当前位置: 仪器信息网 > 行业主题 > >

高密度电法仪原理

仪器信息网高密度电法仪原理专题为您提供2024年最新高密度电法仪原理价格报价、厂家品牌的相关信息, 包括高密度电法仪原理参数、型号等,不管是国产,还是进口品牌的高密度电法仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高密度电法仪原理相关的耗材配件、试剂标物,还有高密度电法仪原理相关的最新资讯、资料,以及高密度电法仪原理相关的解决方案。

高密度电法仪原理相关的资讯

  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 仪器情报,科学家提出高密度垂直晶体管制备表征新技术!
    【科学背景】垂直晶体管(VFET)是一种源极和漏极垂直对齐,电流垂直流过晶圆表面的晶体管架构。近年来,随着技术的发展和对高密度集成电路需求的增加,垂直晶体管因其能够在不增加芯片面积的情况下实现高密度堆叠的特点,成为了研究热点。然而,实现高密度垂直晶体管具有相当大的挑战,主要归因于垂直结构与传统横向制造工艺的不兼容性。具体来说,传统的平面工艺使用的物理粒子如光子、反应离子或物理/化学气相,只能在晶圆平面内生成多个结构,而无法在垂直方向上进行大规模制造。此外,制造垂直晶体管需要复杂的多层沉积和图案化步骤,这使得工艺复杂且产量低。有鉴于此,湖南大学邹旭明、刘渊、廖蕾教授以及美国加利福尼亚大学圣迭戈分校物理系Chunhui Rita Du教授合作在“Nature Communications”期刊上发表了题为“High-density vertical sidewall MoS2 transistors through T-shape vertical lamination”的最新论文。科学家们提出了一种通过T形层压方法实现高密度垂直侧壁晶体管的新方法。这种方法的核心是先在平面基板上预制横向晶体管,然后使用定制设计的T形印章将其干释放并层压到垂直基板上。这一技术克服了平面工艺与垂直结构之间的不兼容性,使预制的晶体管可以在不损坏或退化的情况下与垂直基板完好接触。通过这一技术,研究团队在0.035 μm² 的小面积内垂直堆叠了60个MoS2晶体管,达到理论上的1.7 × 10¹ ¹ cm-2的器件密度。此外,他们还提出了两种可扩展制造垂直侧壁晶体管阵列的方法,包括同时在多个垂直基板上层压,以及在同一垂直基板上多周期逐层层压。研究结果表明,这种新方法为实现高密度垂直晶体管和垂直电子器件提供了一条有效的替代途径,开辟了高密度集成电路的新维度。【科学亮点】(1)实验首次使用T形层压方法,将预制的横向晶体管转移到垂直基板上,实现了高密度垂直侧壁晶体管。这一技术突破克服了传统平面工艺与垂直结构之间的不兼容性,使得横向晶体管可以在垂直基板上无损层压。(2)实验通过以下几个关键步骤和结果,展示了这一技术的有效性和潜在应用:步骤一:在平面基板上预制横向MoS2晶体管。通过常规批处理工艺制造横向晶体管,以确保其性能和质量。步骤二:使用定制设计的T形PDMS印章进行层压。通过干层压技术,将预制的横向晶体管从平面基板转移到垂直基板上。干层压过程中产生的低应变确保了晶体管与垂直基板完好接触,无损坏或退化。结果一:通过SEM、STEM和电气特性表征验证了层压后晶体管的完整性和功能性,证明了该方法的有效性。结果二:实现了在0.035&thinsp μm² 的垂直面积内垂直堆叠60个MoS2晶体管,相应的理论器件密度达到了1.7&thinsp ×&thinsp 10¹ ¹ &thinsp cm⁻ ² 。实验展示了在小面积内实现高密度垂直器件堆叠的可能性。步骤三:提供了两种可扩展制造垂直侧壁晶体管阵列的方法:一是同时在多个垂直基板上进行层压,二是使用多周期逐层层压在同一垂直基板上进行堆叠。