当前位置: 仪器信息网 > 行业主题 > >

数字芯片测试仪

仪器信息网数字芯片测试仪专题为您提供2024年最新数字芯片测试仪价格报价、厂家品牌的相关信息, 包括数字芯片测试仪参数、型号等,不管是国产,还是进口品牌的数字芯片测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字芯片测试仪相关的耗材配件、试剂标物,还有数字芯片测试仪相关的最新资讯、资料,以及数字芯片测试仪相关的解决方案。

数字芯片测试仪相关的资讯

  • 伯东 inTEST 高低温测试机应用于车规级芯片测试
    车规级芯片的特殊要求,决定研发企业在芯片设计之初就要考虑多层面问题:芯片架构,IP选择,前端设计,后端实现,各合作伙伴的选择;从设计全周期考虑产品零失效率以及车规质量流程和体系的建立。一套芯片,从设计到测试、到前装量产的每一个环节都有着考验。获得车规级认证也需要花费很长的时间。而在车规级芯片可靠性测试方面,ThermoStream ATS系列高低温测试机有着不同于传统温箱的独特优势:变温速率快,每秒快速升温/降温15°C,实时监测待测元件真实温度,可随时调整冲击气流温度,针对PCB电路板上众多元器件中的某一单个IC(模块),单独进行高低温冲击,而不影响周边其它器件。伯东inTEST高低温测试机应用于车规级芯片测试案例国际某知名半导体芯片设计公司在汽车行业拥有30年的经验,为汽车电子市场的领先制造商,其产品包括动力系统、车身系统和安全驾驶系统等芯片。不同于一般的半导体或者消费级芯片,车载芯片的工作环境要更为严苛,因此在芯片流片回来后,要经受一系列的功能验证,性能和特性测试,高低温测试,老化测试,模拟长生命周期的压力测试等等,看芯片是否符合相关标准,确保其真正达到车规级。根据客户的要求,在温度上需要考虑零下 40 度到 150 度的极端情况, 同时搭配模拟和混合信号测试仪,设定不同的温度数值, 检查不同温度下所涉及到的元器件或模块各项功能是否正常.经过伯东推荐,合作客户采用美国inTEST高低温测试机ATS-545,测试温度范围 -75 至 +225°C, 输出气流量 4 至 18 scfm, 温度精度 ±1℃, 快速进行在电工作的电性能测试、失效分析、可靠性评估等。通过使用该设备,大幅提高工作效率,并能及时评估研发过程中的潜在问题。高低温测试机 inTEST ATS-545 测试过程:1. 客户根据各自的特定要求,将被测芯片或模块放置在测试治具上, 将 ATS-545 的玻璃罩压在相应治具上 (产品放在治具中)。2. 操作员设置需要测试的温度范围。3. 启动 ThermoStream ATS-545, 利用空压机将干燥洁净的空气通入高低温测试机内部制冷机进行低温处理, 然后空气经由管路到达加热头进行升温,气流通过玻璃罩进入测试腔. 玻璃罩中的温度传感器可实时监测当前腔体内温度。4. 在汽车电子芯片测试平台下,ATS-545快速升降温至要求的设定温度,实时检测芯片在设定温度下的在电工作状态等相关参数,对于产品分析、工艺改进以及批次的定向品质追溯提供确实的数据依据。Temptronic 创立于 1970 年, 在 2000 年被 inTEST 收购, 成为在美国设立的超高速温度环境测试机的首家制造商. 而 Thermonics 创立于1976年, 在 2012 年被 inTEST 收购, 使 inTEST 更强化高低温循环测试以及温度冲击测试领域的实力. 在 2013 年 inTEST Thermal Solutions 用崭新的研发技术发展出独创的温度环境测试机, 将 Temptronic TPO 系列以及 Thermonics PTFS 系列整合进化成 inTEST ThermoStream ATS 超高速温度环境测试系列产品. 上海伯东作为 inTEST 中国总代理, 全权负责 inTEST 新品销售和售后维修服务.
  • 捷报频传 又一数字PCR系统生物芯片分析仪获批
    p  近日,经北京市食品药品监督管理局审批,strong新羿生物/strong数字PCR系统的生物芯片分析仪获医疗器械注册批文,注册证编号:京械注准 20192220517。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 857px " src="https://img1.17img.cn/17img/images/201909/uepic/b50d16e1-0138-4d2c-a15d-65797875d2e4.jpg" title="新翌生物获证.jpg" alt="新翌生物获证.jpg" width="600" height="857" border="0" vspace="0"//pp  此前,新羿生物数字PCR系统的样本制备仪和微液滴数字PCR反应预混液(不含UNG及含UNG两种类型)已获医疗器械备案,本次生物芯片分析仪喜获批文,意味着新羿生物自主研发的微液滴数字PCR系统的全套仪器及通用试剂、耗材均可正式进入临床市场应用!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/95161afc-6020-4791-b8e8-1f1f117ba8b2.jpg" title="企业微信截图_15677652687651.png" alt="企业微信截图_15677652687651.png"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 257px " src="https://img1.17img.cn/17img/images/201909/uepic/a76ffa23-9574-4f19-ba56-36661969a804.jpg" title="新羿微液滴数字PCR系统.jpg" alt="新羿微液滴数字PCR系统.jpg" width="600" height="257" border="0" vspace="0"//pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "特点:/span/strongspan style="font-weight: bold color: rgb(0, 112, 192) "超敏 便捷 可靠 开放br//span/ppstrongspan style="color: rgb(0, 112, 192) "  超敏:灵敏度低至0.01%/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  便捷:操作简单,无须手动移液/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  可靠:多重防污染,避免假阳性/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "  开放:支持个性化检测项目开发/span/strong/pp  微液滴数字PCR是一种单分子水平的核酸定量分析技术,具有超高的灵敏度,在PCR扩增反应后的任何开放式操作都可能造成微液滴内容物的挥发和逸出,导致扩增产物的气溶胶污染。目前商业化微液滴数字PCR仪器多涉及PCR反应后的开放式操作,比如微液滴的吸取和转移等,这在临床应用中可能导致样本假阳性的严重后果。/pp  新羿生物自主研发的微液滴数字PCR系统由样本制备仪、生物芯片分析仪及相应反应试剂耗材组成,与其他微液滴数字PCR系统不同的是,采用新羿数字PCR平台,液滴直接于8联排管中生成,生成之后无须手工移液,盖上新羿生物专利开发的8联排管盖可直接放入普通PCR扩增仪进行扩增,扩增完成后,直接放入生物芯片分析仪中,即可进行信号读取与分析。液滴扩增、检测流程无开盖操作,且检测后液滴储存于芯片内置废液槽中,不流经仪器内部,完全避免气溶胶污染,符合临床对检测安全性的要求。/pp  重大疾病检测试剂产品/pp  新羿生物基于自主研发的TD-1数字PCR平台,目前已开发肿瘤液体活检、感染性疾病诊断、出生缺陷疾病筛查等三大类数十项试剂产品,并于15个省市近百家单位进行试用,试剂质量受到用户单位的好评。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 1141px " src="https://img1.17img.cn/17img/images/201909/uepic/23e14496-df93-46cf-a42c-c1ffb3bf0eff.jpg" title="新羿.jpg" alt="新羿.jpg" width="600" height="1141" border="0" vspace="0"//pp  关于数字PCR/pp  微滴数字PCR是一种单分子水平的核酸检测和定量分析技术,被认为是继荧光定量PCR和NGS之后,基因检测领域最引人瞩目的创新之一。与其他传统分子诊断技术相比,数字PCR技术吸引人之处包括:高灵敏度,可实现单分子级检测 绝对定量,不依赖标准品和参考曲线 高稳定性和较高的抗干扰能力,适用于多种复杂样本。数字PCR技术在痕量核酸样本检测、复杂背景下稀有突变检测和表达量微小差异鉴定方面具有极大的优势。随着数字PCR的发展,业内普遍认为在如下领域具有广泛应用前景:/pp  strong基因表达差异研究/strong/ppstrong  拷贝数变异(CNV)研究/strong/ppstrong  低丰度DNA模板分子的精确定量/strong/ppstrong  甲基化含量鉴定/strong/ppstrong  二代测序辅助建库/strong/ppstrong  CRISPR-Cas9基因编辑结果验证/strong/ppstrong  肿瘤治疗的伴随诊断/strong/ppstrong  肿瘤治疗的实时监控/strong/ppstrong  无创产前筛查/strong/ppstrong  移植排斥监控/strong/ppstrong  致病微生物(病毒、细菌等)的检测/strong/pp  span style="color: rgb(0, 112, 192) "strong关于新羿生物/strong/span/pp  新羿生物成立于2015年,位于北京中关村科技园区,是一家由核心技术驱动并具有全球竞争力的生物高科技公司。在中关村科技园拥有高标准的生物医学仪器、耗材和体外诊断试剂生产基地。新羿生物已申请七十余项微液滴技术相关专利,在数字PCR研发领域拥有从芯片、仪器、软件到原料、试剂、耗材全系统开发能力。/pp  新羿生物所提供不仅是一套数字PCR系统或一个诊断项目解决方案,更愿以我们的研发能力与用户进行更广范围的科研及诊断合作,秉承“创新精准,用心为您”的发展理念,为用户提供更优服务,共同推动数字PCR技术的发展,造福社会。/p
  • RNA质量评估,naica️® 微滴芯片数字PCR系统来帮忙
