性肿瘤CALR-1、CALR-2和JAK2 V617F分子标志物的准确定量检测,检测灵敏度分别为0.5%、0.1%和0.5%突变水平。与现有的商业化数字PCR平台相比,本项目开发的数字LAMP平台具有检测成本低、检测速度快等优势,具有良好的应用前景。论文的第一作者为曹国君博士和李金泽博士。 图3 多靶标数字LAMP检测平台检测流程示意图   芯片式数字PCR的研发工作得到了国家自然科学基金委、中国科学院项目的支持,形成了高耐受高扩增效率试剂(CN201811098669.3)、三维异质性改性(CN201810568211.3)、进样封装一体化(CN201910377557.X)、物理分区式多靶标检测(CN201710560138.0)、均匀快速热循环(CN201910911821.3)、高分辨率多色荧光成像(CN201910049908.4)、自适应图像处理算法(CN201910600118.0)等一系列核心技术,实现了方法、芯片、试剂和仪器的全链条自主知识产权创新。相关仪器入选《中国科学院自主研制科学仪器2021》目录,并完成了二类医疗器械的型式检验,进入医疗器械注册证申报流程;已经在华山医院、北京基因组所等多家医院、科研院所等单位开展了应用示范。 图4 芯片式高通量数字化核酸分析芯片及仪器  论文链接:   [1] Jinze Li#, Yajun Qiu#, Zhiqi Zhang, Chuanyu Li, Shuli Li, Wei Zhang, Zhen Guo, Jia Yao, Lianqun Zhou*. Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction. Analyst, 145 (2020), 3116-3124. https://doi.org/10.1039/D0AN00220H   [2] Xu Gao#, Jinze Li, Chuanyu Li, Zhiqi Zhang, Wei Zhang, Jia Yao, Ming Guan, Zhen Guo, Chao Li, Lianqun Zhou*, High filling rate digital PCR through-hole array chip with double independent S-shaped flow channels. Biomicrofluidics 14 (2020), 034109. https://doi.org/10.1063/5.0006374   [3] Guojun Cao#, Jinze Li#, Zhifang Xing, Zhiqi Zhang, Wei Zhang, Chuanyu Li, Longhui Li, Zhen Guo, Shuli Li, Xu Gao, Yanchun Ma, Lianqun Zhou*, Ming Guan*. Establishment of scalable nanoliter digital LAMP technology for the quantitative detection of multiple myeloproliferative neoplasm molecular markers. Sensors & Actuators: B. Chemical 346 (2021) 130493. https://doi.org/10.1016/j.snb.2021.130493
  • 肿瘤负荷监测|naica® 微滴芯片数字PCR系统定量ctDNA中特异性SV监测肿瘤治疗反应和复发
    荷兰乌得勒支大学,荷兰鹿特丹伊拉斯谟癌症研究院,荷兰癌症研究院等科学家团队在《Genome Medicine》(2021年影响因子11.117)杂志上发表文章“Optimizing Nanopore sequencing-based detection of structural variants enables individualized circulating tumor DNA-based disease monitoring in cancer patients”,提供了一种即时的、高灵敏的个体化疾病监测解决方案,基于癌症基因组三代测序技术实现潜在SV标志物筛选,随后通过naica微滴芯片数字PCR系统绝对定量检测转移性前列腺癌患者血浆中ctDNA(循环肿瘤DNA)的SV标志物,并实现持续监测。通过实时监控SV的变化,来评价肿瘤治疗的动态反应。通过四个病例的特异性SV的数字PCR监测,表明SV动态变化与已有的肿瘤治疗反应标志物如PSA具相关性并能更早发现复发。应用亮点1.naica微滴芯片数字PCR系统能够用于血浆ctDNA中的特异性SV生物标志物的检测。2. naica微滴芯片数字PCR系统三色荧光通道同时检测SV结构变异,上游野生型和下游野生型三个靶标位点。3.naica微滴芯片数字PCR绝对定量患者SV标志物,适用于肿瘤治疗反应监测,更早提示复发。三通道数字PCR绝对定量检测血浆cfDNA中肿瘤特异性SV实验设计A、血浆cfDNA中肿瘤特异性SV的数字PCR绝对定量检测路线。B、三通道数字PCR的引物和探针设计检测。野生型上游和野生型下游等位基因与变异等位基因。设计了三个标记不同荧光染料的探针,特异性检测变异等位基因或野生型上游和下游等位基因。循环肿瘤DNA循环肿瘤DNA(ctDNA):肿瘤细胞释放入血的游离DNA(cfDNA),大小约为160-180 bp。与正常的游离DNA(cfDNA)相比,ctDNA的不同之处在于携带肿瘤特异性的遗传学改变(SNV,CNV,Indel,SV),约占0.1-1%,ctDNA已被证明与肿瘤负荷呈正线性相关性。有多例病例报道,ctDNA在临床症状出现前几个月发现癌症复发,通过ctDNA的液体活检,有望监控肿瘤负荷,确定疗效和耐药性,检测微小残留病,并了解肿瘤异质性和克隆进化。结果与结论利用naica微滴芯片数字PCR系统进行4例前列腺癌患者两个时间点,即基线期和进展期时,血浆cfDNA中两个肿瘤特异性结构变异位点SV-A和SV-B的检测,VAF变异等位基因频率如图C,每mL血浆中变异等位基因拷贝数如图D。C、显示四例前列腺癌患者血浆ctDNA中SV-A和SV-B的VAF变异等位基因频率。D、显示四例前列腺癌患者每毫升血浆中SV-A和SV-B变异等位基因拷贝数。监测4名前列腺癌患者的血浆ctDNA中特异性SV变异水平,每个患者有两个SV,并与PSA和ALP等临床生物标志物进行比较。患者Pros1和Pros5的SV-A和SV-B的VAF监测结果显示与肿瘤负荷相关,患者Pros1和Pros4比PSA更早地提示疾病的进展。下图为患者Pros1血浆ctDNA中的SV持续监测结果。E、患者Pros1两种SV的VAF、治疗、实验室指标(前列腺特异性膜抗原(PSA)、碱性磷酸酶(ALP))和临床疾病进展(PD)。* Cabazitaxel:卡巴他赛,是一种紫杉烷类化疗药物,主要用于治疗激素难治性转移性前列腺癌。展望作者在文中表明:临床医生非常清楚癌症治疗方案动态监测的重要性,但缺乏即时监测肿瘤治疗反应的有效工具,因此尽管医生能够及时发现了病情变化并做出反应,但却为时已晚。本文提出了一种克服这些限制因素的新方法,并为即时个性化疾病监测提供解决方案。每个患者持续监测了两个SV,结果表明使用SV量化ctDNA以监测治疗反应具备潜在临床效用。这种方法可以提高疾病监测的敏感性,使其满足更智能治疗方法的要求。更多详情查看原文:DOI:10.1186/s13073-021-00899-7法国Stilla Technologies公司naica微滴芯片数字PCR系统,六色荧光通道,少量样本中获得更多生物信息,了解详情请点击:https://mp.weixin.qq.com/s/rVt1F50ILi3wFY9FdndyBwGenome Medicine影响因子:影响因子查询网址:https://www.iikx.com/sci/biology/18358.html
  • 文献速递丨naica® 微滴芯片数字PCR精准检测核移植后的线粒体异质性,2.5小时快速获得结果
    线粒体疾病是线粒体基因组(mtDNA)发生基因突变所导致的一类遗传疾病, 仅通过雌性种系传播。通常,细胞中超过60%的线粒体DNA发生突变就会导致疾病,并且一个人的线粒体DNA突变越多,其疾病就越严重,线粒体疾病目前是不可治愈的。▲图源:网络(侵删)目前核移植(NT),也称为线粒体捐赠,作为一种预防线粒体疾病从患病母亲传给其后代的战略而受到了越来越多的关注。但由于核移植中含有少量细胞质来源的mtDNA,介导受体中mtDNA异质性改变且伴有扩增,因此需要对mtDNA突变负荷进行准确定量,现用NGS测序方法局限性在于成本较高、耗时较长、数据处理复杂且信噪比较低。Leber遗传性视神经病(LHON)最常见的母系遗传性线粒体疾病,比利时根特大学生物系专家团利用数字PCR(dPCR)平台对LHON相关m.11778 G>A突变位点进行检测,并和NGS方法进行对比,探讨数字PCR在mtDNA异质性定量中的适用性。研究成果发表在知名期刊《Clinical Chemistry》上。检测样本信息:为了评估dPCR在异质性评估中的适用性,共设置了3种类型的样品:(i)具有很高突变负荷的患者样品13个;(ii)由健康志愿者捐赠的同质野生型样品3个;(iii)经过NT处理的样品,由于mtDNA残留而携带低突变负荷,共6个样本。检测方法:通过处理,将样品突变负荷范围设置在50%至0.01%,进行分析验证。实验结论:☑ 在dPCR和NGS结果上观察到的突变率具有良好的一致性。☑与NGS相比,dPCR具有更低的背景噪声。使用naica微滴芯片数字PCR系统,非患者样本中的突变等位基因没有阳性信号,符合预期。☑ 和dPCR结果相比,在NGS结果中几乎所有异质样品的次要等位基因频率都被高估,初步猜测NGS实验流程中可能引入了错误序列,经过PCR扩增改变次要等位基因频率。☑ 相较于NGS,数字PCR成本低、操作简便、结果直观、更适用于低频突变检测。☑ 数字PCR方法适合用于核移植后线粒体异质性定量检测。▲naica微滴芯片数字PCR系统检测不同mtDNA样本二维图(FAM-突变型,VIC-野生型)左上:高突变负荷患者样本;右上:野生型样本;左下:NT后异质性样本;右下:NTC▲Bland-Altman PLOT评估naica微滴芯片数字PCR系统检测结果和NGS结果的一致性最后,文章conclusion给出-数字PCR具有更多优势,适用于核移植后线粒体的异质性评估:▲ 图片来源:原文第8页期刊介绍:naica微滴芯片数字PCR系统法国Stilla Technologies公司的naica微滴芯片数字PCR系统在进行核酸检测时具有独特的优势。该系统利用cutting-edge微流体创新型芯片—Sapphire芯片(或高通量Opal芯片)作为数字PCR过程的耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中。3色荧光检测仪器,整个流程只需要2.5小时,并可进行数据的质控和结果追溯分析,获得的数据真实可靠。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 液体活检:利用naica® 微滴芯片数字PCR系统检测乳腺癌患者cfDNA中21种PIK3CA突变