结果三:展示了在不同基板上制造大规模垂直侧壁晶体管阵列的可行性,进一步拓展了这一技术的应用范围。【科学图文】图1:基于MoS2的垂直侧壁晶体管的垂直层压工艺和表征。图2:MoS2晶体管的电气特性表征。图3:可扩展的垂直侧壁晶体管制造。图4:高密度垂直器件的逐层垂直集成。【科学结论】本文通过创新的T形层压方法,成功克服了传统横向制造工艺与垂直结构的不兼容性,为高密度垂直侧壁晶体管的制造开辟了新途径。传统上,晶体管的制造依赖于平面处理技术,而垂直方向的器件堆叠则面临着工艺复杂度和低产量的挑战。本文所提出的T形层压方法不仅保留了传统制造的高效性和成本效益,还在垂直方向上实现了多器件的紧密堆叠,大大提升了器件密度和集成度。此外,本文的成功实验验证了干层压过程中的低应变特性,确保了晶体管与垂直基板的良好接触和稳定性,从而在器件性能和一致性上取得了显著的进展。这一技术创新不仅对垂直电子器件领域具有深远的影响,还为未来集成电路设计提供了新的思路和可能性。通过在小尺寸区域内成功堆叠多个MoS2晶体管,并展示出极高的器件密度,本文为实现更小型化、更高性能的电子设备奠定了坚实的实验基础。原文详情:Tao, Q., Wu, R., Zou, X. et al. High-density vertical sidewall MoS2 transistors through T-shape vertical lamination. Nat Commun 15, 5774 (2024). https://doi.org/10.1038/s41467-024-50185-4
  • 新品上市-环刚度试验机 高密度管材抗压测试
    热塑性塑料波纹管排水管导管高密度管材抗压测试 环刚度试验机ZB-810型50KN伺服控制环刚度试验机主要适用于各类管材的环刚度指标测试,更换不同夹具,还可以做拉伸、弯曲等试验。环刚度试验机仪器特点:1. 采用高精度力量传感器,具有精度高,线性好等优点;2. 动力系统采用伺服电机+伺服驱动器+台湾ABBA滚珠丝杆+同步带传动,运行平稳,噪音低;3. 上下夹具同轴度好且整体机械结构刚度高;4.采集数据量处理能力强,可同时对多条测试曲线进行对比分析;5.安全设施专业化,具有过载自动保护停机、上下行程限位保护停机、漏电自动断电保护;6.位移、速度、力量三闭环控制系统,同步采集频率达120Hz以上,即使在材料屈服阶段也能保证数据真实可靠;7.可实现定速度、定位移、定荷重(可设定保持时间)、定荷重增率、定应力增率、定应变增率等控制模式加上多阶控制模式可满足不同的测试要求;8.软件操作界面可实现中英文及其它小语种任意切换,试验报告可通过Excel或Word文档格式输出。关于正瑞泰邦江苏正瑞泰邦电子科技有限公司坐落在历史文化名城扬州,由成立于2007年的江都市天璨试验机械厂经过十年发展而来。公司拥有专业的技术开发和售后服务团队,主要生产物理性能测试仪器及相关软件开发,产品涉及材料力学性能试验、材料燃烧测试、高低温环境试验、橡胶加工设备四大板块;销售网络遍布全国并远销韩国、日本、中东等地区。主要服务于石油化工企业、原材料检测单位、高校及第三方检测机构等。 多年来,我们一直坚持以“多元化、一站式”服务为中心,站在用户角度思考问题,急用户之所急,尽量为用户提供所需要的成套设备及工具。特别是在用户实验室建设初期,我们免费提供经验及方案供参考,得到了广大用户的好评。同时,我们拥有自主进出口权,可以为用户在海外实验室提供“门到门”(DTD)服务;真正做到生产、销售、送货上门、安装调试及售后一条龙服务。节约用户时间和精力是我们的售前服务初衷,快速、圆满的解决问题是我们的售后服务宗旨。
  • 863项目“高密度存储与磁电子材料关键技术”取得突破