    国家CDC在Diagnostic Microbiology and Infectious Disease发表了一篇文章,文中使用naica微滴芯片数字PCR系统检测了不同时间段临床流感样本的病毒载量,来评估RNA完整性和样本采集质量及对监测系统中流感诊断的影响。.应用亮点:▶ 使用naica微滴芯片数字PCR系统完成RNase P(RNP)RNA和流感基因的检测。▶ 低病毒载量的流感样品(10 拷贝/μl),在采集八天后依旧可以被naica微滴芯片数字PCR系统检测到,高低病毒载量的流感样品之间存在明显不一致的降解速率。▶ 检测作为样本采集质量的关键指标RNase P(RNP)RNA,对于流感的预防和控制至关重要。流感监测对于流感的预防和控制至关重要。然而医院一般只进行流感抗原快速检测,核酸鉴定却在网络实验室进行。由于流感病毒作为一种RNA病毒,不如DNA病毒稳定。因此诊断目标区域的RNA稳定性和完整性是实验室检测的主要挑战,并且人们对冷藏临床标本中流感核酸的稳定性也知之甚少。本文采用先进的核酸定量技术--naica微滴芯片数字PCR系统、用于对临床样本的RNA完整性进行系统评价,探索流感监测标本质量控制和评价的科学方法。通过实时RT-PCR检测的所有甲型或H1型流感阳性样本用数字RT-dPCR检测也呈阳性。图1清楚地显示了RNA随时间的降解。在甲型流感和H1流感测试中,RNA降解随着时间的推移不断扩大。在所有四个时间点通过数字RT-dPCR共检测了91个甲型流感病毒阳性样本的RNA含量和72个H1阳性样品的RNA含量,发现低病毒载量样本RNA降解比高病毒载量更显著且速度更快。在低病毒载量甲型流感样本测试中,第4组RNA降解率为75%至100%共有8个,其中有5个样本的RNA降解为检测不到(图1C)。在H1测试中,在第4组中75%至100%的RNA降解有9个低病毒载量样本,其中7个样本的RNA降解为检测不到(图1D)。▲图1.阳性样本的RNA随时间降解。(A)甲型流感阳性样本的RNA降解。(B) H1阳性样本的RNA降解。(C)低病毒载量甲型流感样本的RNA降解。(D)低病毒载量H1样本的RNA降解。(E)高病毒载量甲型流感样本的RNA降解。(F)高病毒载量 H1 样本的RNA降解。RNA降解=(第1组RNA含量-第n组RNA含量)/第1组RNA含量*100%。Y轴代表样本数。蓝色条表示0-25%之间的 RNA 降解,橙色条表示 25%-50%之间的RNA降解,灰色条表示50%-75%之间的RNA降解,黄色条表示 75%-100%之间的RNA降解。在研究中使用第1组RNP和流感RNA浓度参数比较样本采集质量。RNP值是样本采集质量的关键指标。样品质量采用 A-D 等级进行评估。图2表明,样本采集质量存在明显变化。图3比较了四家医院的样本质量。在甲型流感检测中,从M医院采集的样本质量最好,N、L、P医院采集的样本质量次之;在H1测试中,医院N采集的样本质量最好(图3)。▲图2:样本采集质量评估。(A)使用甲型流感和RNP参数评估样本采集质量。(B)使用H1和RNP参数评估样本采集质量。X轴代表流感A M基因(A)或H1 HA基因(B)的Log10 RNA浓度。Y轴代表RNP的Log10 RNA浓度。一个点代表一个样品的结果。红点代表M医院样本,黄点代表L医院样本,绿点代表N医院样本,蓝点代表P医院样本。样本质量分为A、B、C、D四个等级。▲图3:不同医院样本采集质量的比较。(A)不同医院甲型流感阳性样本采集质量的比较。(B)不同医院H1阳性样本采集质量比较。蓝条代表A级样本,绿条代表B级样本,红色条代表C级样本,黄色条代表D级样本。使用naica微滴芯片数字PCR系统检测流感样本的病毒载量,研究RNA完整性和样本采集质量,提醒我们,应定期开展样本质量评估,以发现和改进医院样本采集中存在的问题。
  • naica® 微滴芯片数字PCR系统三色多重分析设计性能优化指南
    多重分析,即在单个反应中检测多个靶标,可以帮助用户节省宝贵的样品,并节省时间、试剂和成本。此外,和做多次单重实验相比,由于多重反应所有靶标都在同一个反应中进行扩增和检测,使得样品和试剂的移液操作误差减少,因此多重检测可以提高定量精度。naica微滴芯片数字PCR系统的多重检测与单重检测一样灵敏和精准。专业的分析设计和优化可以实现更复杂的多重检测,从而在单个PCR反应中用多对引物和探针扩增多个DNA目标。Crystal Miner软件是一个开放的数据分析软件,可以通过其提供的强大工具来帮助优化和完成多重分析。评估引物和探针性能的实验指南1.Stilla建议使用naica multiplex PCR mix,该试剂设计的初衷是为了得到更好的多重naica微滴芯片数字PCR系统的实验数据。2.单重反应测试。在进行多重反应之前,每个引物/探针/模板均需要进行单重性能验证。例如,对于三重分析,在多重反应混合进行之前,首先应对核酸靶标进行三个单重反应。当进行单重反应时,预期结果只出现单一阳性。3.为了优化多重分析性能,样品性质也是十分重要的因素(例如,游离DNA和基因组DNA需要设计不同的DNA片段,分析游离DNA需要设计成短片段DNA,分析基因组DNA需要设计更完整的DNA片段)。4.使用的DNA模板应该没有污染物和可能的抑制剂。如果样品材料稀少或不容易获得,可以合成寡核苷酸作为模板分析优化。5. 评估每个单重反应的退火温度范围,在最佳反应温度下,阳性和阴性微滴分离良好且没有非特异性扩增(图1)。由Crystal Miner软件(图2)提供的Stilla可分离评价可以作为一种度量标准,用于确定所有探针的最佳退火温度。如果单重反应没有被很好地优化,可能会出现明显的非特异性扩增。此外,非特异性扩增可能由几个非优化参数造成。包括引物/探针二聚体或引物/探针非特异性。在这种情况下,可以采用多种方法限制非特异性序列的扩增,如提高退火温度、进行touch down PCR或重新设计引物序列等。实验前可使用相关软件评估引物探针的特异性。▲图1 :Crystal Miner软件展示单重反应一维点状图,在60°C到65°C退火温度内, 蓝色、绿色和红色荧光通道检测到的荧光强度。黑框部分表示单重反应的最佳退火温度。可分性评分(e)可用于确定3个靶标扩增的最佳退火温度。(带*数字为可分性评分)▲图2 :可分性评分是基于阳性和阴性微滴群体的距离。可分性评分是由Crystal Miner软件自动计算,并可以在高级QC标签栏下找到。6.在选定的退火温度下,使用所有引物和探针进行多重naica微滴芯片数字PCR系统,并以区分度为指导,评估反应性能。如果有需要,可从以下几点优化:★ 调整PCR的循环数——建议从45个循环开始,并增加循环数,以进一步优化阳性和阴性微滴群体之间的分离度。★ 调整引物和探针浓度——naica微滴芯片数字PCR系统推荐的引物和探针浓度范围可从0.125到1μM (图3)。对于多重分析的设计建议从较低的浓度范围开始,以减少反应的复杂性,减少引物和探针所占据的体积。▲图3。Crystal Miner软件的一维点状图显示了一系列引物(左图)和探针(右图)浓度不断增加时蓝色检测通道中的荧光强度。黑框部分表示良好的可分性评分,及在低引物探针浓度的选择标准下确定的用于多重分析的引物探针浓度。(带*数字为可分性评分)★ 使用修饰的碱基,如锁核苷酸(LNA)碱基或小沟结合基团(MGB),以提高探针的Tm值,同时保持较短的长度(可能20nt)。然而,在多重检测中建议探针添加的MGB不超过2个,以避免扩增减少。7.评价引物和探针的相互作用:在同一个多重实验中引物和/或探针之间形成同源/异源二聚体的概率应保持在最低。二聚体是可以评估的,相互作用的分数可以用多种工具来确定(例如,IDT Oligo Analyzer Tool, Primer 3, Primer express, Beacon designer) (图4)。高浓度的引物和探针会增加非特异性相互作用的概率。因此,多重分析时,建议所有检测都从低浓度的引物开始(例如,0.25 uM),如果需要,逐步增加浓度至1 uM(例如,提高扩增效率)。▲图4:引物和探针之间的相互作用示例。a)target 1的探针与target 2的反向引物相互作用(R2 target 2,红框)。当使用反向引物RI target 2时,没有检测到这种相互作用。在本例中,应选择RI target 2进行多重检测。b) target 1的探针与target 2的正向引物的相互作用(F2 target 2. 蓝框)。当使用正向引物F1 target 2时,没有检测到这种相互作用。在本例中,FI target 2应被选择用于多重检测。8.对于多重分析,荧光溢出补偿是十分重要的。使用多个单色参照,Crystal Miner软件可以创建一个补偿模型用于特定的多重反应。有关荧光溢出的更详细描述,请访问https://www.gene-pi.com/item/spill-over-2/。执行荧光溢出补偿的操作说明请参考Crysta Miner软件用户手册。naica微滴芯片数字PCR系统naica微滴芯片数字PCR系统,以Sapphire芯片(全自动)或Opal(高通量)芯片为耗材,形成25,000-30,000个微滴的2D阵列,以单层平铺方式进行PCR扩增实验。反应完成后对微滴进行三色通道或六色通道检测,从而对起始核酸浓度进行绝对定量。2.5小时内,可快速获得结果。
  • 吉宣生物牵手小海龟科技,推进POCT生物芯片及数字PCR产品合作
    2022年8月24日,上海吉宣生物科技有限公司(以下简称“吉宣生物”)与上海小海龟科技有限公司(以下简称“小海龟科技”)的战略合作签约仪式在上海圆满举行,双方约定共同推进数字PCR一体机产品与POCT生物芯片研发的合作。期间双方技术团队就相关技术和产品合作的思路等进行了全面、深入的交流。后续双方将基于各自的领先优势,实现共同发展、合作共赢。(吉宣生物创始人丁晓辉先生与小海龟科技董事长吴东平先生在签约现场)关于上海吉宣生物科技 上海吉宣生物科技有限公司成立于2014年,是一家从事生物科技专业领域技术研发的科研型公司。2016,吉宣生物投资成立河北精硕生物科技有限公司,联合打造GENSURE品牌,致力于为保护人类健康的医疗诊断事业提供精准优质的支持服务。GENSURE成立至今,发展迅猛,产品从新冠病毒体外快速检测试剂盒,到干式荧光免疫分析仪,再到覆盖炎症标志物、心脑血管标志物、生殖健康和激素标志物、骨钙和妇幼健康标志物、胃标志物、肾功能标志物、甲状腺标志物等POCT产线,公司已分别在上海成立研发运营中心,在北京成立市场销售中心,在石家庄设有工厂,通过多年的努力已取得了卓越的成就。关于小海龟科技 上海小海龟科技有限公司成立于2015年4月,通过芯片技术与生命科学技术的融合创新,先后推出国内首款新一代芯片式数字PCR、全球第二款半导体高通量测序仪,实现了基因检测与分子诊断前沿技术领域的重大原始科技创新和产业化突破。2022年8月获得国内首张数字PCR计量评价证书,2016年获批国家发改委“基因检测技术应用示范中心”,先后承担多项上海市生物医药领域科技支撑专项和科技部“科技助力经济2020”专项,推出多款数字PCR系统并取得医疗器械注册证书,并基于此系统开发完成约40款检测试剂盒,包括肿瘤伴随诊断、肿瘤早筛、优生优育、病毒检测等。公司申请知识产权70余项,共获得近50项专利。小海龟科技将“以精准诊断为起点、以精准健康为目标”作为使命与梦想,服务精准医学实践和健康管理的全过程——预防、筛查、诊断、治疗到康复。
  • 快讯!这家数字PCR公司生物芯片阅读仪和微滴生成仪双双获批