    随着针对PI3K通路的新疗法的批准,PIK3CA突变的检测已成为HR+/HER2- 转移性乳腺癌 (MBC) 治疗管理的关键因素。法国雷恩第一大学尤金马奎斯癌症中心在《Scientific Reports》上发表了一篇文章,该文章采用naica微滴芯片数字PCR系统开发了多重PIK3CA突变检测技术。该技术可同时检测21种PIK3CA突变,并进行绝对定量,解决了当前对乳腺癌患者的21种PIK3CA致病突变进行快速、高灵敏、有效检测的难题。亮点1.在naica微滴芯片数字PCR平台,使用液体活检技术对21种PIK3CA突变进行定量检测。2. 通过对大量的肿瘤实体样本和cfDNA样本进行检测验证,获得了83.1%的一致性,确定了此方案的临床有效性。3.naica微滴芯片数字PCR系统检测方法的高灵敏度和稳定性,能够快速、经济、有效地对乳腺癌中最常见的PIK3CA致病突变进行绝对定量,覆盖率达90%。检测方式利用naica微滴芯片数字PCR系统(Stilla Technologies),结合Drop-off检测方法,设计了一种可以同时检测21个PIK3CA突变的方法。在阳性分析案例中可精确识别PIK3CA突变。通过分析来自213个 HR+/HER2- MBC样本的血浆循环游离DNA (cfDNA) 以及从89名患者的97个可用匹配肿瘤中提取的DNA,确定了此方案的临床有效性,并在cfDNA分析和相应肿瘤样本分析之间获得了83.1% 的一致性。该技术采用两种Assay配合三步诊断策略(图1,图2),首先进行PIK3CA突变初步筛选,如果没有PIK3CA突变,则认为标本为阴性。在阳性结果的情况下,进行第二步检测集中于四种最常见的PIK3CA突变,并进行WT-MUT Duplex联合分析确定阳性突变位点。图1左:PIK3CA突变检测的两种多重检测方法设计图。(a) PIK3CA Assay n°1设计图:使用四对引物(灰色箭头)同时扩增N345K、C420R、 H1047L和H1047R。使用Drop-off方法检测542-546突变。(b) Drop-Off 542-546检测原理: WT序列由HEX标记的Drop-off探针和cy5标记的reference探针检测,产生一簇HEX-Cy5双阳性微滴(2D点图上为黄色簇) 而542 - 546密码子上带有突变(MUT,红色叉)的序列则无法与Drop-off探针结合,只和reference探针结合,生成单阳性微滴(2D点图上的红色簇) (c) PIK3CA Assay n°2设计图:使用两对引物同时扩增两个序列,使用FAM探针标记野生型(WT)序列,使用HEX探针标记E542K和E545K突变,使用FAM和Cy5探针标记H1047L突变,使用Cy5探针标记H1047R突变;图一右:三步诊断策略。图2:使用PIK3CA检测在患者cfDNA样本上鉴定PIK3CA突变示例。(a)四种最常见的PIK3CA 突变(E542K、E545K、H1047L和H1047R)的2D图结果,首先使用PIK3CA Assay n°1检测,各自的MAF为16.86%、4.17%、17.13%和1.97%。并使用PIK3CA Assay n°2确认,各自的MAF分别为17.40%、5.25%、19.55%和1.97%。(b)其他突变(N345K、C420R、Q546K、Q546P和Q546R)的2D图结果,首先使用PIK3CA Assay n°1检测,各自的MAF为4.00%、3.83%、35.02%、1.16%和39.2%,并使用WT-MUT Duplex方法确认,各自的MAF分别为6.99%、6.50%、36.84%、0.71%和43.89%。结果分析结果显示,213份血浆中68名患者(32%)至少有一种突变,这与文献中普遍报道的结果一致。有6例患者每个样本有2个突变,共发现74个突变。在本文的检测方法可能检测到的21个突变中,有9个在血浆样本中检测到(图3a、b)。此外,本方法检测的相对频率与COSMIC数据库中列出的频率相当一致,该方法能够快速、经济、有效地对乳腺癌中最常见的PIK3CA致病突变进行绝对定量,覆盖率达90%图3:213例HR + /HER2−转移性乳腺癌患者血浆中PIK3CA突变检测(a)在213例HR + /HER2−转移性乳腺癌患者中,PIK3CA检测发现9个PIK3CA突变阳性病例数。(b)确定的9个PIK3CA突变的相对频率。(c)突变在血浆中浓度(copies/ml)和MAF(%)分布 (5例以上的突变用箱线图表示,5例以下的突变用点表示,2例以上的突变用中位数线表示)。原文:https://doi.org/10.1038/s41598-021-96644-6|欢迎试用|naica️六色微滴芯片数字PCR系统开放试用,大家可以拨打电话010-57256059或者官网官微申请,诚挚邀请您到Stilla数字PCR中国技术示范与服务中心参观,期待与您相见。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 你听说了吗,naica® multiplex PCR MIX与naica® 六通道微滴芯片数字PCR检测更配哦
    法国Stilla Technologies公司开发的—款多重PCR专用预混液:naicamultiplex PCR MIX(见表1),专用于naica六通道微滴芯片数字PCR系统的多重检测。并对naicamultiplex PCR MIX的多重检测性能进行了详细评估。当面对有限的样本量时,可保证多重数字PCR检测的灵敏度和准确性;在复杂背景基因存在的情况下,依然能精确检出低丰度的目的基因。★ naicamultiplex PCR MIX在naica六通道微滴芯片数字PCR上进行6个靶标的同步准确定量采用0.2~13000cp/ul的DNA样品,使用10X naicamultiplex PCR MIX在naica六通道微滴芯片数字PCR系统上进行6个靶标的线性范围分析,结果显示6个靶标的R2均>0.99,说明在naica六通道微滴芯片数字PCR系统上,能够可靠地实现6靶标同步准确定量(图1)。与2X和5X浓度的数字PCR预混液(dPCR Mixes)相比,10X浓度的数字PCR预混液体积加入量降低了50%至80%,最大限度地提高样品加入量。尤其是在检测低浓度样品或稀有靶标时,样品加入量的增加可提高检测灵敏度。▲ 图1:使用naicamultiplex PCR MIX在naica六通道微滴芯片数字PCR上进行6个靶标的线性分析,分别在蓝色、青色、绿色、黄色、红色和红外线6个通道进行检测。每个稀释点的DNA浓度分别为:0.2、1.5、8.0、50、320、2050和13000 cp/ul,每个稀释度进行3次重复。结果显示6个靶标的R2均大于0.99,说明所有靶标的结果都高度真实可靠。★ 在复杂的背景基因下,对低丰度目的基因进行精确定量数字PCR的—个重要技术优势是能够在存在多个靶标扩增的情况下检测到低浓度靶标。为了评估naicamultiplex PCR MIX的稳定性。使用同一个目标DNA模板的不同浓度系列稀释液(0.2~ 13000 cp/uL)进行检测,同时其中掺入5种外部靶标模板(每个靶标的浓度为3000 cp/ul)。在不同测试条件下,结果均呈现良好的线性关系(图2A和2C)。这些结果与同一DNA 靶点在不同浓度下单独检测以及在不添加外部靶标的情况下获得的结果具有可比性(图2B和2D)。▲ 图2:使用naicamultiplex PCR MIX的扩增结果真实可靠。将pUC18质粒(图A和B)和pUC57质粒(图C和D)的13000至0.2 cp/ul的系列稀释液在5个外部扩增靶标背景下(每个靶标为3000 cp/ul(A,C))和在不含外部靶标(B,D)的情况下进行定量检测,3次重复。线性拟合系数 R20.99,表明在不考虑多重背景的情况下,对所有靶标的测定结果都是真实可靠的。5个外部靶标的相对标准偏差保持在2.3%至3.1% (n=21),显示出极好的重复性。★ naicamultiplex PCR MIX应用亮点☑ 实现数字PCR方法多重检测的高度稳定性和高检测灵敏度;☑ 可在naica六通道微滴芯片数字PCR系统的动态范围内同时定量检测6个独立的DNA靶标,均具有良好线性关系;☑ 5X和10X的数字PCR预混液,提高了naica六通道微滴芯片数字PCR系统高阶多重检测能力;☑ 10X PCR MIX比5X PCR MIX降低50%的体积用量,从而增加DNA的加入量。在检测低浓度样品或稀有靶标时,样本加入量的增加可提高检测灵敏度。表1 naicamultiplex PCR MIX货号及规格naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 上海汽车芯片检测认证公共实验室落地嘉定,打造中国汽车芯片的“检测认证一体化中心”
    为更好地承载上海集成电路“北翼”功能定位,加快推进汽车芯片公共性研发平台、汽车芯片第三方检测认证机构等建设,日前,上海汽车芯片检测认证公共实验室揭牌启用,这也是国内各机动车检测平台中率先开展建设车规级芯片检测认证的公共实验室。汽车芯片检测认证公共实验室由上海机动车检测认证技术研究中心有限公司承建,可提供芯片功能及可靠性、功能安全、信息安全、失效分析等汽车芯片检测服务。在上海汽检的汽车芯片检测实验室里,多台设备正在24小时不间断地运行。芯片检测研究实验室主管工程师刘力介绍:“我们当前开展的是车规级芯片的功率循环测试,根据相关的模型推算,在实验室内部完成一周左右的测试时间,可以很好地模拟芯片装车10年间的应用表现。”汽车芯片耐久测试目前,上海汽车芯片检测认证公共实验室已经建成针对车规级认证标准AEC-Q100的全套测试能力,拥有十万级无尘净化间、ATE等集成电路自动测试系统、超声扫描显微镜等实验检测设备。如何给芯片做体检?在超声扫描显微镜下,正常芯片上产生的白色斑驳就相当于我们人体的“病灶”。芯片检测研究实验室主任助理张瑜一边演示一边向记者介绍:“我们现在看到的这张图片,是通过超声波扫描显微镜拍摄的。通过这个测试,我们可以锁定芯片哪个区域发生了损坏,这是属于芯片的一个无损测试方式。就好比我们进行体检过程中的第一步,先锁定这个芯片的病灶在哪个位置。”汽车芯片超声波影像随着汽车“三智”不断发展,全球汽车芯片市场不断扩大。嘉定作为汽车生产制造的前沿阵地,对于汽车芯片的需求旺盛。“从行业公布的数据来看,新能源车单车从2012年平均使用567颗汽车芯片增长至2022年平均使用1459颗。长期来看,芯片对于汽车的重要性会不断提升。”张瑜说,“目前,上海汽检已投入4000万元以上的资金,建成2个高水平的汽车芯片实验室,将通过打造中国特有的汽车芯片标准体系,建立一个系统化、自主可控的汽车芯片可靠性评估技术规范和检验检测认证服务体系。”汽车芯片功能检测上海汽检方面表示,目前实验室已服务包括泛亚汽车、上汽英飞凌等5家以上企业,进行了10款左右芯片产品的检测验证。未来,实验室将继续深耕检测技术研究,建立完整的车规级审核评价能力和一站式审核评价服务平台,与上下游产业伙伴共同赋能国产芯片,推动国产半导体产业的高速发展。下阶段,汽车芯片检测认证公共实验室将通过建设六大平台:集成电路测试服务平台、第三代半导体测试服务平台、汽车专用传感器芯片测试服务平台、多芯片模组测试服务平台、汽车被动组件测试服务平台和芯片失效分析服务平台,为芯片企业和汽车企业提供从研发到验证到失效分析溯源的完整服务能力,并实现芯片性能测试、芯片测试技术及设备开发、标准研究、芯片可靠性和一致性评估、混响室等芯片集成验证,推动长三角汽车芯片检测能力互联互通,测试资源共享。