    p   阻变存储器、相变存储器、磁存储器、高灵敏度磁传感器和隔离耦合器件等是具有良好应用前景的新型存储和磁电子技术,在移动通信、个人电脑、数码相机、电子标签等领域具有广阔的市场价值。“十二五”期间,863计划新材料技术领域支持了 “高密度存储与磁电子材料关键技术”主题项目。近日,科技部高新司在北京组织专家对该主题项目进行了验收。 /p p   该项目开展了与CMOS工艺兼容的阻变与电极材料组合体系研究,研发的TaOx阻变存储器 芯片制造基于中芯国际集成电路制造有限公司8英寸0.13um标准逻辑生产工艺线,芯片级读取时间达到十纳秒级,写操作电压满足0.13um或0.11um技术代标准逻辑工艺IO承受电压 研发了低热导率的新型超晶格相变材料,研发了非对称环状微电极结构相变存储器单元,制备出了相变存储器阵列;开展了磁性隧道结等磁电子材料研究,制备了基于磁遂道结的磁传感器原型器件,完成了基于磁电子材料的具有非易失性锁存功能的双芯和三芯两种单通道数据隔离耦合接口芯片。该项目的实施突破了先进的高密度存储与磁电子材料器件的关键技术,培养了高水平信息存储与磁电子器件研发队伍,对于我国新型电子材料技术与信息产业的发展具有支撑作用。 /p p   “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,并将“战略性先进电子材料”列为发展重点之一,重点围绕第三代半导体和微电子材料的研发,着力解决半导体及微电子产业面临的重大共性问题,在核心半导体材料的设计、生产工艺流程的优化以及关键技术的开发等方面形成突破,力争推动跨界技术整合,抢占先进电子材料技术的制高点。 /p p /p
  • 半导体情报,科学家研发高密度集成的柔性模块化触觉传感器!
    【科学背景】随着柔性电子技术的迅猛发展,柔性触觉传感器因其在多种应用中的潜力而引起了科学家的广泛关注。柔性触觉传感器的核心概念是模仿人类皮肤的物理特性和感知能力,以实现对外部环境的高精度感测。这些传感器在工业自动化、人机界面、机器人操作和生物医学等领域具有重要应用前景。然而,由于其柔性的形式因子,这些传感器在与基于晶片的设备、商业芯片或电路板的集成方面面临诸多挑战。具体来说,现有的柔性触觉传感器面临以下几个主要难题:首先,一些用于制造这些传感器的弹性或复合材料无法使用传统的光刻和湿/干法刻蚀进行图案化,从而限制了触觉传感器的特征尺寸和空间分辨率。其次,构建柔性触觉传感器的过程通常需要转移、粘接等步骤,这些步骤阻碍了与其他基于硅片的设备和集成电路(IC)的单片集成。第三,大面积的柔性触觉传感器阵列通常具有固定设计,而为了满足多样的应用需求,需要可定制的空间分布和整体形状。有鉴于此,北京大学未来技术学院生物医学工程系助理教授韩梦迪研究员团队提出了一套创新的制造方法和设备设计方案。这些方案包括利用微电机系统(MEMS)技术制造柔性模块化触觉传感器,通过在传感器中引入具有内应力的二氧化硅(SiO2)层,使得可以构建用于测量机械刺激的三维微应变传感器(μSGs)阵列。这种方法与微电子工艺的兼容性使得这些传感器能够与其他传感器在硅(Si)晶片上进行单片集成,或配置成具有高空间密度的阵列。此外,这些传感器还具有模块化特性,使其与贴片、柔性印刷电路板(FPCB)及其他宏电子技术兼容,可以组装成大面积阵列,并与商业设备配合使用。【科学亮点】1. 本文首次展示了高密度集成的柔性模块化触觉传感器。这些传感器通过在晶片或柔性印刷电路板(FPCB)上布置二维和三维金属/合金细线,实现了与其他电子组件的无缝集成。这种设计克服了传统柔性传感器在集成中的挑战,提高了传感器的空间分辨率和适应性。2. 实验采用模块化设计和微电机系统(MEMS)技术,使得传感器能够在柔性印刷电路板上与商业电子产品配合,形成多种电子系统。