    p  2019年6月21日,由长春技特生物技术有限公司(以下简称“技特生物”)自主研发的生物芯片阅读仪正式获得吉林省药品监督管理局批文(吉械注准20192220069)。该产品通过数字PCR微滴芯片进行扫描成像并处理分析,可实现精准、高通量、高灵敏度的检测。与此同时,该公司基于专利乳液微滴制备技术开发的微滴生成仪也同期获批,可实现连续多通道乳液微滴自动生成,且微滴数量、尺寸灵活可控。/pp  技特生物表示,本次获批的生物芯片阅读仪和微滴生成仪将作为核心部件,与PCR仪一道构成国内领先的微滴式数字PCR系统,将进一步满足临床、科研等多方面需求,助力我国精准医疗的发展。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/201906/uepic/e7b94318-23ca-4de7-b003-31dddd7407c0.jpg" title="010.jpg" alt="010.jpg" width="600" height="450" border="0" vspace="0"//pp style="text-align: center "技特生物微滴式数字PCR/pp  span style="color: rgb(0, 112, 192) "strong助力精准医学检验/strong/span/pp  数字PCR技术可实现对核酸分子的绝对定量。当前,市面上的数字PCR检测系统主要可以分为微滴式与芯片式,两种检测系统均有广泛应用,不过由于微滴式数字PCR检测系统分液更均匀、数据分析时象限划分更清晰、综合试剂成本低,从而更受用户青睐。/pp  在2016年欧洲肺癌大会(ELCC 2016)上,中国医学科学院肿瘤医院王洁教授曾以“基于血液样本检测T790M的先进技术”为题进行了报告。报告中提到,用微滴式数字PCR技术对血浆样本EGFR突变检测的敏感性高达91.7%,且具有基因突变检测特异性高的优势。无独有遇,来自美国Dana-Farber癌症中心的Oxnard等也指出,通过微滴式数字PCR动态监测敏感和耐药EGFR突变,能够得到高敏感性和精确的定量结果。/pp  此外,来自美国韦恩州立大学的研究团队将微滴式数字PCR系统与芯片式数字PCR系统进行对比后还发现,微滴式数字PCR系统能够更加经济有效地扩展分区。而增加分区数量有若干优势:首先,按比例增加分区可以增加动态范围,无需稀释样本即可容纳更大范围的样本 其次,由于富集效应,它提高了在存在类似核苷酸序列或抑制剂的情况下检测罕见靶点的能力,有助于检测单核苷酸多态性(SNPs)和其他罕见的等位基因(如ctDNA) 第三,它能更好地检测低浓度下拷贝数变化(CNVs)。/pp  因此,随着我国精准医学的发展,微滴式数字PCR系统必将在未来的肿瘤液体活检、无创产前筛查、感染性疾病早期诊断等热门研究领域扮演越来越重要的角色。/pp  span style="color: rgb(0, 112, 192) "strong技特生物微滴式数字PCR系统灵活之选/strong/span/pp  目前国内各公司的微滴式数字PCR系统,特别是阅读仪(第二类医疗器械产品注册证),能够完全自主研发并完成报证的凤毛麟角。技特生物本次推出并完成报证的微滴式数字PCR系统其核心部件完全自主研发,已成为行业的佼佼者,且其有如下优势:/pp  亮点一:快速灵活/pp  专利连续生成多个通道微流体技术,微滴生成时间短(45秒)、数量(20000-40000)和尺寸(0.2-1nL)灵活可控。/pp  亮点二:精确封闭/pp  单孔最低检出限可达万分之一,微流控芯片全程封闭避免污染,确保检测精确性及安全性。/pp  亮点三:高性价比/pp  操作简单,灵活地兼容大部分既有PCR仪,单样本检测费用低,独具成本优。/pp style="text-align: center " /pp style="text-align: center "strong扫码关注span style="color: rgb(192, 0, 0) "【3i生仪社】/span,解锁更多生命科学仪器资讯/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 170px height: 170px " src="https://img1.17img.cn/17img/images/201906/uepic/fe543890-93d6-409b-848a-8450a302d294.jpg" title="新 公号icon.jpg" alt="新 公号icon.jpg" width="170" height="170"//ppbr//p
  • 190万!中国医科大学附属第一医院微流体芯片数字PCR仪采购项目
    项目编号:JH22-210000-65106项目名称:中国医科大学附属第一医院微流体芯片数字PCR仪(国家医学检验临床医学研究中心)采购方式:竞争性谈判包组编号:001预算金额(元):1,900,000.00最高限价(元):1,900,000采购需求:查看合同履行期限:合同签订后1个月内到货。需落实的政府采购政策内容:对于中小微企业(含监狱企业)的相关规定;对于促进残疾人就业政府采购政策的相关规定;对于节能产品、环境标志产品的相关规定等。本项目(是/否)接受联合体投标:否微流体芯片数字PCR仪(国家医学检验临床医学研究中心)终稿.doc
  • naica®微滴芯片数字PCR系统助力微生物菌株分群
    导读反刍动物是指具有反刍习性的一类哺乳动物,如牛、羊、长颈鹿、兔子等。反刍动物采食一般比较匆忙,大部分未经充分咀嚼就吞咽进入瘤胃,经过瘤胃浸泡和软化一段时间后,食物经逆呕重新回到口腔,经过再咀嚼混入唾液并再吞咽进入瘤胃,这种行为称为反刍行为。反刍动物的食物种类比其他种类的动物更丰富,结构组成也更复杂,但草料中的粗纤维含量较高导致其难以消化,反刍动物依赖于胃部微生物群的代谢能力来消化各种物质,但其转化效率低也是养殖业广泛关注的问题。虽然已有研究证明瘤胃中不同微生物的活性可以调节宿主利用植物生物能量的能力,但定植于宿主瘤胃中的微生物却很少受到关注。奥地利维也纳兽医大学的Cameron等人在Research Square在线发表了题为《Differential partitioning of key carbon substrates at the rumen wall by recently diverged Campylobacteraceae populations》的研究论文。文章采用多重数字PCR(dPCR)量化同一菌科的两种菌群,分析反刍动物瘤胃上的定植菌群分布及生物进化动态,为今后畜牧业提高动物代谢能力的研究提供了新思路。应用亮点:▶ 宏基因组测序发现瘤胃上皮细胞中弯曲杆菌科两个种群的基因序列高度相似,利用naica微滴芯片数字PCR系统可以对两个种群进行精准量化。▶ 使用不同培养添加物后,可以利用naica微滴芯片数字PCR系统进行微生物种群分布跟踪。研究成果:作者通过对瘤胃上皮微生物组的16S rRNA扩增子分析发现了一个优势菌株(OTU)为弯曲杆菌科(Campylobacteraceae),并通过宏基因组测序发现该OTU两个主要种群Ca. C. stinkeris与Ca. C. noahi的基因含量高度相似,但pgl(蛋白质糖基化)操纵子不同。为了探究Ca. C. stinkeris与Ca. C. noahi两个种群空间分布的差异,作者通过naica微滴芯片数字PCR系统比较了这两个种群在不同动物瘤胃乳突离上皮壁最近和最远两个位置的含量。结果发现不同动物的两个种群在这两个位置的比例接近。▲图1 Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突顶端和隐窝的含量比例。A)从乳突切片两个位置提取DNA使用dPCR进行定量分析。B) Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突两个位置的含量比例。横坐标为取样动物的名字。然后作者使用naica微滴芯片数字PCR系统对两种菌群进行生长和适应性测定,数据显示Ca. C. stinkeris可以在以醋酸盐为主要碳源时积累的生物量,更好地生长,但被丙酸盐抑制,而Ca. C. noahiz在任何一种添加物存在的情况下在都没有检测到生长优势。因此,作者推断可能存在一些其他机制来最小化竞争,这种机制通过某些代谢生态位维度上的分化,防止它们生长动力学的重叠来支持两个种群的共存。▲图2 醋酸盐利用和丙酸盐抗性检测。A)通过种群特异性dPCR,评估添加5 mM醋酸盐(acetate)或丙酸盐(propionate)对生物量积累的影响。分别用单个菌株(左,单一培养)和竞争菌株(右,共培养)进行了实验。通过数字PCR这种精准的定量技术,作者发现在瘤胃乳突的顶端和隐窝都分布有这两种优势菌群,且与上皮细胞分布数目无显著的相关性。另外,这两种菌群能够促进相关脂肪酸的代谢,进而发挥促进食物消化的功能。该文章为通过调节反刍动物体内某些盐离子浓度来调节优势菌群的分布比例进而提升消化能力提供了思路。
  • naica®微滴芯片数字PCR系统量化造血干细胞移植儿童巨细胞病毒感染的病毒载量
    导读中国疾病预防控制中心国家病毒病预防控制研究所和中国首都儿科研究所的科学家在Canadian Journal of Infectious Diseases and Medical Microbiology上发表了题为The Viral Load of Human Cytomegalovirus Infection in Children following Hematopoietic Stem Cell Transplant by Chip Digital PCR的文章。文中应用naica微滴芯片数字PCR系统建立了芯片数字PCR(cdPCR)方法,能够精准定量HSCT前后儿童HCMV感染的病毒载量。质粒pUC57-UL83的cdPCR检测限为103拷贝/ml,qPCR检测限为297拷贝/ml。cdPCR检测HCMV AD169毒株的结果为146拷贝/ml,表明cdPCR的灵敏度高于qPCR。人类巨细胞病毒(HCMV)是一种普遍存在的β-疱疹病毒,已感染发展中国家高达90%的人口。作为一种常见病原体,HCMV感染在免疫抑制个体中引起了显著的发病率和死亡率,特别是在接受了造血干细胞移植(HSCT)的患者中,原因是原发感染后潜伏感染的主要靶细胞是造血细胞。对于HSCT后的高危儿童,应在出现临床症状之前检测HCMV感染,因为HCMV病毒的载量及变化与HSCT儿童HCMV感染的发展和严重程度高度相关。因此,HCMV病毒载量的定量检测对患儿的治疗至关重要。应用亮点:▶ 使用naica微滴芯片数字PCR系统开发了一种快速、直观、简便和准确的检测HSCT前后儿童HCMV病毒的绝对定量方法。▶ 通过质粒和培养毒株验证naica微滴芯片数字PCR系统灵敏度、特异性和重复性。实验方法:作者从首都儿科研究所儿童医院收集了122名异体造血干细胞移植患儿、3名自体造血干细胞移植患儿样本(男/女:73/52),中位年龄7.5岁。该研究通过质粒和培养毒株验证naica微滴芯片数字PCR系统灵敏度、特异性和重复性均优于qPCR。在HSCT前后,通过qPCR和cdPCR检测所有供体和受体血清中的HCMV病毒载量。实验结果:作者通过含有pUC57-UL83基因的质粒DNA分别评估cdPCR和qPCR的动态范围。cdPCR的检测限 (LOD) 为103拷贝/ml (2.0拷贝/反应),qPCR的LOD为297拷贝/ml。结果表明,cdPCR的灵敏度高于qPCR。为了评估cdPCR数据的重现性,作者使用质粒建立了HCMV DNA拷贝数的标准曲线。分析cdPCR检测的变异系数(CV、标准差/平均值)。结果表明,cdPCR检测具有良好的重复性(CV15%)。稀释质粒的预期值与cdPCR检测值之间也具有良好的一致性(cdPCR检测值与稀释质粒的预期值R= 0.979, P 0.05, qPCR检测值与稀释质粒的预期值R= 0.939, P 0.05)。▲图1 通过标准曲线评估cdPCR检测的HCMV DNA拷贝数的变化。黑线显示质粒DNA的标准曲线。不同的散点是通过cdPCR测试到的HCMV DNA拷贝数。作者又使用HCMV AD169毒株验证cdPCR的灵敏度。qPCR可以检测到5.67×10 TCID50/ml HCMV DNA,但不能检测到5.67 TCID50/ml HCMV DNA。cdPCR可以检测5.67 TCID50/ml病毒的HCMV DNA。cdPCR的灵敏度优于qPCR。为了验证cdPCR方法的敏感性以及是否可以用于HSCT患者血液中的HCMV检测,作者通过qPCR和cdPCR检测了125例HSCT后儿童的全血样本。在38份cdPCR阳性样本中,有4份qPCR阴性样本。