  • 【网络研讨会】naica® 六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率
    2021年7月15日星期四(北京时间:11:00PM),德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士将在线分享:基于naica六色微滴芯片数字PCR系统无需全基因组扩增 (WGA),高通量绝对定量检测大麦单花粉核减数分裂重组率”的研究。本次网络研讨会将讨论关于开发单个花粉核基因分型,实现数字PCR高通量绝对定量检测四个特定染色体间隔内的减数分裂重组率。主题:naica六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率日期:2021年7月15日(周四)时间:北京时间11:00PM内容简介:植物育种利用减数分裂重组产生的新等位基因组合。在受精前直接测量配子中的减数分裂重组率,从单个个体中筛选出大量的样本,无需隔离种群分子标记分析,无需费时的细胞学观察的交叉互换(Cross Over)检测。目前由于花粉核DNA含量有限(~5 pg/单倍体细胞核),大麦花粉单核基因分型方案需要先进行全基因组扩增(WGA),再进行PCR分型或单细胞测序,从而限制了分析样本的数量。德国莱布尼茨植物遗传与作物研究所(IPK)科学家,基于Stilla Technologies 公司的naica六色微滴芯片数字PCR系统,开发了一种单花粉核基因分型检测方法,在不进行WGA的情况下,以高通量测定四个特定染色体间隔内(两个着丝粒和两个远端)的减数分裂重组率。通过对花粉核的热稳定性限制性酶消化提高了基因分型检测的效率,完成了42,000多个花粉核进行了基因分型。杂交花粉核中测得的减数分裂重组率与隔离种群测得的重组率一致。基于naica六色微滴芯片数字PCR系统,通过多重分析可在两个染色体间隔同时检测,进一步提高了样本通量。该系统同时兼容基于多种不同核大小和DNA数量的农作物细胞核,证明基于naica六色微滴芯片数字PCR系统的单核基因分型检测方法具有广泛适用性。该成果“High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR™ ”已发表于The Plant Journal ( IF 6.417 ) PubDate : 2021-05-05 ,DOI: 10.1111/tpj.15305主讲人:Evi Lianidou博士(雅典大学分析化学和临床化学)德国莱布尼茨植物遗传与作物研究所(IPK),隶属于德国莱布尼茨科学联合会,坐落于德国Gatersleben,研究定位以作物为主要对象,研究野生和栽培植物的遗传多样性,并利用这些材料,开展具有原创性的科学发现和技术创新,并实现农作物的分子改良。经过长达70多年的收集,保存了151,000多份不同作物的种质资源,是欧洲最大的种质资源收集与保藏中心,为IPK和世界相关研究人员研究作物基因和基因组演变、发展和表达规律提供了独一无二的研究材料。注册页面:注册链接:https://u9cm7yjb.pages.infusionsoft.net/
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • naica®微滴芯片数字PCR系统助力微生物菌株分群
    导读反刍动物是指具有反刍习性的一类哺乳动物,如牛、羊、长颈鹿、兔子等。反刍动物采食一般比较匆忙,大部分未经充分咀嚼就吞咽进入瘤胃,经过瘤胃浸泡和软化一段时间后,食物经逆呕重新回到口腔,经过再咀嚼混入唾液并再吞咽进入瘤胃,这种行为称为反刍行为。反刍动物的食物种类比其他种类的动物更丰富,结构组成也更复杂,但草料中的粗纤维含量较高导致其难以消化,反刍动物依赖于胃部微生物群的代谢能力来消化各种物质,但其转化效率低也是养殖业广泛关注的问题。虽然已有研究证明瘤胃中不同微生物的活性可以调节宿主利用植物生物能量的能力,但定植于宿主瘤胃中的微生物却很少受到关注。奥地利维也纳兽医大学的Cameron等人在Research Square在线发表了题为《Differential partitioning of key carbon substrates at the rumen wall by recently diverged Campylobacteraceae populations》的研究论文。文章采用多重数字PCR(dPCR)量化同一菌科的两种菌群,分析反刍动物瘤胃上的定植菌群分布及生物进化动态,为今后畜牧业提高动物代谢能力的研究提供了新思路。应用亮点:▶ 宏基因组测序发现瘤胃上皮细胞中弯曲杆菌科两个种群的基因序列高度相似,利用naica微滴芯片数字PCR系统可以对两个种群进行精准量化。▶ 使用不同培养添加物后,可以利用naica微滴芯片数字PCR系统进行微生物种群分布跟踪。研究成果:作者通过对瘤胃上皮微生物组的16S rRNA扩增子分析发现了一个优势菌株(OTU)为弯曲杆菌科(Campylobacteraceae),并通过宏基因组测序发现该OTU两个主要种群Ca. C. stinkeris与Ca. C. noahi的基因含量高度相似,但pgl(蛋白质糖基化)操纵子不同。为了探究Ca. C. stinkeris与Ca. C. noahi两个种群空间分布的差异,作者通过naica微滴芯片数字PCR系统比较了这两个种群在不同动物瘤胃乳突离上皮壁最近和最远两个位置的含量。结果发现不同动物的两个种群在这两个位置的比例接近。▲图1 Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突顶端和隐窝的含量比例。A)从乳突切片两个位置提取DNA使用dPCR进行定量分析。B) Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突两个位置的含量比例。横坐标为取样动物的名字。然后作者使用naica微滴芯片数字PCR系统对两种菌群进行生长和适应性测定,数据显示Ca. C. stinkeris可以在以醋酸盐为主要碳源时积累的生物量,更好地生长,但被丙酸盐抑制,而Ca. C. noahiz在任何一种添加物存在的情况下在都没有检测到生长优势。因此,作者推断可能存在一些其他机制来最小化竞争,这种机制通过某些代谢生态位维度上的分化,防止它们生长动力学的重叠来支持两个种群的共存。▲图2 醋酸盐利用和丙酸盐抗性检测。A)通过种群特异性dPCR,评估添加5 mM醋酸盐(acetate)或丙酸盐(propionate)对生物量积累的影响。分别用单个菌株(左,单一培养)和竞争菌株(右,共培养)进行了实验。通过数字PCR这种精准的定量技术,作者发现在瘤胃乳突的顶端和隐窝都分布有这两种优势菌群,且与上皮细胞分布数目无显著的相关性。另外,这两种菌群能够促进相关脂肪酸的代谢,进而发挥促进食物消化的功能。该文章为通过调节反刍动物体内某些盐离子浓度来调节优势菌群的分布比例进而提升消化能力提供了思路。
  • QIAGEN发布QIAcuity集成式纳米芯片数字PCR 系统新品
    QIAGEN全新基于集成式纳米芯片的数字PCR系统QIAcuity适用于对靶 DNA或 RNA分子进行绝对定量分析,兼容基于EvaGreen 染料法或探针法的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR实验一般简单快速。QIAcuity One 2plex集成式纳米芯片数字PCR系统支持2色荧光系统,每次可运行一张芯片,8小时可完成多至384个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将数字PCR的样本液滴制备、扩增和数据分析集成到全自动仪器中,在2小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易 QIAcuity创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中的液滴大小均一,无液滴破裂融合或交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 基因编辑检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升。2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器。4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity Eight集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen 或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Eight集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行八张芯片,8小时可完成多至1248个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂或融合。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升;2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染;3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器;4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity Eight集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity Four集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen 或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Four 集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行四张芯片,2小时可完成多至384个样本检测。。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升;2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染;3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果;4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity Four集成式纳米芯片数字PCR 系统