这些系统具备了无线测量皮肤界面、生物力学信号连续监测和触觉信息空间映射的能力,展示了柔性传感器在不同应用场景中的兼容性。3. 实验表明,这些二维和三维金属/合金细线的触觉传感器能够准确区分法向力、剪切力和温度,并且对弯曲和拉伸等机械刺激具有免疫性。这种高空间分辨率和大面积覆盖的能力,使得这些传感器在机器人技术、生物医学和消费电子产品中具有广泛的应用潜力。【科学图文】图 1. 柔性模块化触觉传感器的设计与制造。图 2. 触觉传感器的表征。图 3. 由模块化触觉传感器构建的各种阵列。图 4. 由模块化触觉传感器和其他电子组件构建的多功能系统。图 5. 皮肤界面的触觉信息空间映射。【科学结论】本文的研究提供了关于柔性触觉传感器设计与制造的新视角,揭示了将这些传感器与电子组件无缝集成的潜力。通过利用光刻定义的金属/合金细线,这些传感器在三维空间中精准测量法向力、剪切力和温度,并对弯曲和拉伸等机械刺激表现出免疫性。这种设计不仅提高了传感器的空间分辨率和测量准确性,还扩展了其在机器人技术、生物医学和消费电子等领域的应用前景。尤其是高密度阵列、柔性多功能系统、大面积弯曲无敏感阵列和无线可穿戴贴片等示例,展示了柔性触觉传感器在微电子和宏电子技术中的兼容性及其实际应用潜力。研究表明,通过优化传感器的设计和集成策略,可以显著提升其性能,并为未来的技术进步提供新的机会。参考文献:Chen Xu et al. ,Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics.Sci. Adv.10,eadp6094(2024).DOI:10.1126/sciadv.adp6094
  • 奥影科普| 工业CT的密度/对比度分辨率
    在现代检测领域,精度是非常重要的技术指标。具体到工业CT设备,其精度通常指代的有三个指标:空间分辨率、密度分辨率、测量误差。关于空间分辨率的影响因素、计算方式在此前的推文中已经做了介绍,本篇,我们就来详细介绍工业CT的「密度分辨率」。一、密度分辨率密度分辨率(Contrast Resolution),又称对比度分辨率或低对比度分辨率,是CT系统区分不同物质密度差异的能力。它定量地表示为影像中能显示的最小密度差别,通常以百分比(%)表示。例如,当密度分辨率为2%时,意味着两种物质的密度差异达到或超过2%时,CT图像就能清晰地区分它们。二、工业CT密度分辨率的原理我们知道,当X射线穿过不同密度的物质时,会发生不同程度的衰减。CT系统正是通过收集测量这些衰减信号,并利用重建算法将其转换为图像。密度分辨率的高低取决于系统对这些微小衰减差异的敏感度和区分能力。在工业CT中,高质量的图像可达优于1%甚至更小的密度分辨率,使得工业CT能够发现更细微的缺陷,提高检测的准确性和可靠性。这意味着工业CT能够准确地区分材料内部的微小密度变化,如气孔、裂纹、夹杂等缺陷,为质量控制和缺陷检测提供强有力的支持。三、影响密度分辨率的因素密度分辨率的高低取决于多个因素,包括:噪声和信噪比噪声是扫描均匀物质时,其CT值的标准偏差。噪声使图像呈颗粒性,直接影响密度分辨率,尤其表现在低密度组织的可见度上。信噪比由探测器的效率和X射线剂量决定。效率越高、剂量越大,则信噪比越高,相对降低噪声,密度分辨率将提高。被检物体大小理论上,被检物体的尺寸大小并不会改变CT系统的密度分辨率(分辨能力),但是尺寸大小会影响到射线的衰减,这就在一定程度上会造成探测器在侦测信号方面存在差异,比如信噪比波动。当被检物体的几何尺寸较大时,这是因为较大的物体能够吸收更多的X射线光子,从而产生更明显的信号差异,使得不同密度的组织或物质更容易被区分开来。反之,如果被检物体较小,其吸收的X射线光子数相对较少,信号差异可能不够明显,导致图像在对比度上差异不明显。另外高密度物质对射线吸收后会造成射束硬化、金属伪影等干扰,同样也会影响设备的密度分辨力。