在91份qPCR阴性样本中,有4份cdPCR阳性。结果如表1所示。HCMV在125个HSCT患儿的检出率为30.40% (38/125),HCMV病毒载量范围为107拷贝/ml-6600拷贝/ml。男性组的检出率为30.14% (22/73),女性组的检出率为30.77% (16/52)。在0-12岁HSCT后HCMV阳性儿童中,HCMV的检出率为89.47% (34/38)。在0-6岁组中,男性的检出率为25.64% (10/39),女性的检出率为22.58% (7/31)。在7-12岁组中,男性的检出率为39.29% (11/28),女性的检出率为40% (6/15)。12岁以上患儿HCMV检出率为33.33% (4/12),男性检出率为16.67% (1/6),女性检出率为50% (3/6)。结果如表3所示。综上所述, cdPCR方法在HCMV检测领域比qPCR更敏感,能快速、直观、简便和准确的检测HSCT患儿HCMV感染率及病毒载量。参考文献:1.P. Griffiffiffiths, I. Baraniak, and M. Reeves, “,e pathogenesis of human cytomegalovirus,” Journal of Pathology, vol. 235, no. 2, pp. 288–297, 2015.2.L. Dupont and M. B. Reeves, “Cytomegalovirus latency and reactivation: recent insights into an age old problem,” Reviews in Medical Virology, vol. 26, no. 2, pp. 75–89, 2016.naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • QIAGEN发布QIAcuity集成式纳米芯片数字PCR 系统新品
    QIAGEN全新基于集成式纳米芯片的数字PCR系统QIAcuity适用于对靶 DNA或 RNA分子进行绝对定量分析,兼容基于EvaGreen 染料法或探针法的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR实验一般简单快速。QIAcuity One 2plex集成式纳米芯片数字PCR系统支持2色荧光系统,每次可运行一张芯片,8小时可完成多至384个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将数字PCR的样本液滴制备、扩增和数据分析集成到全自动仪器中,在2小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易 QIAcuity创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中的液滴大小均一,无液滴破裂融合或交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 基因编辑检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升。2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器。4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity Eight集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen 或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Eight集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行八张芯片,8小时可完成多至1248个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂或融合。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升;2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染;3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器;4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity Eight集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity Four集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen 或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Four 集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行四张芯片,2小时可完成多至384个样本检测。。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升;2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染;3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果;4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片QIAcuity Four集成式纳米芯片数字PCR 系统
  • DNA测试芯片暴利拆解:芯片成本不足20美元
    新创公司InSilixa开发出一款新的DNA测试芯片,据称可在1小时内以不到20美元的成本完成高准确度的DNA测试 相形之下,现有以手持读取器进行测试的成本高达250美元左右。  这款名为Hydra-1K的芯片可大幅削减现有疾病检测方法所需的时间与费用,为重点照护(pointofcare)带来分子级的诊断准确度。不过,这款设计目前才刚开始进行为期18-24个月的实地测试。  我们已经隐密地开发二年半了,这是我们第一次展示这项成果,"InSilixa创办人兼CEOArjangHassibi在日前举行的HotChips大会上表示。  InSilixa声称所采取的测试途径不仅成本更低,而且比现有的分子诊断更迅速,但完全不影响准确度。  InSilixa最近还向世界卫生组织(WHO)会员国展示其芯片成功检测结核的结果。  该公司目前正致力于为该芯片开发一项疾病的商业应用。该公司的目标在于使其芯片成为一款开放的平台,让医疗从业人员与研究人员可用于瞄准一系列的广泛测试,这比该公司能够自行开发的应用还更多更有意义。"但我们自已也将保留几项应用领域,"Hassibi说。  相较于其他的实验室上芯片(lab-on-a-chip),InSilixia的设计是针对像在芯片上进行化学键合的实时分析。Hassibi说,目前有些设计利用必须以化学药剂清洗芯片表面的合成途径,但这些化学药剂中可能含有降低测试准确度的杂质。  该公司主要的秘密武器就在于用来进行检测的化学物质。除此之外,"我们有一半的研发都用于使该系统可用于不懂编程的医生和化学家,"他说。  该公司正致力于寻求美国FDA510(k)的批准,预计需时约六个月。  原理:如何运作?   InSilixa的DNA测试芯片采用IBM250nm制程制造,成本约30-50美元。它利用每个分子传感器约100um的32x32数组。制造该芯片的挑战之处在于多级芯片封装制程。 光传感器在每一数组点进行化学键合实时检测  个别的数组元素由光电二极管和加热器组成,以刺激化学反应。该芯片利用5W功率加热  芯片与电路板  LVDS接口提供数据,绘制时间和温度的2D数组影像  Hydra-1K读取器芯片是一款独立的FPGA板
  • naica®微滴芯片数字PCR系统对韩牛分子标记物的准确评估助力种质鉴定
    导读韩牛(Bos taurus coreanae)是一种驯化的哺乳动物,在韩国消费市场作为食物资源,其牛肉消费量远超其他品种,这种消费模式导致了区分韩牛和其他牛品种的分子研究的出现。不仅是牛,其他经济动物的不同品种在市场中的经济价值也存在较大的差异,所以准确进行种质鉴定势在必行。在之前的一项研究中,使用传统的PCR方法和Sanger测序验证确定了由TE关联缺失事件产生的韩牛特异性SV。它可以用作区分不同牛品种的分子标记(即韩牛与荷斯坦牛)。然而,PCR存在缺陷,每个样品都有各种最终拷贝定量。为了克服传统PCR的局限性,并准确评估先前研究中确定的韩牛特异性SV位点,檀国大学生物医学科学系联合畜牧研究所和檀国大学医学院,使用naica️ 微滴芯片数字PCR系统对韩牛特异性SV位点进行了更为精确的检测,并将成果《Quantitative evaluation of the molecular marker using droplet digital PCR》发表在Genomics & Informatics杂志上。转座元件(TEs)约占牛基因组的一半。它们可以是一个强大的物种特异性标记,在基因组进化时没有结构变异(SV)的回归突变。因此,作者应用naica️ 微滴芯片数字PCR系统对韩牛特异性SV进行准确的定量检测。虽然样品在韩牛群体中的等位基因频率变化较低,但naica️ 微滴芯片数字PCR系统可以通过绝对定量进行高灵敏度检测,可以做到比PCR更准确的定量。所以naica️ 微滴芯片数字PCR系统平台相比于传统PCR更适用于分子标志物的定量评价。应用亮点:▶ 使用naica微滴芯片数字PCR系统对韩牛特异性SV进行准确的定量检测。▶ dPCR测定在计数单分子和分析特定群体的少量拷贝时可以高精度地定量,与qPCR相比,具有更高的准确性。▶ 经过sanger测序,确定了naica️ 微滴芯片数字PCR系统检测准确无误,且操作和成本均低于测序。▶ naica️ 微滴芯片数字PCR系统适用于分子标志物的定量评价。实验方法:检测样本信息:共提取了五个棕色韩牛DNA和五个荷斯坦DNA作为实验样本。检测方法:为了更准确地检测韩牛特异性SV,将“Del_96”位点应用于naica️ 微滴芯片数字PCR系统(Stilla Technologies)。进行naica️ 微滴芯片数字PCR系统前确认韩牛和荷斯坦牛的DNA的浓度定量。FAM引物组和FAM探针用于检测韩牛和荷斯坦牛基因组。VIC引物组和VIC探针设计在韩牛特异性缺失(图 1B)。因此,FAM引物组和FAM探针(阳性对照)设计在所有牛DNA中检测。VIC引物组和VIC探针设计用于仅检测韩牛的荧光。▲图 1B实验结果:FAM染料在所有牛基因组中均被检测到,VIC染料仅在韩牛样品中显示出显著的检测。这表明所有韩牛基因组都包含特定的缺失序列(Del_96区域)。在韩牛样品中检测到VIC染料的信号平均浓度为243(copies/ μL)。虽然在荷斯坦样品中也检测到平均浓度0.12(copies/μL)的VIC染料信号,但这些信号相比韩牛可忽略不计。▲naica微滴芯片数字PCR系统检测韩Del_96和荷斯坦样品之间区域的绝对拷贝数比较。浓度图在 X 轴上指示样品数,在 Y 轴上指示对数刻度条(拷贝/μL)。(A)在所有样品中检测到FAM荧光。韩牛样品的绝对拷贝数大约是荷斯坦样品的两倍。(B)仅在韩牛样品中强烈检测到VIC荧光。最后,文章Results and Discussion给出-数字PCR适合作为验证物种特异性标记的平台。综上,对于naica️ 微滴芯片数字PCR技术,准确定量绝对拷贝数是一个关键特征,相比qPCR准确性更高,naica微滴芯片数字PCR为本文的检测提供了有利的支持,也验证了这一特征。在不久的将来,通过将物种识别工具应用于naica️ 微滴芯片数字PCR系统,它作为大样本量物种鉴定平台具有巨大潜力。所以naica️ 微滴芯片数字PCR系统适合作为验证物种特异性标记的平台。期刊介绍:Genomics & Informatics是由韩国基因组组织发行的涉及农业和生物科学、生物化学、遗传学、分子生物学、健康信息学等领域的期刊。