  • 复旦大学孔继烈教授谈微流控芯片与检测仪器创新与挑战
    p style="line-height: 1.5em text-indent: 2em "微流控芯片技术是生物医学领域的重要前沿方向,具有高通量、多靶点、快速、精准、操作简便等特点,可广泛应用于分子生物学、医药、免疫等领域。近日,复旦大学孔继烈教授就微流控技术以及其团队在微流控技术产业化方面的进展做了详细报告。/pp style="text-align: center line-height: 1.5em "img width="600" height="414" title="konglaoshi.jpg" style="width: 538px height: 362px max-height: 100% max-width: 100% " alt="konglaoshi.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/e4f38c7b-4412-4544-9896-e72e3397f81b.jpg" border="0" vspace="0"//pp style="text-align: left line-height: normal text-indent: 2em margin-top: 5px margin-bottom: 5px "span style="font-size: 14px "strongspan style="font-family: 楷体,楷体_GB2312, SimKai "孔继烈教授简介:/span/strongspan style="font-family: 楷体,楷体_GB2312, SimKai "/span/span/pp style="text-align: left line-height: normal text-indent: 2em margin-top: 5px margin-bottom: 5px "span style="font-family: 楷体,楷体_GB2312, SimKai font-size: 14px "男, 1964年生,1983-1993年分别获复旦大学学士、硕士和博士,1996-1998年分别在美国肯塔基州路易威尔大学和康州州立大学做博士后。 /span/pp style="text-align: left line-height: normal text-indent: 2em margin-top: 5px margin-bottom: 5px "span style="font-family: 楷体,楷体_GB2312, SimKai font-size: 14px "复旦大学教授、博士生导师,国家杰出青年科学基金获得者,复旦大学生物医学研究院PI,教育部创新科学仪器工程研究中心主任。在化学/生物传感器及微流控芯片分析系统、荧光检测仪器研制等领域取得有影响的成果,先后主持基金委重点/面上项目、“973”子课题、“863”项目等。已在包括J.Am.Chem.Soc.,Angew.Chem. Int. Ed. Anal.Chem. ACS Nano等知名学术刊物发表SCI论文330余篇,被同行引用12500余次,获得国家发明专利40余项。任《Am. J. Anal.Chem.》、《分析化学》、《分析科学学报》、《分析仪器》、《电化学》等刊物编委,中国仪器仪表学会电分析化学专业委员会副主任、化学传感器专业委员会委员。/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong从“庙堂之高”的基础研究到“江湖之远”的技术发明/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "科学仪器的源头是分析化学专业,但其更多的应用在生物医药以及诊疗等领域。近年来,“精准医学”概念的出现,更是急切呼唤创新分析测量技术与仪器。“精准医学”的最核心的部分是“精准的诊断”,这也是新药研发及提出新兴治疗方案的前提。作为生物医疗领域的前端,像现在非常热门的靶向诊疗(诊疗一体化),要求首先在诊断层面明确知道是什么原因导致疾病的发生。无论是常见病症还是癌症,都需要微流控这样的技术出现。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "从宏观的层面来讲,无论是蛋白质水平相关仪器,还是核酸水平相关仪器,国产医疗器械市场占有率还很低。上海三甲医院,很多都在使用罗氏、雅培、西门子的设备。即便在生化水平,即小分子的诊断设备,国内虽有很多公司在做,但是与世界上先进设备相比,仍有很大的差距。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "从学科角度来讲,微流控技术衍生于分析化学,而无论从学科知识的构成,还是人才培养,都是多种相关学科交叉的结果。仪器的产业化是一个系统工程,要集聚非常多的交叉学科的人才,单纯依靠分析化学或者微流控技术,都不能完成一台整体的集成化设备的制造。因为这还涉及到软、硬件支持,材料学,多种加工工艺,以及越来越多的新技术(如3D打印等技术)。此外,还要有生物医学、创新诊断方法学等多方面的共同结合。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "作为高校,要集聚这么多人才进行同一个项目,非常困难。因此,国家也在鼓励创业平台,将不同领域的专业人才聚集起来,共同进行仪器的研发生产。目前,孔继烈教授与他之前指导毕业的博士们正在做这件事。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong微流控领域存在的“多、少”问题/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "目前,微流控技术,尤其是微流控领域的产业化还有很多问题,主要包括以下几个方面:/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "1、进口多,国产少。/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "首先涉及到的很多器件,如光学器件、光电转换器件等,大部分性能很好的器件多来自美国、日本等国家。因此不单是整机的技术缺乏,上游的零部件技术也很缺乏。从整体来讲,现状是蛋白质、核酸检测的二类医疗器械,无论是化学发光还是电化学发光设备,大部分是罗氏、梅里埃等公司的。/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "2、上游多,下游少/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "“上游多,下游少”是指在研究过程中,大部分研究者做的是上游方法学的研究,虽然很前沿,反映了这个学科发展最新的聚焦点,但是往下延伸的比较少。很多微流控方向的研究生,发了很多SCI文章,之后就不了了之了。/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "3、前端多,后端少/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "研究人员可以做方法,做技术,甚至可以搭一个装置,但是没有办法定型,也没有办法做质控的标准。比如从计量的角度,这个产品怎么检验?怎么能达标?企业标准,行业标准,甚至国家标准,这些标准全面缺乏。当然这不是一家单位就能做的,需要行业内多家单位协同完成。/pp style="line-height: 1.5em text-indent: 2em margin-top: 5px "4、器件多,集成少 /pp style="line-height: 1.5em text-indent: 2em margin-top: 5px " 早些时候,很多实验室可以自行搭一台装置。例如最早在实验室做微流控,用数字化的光谱仪、光纤和光电检测器件组装而成。但是,这不是一台完整的仪器,因为无法在同一个软件中发送指令进行信号提取、信号处理和出具结果等等,这和仪器是有距离的。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong离心式微流控芯片核酸检测仪的技术及应用/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "离心式微流控芯片核酸检测仪(原型机)是孔继烈教授团队研制的第一代微流控设备,包括芯片系统、温度控制系统、高速旋转系统、光电检测系统等模块。研发目标是实现核酸的提取和扩增放在同一个芯片中完成,这在第一代原型机还无法实现。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "2017年,孔教授团队开始第二代产品开发,在光路、电路、信号放大、离心盘的可控性等方面进行了优化,可实现在同一个检测平台上做多种需求的靶点数、样本数的检测,如8个靶点4个通道或4个靶点8个通道或2个靶点16个通道的盘。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "第二代设备叫做核酸检测一体机,孔教授团队正在将一体机做成三类医疗器械——将来可以和医院检验科对接的设备,在30分钟内完成样本前处理,包括细胞的破碎,DNA的释放,原位扩增及检测。对于传统PCR 检测是革命性的突破。/pp style="text-align: center "img title="微流控仪器.png" style="max-height: 100% max-width: 100% " alt="微流控仪器.png" src="https://img1.17img.cn/17img/images/201905/uepic/359c57f2-bd60-495c-a1ba-48c0da7b540e.jpg"//pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "从方法学的角度来讲,该设备融合了很多基础研究的成果,包括蛋白质、DNA的纳米分子诊断技术、微流控驱动技术、集成技术、区域精准控温技术、高敏荧光检测技术、微流控盘快/慢速切换技术,可实现多模块集成工作。