探测器性能探测器的灵敏度、动态范围等性能参数对密度分辨率也有重要影响。高性能的探测器能够捕捉更多的细节信息,提高图像的密度分辨率。X射线剂量X射线源的能量直接影响其穿透能力和散射程度。选择合适的X射线源的剂量,可以在保证穿透深度的同时,减少散射和衍射对对比度分辨率的影响。四、密度分辨率测试密度分辨率的检测方法多种多样,在国标《GB/T 35386-2017 无损检测 工业计算机层析成像(CT)检测用密度分辨力测试卡》文件中,提供了空气间隙卡、固体密度差试样、液体密度差试样和圆盘卡四种测试卡。这些测试卡通过设计具有不同密度的材料组合,来模拟实际检测中可能遇到的密度差异。例如:固体密度差试样是在均制的圆柱形刚性基体材料(一般为钢、铝或塑料)的特定部位,按密度大小嵌入的一系列与基体不同的密度块。通过扫描这些试样,可以评估CT系统对固体材料密度差异的分辨能力。液体密度差试样在纯水的特定范围内加入可溶性介质(一般选用氯化钠),使介质溶液和纯水形成一定的密度差。
  • 快收藏 | 天平密度测定操作指南来了
    作为衡量物质物理性质的典型指标之一,密度的概念对大多数人来说并不陌生。每种物质都有一定的密度,且不同物质的密度不同。因此,我们可以利用密度来鉴别材料及其组成成分,判断材料质量等等,进而指导生产和控制质量。天平是密度测定时必不可少的仪器,用于确定样品在空气中和在液体里的质量,从而获得样品密度。哪些天平可以测定密度?奥豪斯提供密度测定组件,包括玻璃烧杯、固定支架、容器支架、温度计、适用于漂浮和非漂浮固体的挂篮、一瓶润湿剂以及下沉锤(选配)。将组件安装在天平上,可以测定固体和液体的密度。此组件适用于奥豪斯Explorer(EX)、Adventurer(AX)和Pioneer(PX)系列天平,可读性为1mg、0.1mg和0.01mg的型号。是否需要手动计算密度结果?-不需要奥豪斯天平内置“密度测定”称量模式,对于未知固体或液体密度的测定可提供不同的工作流程。测试过程中显示操作提示,指导用户分步完成操作。完成测试后,天平自动计算密度值,测试数据和最 终结果可打印,方便数据追溯。如何使用天平测定密度本操作指南以Adventurer天平为例,分别说明如何测定固体样品和液体样品的密度,同时讲解了天平设置和测试注意事项,以提高密度结果的准确性。奥豪斯微信公众号提供免费密度测定操作指南下载,或者直接拨打售后服务热线:4008-217-188,推荐适用的天平型号和指导安装密度测定组件,让您轻松使用我们的天平测定样品密度。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 阿基米德原理自动柴油密度仪操作步骤
    一、概 述 SH102C全自动石油密度测定仪是采用阿基米德原理进行自动测量石油产品的密度,适用于测定石油产品、化工溶液、现化能源、石油燃料、精细化工的密度,仪器符合ASTM D1298标准规范,自动显示密度值、API度。二、功能特点 山东盛泰仪器有限公司厂家直销 镀金陶瓷电容传感器;标准的RS232数据输出功能,可连接打印机自动打印。;全自动零点跟踪、蜂鸣器报警、超载报警功能蓝色背光液晶显示;测量时间 约10秒三、步骤 山东盛泰仪器有限公司厂家直销 1. 将挂钩悬挂在液体专用架的正中央, 按下’ZERO’扣除挂钩的重量2.使用挂钩将标准的玻璃砝码钩起来,数值稳定后按ENTER保存。3.取50-60ml要测量的液体样品到烧杯中,并放在黑色的支撑板上4.使用挂钩将标准玻璃砝码钩起,悬挂在装满待测量液体烧杯中,要确保测量液体有高于玻璃砝码,而且玻璃砝码不可以碰到烧杯。5.数值稳定后,按下ENTER 自动显示被测液体的密度值。按MODE切换波美度.浓度按print打印出测量数字,按SET返回测试下一个样品.