  • 数字多媒体芯片技术国家重点实验室通过建设可行性论证
    2010年6月8日,科技部基础研究司组织专家在北京对依托中星微电子有限公司建设的数字多媒体芯片技术国家重点实验室的建设计划进行了可行性论证。科技部基础研究司、北京市科委有关负责同志以及依托单位的领导和实验室工作人员参加了会议。  专家组听取了实验室建设计划汇报,进行了实地考察。专家组认为,该实验室围绕数字多媒体芯片技术的前沿和关键问题,确定了数字多媒体信号和信息处理技术、超大规模SoC芯片设计技术、相关行业技术标准的研究和制订等研究方向,定位准确。实验室建设计划合理可行,专家组一致同意通过该实验室的建设计划。并建议实验室围绕国家数字多媒体芯片产业链的关键技术,加强实验室中长期规划,深化产学研合作。  2010年初,科技部发文批准了第二批56家企业国家重点实验室的建设申请,其中包括信息领域的5家实验室。目前已有3家信息领域的企业国家重点实验室通过了建设计划可行性论证,另外2家实验室的论证工作也将于近期进行。
  • 瞄准芯片、新能源、5G等领域,思仪科技携新品亮相中国国际信息通信展览会
    6月4日,由工业和信息化部主办的2023年中国国际信息通信展览会(PT EXPO CHINA 2023,简称PT展)在北京国家会议中心隆重召开。本次大会以“打通信息大动脉 共创数智新时代”为主题,展示中国信息通信技术在各行业的深度赋能和创新成果,推动行业数字化转型升级及数字经济发展。中国国际信息通信展览会(PT展)据了解,中国国际信息通信展览会(PT展)由工业和信息化部主办,是泛ICT行业最具行业影响力的盛会之一。自1990年起,PT展始终致力于打造极具创新活力的ICT平台,为ICT产业链提供政策解读、技术研发、市场应用和金融投资等全方位的服务和沟通合作机会,因其前沿、领先、前瞻和高效连接,贯通和满足ICT产业链各方利益和需求,PT展也被誉为中国乃至全球“ICT市场的创新基地和风向标”。中国电科展位思仪科技(仪器仪表板块)本次展会,中国电科重点展示了芯片仪表、5G、物联智联、专网通信、数字政府及数字身份认证六大板块领先技术及产品。作为中国电科集团下属股份制二级企业,国内电子测试测量仪器企业思仪科技主要在仪器仪表板块展示相关产品。1466信号发生器(下)和4082信号/频谱分析仪(上)3674矢量网络分析仪本次展会,思仪科技带来了“天衡星”系列高端测试测量仪器,包括1466信号发生器、4082信号/频谱分析仪和3674矢量网络分析仪。该系列尖端性能全面推向 110GHz,在信号纯度、调制带宽、分析带宽、扫描速度等核心指标以及稳定性、可靠性、环境适应性等方面显著提升,一专多能,进一步丰富信号模拟、信号分析和参数分析功能,通过仪器互联互通,面向移动通信、雷达、导航等各类测试场景提供灵活便捷的测试方案。4052系列信号/频谱分析仪思仪“天玑星”4052系列信号/频谱分析仪在2Hz~50GHz频段内可提供1.2GHz分析带宽、400MHz最大实时带宽的优异全面的信号分析能力,为移动通信、汽车电子、工业电子、教学研究以及航空航天与国防等领域用户提供更具竞争力的测试解决方案。4052不仅具有卓越的射频性能,在功能方面也更全面、更丰富,能够提供相位噪声测试、模拟解调测试、实时频谱分析、矢量信号分析、噪声系数测试、音频分析、瞬态分析、绝对功率测量等丰富的测试功能,同时支持5G NR、LTE、NB-IoT等信号自动测量,为无线通信领域发展助力;支持脉冲压缩、调频连续波自动测量,为雷达探测领域发展保驾;支持群延迟、载噪比、噪声功率比等自动测量,为卫星通信领域发展护航。“天玑星”系列与高端系列“天衡星”形成良好的互补,为客户提供差异化选择。5292A物联网信号分析仪5292A物联网信号分析仪是一款通用的矢量信号分析仪,频率范围覆盖 10MHz~6GHz,具有良好的频率、功率测量精度和稳定度;支持模拟与数字调制信号、全制式的通信标准信号以及 NB-IoT、WiFi 和蓝牙信号分析功能,携带的数据采集功能支持用户将IQ 数据实时保存起来,用做后期数据分析。与市场现有产品相比,具有极高的性价比,该产品在终端芯片、终端、基站设备和系统的研制、生产、和维护等方面具有广泛用途,也可以用来组建高校的通信教学实验室。5256C 5G终端综合测试仪5256C 5G 终端综合测试仪拥有 8 个测试收发端口 (8T/8R)、大带宽采集处理能力以及丰富的测试运算资源,可覆盖 3GPPTS38.521-1 协议标准及 2G、3G、4G 及 WiFi、Bluetooth (BT)、NB-loT、C-V2X、GPS 终端 / 模组射频一致性测试。5252DE通信测试仪5252DE 通信测试仪具备宽频覆盖、大解析带宽、扫描速度快、接收灵敏度低等优点。接口丰富、具备干扰分析、无线信号测向定位场强测试、通信信号解析等多种测量功能。体积小、重量轻、供电灵活支持云操控、适合外场基站测试与部署。太赫兹测试系统毫米波太赫兹矢量网络分析系统可覆盖 170GHz ~ 260GHz 频段最高频段可扩展至 500GHz 功率范围 -40dBm ~ OdBm,功率精度+0.5dB 具备管芯、LNA、PA 等器件小信号参数、增益压缩测试功能可根据用户的不同需求提供相应的解决方案。宽带固态功率放大器思仪科技的微波毫米波固态功率放大器分频段覆盖 4kHZ-110GHZ,最大输出功率高至 200kW,具有输出功率大、工作频段宽等优点,主要应用于电磁兼容测试、微放电测试、大功率元器件性能测试、抗干扰测试等领域。在电子测量仪器领域,思仪科技长期致力于电子测试前沿技术的探索和研究,实现了高端重大科学仪器和通用电子测量仪器系列重大技术突破,形成了器部件、电子测量仪器、自动测试系统完整的产品体系。面向通信领域,形成了无线通信、数据通信、光纤工程等领域系列齐全的仪器与测试解决方案,已广泛应用于卫星、通信、导航、科研、教育等领域,为国家光纤干线、5G通信、北斗导航等重大工程提供测试保障。除了电子测试测量仪器外,中国电科旗下还有着眼未来通信发展,把握5G“新基建”机遇,打造以三代半导体为核心,涵盖一、二三代半导体,涉及射频集成电路设计、制造、封测全产业链关健能力的IDM专业公司,并满足射频元器件自主保障需求,发挥产业带动效应。现场还展示了GaN晶圆、SiC MOSFET晶圆、AR/VR微显示器件等产品,以及在5G基站、新能源等领域的应用。
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 文献速递丨naica® 微滴芯片数字PCR系统对水质环境相关优势细菌进行绝对定量
    在现代水产养殖中,水产养殖系统的水质直接影响鱼类的健康和生产。微生物在去除有机物和氮循环、有毒硫化氢(H2S)的产生方面发挥着至关重要的作用,但是如果微生物对鱼类致病或发挥益生菌特性,则会直接影响鱼类的健康。近日,法国Stilla公司和挪威SINTEF Ocean合作在《Journal of Microbiological Methods》杂志上发表了一篇名为“Absolute quantification of priority bacteria in aquaculture using digital PCR”的文章,旨在对水产养殖的相关优势细菌进行检测。在本文中,作者主要分析了与鲑鱼生产相关的三种不同的细菌:第一种为鱼类病原体,与鱼类的溃疡性疾病有关的Moritella viscosa,会引起肠性红嘴病的Yersinia ruckeri以及与鱼类的细菌性冷水病有关的Flavobacterium psychrophilum。第二种为可以从海产品转移到消费者身上的人类病原体,Listeria monocytogenes。第三种为通过破坏饲养环境威胁鱼类健康的细菌。通常硫酸盐还原细菌(SRB)在厌氧条件下通过将硫酸盐(SO42-)转化为有毒的硫化氢(H2S)来影响鱼类健康。可通过以Desulfovibrio desulfuricans为参考菌株进行SRB检测。研究学者利用naica微滴芯片数字PCR系统的单重和多重检测方式对上述优势菌种进行绝对定量。结果表明Moritella viscosa, Yersinia ruckeri,Flavobacterium psychrophilum检出限在20 fg左右,Listeria monocytogenes和Desulfovibrio desulfuricans DNA检测含量可低至2 fg,同时它们都具有较高的线性动态范围(图1)。多重cdPCR检测结果与在相应的单重分析中检测到的目标基因浓度非常吻合(图2,图3)。此次试验充分证明了naica微滴芯片数字PCR系统可以同时精确定量复杂水质样品中多种优势菌株。▲图1 :naica微滴芯片数字PCR系统定量5种优势菌种的线性回归图,分别给出相应的方程和回归系数▲图2:对Yersinia ruckeri(A)Flavobacterium psychrophilum(B)的单、双重分析结果进行比较。在MMC-DNA背景(1 ng/μl)中添加Yersinia ruckeri ,Flavobacterium psychrophilum gDNA,10倍稀释后进行基因拷贝数定量。▲图3 :在1 ng/μl MMC-DNA背景下,单重(圆形)和三重(三角形)测定的靶基因拷贝浓度绘制。恒等线表示每个点的X坐标和y坐标相等的位置。文章基于naica微滴芯片数字PCR系统完成对多种优势菌株的定量检测。naica微滴芯片数字PCR系统法国Stilla Technologies公司的naica微滴芯片数字PCR系统在进行核酸检测时具有独特的优势。该系统利用cutting-edge微流体创新型芯片—Sapphire芯片(或高通量Opal芯片)作为数字PCR过程的耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中。3色荧光检测仪器,整个流程只需要两个半小时,并可进行数据的质控和结果追溯分析,获得的数据真实可靠。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 成都成英特尔全球最大芯片封装测试中心之一
    新华网成都3月26日电 26日,英特尔成都芯片封装测试厂第4.8亿颗芯片下线,最先进的2010全新酷睿移动处理器正式投产。至此,成都成为英特尔全球最大芯片封装测试中心之一。  作为中国唯一的英特尔芯片封装测试中心,成都厂已封装测试4.8亿颗芯片,确立了其在英特尔全球布局中的重要地位。2010年下半年,成都工厂还将建设成为英特尔全球集中进行晶圆预处理的三大工厂之一,成为全球封装测试来料的重要供应基地。  2009年,英特尔成都封装测试工厂年出口额约占成都出口加工区总额的80%,占四川省加工贸易出口的约30%。成都市委副书记唐川平表示,英特尔落户成都后,对成都加快信息产业集群发展,吸引更多世界知名企业入驻起到积极作用,并助推成都及西部实现经济结构调整和产业升级,迈向世界高新技术产业行列。  2003年8月,英特尔宣布投资建设英特尔成都芯片封装测试中心。截至目前,英特尔不断扩大成都厂的生产能力,在成都的总投资额已达到6亿美元。