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "该设备的应用方向十分广泛,包括公共卫生、食品安全、检验检疫、以及基于微流控的免疫抗原抗体反应等等。已开发的典型的应用案例如下:/pp style="line-height: 1.5em text-indent: 0em margin-top: 10px "1、8种不同种属肉的同时溯源,特异性和灵敏度非常高。/pp style="line-height: 1.5em text-indent: 0em margin-top: 10px "2、非洲猪瘟特异性检测,可做到高通量现场快速筛查,灵敏度达到10个拷贝。/pp style="line-height: 1.5em text-indent: 0em margin-top: 10px "3、转基因大豆检测,可以很快完成多种转基因亚型的溯源。/pp style="line-height: 1.5em text-indent: 0em margin-top: 10px "4、降钙素原(PCT)微流控免疫检测,是针对临床感染的蛋白质指标的新型检测方式,目前检测灵敏度显著高于传统同类仪器。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong结语/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px "早在东汉时期,张衡就发明了候风地动仪。strong然而近代以来,中国的科学仪器发展却落后于世界上许多国家。这要求相关研究人员,不仅要专注于创新基础研究,更要积极促进仪器产业化,追求知行合一”,推动国产科学仪器的发展。/strong/p
  • naica®微滴芯片数字PCR系统对韩牛分子标记物的准确评估助力种质鉴定
    导读韩牛(Bos taurus coreanae)是一种驯化的哺乳动物,在韩国消费市场作为食物资源,其牛肉消费量远超其他品种,这种消费模式导致了区分韩牛和其他牛品种的分子研究的出现。不仅是牛,其他经济动物的不同品种在市场中的经济价值也存在较大的差异,所以准确进行种质鉴定势在必行。在之前的一项研究中,使用传统的PCR方法和Sanger测序验证确定了由TE关联缺失事件产生的韩牛特异性SV。它可以用作区分不同牛品种的分子标记(即韩牛与荷斯坦牛)。然而,PCR存在缺陷,每个样品都有各种最终拷贝定量。为了克服传统PCR的局限性,并准确评估先前研究中确定的韩牛特异性SV位点,檀国大学生物医学科学系联合畜牧研究所和檀国大学医学院,使用naica️ 微滴芯片数字PCR系统对韩牛特异性SV位点进行了更为精确的检测,并将成果《Quantitative evaluation of the molecular marker using droplet digital PCR》发表在Genomics & Informatics杂志上。转座元件(TEs)约占牛基因组的一半。它们可以是一个强大的物种特异性标记,在基因组进化时没有结构变异(SV)的回归突变。因此,作者应用naica️ 微滴芯片数字PCR系统对韩牛特异性SV进行准确的定量检测。虽然样品在韩牛群体中的等位基因频率变化较低,但naica️ 微滴芯片数字PCR系统可以通过绝对定量进行高灵敏度检测,可以做到比PCR更准确的定量。所以naica️ 微滴芯片数字PCR系统平台相比于传统PCR更适用于分子标志物的定量评价。应用亮点:▶ 使用naica微滴芯片数字PCR系统对韩牛特异性SV进行准确的定量检测。▶ dPCR测定在计数单分子和分析特定群体的少量拷贝时可以高精度地定量,与qPCR相比,具有更高的准确性。▶ 经过sanger测序,确定了naica️ 微滴芯片数字PCR系统检测准确无误,且操作和成本均低于测序。▶ naica️ 微滴芯片数字PCR系统适用于分子标志物的定量评价。实验方法:检测样本信息:共提取了五个棕色韩牛DNA和五个荷斯坦DNA作为实验样本。检测方法:为了更准确地检测韩牛特异性SV,将“Del_96”位点应用于naica️ 微滴芯片数字PCR系统(Stilla Technologies)。进行naica️ 微滴芯片数字PCR系统前确认韩牛和荷斯坦牛的DNA的浓度定量。FAM引物组和FAM探针用于检测韩牛和荷斯坦牛基因组。VIC引物组和VIC探针设计在韩牛特异性缺失(图 1B)。因此,FAM引物组和FAM探针(阳性对照)设计在所有牛DNA中检测。VIC引物组和VIC探针设计用于仅检测韩牛的荧光。▲图 1B实验结果:FAM染料在所有牛基因组中均被检测到,VIC染料仅在韩牛样品中显示出显著的检测。这表明所有韩牛基因组都包含特定的缺失序列(Del_96区域)。在韩牛样品中检测到VIC染料的信号平均浓度为243(copies/ μL)。虽然在荷斯坦样品中也检测到平均浓度0.12(copies/μL)的VIC染料信号,但这些信号相比韩牛可忽略不计。▲naica微滴芯片数字PCR系统检测韩Del_96和荷斯坦样品之间区域的绝对拷贝数比较。浓度图在 X 轴上指示样品数,在 Y 轴上指示对数刻度条(拷贝/μL)。(A)在所有样品中检测到FAM荧光。韩牛样品的绝对拷贝数大约是荷斯坦样品的两倍。(B)仅在韩牛样品中强烈检测到VIC荧光。最后,文章Results and Discussion给出-数字PCR适合作为验证物种特异性标记的平台。综上,对于naica️ 微滴芯片数字PCR技术,准确定量绝对拷贝数是一个关键特征,相比qPCR准确性更高,naica微滴芯片数字PCR为本文的检测提供了有利的支持,也验证了这一特征。在不久的将来,通过将物种识别工具应用于naica️ 微滴芯片数字PCR系统,它作为大样本量物种鉴定平台具有巨大潜力。所以naica️ 微滴芯片数字PCR系统适合作为验证物种特异性标记的平台。期刊介绍:Genomics & Informatics是由韩国基因组组织发行的涉及农业和生物科学、生物化学、遗传学、分子生物学、健康信息学等领域的期刊。
  • naica® 微滴芯片数字PCR系统三色多重分析设计性能优化指南
    多重分析,即在单个反应中检测多个靶标,可以帮助用户节省宝贵的样品,并节省时间、试剂和成本。此外,和做多次单重实验相比,由于多重反应所有靶标都在同一个反应中进行扩增和检测,使得样品和试剂的移液操作误差减少,因此多重检测可以提高定量精度。naica微滴芯片数字PCR系统的多重检测与单重检测一样灵敏和精准。专业的分析设计和优化可以实现更复杂的多重检测,从而在单个PCR反应中用多对引物和探针扩增多个DNA目标。Crystal Miner软件是一个开放的数据分析软件,可以通过其提供的强大工具来帮助优化和完成多重分析。评估引物和探针性能的实验指南1.Stilla建议使用naica multiplex PCR mix,该试剂设计的初衷是为了得到更好的多重naica微滴芯片数字PCR系统的实验数据。2.单重反应测试。在进行多重反应之前,每个引物/探针/模板均需要进行单重性能验证。例如,对于三重分析,在多重反应混合进行之前,首先应对核酸靶标进行三个单重反应。当进行单重反应时,预期结果只出现单一阳性。3.为了优化多重分析性能,样品性质也是十分重要的因素(例如,游离DNA和基因组DNA需要设计不同的DNA片段,分析游离DNA需要设计成短片段DNA,分析基因组DNA需要设计更完整的DNA片段)。4.使用的DNA模板应该没有污染物和可能的抑制剂。如果样品材料稀少或不容易获得,可以合成寡核苷酸作为模板分析优化。5. 评估每个单重反应的退火温度范围,在最佳反应温度下,阳性和阴性微滴分离良好且没有非特异性扩增(图1)。由Crystal Miner软件(图2)提供的Stilla可分离评价可以作为一种度量标准,用于确定所有探针的最佳退火温度。如果单重反应没有被很好地优化,可能会出现明显的非特异性扩增。此外,非特异性扩增可能由几个非优化参数造成。包括引物/探针二聚体或引物/探针非特异性。在这种情况下,可以采用多种方法限制非特异性序列的扩增,如提高退火温度、进行touch down PCR或重新设计引物序列等。实验前可使用相关软件评估引物探针的特异性。▲图1 :Crystal Miner软件展示单重反应一维点状图,在60°C到65°C退火温度内, 蓝色、绿色和红色荧光通道检测到的荧光强度。黑框部分表示单重反应的最佳退火温度。可分性评分(e)可用于确定3个靶标扩增的最佳退火温度。(带*数字为可分性评分)▲图2 :可分性评分是基于阳性和阴性微滴群体的距离。可分性评分是由Crystal Miner软件自动计算,并可以在高级QC标签栏下找到。6.在选定的退火温度下,使用所有引物和探针进行多重naica微滴芯片数字PCR系统,并以区分度为指导,评估反应性能。如果有需要,可从以下几点优化:★ 调整PCR的循环数——建议从45个循环开始,并增加循环数,以进一步优化阳性和阴性微滴群体之间的分离度。★ 调整引物和探针浓度——naica微滴芯片数字PCR系统推荐的引物和探针浓度范围可从0.125到1μM (图3)。对于多重分析的设计建议从较低的浓度范围开始,以减少反应的复杂性,减少引物和探针所占据的体积。▲图3。Crystal Miner软件的一维点状图显示了一系列引物(左图)和探针(右图)浓度不断增加时蓝色检测通道中的荧光强度。黑框部分表示良好的可分性评分,及在低引物探针浓度的选择标准下确定的用于多重分析的引物探针浓度。(带*数字为可分性评分)★ 使用修饰的碱基,如锁核苷酸(LNA)碱基或小沟结合基团(MGB),以提高探针的Tm值,同时保持较短的长度(可能20nt)。然而,在多重检测中建议探针添加的MGB不超过2个,以避免扩增减少。7.评价引物和探针的相互作用:在同一个多重实验中引物和/或探针之间形成同源/异源二聚体的概率应保持在最低。二聚体是可以评估的,相互作用的分数可以用多种工具来确定(例如,IDT Oligo Analyzer Tool, Primer 3, Primer express, Beacon designer) (图4)。高浓度的引物和探针会增加非特异性相互作用的概率。因此,多重分析时,建议所有检测都从低浓度的引物开始(例如,0.25 uM),如果需要,逐步增加浓度至1 uM(例如,提高扩增效率)。▲图4:引物和探针之间的相互作用示例。a)target 1的探针与target 2的反向引物相互作用(R2 target 2,红框)。当使用反向引物RI target 2时,没有检测到这种相互作用。在本例中,应选择RI target 2进行多重检测。b) target 1的探针与target 2的正向引物的相互作用(F2 target 2. 蓝框)。当使用正向引物F1 target 2时,没有检测到这种相互作用。在本例中,FI target 2应被选择用于多重检测。8.对于多重分析,荧光溢出补偿是十分重要的。使用多个单色参照,Crystal Miner软件可以创建一个补偿模型用于特定的多重反应。有关荧光溢出的更详细描述,请访问https://www.gene-pi.com/item/spill-over-2/。执行荧光溢出补偿的操作说明请参考Crysta Miner软件用户手册。naica微滴芯片数字PCR系统naica微滴芯片数字PCR系统,以Sapphire芯片(全自动)或Opal(高通量)芯片为耗材,形成25,000-30,000个微滴的2D阵列,以单层平铺方式进行PCR扩增实验。反应完成后对微滴进行三色通道或六色通道检测,从而对起始核酸浓度进行绝对定量。2.5小时内,可快速获得结果。