  • 文献速递丨naica® 微滴芯片数字PCR系统精准定量-艾滋治愈曙光“HIV潜伏病毒
    自从引入联合抗逆转录病毒疗法 (ART) 以来,HIV-1感染已从一种致命疾病转变为一种可控制的慢性疾病。然而,虽然ART可有效抑制个体的病毒复制,但它并不能治愈HIV-1感染。这是由于患者体内存在一个潜伏病毒库(latent resservoir),其中包含一小部分具有复制能力的完整原病毒(约占1-5%),在ART停止后为病毒复制提供“燃料”。因此,科学家若想通过消除该病毒库达到HIV-1治愈的目的,就不得不对这些完整原病毒进行准确评估。但是,接受ART治疗的患者可能具有载量非常小的完整潜伏病毒库,在有限的血液采样中进行检测,可能会遗漏这些潜在储库。▲图源:网络(侵删)在过去的几年里,已经出现了几种基于PCR与二代测序 (NGS) 相结合来检测病毒库的方法。比如基于双重dPCR方法来量化HIV-1患者的完整原病毒,即IPDA(intact proviral DNA assay)方法,该方法通过双重实验检测HIV-1基因组中的PSI和ENV两个靶点。另一种常见方法是Q4PCR,其在HIV-1全长测序方案中引入了四重qPCR,在全长测序之前评估HIV-1基因组的完整性。尽管这些方法提高了检测灵敏度并且可以提供全长的 HIV-1序列,但其成本效益不高,需要多步人工操作且耗时较长。比利时根特大学、根特大学数字PCR联盟、艾滋病毒治疗研究中心等科学家近日在知名期刊《Methods》上发表了一篇HIV-1病毒库研究相关文献,文章对IPDA方法和Q4PCR方法进行集成,并在naica微滴芯片数字PCR系统进行验证,该方法增加了IPDA 方法检测HIV-1的靶点数量,提高了检测灵敏度,实现对潜伏病毒库的精准定量。研究方法:结合IPDA和Q4PCR方法,设计基于naica微滴芯片数字PCR系统的三重数字PCR实验。☑ PSI靶点-FAM蓝色探针标记☑ ENV靶点-HEX绿色探针标记☑ GAG靶点 & POL靶点-Cy5红色探针标记▲ 靶点对应的基因组位置图研究结果:☑ 使用J-Lat 8.4细胞系(每个细胞含有1拷贝的HIV-1基因组)进行单重实验,并测定naica微滴芯片数字PCR系统三重试验的性能,结果显示定量结果和理论值一致,重复性好;各靶标阴阳性微滴区分良好。▲ 对阳性对照J-Lat 8.4细胞的拷贝数进行量化-设定PSI、ENV、GAG/POL单重检测及IPDA和三重等多重实验,并对DNA剪切情况进行校正(DSI)☑ 使用naica微滴芯片数字PCR系统直接定量来自HIV-1患者的五个PBMC样本,这些样本病毒载量较低,且均经过ART治疗,检测结果显示5个患者均检出了HIV-1。此外,发现一个比较有趣的现象,在患者SLR_26样本中几乎没有检测到ENV且PSI也只有非常低的信号,该结果表明PSI和ENV序列中可能存在缺失或突变,如果只检测这两个靶点的话,该病人可能被判读为HIV-1阴性。幸运的是,使用naica微滴芯片数字PCR系统设计的三重实验,GAG或POL基因正常检出,表明该样本含有HIV-1。▲ 使用naica微滴芯片数字PCR系统对5个HIV-1病人的PBMC(每百万个)进行定量文章结论:通过naica微滴芯片数字PCR系统对HIV-1患者潜伏病毒库进行了量化,相较于传统方法增加了亚基因组区域的检测数量,提高了对潜伏病毒库的检测的灵敏度,降低结果误判的可能性,且该方法甚至可以在未来开发的5色或6色的数字PCR系统中进一步放大。原文链接如下:https://doi.org/10.1016/j.ymeth.2021.05.006单位简介:根特大学(Ghent University),简称UGent,由荷兰国王威廉一世于1817年创办,迄今已有200多年历史,是比利时学术排名第一的世界顶尖研究型大学,一直以其极高的学术水平享誉全球,2020年世界大学学术排名中位列第66名,根特大学校友中诞生了4位诺贝尔奖得主。随着数字PCR技术的发展,根特大学已成立数字PCR联盟,该联盟致力于开发数字PCR检测和数据分析工具,同时该平台还会不定期举办数字PCR培训课程,帮助广大学子及专业人士更好的了解和应用数字PCR技术。naica微滴芯片数字PCR系统法国Stilla Technologies公司的naica微滴芯片数字PCR系统在进行核酸检测时具有独特的优势。该系统利用cutting-edge微流体创新型芯片—Sapphire芯片(或高通量Opal芯片)作为数字PCR过程的耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中。3色荧光检测仪器,整个流程只需要2.5小时,并可进行数据的质控和结果追溯分析,获得的数据真实可靠。
  • AMAT与Ushio共同开发线宽为2μm的小芯片数字光刻系统
    2023年12月12日,应用材料公司(Applied Materials, Inc.)和牛尾公司(Ushio, Inc.)宣布建立战略合作伙伴关系,以加速将小芯片异构集成到3D封装中的行业路线图。两家公司正在联合向市场推出首款数字光刻系统,该系统专为人工智能(AI)计算时代所需的先进基板图案化而设计。快速增长的 AI 工作负载推动了对具有更强大功能的更大芯片的需求。随着 AI 的性能要求超过了传统的摩尔定律扩展,芯片制造商越来越多地采用异构集成(HI)技术,将多个小芯片组合在一个先进的封装中,以提供与单片芯片相似或更高的性能和带宽。该行业需要基于玻璃等新材料的更大封装基板,以实现极细间距的互连和卓越的电气和机械性能。应用材料公司和 Ushio 之间的战略合作伙伴关系将两家行业领导者聚集在一起,以加速这一转变。应用材料集团副总裁兼半导体产品事业部HI、ICAPS和外延总经理Sundar Ramamurthy博士表示:“应用材料公司的新型数字光刻技术(DLT)是首款直接满足客户先进基板线路图需求的图形化系统。“我们正在利用我们在大型基板加工方面无与伦比的专业知识、业界最广泛的HI技术组合以及深厚的研发资源,在高性能计算领域实现新一代创新。Ushio集团执行官兼光子学解决方案全球业务部总经理William F. Mackenzie表示:“Ushio在为封装应用构建光刻系统方面拥有20多年的经验,在全球交付了4000多种工具。通过这种新的合作伙伴关系,我们可以通过可扩展的制造生态系统和强大的现场服务基础设施加速DLT的采用,并扩大我们的产品组合,为包装技术快速发展的挑战提供更多解决方案。新的DLT系统是唯一能够实现先进基板应用所需分辨率的光刻技术,同时提供大批量生产所需的吞吐量水平。该系统能够形成小于 2 微米的线宽,可在任何基板上实现最高的小芯片架构面积密度,包括由玻璃或有机材料制成的晶圆或大型面板。DLT系统经过独特设计,可解决不可预测的基板翘曲问题并实现覆盖精度。生产系统已经交付给多个客户,并且已经在玻璃和其他先进的封装基板上展示了 2 微米图案化。应用材料公司开创了DLT系统背后的技术,并将与Ushio一起负责研发和定义可扩展的路线图,以实现1微米线宽及以上先进封装的持续创新。Ushio将利用其成熟的制造和面向客户的基础设施来加速DLT的采用。此次合作将共同为客户提供最广泛的光刻解决方案组合,用于先进封装应用。
  • 文献速递丨naica® 微滴芯片数字PCR系统与CRISPR基因编辑技术强强联合
    欧洲分子生物学实验室研究人员Moritz Kueblbeck, Andrea Callegari等在bioRxiv分享了一项基于CRISPR方法优化的技术文章,目的在于提升从基因编辑产生的细胞中筛选纯合子的效率。众所周知,使用CRISPR精确敲入 (knock-in) 外源性DNA后,产生的基因编辑克隆需要严格的筛选才能得到目的克隆(纯合子)。基于常规PCR和Southern Blot检测目的克隆的方法耗时长、需要大量劳动力。因此研究人员对传统方法进行了优化,采用荧光标记蛋白和naica数字PCR联合的方法,精准快速的实现了基因编辑后目的克隆的筛选,大大降低了检测的人力、物力、时间成本。亮点:☑ 采用数字PCR和荧光标记的方法,可以在基因组编辑的早期阶段进行检测,整个流程只需要大约3-4小时即可获得结果,能够及时停止“不理想”的编辑克隆的培养,节省人力物力成本。☑ 数字PCR方法只需要检测少量的细胞,相较于Southern Blot大大减少样本制备时间。☑ 基于naica微滴芯片数字PCR系统的多重检测能力和Crystal Miner软件的荧光补偿校正功能,能够快速、可靠的对CRISPR编辑细胞进行定量筛选检测。文章内容分享背景原理介绍:CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats),规律间隔成簇短回文重复序列,是一种RNA引导的基因组编辑技术,能对基因进行精确性敲除,敲入,替换等,从而实现探究基因功能,修复致病基因等目的。但是,CRISPR技术也会导致有潜在危险的“脱靶”问题,带来不可预测的基因变化,因此对于CRISPR基因编辑的脱靶情况需要灵敏且精准的验证及检测。▲CRISPR结构示意图研究目的:提升从基因编辑产生的细胞中筛选纯合子的效率。传统方法筛选目的克隆的局限性:基因编辑后,筛选纯合子的方法是生成杂合克隆后,通过轮次迭代产生纯合子,整个过程耗时甚至能长达一年,且容易发生脱靶修饰。使用常规PCR区分纯合克隆和杂合克隆的方法只能检测到目的基因,还需要金标准Southern Blot检测脱靶整合的情况,然而,Southern Blot是一种耗时且低通量的技术,需要相对大量的基因组DNA和细胞材料,这些材料的制备会浪费大量的时间和人力成本。优化后的新方法:针对上述问题,Moritz Kueblbeck等人优化了CRISPR的实验流程,改进了CRISPR的转染效率,通过添加荧光标签蛋白实现CRISPR编辑的克隆菌落中相关标记蛋白的正确亚细胞定位,并通过dPCR 来定量目的基因和脱靶基因组编辑事件。通过该方法,快速、可靠的对荧光标记CRISPR编辑细胞进行了定量筛选。【见下图】▲Moritz Kueblbeck等人优化的CRISPR纯合子筛选实验流程▲PCR进行两种细胞系中的标签基因检测。U2OS- TPR-SNAP标签基因整合总数检测 (左);HK- Nup93-mEGFP标签基因整合总数及目的标签基因检测(右)。矩形图代表克隆,每个红点代表一次测量结果。对于多重荧光检测实验,进行荧光溢出的补偿校正是十分必要的。本研究使用naica微滴芯片数字PCR系统进行多重检测,并使用Crystal Miner软件进行荧光补偿校正分析,确保每一个荧光基团被单一检测通道捕获,得到的结果精准可靠。如想对荧光补偿校正有更多了解,请复制下方链接地址到浏览器进行查看:http://dx.doi.org/10.1016/j.bdq.2016.10.002原文链接如下:https://doi.org/10.1101/2021.06.23.449557CRISPR WEBIANR相关视频链接:▲点击上方图片观看相关视频naica微滴芯片数字PCR系统法国Stilla Technologies公司的naica微滴芯片数字PCR技术在进行核酸检测时具有独特的优势。系统利用cutting-edge微流体创新型芯片—Sapphire芯片(或高通量Opal芯片)作为数字PCR过程的唯一耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中。3色荧光检测仪器,整个流程只需要两个半小时,并可进行数据的质控和结果追溯分析,获得的数据真实可靠。
  • “向上捅破天”技术亮相,利扬芯片推出北斗短报文芯片测试方案
    有媒体报道,华为Mate50将支持卫星通信,另外,华为消费者业务CEO余承东在Mate50预热视频中直言,华为即将发布一项“向上捅破天”的技术,对此,华为一内部人士证实,9月6日发布的Mate50确实将支持卫星通信,这意味着华为将抢先苹果在手机上实现卫星通讯。有券商研报称,华为Mate50系列要用卫星通信:通过北斗发送紧急短信。业内人士猜测,Mate 50系列将搭载北斗的短报文服务。对此,9月5日晚,国内独立第三方集成电路测试技术服务商利扬芯片(688135)公告,公司近期已完成全球首颗北斗短报文SoC芯片的测试方案开发并进入量产阶段,短报文芯片由战略合作伙伴重庆西南集成电路设计有限责任公司设计研发,公司为该芯片独家提供晶圆级(ChipProbing,下称“CP”)测试服务。对于该事件对公司影响,利扬芯片表示,公司拥有短报文芯片测试解决方案并可提供独家晶圆级量产测试服务,随着该款芯片测试实践推出的“北斗射频基带一体化芯片测试方案”,进一步丰富了公司测试技术服务的类型,满足北斗导航、射频、基带等一系列芯片的测试需求。新技术有助于巩固和提升公司的核心竞争力和市场地位,服务更多优质客户,预计对公司未来的市场拓展和业绩成长性产生积极的影响。值得一提的是,利扬芯片称,公司本次研发的短报文芯片测试方案在后续量产测试技术服务过程中,不排除未来受市场需求、市场拓展、市场竞争等影响,目前该芯片的测试技术服务对公司2022年营业收入贡献影响较小,对公司未来营业收入和盈利能力的影响程度具有一定的不确定性。据了解,利扬芯片是一家独立第三方集成电路测试公司,专注于测试领域的研发,聚焦于芯片电子电路、性能、逻辑功能、信号、通信、系统应用等技术,在产业链的位置为独立第三方,仅提供专业测试服务,测试报告更加中立、客观。
  • 文献速递 | naica️® 微滴芯片数字PCR系统帮助探寻过往肝病石蜡样本与新发现病毒关系
    维也纳兽医大学的研究者们进行了一项回顾性研究,用以评估马细小肝炎病毒EqPV-H在蒂勒氏病以外的组织病理学异常的马和驴肝脏中是否存在及其相关性,研究者们希望通过该研究确认新发现不久的EqPV-H是否会导致其他的肝脏疾病,并且通过EqPV-H的感染情况进一步分析EqPV-H病毒的感染模式。亮点:1.通过采用新技术的回顾性研究,对之前收集的样本进行分析,找到EqPV-H病毒可能与肿瘤性疾病存在关联。2. 凭借naica微滴芯片数字PCR系统的直接绝对定量和对抑制剂的高耐受性,快速、高效的进行拷贝数的检测,确定组织样本中的病毒含量。3.通过对不同部位病毒含量的检测进一步佐证了EqPV-H病毒的嗜肝性,以及其慢性感染的可能性。马细小肝炎病毒是什么?蒂勒氏病是一种与马相关的急性、爆发性肝坏死疾病,该疾病1918年在南非发现,后续也不断有马出现该病,且主要与马源性生物制品如马血浆、破伤风和肉毒中毒抗毒素的给药有关,因此推测该病应该与一种传染性的病原体相关,但一直没有找到该病原体。直到2018年,科学家在一匹接受破伤风抗毒素后死于蒂勒病的马的血清和肝脏样本中检测到一种未知病毒,新发现的病毒被命名为马细小病毒肝炎EqPV-H。通过对最近的蒂勒氏病例检测发现,该病毒在染病马匹中均存在。且该病毒具有嗜肝性,血清和肝中的病毒载量最高。其他方面的研究也支持了该病毒是蒂勒氏病的病原体的假说。本文则主要通过对之前的标本进行分析,探寻EqPV-H作为一种新发现的病毒,其是否还有一些其他的病理作用,是否与其他肝脏疾病相关?回顾性的EqPV-H检测结果如何?研究者们收集了各类因肝组织病理学异常的临床样本,将其分为7组,包括肿瘤疾病,炎症性疾病、肝硬化、循环障碍、毒性和肝代谢疾病、多种疾病(1-5组中2种以上的病理学特征)和正常肝组织。在这些收集到的92例肝脏样本中,只有2例发现了EqPV-H病毒,且两例均诊断为腹部肿瘤。但癌症与机会性感染的高易感性是相关的,因为肿瘤性疾病伴随的全身虚弱和免疫抑制可能促进EqPV-H继发感染,所以EqPV-H是否可能是马科动物原发性肝肿瘤发生的诱因,需要进一步的研究来评估。通过对这两例样本的进一步分析发现,在这匹马的脾脏组织(肿瘤转移部位)以及心脏和肺组织中也可以检测到非常低的EqPV-H。这与之前的研究相一致,肝脏中病毒载量最高,其他组织中含量较低但也可持续存在,这意味着该病毒可能存在慢性感染。进一步通过naica微滴芯片数字PCR系统对病毒的载量进行绝对定量分析,EqPV-H核酸阳性的两个肝脏样本,病毒载量分别为5×103和9.5×103GE/百万细胞,略低于其他研究中肝脏样本1.26×104GE/百万细胞到2.04×109GE/百万细胞的病毒载量,这可能是慢性感染的另一个迹象。▲ naica微滴芯片数字PCR系统检测肝脏1号和2号样本中EqPV-H和细胞校正基因TTC17绝对定量结果。由于这项研究是回顾性的,所有的组织样本在室温下被石蜡包埋1至17年,这可能会影响可检测病毒的数量。但仍然在其中2匹肿瘤性疾病的马样本中检测到EqPV-H病毒,这表明EqPV-H感染和肿瘤性疾病之间可能存在关联甚至相互作用。尽管这篇文章最终并未得出某种疾病与EqPV-H的确切关系,但是通过naica微滴芯片数字PCR系统这样的新技术和新发现的病毒EqPV-H对以前的样本进行回顾性研究,仍然发现了一些之前从未了解到的新内容,也为其他的研究提供了新的思路和方向。期刊《viruses》Viruses (ISSN 1999-4915) 是一个国际性开放获取期刊, 至今已被SCIE、PubMed 、Scopus等各类数据库索引,其最新影响因子为3.465。作为病毒学研究的高级论坛,该期刊旨在帮助研究人员细致的展示他们的前沿发现和观点,并使其迅速传播。naica微滴芯片数字PCR系统法国Stilla Technologies公司的naica微滴芯片数字PCR系统在进行核酸检测时具有独特的优势。该系统利用cutting-edge微流体创新型芯片—Sapphire芯片(或高通量Opal芯片)作为数字PCR过程的耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中。3色荧光检测仪器,整个流程只需要2.5小时,并可进行数据的质控和结果追溯分析,获得的数据真实可靠。naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 进展|安光所研发的数字PCR生物芯片阅读仪获批医疗器械注册证
    近日,安光所刘勇研究员、朱灵研究员团队研发的“数字PCR生物芯片阅读仪”正式获得安徽省药品监督管理局二类医疗器械注册证(皖械注准20222220135),产品型号:DCScanner-100。这是安徽省首款获批上市的数字PCR产品,填补了我省数字PCR自主产品的空白。该仪器获得医疗器械注册证,为下一步临床推广应用奠定了基础。数字PCR生物芯片阅读仪DCScanner-100数字PCR即Digital PCR(dPCR)是第三代PCR技术,它是一种核酸分子绝对定量技术。相较于上一代的qPCR技术,数字PCR能够直接数出DNA分子的个数,是对起始样品的绝对定量。它完全不依赖参照品和标准曲线,具有极高的灵敏度和分辨率,是未来核酸检测行业应用发展的新趋势。此次获批的生物芯片阅读仪可适配安光所自主研发的微腔和微液滴数字PCR芯片,广泛应用于肿瘤液体活检、无创产前诊断、病毒核酸载量精确定量等多个领域。自2011年起,安光所光电子中心研究团队专注于分子诊断领域创新技术的研究工作,在微流控芯片、光电一体化检测、分子诊断核心试剂等方面开展持续攻关,在国家自然科学基金、中科院STS重点项目、中科院青促会、安徽省科技重大专项等的大力支持下,利用研发的数字PCR技术平台,在肝癌循环miRNA标志物检测、慢性乙肝病毒核酸载量定量等方面取得了重要的研究成果。一直以来,安光所光电子中心研究团队始终坚持以临床需求为导向,以医用光学先进诊疗技术研究与创新装备的研发为己任,重点突破“卡脖子”技术瓶颈,为实现高端医疗器械国产化目标而努力奋进。
  • 文献速递 | naica® 微滴芯片数字PCR系统高通量测定大麦花粉核减数分裂重组率
    减数分裂通过产生单倍体细胞和基于同源重组(HR)产生的遗传变异来支持有性生殖。HR通过重组交换(CO)、同源染色体之间的联会,交换等来确保减数分裂染色体分离,同时保证遗传变异在育种过程中发挥作用。在植物中,同源重组可以通过几种技术检测到,例如通过减数分裂染色体分析进行细胞学检测,通过测序进行基因分型和分离群体中的分子标记或荧光标记株系(FTLs)。FTLs在拟南芥中是测量花粉或种子中减数分裂重组事件的有力工具。但FTLs不适用于作物,因为在基因组特别大的作物中产生FTLs既费力又昂贵。此外,不同的作物或某些基因型不适合遗传转化。作为替代,使用小孢子(四分体或花粉核)基因分型或测序用于直接检测减数分裂产物中减数分裂重组的结果。然而,作物小孢子的测序/基因分型相当昂贵,因此可以进行检测的数量有限,特别是对于大基因组物种如谷物。在受精前测量雄配子的减数分裂重组率有样本量大,分子标记分析独立和即时重组交换分析的优势,但配子DNA含量有限,测序/基因分型方法通常依赖于全基因组扩增(WGA)。而直接通过PCR反应分析单个配子进行基因分型也由于单倍体配子的低DNA含量无法达成。在大麦中,单花粉核基因分型是通过荧光激活细胞分选从种内杂种中分离出单个单倍体花粉核,然后进行WGA和多位点KASP基因分型或单细胞基因组测序完成的。单个单倍体花粉核的DNA有限,且WGA价格较高,导致分析样品的数量有限,无法完成高通量的分析。德国莱布尼茨植物遗传和作物植物研究所的科学家近日在《The Plant Journal》上发表了一篇减数分裂重组率测量的相关文献,该文章采用naica微滴芯片数字PCR系统对配子中减数分裂重组率进行测量,实现高通量和低成本的基因分型。使用基于naica微滴芯片数字PCR系统的基因分型分析,无需大量预先进行的WGA就可完成对大麦花粉细胞核中减数分裂重组率的高通量测量。在取得花粉后,将花粉中的花粉核取出,并通过流式进行纯化,将得到的花粉核加入naica微滴芯片数字PCR系统的Mix中进行检测,从而得到减数分裂重组率,通过对总共42,000个单个花粉核进行基因分型(每株分析多达4900个核),在杂交植物中测量了两个着丝粒和两个远染色体间隔内的减数分裂重组率。花粉核中确定的重组频率与分离群体中的检测到的频率接近。▲ 图1:用naica微滴芯片数字PCR系统进行大麦单花粉核基因分型的工作流程。(a)杂交植物的花药;(b)通过使用不同筛孔大小的过滤器(100和20微米)在悬浮液中分离花粉和花粉核。(c)花粉核用碘化丙锭染色,并流式分选到数字PCR反应Mix中。(d)将25微升数字PCR反应Mix(包括分选的花粉核)装入sapphire芯片的四个腔室之一。(e)在Geode中进行液滴生成和热循环。(f)在热循环之后,在naica Prism 3中扫描sapphire芯片,然后在Crystal Miner软件中进行数据分析该文章在进行花粉核减数分裂重组率的检测时采用双探针法,如前期可行性验证时检测的InDel3118和InDel3135之间的区间Id 3-1,用HEX标记Barke (B)等位基因特异性探针(绿色),用FAM标记Morex (M)等位基因特异性探针(蓝色)(图2b),研究者将来自亲本基因型的花粉核以1∶1的比例混合,同时也检测了Id 3-1杂合的杂交植物的花粉核。在亲本混合样本检测中,两种亲本基因型的液滴相等,两种标记显示相同的荧光(B的HEX或M的FAM)(图2b)。在杂交材料样本检测中下,预计会出现代表重组事件的不同液滴群,即同时显示两种颜色的液滴(InDel3118为HEX,InDel3135为FAM,反之亦然)(图2b)。在实际检测中发现,亲代基因型得到了数量大致相等的液滴,它们对两种标记物显示出相同的荧光(图2d,e,绿色和蓝色矩形)。在对杂交植物的花粉核的检测中,检测到具有两种颜色(HEX和FAM)的液滴,表明重组事件(图2e,红色矩形)。