  • 快讯!这家数字PCR公司生物芯片阅读仪和微滴生成仪双双获批
    p  2019年6月21日,由长春技特生物技术有限公司(以下简称“技特生物”)自主研发的生物芯片阅读仪正式获得吉林省药品监督管理局批文(吉械注准20192220069)。该产品通过数字PCR微滴芯片进行扫描成像并处理分析,可实现精准、高通量、高灵敏度的检测。与此同时,该公司基于专利乳液微滴制备技术开发的微滴生成仪也同期获批,可实现连续多通道乳液微滴自动生成,且微滴数量、尺寸灵活可控。/pp  技特生物表示,本次获批的生物芯片阅读仪和微滴生成仪将作为核心部件,与PCR仪一道构成国内领先的微滴式数字PCR系统,将进一步满足临床、科研等多方面需求,助力我国精准医疗的发展。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/201906/uepic/e7b94318-23ca-4de7-b003-31dddd7407c0.jpg" title="010.jpg" alt="010.jpg" width="600" height="450" border="0" vspace="0"//pp style="text-align: center "技特生物微滴式数字PCR/pp  span style="color: rgb(0, 112, 192) "strong助力精准医学检验/strong/span/pp  数字PCR技术可实现对核酸分子的绝对定量。当前,市面上的数字PCR检测系统主要可以分为微滴式与芯片式,两种检测系统均有广泛应用,不过由于微滴式数字PCR检测系统分液更均匀、数据分析时象限划分更清晰、综合试剂成本低,从而更受用户青睐。/pp  在2016年欧洲肺癌大会(ELCC 2016)上,中国医学科学院肿瘤医院王洁教授曾以“基于血液样本检测T790M的先进技术”为题进行了报告。报告中提到,用微滴式数字PCR技术对血浆样本EGFR突变检测的敏感性高达91.7%,且具有基因突变检测特异性高的优势。无独有遇,来自美国Dana-Farber癌症中心的Oxnard等也指出,通过微滴式数字PCR动态监测敏感和耐药EGFR突变,能够得到高敏感性和精确的定量结果。/pp  此外,来自美国韦恩州立大学的研究团队将微滴式数字PCR系统与芯片式数字PCR系统进行对比后还发现,微滴式数字PCR系统能够更加经济有效地扩展分区。而增加分区数量有若干优势:首先,按比例增加分区可以增加动态范围,无需稀释样本即可容纳更大范围的样本 其次,由于富集效应,它提高了在存在类似核苷酸序列或抑制剂的情况下检测罕见靶点的能力,有助于检测单核苷酸多态性(SNPs)和其他罕见的等位基因(如ctDNA) 第三,它能更好地检测低浓度下拷贝数变化(CNVs)。/pp  因此,随着我国精准医学的发展,微滴式数字PCR系统必将在未来的肿瘤液体活检、无创产前筛查、感染性疾病早期诊断等热门研究领域扮演越来越重要的角色。/pp  span style="color: rgb(0, 112, 192) "strong技特生物微滴式数字PCR系统灵活之选/strong/span/pp  目前国内各公司的微滴式数字PCR系统,特别是阅读仪(第二类医疗器械产品注册证),能够完全自主研发并完成报证的凤毛麟角。技特生物本次推出并完成报证的微滴式数字PCR系统其核心部件完全自主研发,已成为行业的佼佼者,且其有如下优势:/pp  亮点一:快速灵活/pp  专利连续生成多个通道微流体技术,微滴生成时间短(45秒)、数量(20000-40000)和尺寸(0.2-1nL)灵活可控。/pp  亮点二:精确封闭/pp  单孔最低检出限可达万分之一,微流控芯片全程封闭避免污染,确保检测精确性及安全性。/pp  亮点三:高性价比/pp  操作简单,灵活地兼容大部分既有PCR仪,单样本检测费用低,独具成本优。/pp style="text-align: center " /pp style="text-align: center "strong扫码关注span style="color: rgb(192, 0, 0) "【3i生仪社】/span,解锁更多生命科学仪器资讯/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 170px height: 170px " src="https://img1.17img.cn/17img/images/201906/uepic/fe543890-93d6-409b-848a-8450a302d294.jpg" title="新 公号icon.jpg" alt="新 公号icon.jpg" width="170" height="170"//ppbr//p
  • 进展|安光所研发的数字PCR生物芯片阅读仪获批医疗器械注册证
    近日,安光所刘勇研究员、朱灵研究员团队研发的“数字PCR生物芯片阅读仪”正式获得安徽省药品监督管理局二类医疗器械注册证(皖械注准20222220135),产品型号:DCScanner-100。这是安徽省首款获批上市的数字PCR产品,填补了我省数字PCR自主产品的空白。该仪器获得医疗器械注册证,为下一步临床推广应用奠定了基础。数字PCR生物芯片阅读仪DCScanner-100数字PCR即Digital PCR(dPCR)是第三代PCR技术,它是一种核酸分子绝对定量技术。相较于上一代的qPCR技术,数字PCR能够直接数出DNA分子的个数,是对起始样品的绝对定量。它完全不依赖参照品和标准曲线,具有极高的灵敏度和分辨率,是未来核酸检测行业应用发展的新趋势。此次获批的生物芯片阅读仪可适配安光所自主研发的微腔和微液滴数字PCR芯片,广泛应用于肿瘤液体活检、无创产前诊断、病毒核酸载量精确定量等多个领域。自2011年起,安光所光电子中心研究团队专注于分子诊断领域创新技术的研究工作,在微流控芯片、光电一体化检测、分子诊断核心试剂等方面开展持续攻关,在国家自然科学基金、中科院STS重点项目、中科院青促会、安徽省科技重大专项等的大力支持下,利用研发的数字PCR技术平台,在肝癌循环miRNA标志物检测、慢性乙肝病毒核酸载量定量等方面取得了重要的研究成果。一直以来,安光所光电子中心研究团队始终坚持以临床需求为导向,以医用光学先进诊疗技术研究与创新装备的研发为己任,重点突破“卡脖子”技术瓶颈,为实现高端医疗器械国产化目标而努力奋进。
  • 捷报频传 又一数字PCR系统生物芯片分析仪获批
    p  近日,经北京市食品药品监督管理局审批,strong新羿生物/strong数字PCR系统的生物芯片分析仪获医疗器械注册批文,注册证编号:京械注准 20192220517。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 857px " src="https://img1.17img.cn/17img/images/201909/uepic/b50d16e1-0138-4d2c-a15d-65797875d2e4.jpg" title="新翌生物获证.jpg" alt="新翌生物获证.jpg" width="600" height="857" border="0" vspace="0"//pp  此前,新羿生物数字PCR系统的样本制备仪和微液滴数字PCR反应预混液(不含UNG及含UNG两种类型)已获医疗器械备案,本次生物芯片分析仪喜获批文,意味着新羿生物自主研发的微液滴数字PCR系统的全套仪器及通用试剂、耗材均可正式进入临床市场应用!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/95161afc-6020-4791-b8e8-1f1f117ba8b2.jpg" title="企业微信截图_15677652687651.png" alt="企业微信截图_15677652687651.png"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 257px " src="https://img1.17img.cn/17img/images/201909/uepic/a76ffa23-9574-4f19-ba56-36661969a804.jpg" title="新羿微液滴数字PCR系统.jpg" alt="新羿微液滴数字PCR系统.jpg" width="600" height="257" border="0" vspace="0"//pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "特点:/span/strongspan style="font-weight: bold color: rgb(0, 112, 192) "超敏 便捷 可靠 开放br//span/ppstrongspan style="color: rgb(0, 112, 192) "  超敏:灵敏度低至0.01%/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  便捷:操作简单,无须手动移液/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  可靠:多重防污染,避免假阳性/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  开放:支持个性化检测项目开发/span/strong/pp  微液滴数字PCR是一种单分子水平的核酸定量分析技术,具有超高的灵敏度,在PCR扩增反应后的任何开放式操作都可能造成微液滴内容物的挥发和逸出,导致扩增产物的气溶胶污染。目前商业化微液滴数字PCR仪器多涉及PCR反应后的开放式操作,比如微液滴的吸取和转移等,这在临床应用中可能导致样本假阳性的严重后果。/pp  新羿生物自主研发的微液滴数字PCR系统由样本制备仪、生物芯片分析仪及相应反应试剂耗材组成,与其他微液滴数字PCR系统不同的是,采用新羿数字PCR平台,液滴直接于8联排管中生成,生成之后无须手工移液,盖上新羿生物专利开发的8联排管盖可直接放入普通PCR扩增仪进行扩增,扩增完成后,直接放入生物芯片分析仪中,即可进行信号读取与分析。