此外,可以区分只有一个标记成功扩增的液滴(图2d,e,簇I和iii)以及没有任何扩增的液滴(图2d,e,簇ii)。表明使用naica微滴芯片数字PCR系统对单个花粉核进行包裹和基因分型是完全可行的。▲ 图2。用naica微滴芯片数字PCR系统进行大麦花粉单核基因分型。(a)在大麦染色体1和3上定义四个染色体间隔的的InDel或单核苷酸多态性(SNP)标记。(b)以Id 3-1为例的基于naica微滴芯片数字PCR系统的花粉核基因分型分析:两种荧光探针的可能组合能够区分重组和非重组花粉核。(c)有效微滴阵列原始视图。每个腔室通常包含大约25000个稳定的有效液滴。在任何通道(FAM或HEX)中成功扩增的液滴是浅灰色的,而暗灰色的液滴是阴性的。(d,e)来自芯片室的基于naica微滴芯片数字PCR系统的花粉核基因分型数据,在软件中显示为来自以1:1比例混合的亲本基因型的花粉核的点图(d)和来自与Id 3-1杂合的杂交植物的花粉核的点图。(e)通过两个HEX标记的(绿色方框)或FAM标记的等位基因探针(蓝色方框)将两个非重组亲代群体检测为具有成功基因分型的微滴。在亲代基因型混合物(d)的点状图中以灰色框表示HEX和FAM双阳性微滴为假阳性+噪声。杂交植物中HEX和FAM双阳性微滴为包括假阳性和噪音在内的重组群体,显示为红色方框(e)。簇(I)和(iii)代表仅成功扩增一种标记的微滴naica微滴芯片数字PCR系统具有极高的分辨率,因此在那些成功扩增标记物的微滴中,也可以观察到微滴内的细胞核(图2c),研究者通过对微滴包裹核的数量分析进一步优化实验,通过用热稳定的限制性酶预处理花粉核来提高基因分型的效率,且因为细胞核数量与单个包裹细胞核的微滴数量呈正相关,提出上样细胞核的最佳区间(不同物种的不同大小细胞核有差异)。本文基于2色探针进行检测是非常成功的,而进一步通过6色平台可以同时进行更多组基因分型检测,将获得多重基因分型数据,也可以对相同或不同染色体上的一个以上染色体间隔的重组率进行平行测量,或者对CO干扰强度/存在的测量。总的来说,基于naica微滴芯片数字PCR系统的单个大麦花粉核基因分型在种内杂种植物的规定染色体间隔内提供了可靠、快速和高精度的减数分裂重组测量。来自一系列具有不同细胞核和基因组大小的物种的细胞核的成功包裹表明,所提出的方法广泛适用于单个细胞核的基因分型。德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士也给我们在线分享了他们的研究成果,想要直观的去了解这篇文章的详细内容,请点击https://mp.weixin.qq.com/s/KNXVs6rOt8MYpBjzuKZZ9A进行观看哦。本文链接:https://doi: 10.1111/tpj.15305naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • naica®微滴芯片数字PCR系统精准量化胰岛素编码基因DNA甲基化水平
    导读在过去的几十年中,糖尿病的发病率在全球范围内显著增长。除了不健康的生活方式外,环境污染物被认为是糖尿病发生的危险因素。多环芳烃 (PAH)是一类含有2-7个芳环的有机化合物,由自然和人类活动产生并广泛存在的污染物。流行病学研究表明,PAHs水平与成人和儿童的肥胖和二型糖尿病相关。厦门大学生命科学学院细胞应激生物学国家重点实验室的研究人员在Ecotoxicology and Environmental Safety上发表了题为《Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus》的文章。文中应用naica微滴芯片数字PCR系统对胰岛素编码基因DNA甲基化水平进行量化,揭示了产前暴露于多环芳烃混合物对成年雄性小鼠胰岛细胞功能的不良影响。应用亮点:▶ 使用naica微滴芯片数字PCR系统对胰岛素编码基因启动子甲基化水平进行量化。▶ 在产前暴露于500µg/kg PAHs的小鼠中,胰岛素编码基因启动子的甲基化水平显著升高。▶ 产前暴露于PAHs可能促进I型糖尿病的发病。作者使用8种PAHs的混合物进行了实验,以研究产前PAHs对成年期胰岛细胞功能和质量的影响,同时试图阐明 I型糖尿病发病的环境原因。他们分离了成年雄性小鼠的胰岛,对胰岛素编码基因的启动子DNA甲基化水平进行分析。研究成果:▲图1. 产前暴露于多环芳烃对成年雄性小鼠胰岛素编码基因甲基化水平的影响。(A) 数字PCR结果代表性一维图。(B)胰岛素编码基因启动子甲基化水平。(每个处理三只母鼠, 每只母鼠取一个雄性后代) 。在本研究中,子宫内暴露于500µg/kg PAHs的小鼠胰岛中胰岛素编码基因启动子中的DNA甲基化水平显著增加,同时胰岛素编码基因转录显著下调。▲图2. 不同PAHs浓度对胰岛素编码基因转录水平的影响原文链接如下:https://www.sciencedirect.com/science/article/pii/S0147651322005358期刊介绍:Ecotoxicology and Environmental Safety 1977创刊,隶属于爱思唯尔出版集团。是一份多学科交叉期刊,主要研究环境污染对包括人类健康在内的生物体的暴露和影响。最新影响因子为7.129。naica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 单个大肠杆菌检测新思路| naica®全自动微滴芯片数字PCR系统提供最强支撑
    导读尽管各国卫生系统发展迅速,但由病原菌引起的传染病仍然是人类健康的主要威胁之一。据报道,全世界每年有220多万人死于水传播大肠杆菌病原体。尽管大多数大肠菌群是无害的,但某些大肠杆菌的存在可能会导致甚至威胁到人类健康,例如,大肠杆菌O157:H7和其他产志贺毒素的大肠杆菌菌株(非O157 STEC)是食源性疾病的常见因素,可能对健康造成严重后果,尤其是对幼儿。因此,检测大肠杆菌对于生物医学应用以及食品、水和空气质量监测非常重要。大连理工大学环境科学与技术学院,工业生态学与环境工程教育部重点实验室的科学家,开发出基于naica全自动微滴芯片数字PCR系统的单细菌检测方法,该方法可以在1.5小时内以单细胞灵敏度选择性检测临床尿液样本中的大肠杆菌 。该方法发表在《Analytical Methods》,题为“Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification”。应用亮点:▶ dDRCA系统,能够快速、选择性地检测具有单细胞敏感性的大肠杆菌 ,dDRCA系统的检测灵敏度比之前报道的PAD高1000倍。▶ 证明了dDRCA系统在尿路感染诊断中的潜在临床适用性,dDRCA能够在不到1.5小时内,从20份临床尿液样本中成功识别出5名UTI患者,而传统的基于培养的方法需要数小时。文中采用naica️全自动微滴芯片数字PCR系统液滴微流控技术,快速精准的检测到复杂样本和高背景样本中的致病大肠杆菌。通常扩增需要约4小时进行定量大肠杆菌检测。在这项研究中,我们描述了DNA酶偶联滚圈扩增(RCA),这是一种高效的等温酶DNA复制过程,可在naica️全自动微滴芯片数字PCR系统上进行,以建立液滴DNA酶偶联RCA(表示为dDRCA)系统。我们进一步证明,该系统能够在1.5小时内以单细胞敏感性选择性检测临床尿液样本中的大肠杆菌。▲图2(a)通过琼脂糖凝胶电泳分析RCA产物(RP)。(b) 反应混合物在指示反应条件下的荧光响应:+RFD-EC1/+ RDS/+ E. coli (blue line) RFD-EC1/+ RDS/+ E. coli (green line) RFD-EC1/+ RDS/-E. coli (red line) + RFD-EC1/+ RDS/-E. coli (pink line)。(c) Naica Prism3阅读器图像(左)、CLSM图像(中)和荧光显微镜图像(右)为微晶芯片液滴的大小。比例尺:1.4 mm(左)和100 mm(中、右)。指示反应条件下dDRCA系统的荧光图像和荧光滴数:(d)+RFD-EC1/+ RDS/+ E. coli (e)-RFD-EC1/+ RDS/+ E. coli (f) -RFD-EC1/+ RDS/ E. coli (g) + RFD-EC1/+ RDS/ E. coli.使用Naica Prism3阅读器对生成的荧光液滴进行成像和分析。dDRCA系统能够在75分钟内选择性计数具有单细胞敏感性的大肠杆菌,包括20分钟的细胞裂解时间、12分钟的液滴生成时间和43分钟的液滴反应时间。通过比较其他三种常见细菌,包括枯草芽孢杆菌(B.subtilis)、酸性乳片球菌(P.acidilactici)和唐菖蒲伯克霍尔德菌(B.gladioli)存在时的信号反应,也检查了dDRCA检测大肠杆菌的选择性。当用缓冲液或尿液中的这些意外靶点测试每个dDRCA系统时,未观察到明显的荧光液滴(图4c和S4†)。▲图4(a)不同大肠杆菌浓度(每毫升细胞数)下dDRCA反应的荧光图像。比例尺:1.4 mm。(b) 不同浓度下计数的液滴数与大肠杆菌之间的关系。提供了计数的液滴数量,插图显示了1–104大肠杆菌范围内的线性反应。误差条代表三个独立实验的标准偏差。(c) dDRCA的特异性。最终证明了dDRCA系统在尿路感染(UTI)诊断中的潜在临床适用性。分析了20份患者和健康献血者的临床尿样。整个操作程序包括:(1)细胞收集和裂解(25分钟);(2) 液滴生成(12分钟);(3) 液滴反应(43分钟)。如图5c所示,五个尿样,即ID 6、8、9、12和14,比其他尿样产生大量荧光液滴(3000)。使用传统的大肠杆菌培养方法进一步确认了这些有无大肠杆菌感染的样本(图5d)。因此,对UTI的诊断有很大的希望。▲图5(a)检测尿液样本中的大肠杆菌。(b) 显示尿液样本中计数数与大肠杆菌细胞在1-104范围内的线性相关性的曲线图。(c) 20份临床尿液样本中阳性液滴的数量。(d) CLED(胱氨酸、乳糖电解质缺乏)琼脂细菌尿液培养板。黄色菌落代表大肠杆菌在37℃的CLED琼脂中培养22小时后的生长。该系统能够在不到1.5小时的分析时间内,从20份临床尿液样本中成功识别出5名UTI患者,而传统的基于培养的方法需要数小时。原文:https://doi.org/10.1039/D2AY00656Anaica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 利扬芯片:拟购置上海嘉定土地使用权建设“集成电路芯片测试工厂项目”
    利扬芯片12月7日公告,为把握市场机遇,公司结合现阶段集成电路测试产能的经营情况和未来业务发展战略需要,公司全资子公司上海利扬创芯片测试有限公司拟在上海市嘉定区购置土地使用权建设“集成电路芯片测试工厂项目”。投资总额 69,000 万元人民币,项目达产预计年营业收入额为人民币 50,000 万元。
  • 金汉钦教授:一种改变生物医学面貌的新技术——大规模集成流路芯片-数字PCR
    浙江大学金汉钦教授  金汉钦教授在报告中指出:“PCR是一种分子诊断技术,大规模集成流路(IFC) 芯片的出现,为发挥数字PCR技术的优势及向基层医疗卫生机构推广找到了最好的切入点。IFC芯片系统技术目前尚未成熟,一旦在生物医学、医疗卫生、公共安全、农业、流程工业等领域突破技术瓶颈,有引发巨大变革的潜力。IFC芯片系统系统与数字PCR技术结合,有在医疗卫生部门大规模推广应用的良好前景。总之,大规模集成流路芯片-数字PCR值得有战略眼光的专家学者格外关注!”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制