液滴扩增、检测流程无开盖操作,且检测后液滴储存于芯片内置废液槽中,不流经仪器内部,完全避免气溶胶污染,符合临床对检测安全性的要求。/pp  重大疾病检测试剂产品/pp  新羿生物基于自主研发的TD-1数字PCR平台,目前已开发肿瘤液体活检、感染性疾病诊断、出生缺陷疾病筛查等三大类数十项试剂产品,并于15个省市近百家单位进行试用,试剂质量受到用户单位的好评。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 1141px " src="https://img1.17img.cn/17img/images/201909/uepic/23e14496-df93-46cf-a42c-c1ffb3bf0eff.jpg" title="新羿.jpg" alt="新羿.jpg" width="600" height="1141" border="0" vspace="0"//pp  关于数字PCR/pp  微滴数字PCR是一种单分子水平的核酸检测和定量分析技术,被认为是继荧光定量PCR和NGS之后,基因检测领域最引人瞩目的创新之一。与其他传统分子诊断技术相比,数字PCR技术吸引人之处包括:高灵敏度,可实现单分子级检测 绝对定量,不依赖标准品和参考曲线 高稳定性和较高的抗干扰能力,适用于多种复杂样本。数字PCR技术在痕量核酸样本检测、复杂背景下稀有突变检测和表达量微小差异鉴定方面具有极大的优势。随着数字PCR的发展,业内普遍认为在如下领域具有广泛应用前景:/pp  strong基因表达差异研究/strong/ppstrong  拷贝数变异(CNV)研究/strong/ppstrong  低丰度DNA模板分子的精确定量/strong/ppstrong  甲基化含量鉴定/strong/ppstrong  二代测序辅助建库/strong/ppstrong  CRISPR-Cas9基因编辑结果验证/strong/ppstrong  肿瘤治疗的伴随诊断/strong/ppstrong  肿瘤治疗的实时监控/strong/ppstrong  无创产前筛查/strong/ppstrong  移植排斥监控/strong/ppstrong  致病微生物(病毒、细菌等)的检测/strong/pp  span style="color: rgb(0, 112, 192) "strong关于新羿生物/strong/span/pp  新羿生物成立于2015年,位于北京中关村科技园区,是一家由核心技术驱动并具有全球竞争力的生物高科技公司。在中关村科技园拥有高标准的生物医学仪器、耗材和体外诊断试剂生产基地。新羿生物已申请七十余项微液滴技术相关专利,在数字PCR研发领域拥有从芯片、仪器、软件到原料、试剂、耗材全系统开发能力。/pp  新羿生物所提供不仅是一套数字PCR系统或一个诊断项目解决方案,更愿以我们的研发能力与用户进行更广范围的科研及诊断合作,秉承“创新精准,用心为您”的发展理念,为用户提供更优服务,共同推动数字PCR技术的发展,造福社会。/p
  • RNA质量评估,naica️® 微滴芯片数字PCR系统来帮忙
    国家CDC在Diagnostic Microbiology and Infectious Disease发表了一篇文章,文中使用naica微滴芯片数字PCR系统检测了不同时间段临床流感样本的病毒载量,来评估RNA完整性和样本采集质量及对监测系统中流感诊断的影响。.应用亮点:▶ 使用naica微滴芯片数字PCR系统完成RNase P(RNP)RNA和流感基因的检测。▶ 低病毒载量的流感样品(10 拷贝/μl),在采集八天后依旧可以被naica微滴芯片数字PCR系统检测到,高低病毒载量的流感样品之间存在明显不一致的降解速率。▶ 检测作为样本采集质量的关键指标RNase P(RNP)RNA,对于流感的预防和控制至关重要。流感监测对于流感的预防和控制至关重要。然而医院一般只进行流感抗原快速检测,核酸鉴定却在网络实验室进行。由于流感病毒作为一种RNA病毒,不如DNA病毒稳定。因此诊断目标区域的RNA稳定性和完整性是实验室检测的主要挑战,并且人们对冷藏临床标本中流感核酸的稳定性也知之甚少。本文采用先进的核酸定量技术--naica微滴芯片数字PCR系统、用于对临床样本的RNA完整性进行系统评价,探索流感监测标本质量控制和评价的科学方法。通过实时RT-PCR检测的所有甲型或H1型流感阳性样本用数字RT-dPCR检测也呈阳性。图1清楚地显示了RNA随时间的降解。在甲型流感和H1流感测试中,RNA降解随着时间的推移不断扩大。在所有四个时间点通过数字RT-dPCR共检测了91个甲型流感病毒阳性样本的RNA含量和72个H1阳性样品的RNA含量,发现低病毒载量样本RNA降解比高病毒载量更显著且速度更快。在低病毒载量甲型流感样本测试中,第4组RNA降解率为75%至100%共有8个,其中有5个样本的RNA降解为检测不到(图1C)。在H1测试中,在第4组中75%至100%的RNA降解有9个低病毒载量样本,其中7个样本的RNA降解为检测不到(图1D)。▲图1.阳性样本的RNA随时间降解。(A)甲型流感阳性样本的RNA降解。(B) H1阳性样本的RNA降解。(C)低病毒载量甲型流感样本的RNA降解。(D)低病毒载量H1样本的RNA降解。(E)高病毒载量甲型流感样本的RNA降解。(F)高病毒载量 H1 样本的RNA降解。RNA降解=(第1组RNA含量-第n组RNA含量)/第1组RNA含量*100%。Y轴代表样本数。蓝色条表示0-25%之间的 RNA 降解,橙色条表示 25%-50%之间的RNA降解,灰色条表示50%-75%之间的RNA降解,黄色条表示 75%-100%之间的RNA降解。在研究中使用第1组RNP和流感RNA浓度参数比较样本采集质量。RNP值是样本采集质量的关键指标。样品质量采用 A-D 等级进行评估。图2表明,样本采集质量存在明显变化。图3比较了四家医院的样本质量。在甲型流感检测中,从M医院采集的样本质量最好,N、L、P医院采集的样本质量次之;在H1测试中,医院N采集的样本质量最好(图3)。▲图2:样本采集质量评估。(A)使用甲型流感和RNP参数评估样本采集质量。(B)使用H1和RNP参数评估样本采集质量。X轴代表流感A M基因(A)或H1 HA基因(B)的Log10 RNA浓度。Y轴代表RNP的Log10 RNA浓度。一个点代表一个样品的结果。红点代表M医院样本,黄点代表L医院样本,绿点代表N医院样本,蓝点代表P医院样本。样本质量分为A、B、C、D四个等级。▲图3:不同医院样本采集质量的比较。(A)不同医院甲型流感阳性样本采集质量的比较。(B)不同医院H1阳性样本采集质量比较。蓝条代表A级样本,绿条代表B级样本,红色条代表C级样本,黄色条代表D级样本。使用naica微滴芯片数字PCR系统检测流感样本的病毒载量,研究RNA完整性和样本采集质量,提醒我们,应定期开展样本质量评估,以发现和改进医院样本采集中存在的问题。
  • 文献速递 | naica® 微滴芯片数字PCR系统高通量测定大麦花粉核减数分裂重组率
    减数分裂通过产生单倍体细胞和基于同源重组(HR)产生的遗传变异来支持有性生殖。HR通过重组交换(CO)、同源染色体之间的联会,交换等来确保减数分裂染色体分离,同时保证遗传变异在育种过程中发挥作用。在植物中,同源重组可以通过几种技术检测到,例如通过减数分裂染色体分析进行细胞学检测,通过测序进行基因分型和分离群体中的分子标记或荧光标记株系(FTLs)。FTLs在拟南芥中是测量花粉或种子中减数分裂重组事件的有力工具。但FTLs不适用于作物,因为在基因组特别大的作物中产生FTLs既费力又昂贵。此外,不同的作物或某些基因型不适合遗传转化。作为替代,使用小孢子(四分体或花粉核)基因分型或测序用于直接检测减数分裂产物中减数分裂重组的结果。然而,作物小孢子的测序/基因分型相当昂贵,因此可以进行检测的数量有限,特别是对于大基因组物种如谷物。在受精前测量雄配子的减数分裂重组率有样本量大,分子标记分析独立和即时重组交换分析的优势,但配子DNA含量有限,测序/基因分型方法通常依赖于全基因组扩增(WGA)。而直接通过PCR反应分析单个配子进行基因分型也由于单倍体配子的低DNA含量无法达成。在大麦中,单花粉核基因分型是通过荧光激活细胞分选从种内杂种中分离出单个单倍体花粉核,然后进行WGA和多位点KASP基因分型或单细胞基因组测序完成的。单个单倍体花粉核的DNA有限,且WGA价格较高,导致分析样品的数量有限,无法完成高通量的分析。德国莱布尼茨植物遗传和作物植物研究所的科学家近日在《The Plant Journal》上发表了一篇减数分裂重组率测量的相关文献,该文章采用naica微滴芯片数字PCR系统对配子中减数分裂重组率进行测量,实现高通量和低成本的基因分型。使用基于naica微滴芯片数字PCR系统的基因分型分析,无需大量预先进行的WGA就可完成对大麦花粉细胞核中减数分裂重组率的高通量测量。在取得花粉后,将花粉中的花粉核取出,并通过流式进行纯化,将得到的花粉核加入naica微滴芯片数字PCR系统的Mix中进行检测,从而得到减数分裂重组率,通过对总共42,000个单个花粉核进行基因分型(每株分析多达4900个核),在杂交植物中测量了两个着丝粒和两个远染色体间隔内的减数分裂重组率。花粉核中确定的重组频率与分离群体中的检测到的频率接近。▲ 图1:用naica微滴芯片数字PCR系统进行大麦单花粉核基因分型的工作流程。(a)杂交植物的花药;(b)通过使用不同筛孔大小的过滤器(100和20微米)在悬浮液中分离花粉和花粉核。(c)花粉核用碘化丙锭染色,并流式分选到数字PCR反应Mix中。(d)将25微升数字PCR反应Mix(包括分选的花粉核)装入sapphire芯片的四个腔室之一。(e)在Geode中进行液滴生成和热循环。(f)在热循环之后,在naica Prism 3中扫描sapphire芯片,然后在Crystal Miner软件中进行数据分析该文章在进行花粉核减数分裂重组率的检测时采用双探针法,如前期可行性验证时检测的InDel3118和InDel3135之间的区间Id 3-1,用HEX标记Barke (B)等位基因特异性探针(绿色),用FAM标记Morex (M)等位基因特异性探针(蓝色)(图2b),研究者将来自亲本基因型的花粉核以1∶1的比例混合,同时也检测了Id 3-1杂合的杂交植物的花粉核。在亲本混合样本检测中,两种亲本基因型的液滴相等,两种标记显示相同的荧光(B的HEX或M的FAM)(图2b)。在杂交材料样本检测中下,预计会出现代表重组事件的不同液滴群,即同时显示两种颜色的液滴(InDel3118为HEX,InDel3135为FAM,反之亦然)(图2b)。在实际检测中发现,亲代基因型得到了数量大致相等的液滴,它们对两种标记物显示出相同的荧光(图2d,e,绿色和蓝色矩形)。在对杂交植物的花粉核的检测中,检测到具有两种颜色(HEX和FAM)的液滴,表明重组事件(图2e,红色矩形)。此外,可以区分只有一个标记成功扩增的液滴(图2d,e,簇I和iii)以及没有任何扩增的液滴(图2d,e,簇ii)。表明使用naica微滴芯片数字PCR系统对单个花粉核进行包裹和基因分型是完全可行的。▲ 图2。用naica微滴芯片数字PCR系统进行大麦花粉单核基因分型。(a)在大麦染色体1和3上定义四个染色体间隔的的InDel或单核苷酸多态性(SNP)标记。(b)以Id 3-1为例的基于naica微滴芯片数字PCR系统的花粉核基因分型分析:两种荧光探针的可能组合能够区分重组和非重组花粉核。(c)有效微滴阵列原始视图。每个腔室通常包含大约25000个稳定的有效液滴。在任何通道(FAM或HEX)中成功扩增的液滴是浅灰色的,而暗灰色的液滴是阴性的。(d,e)来自芯片室的基于naica微滴芯片数字PCR系统的花粉核基因分型数据,在软件中显示为来自以1:1比例混合的亲本基因型的花粉核的点图(d)和来自与Id 3-1杂合的杂交植物的花粉核的点图。(e)通过两个HEX标记的(绿色方框)或FAM标记的等位基因探针(蓝色方框)将两个非重组亲代群体检测为具有成功基因分型的微滴。在亲代基因型混合物(d)的点状图中以灰色框表示HEX和FAM双阳性微滴为假阳性+噪声。杂交植物中HEX和FAM双阳性微滴为包括假阳性和噪音在内的重组群体,显示为红色方框(e)。簇(I)和(iii)代表仅成功扩增一种标记的微滴naica微滴芯片数字PCR系统具有极高的分辨率,因此在那些成功扩增标记物的微滴中,也可以观察到微滴内的细胞核(图2c),研究者通过对微滴包裹核的数量分析进一步优化实验,通过用热稳定的限制性酶预处理花粉核来提高基因分型的效率,且因为细胞核数量与单个包裹细胞核的微滴数量呈正相关,提出上样细胞核的最佳区间(不同物种的不同大小细胞核有差异)。本文基于2色探针进行检测是非常成功的,而进一步通过6色平台可以同时进行更多组基因分型检测,将获得多重基因分型数据,也可以对相同或不同染色体上的一个以上染色体间隔的重组率进行平行测量,或者对CO干扰强度/存在的测量。总的来说,基于naica微滴芯片数字PCR系统的单个大麦花粉核基因分型在种内杂种植物的规定染色体间隔内提供了可靠、快速和高精度的减数分裂重组测量。来自一系列具有不同细胞核和基因组大小的物种的细胞核的成功包裹表明,所提出的方法广泛适用于单个细胞核的基因分型。德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士也给我们在线分享了他们的研究成果,想要直观的去了解这篇文章的详细内容,请点击https://mp.weixin.qq.com/s/KNXVs6rOt8MYpBjzuKZZ9A进行观看哦。本文链接:https://doi: 10.1111/tpj.15305naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 引进昂飞基因芯片平台 水母基因建成基因检测安全实验室
    p  近日,开发区企业北京水母科技有限公司微生物及基因检测安全实验室投入使用,主要是对分子生物学核酸样本(基因样本)进行制备和检测。实验室引进Affymetrix(昂飞)基因芯片平台,并配套实验医学领域中仪器设备、试剂、应用软件和实验室全自动液体工作站,实现了从DNA提取、芯片制备到芯片检测的全自动化,实验室将为水母基因的个人基因检测业务提供数据支持。/pp  实验室由高通量基因分型平台、生物信息分析平台、自动化样本处理平台、现代化生物样本库组成。高通量基因分析平台可以满足不同检测需求,具备大批量样本检测能力,实现高效的数据产出率。搭建的生物信息分析平台实现对大数据存储、计算和分析能力,具备精准的分析流程,核心算法具有自主知识产权。自动化样本处理平台则提供准确的数据结果,检测全程自动化,样本处理稳定均一。/pp  水母基因相关负责人介绍,实验室还配套建设低温生物样本库,在零下80摄氏度环境下实现长期保存生物样本的能力,可以对样本进行长期保存,必要时可以对初始样本进行二次检测。样本库实现了大批量、多类型生物样本储存能力。/pp  水母基因已实现对1400个基因检测项目进行检测,掌握国际先进的肠道菌群检测技术,具备国内领先的生物信息分析和解读能力,可提供满足不同人群健康需求的基因体检和个性化健康指导,水母基因微生物及基因检测安全实验室的投入使用有助于加快公司业务处理能力。/pp  成立于2015年8月的北京水母科技有限公司,是一家立足专业消费级基因检测与生物信息分析的互联网高科技企业,致力于结合基因科技、大数据、人工智能、互联网等前沿技术,用数字化的方式解码生命、解析健康,揭示生命数据的价值,现已发展成为国内消费级基因检测行业拥有健康人群DNA数据量最大的企业。/p
  • naica®微滴芯片数字PCR系统应用于废水处理污泥中新冠病毒SARS-CoV-2载量监测
    导读自2019年底新冠肺炎疫情爆发以来,已经在人类粪便和城市废水中广泛检测到SARS-CoV-2。新冠病人的粪便可以重复检测到SARS-CoV-2 RNA(有时甚至在呼吸道样本已经检测不到的情况下),并且与疾病的临床严重程度无关。在多个国家的城市废水中也广泛检测到SARS-CoV2 RNA,但检测到的浓度比人的粪便低几个数量级。未经处理的废水中SARS-CoV-2 RNA的存在导致了基于废水的流行病学(WBE)的发展,以早期检测社区新型冠状病毒肺炎的传播,这也引起了人们对废水处理(WWT)过程尤其是在其终产物WWT污泥中SARS-CoV-2的命运以及相关风险的关注。法国巴黎地区跨省废水处理工会(SIAAP)和巴黎萨克莱大学的科学家在Environmental Research发表了题为Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion的文章。文中应用naica®微滴芯片数字PCR系统对WWT污泥中SARS-CoV-2进行绝对定量,为持续监测WWT污泥中的新冠病毒载量提供了具有应用价值的检测方法。应用亮点:▶ 使用naica®微滴芯片数字PCR系统开发了一种快速、直观、简便的WWT污泥中SARS-CoV-2绝对定量的方法。▶ naica®微滴芯片数字PCR系统可以实时监测高热厌氧消化后WWT污泥中SARS-CoV-2载量,不受抑制剂影响,特别适合低浓度,低丰度样本。实验方法:作者采集了不同的废水处理厂的新鲜污泥,研究WWT污泥在储存 (4℃、室温) 或高热厌氧(AD)消化 (50℃)后SARS-CoV-2稳定性。部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。作者通过RT-qPCR测定了新鲜WWT污泥在4℃和室温条件下SARS-CoV-2颗粒RNA的载量。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用灵敏度更高的naica®微滴芯片数字PCR系统,持续监测高热厌氧消化5天过程中SARS-CoV-2颗粒的RNA水平。实验结果:新鲜WWT污泥在4℃ 55天和20℃左右环境温度25天储存条件下SARS-CoV-2颗粒的RNA的载量维持在一个相对稳定的水平。但在高热厌氧消化过程中,SARS-CoV-2和BCoV RNA水平迅速下降,持续5天处理后最终水平接近检测极限。▲图1 部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。该图展示了加标或未加标的新鲜 WWT 污泥在高热厌氧消化过程中SARS-CoV-2和BCoV RNA 水平的动态变化。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用抑制剂耐受能力更佳的naica®微滴芯片数字PCR系统来检测高热厌氧消化过程中的SARS-CoV-2水平。GU/g:厌氧消化反应器样品中每克含有的基因组单位。期刊介绍:Environmental Research创刊于1967年,隶属于爱思唯尔出版集团。该杂志的主要发表评估化学品和微生物污染对人类健康影响的文章,2022年影响因子8.431,JCR分区为Q1。参考文献:1.Adelodun B, Kumar P, Odey G, et al. A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci, 2022, 101373.2.Ahmed W, Bertsch P M, Bibby K, et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ, 2020a, 191, 110092.
  • naica®微滴芯片数字PCR系统精准量化胰岛素编码基因DNA甲基化水平
    导读在过去的几十年中,糖尿病的发病率在全球范围内显著增长。除了不健康的生活方式外,环境污染物被认为是糖尿病发生的危险因素。多环芳烃 (PAH)是一类含有2-7个芳环的有机化合物,由自然和人类活动产生并广泛存在的污染物。流行病学研究表明,PAHs水平与成人和儿童的肥胖和二型糖尿病相关。厦门大学生命科学学院细胞应激生物学国家重点实验室的研究人员在Ecotoxicology and Environmental Safety上发表了题为《Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus》的文章。文中应用naica微滴芯片数字PCR系统对胰岛素编码基因DNA甲基化水平进行量化,揭示了产前暴露于多环芳烃混合物对成年雄性小鼠胰岛细胞功能的不良影响。应用亮点:▶ 使用naica微滴芯片数字PCR系统对胰岛素编码基因启动子甲基化水平进行量化。▶ 在产前暴露于500µg/kg PAHs的小鼠中,胰岛素编码基因启动子的甲基化水平显著升高。▶ 产前暴露于PAHs可能促进I型糖尿病的发病。作者使用8种PAHs的混合物进行了实验,以研究产前PAHs对成年期胰岛细胞功能和质量的影响,同时试图阐明 I型糖尿病发病的环境原因。他们分离了成年雄性小鼠的胰岛,对胰岛素编码基因的启动子DNA甲基化水平进行分析。研究成果:▲图1. 产前暴露于多环芳烃对成年雄性小鼠胰岛素编码基因甲基化水平的影响。(A) 数字PCR结果代表性一维图。(B)胰岛素编码基因启动子甲基化水平。(每个处理三只母鼠, 每只母鼠取一个雄性后代) 。在本研究中,子宫内暴露于500µg/kg PAHs的小鼠胰岛中胰岛素编码基因启动子中的DNA甲基化水平显著增加,同时胰岛素编码基因转录显著下调。▲图2. 不同PAHs浓度对胰岛素编码基因转录水平的影响原文链接如下:https://www.sciencedirect.com/science/article/pii/S0147651322005358期刊介绍:Ecotoxicology and Environmental Safety 1977创刊,隶属于爱思唯尔出版集团。是一份多学科交叉期刊,主要研究环境污染对包括人类健康在内的生物体的暴露和影响。最新影响因子为7.129。naica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制