  • DiaPac公司选择康塔AUTOTAP堆密度分析仪
    DiaPac公司,一家位于休斯敦的碳化钨加工企业,他们已经开始转向使用康塔公司出品的Autotap堆密度分析仪来测量他们高密度粉末的堆积密度或振实密度。这些测量均是为了满足客户各种领域的材料耐磨应用,例如运用于油田钻井钻头、采矿工具和研磨设备的表面硬化等等。DiaPac的首席冶金专家指出振实密度的重要性是在于它从某方面反映了混合粉末的一些特质:“....颗粒大小分布及其堆积密度指标反映了金属复合材料在耐磨性和刚性之间的平衡。我们始终致力于在不牺牲材料刚性的前提下增强它的耐磨性,无论是耐磨性还是刚性,他们对颗粒的堆密度都是相当敏感的。”   在谈到康塔堆密度分析仪给该部门所带来的好处时,他继续说到:“与我们的其他堆密度分析仪器相比,据我所知,康塔的仪器一直都是我们行业的标准,(有20多年了吧?)最初促使我选择使用康塔堆密度分析仪是由于Autotap在振实过程中粉末是旋转的,而我们的共混物通常有非常细的“粘连”成份(团聚体),经常使粉末的堆密度值最大化。粘连的粉末具有很高的休止角,并且“攀”在量筒里形态也不是我们想要的,我们很清楚这会牺牲我们精确性。Autotap 在测定中让混合粉末旋转起来,避免了这些问题。”   在实际运用方面,DiaPac技术人员还注意到了它在振实密度实验操作上的优势:“与先前其它仪器相比,他们很快就注意到在使用康塔的仪器时开机迅速,放置和移开量筒操作简单。” 并且“不必敲击量筒侧壁以保持粉末床层水平,也不必进行任何套管机构操作,我们也几乎不会再打碎任何这些昂贵的经过认证的量筒。”   康塔公司Autotap堆密度分析仪遵循美国材料实验协会ASTM B527标准(金属粉末及其化合物振实密度标准测试方法)和其它国际准则,康塔堆密度分析仪有单样品管和双样品管两款仪器可供选择。   企业介绍:   DiaPac公司:专业提供各种超硬碳化物合金材料。这些材料与他们的丰富行业经验相结合给同领域的企业提供了多种耐磨的解决方案。DiaPac 在回收再利用方面也是行业的领军企业,他们从废旧的工具、矿泥、太空碎片中提取回收硬质碳化物合金,使得这些可再生材料得以加以利用,为客户的解决方案提供了有效的成本优势。DiaPac有限责任公司是一家通过ISO 9001:2008认证的公司。www.diapac.net/index.html   美国康塔仪器公司:成立于1968年,是世界领先的粉末和多孔材料性能表征分析仪器的设计专业制造商,尤其是在多站样品分析仪器和数据分析处理方法的应用方面具有世界领先水平。我们为ISO 9001:2008的行业标准提供最权威的数据测支持,同时也致力于提供高品质的仪器维护服务。康塔有50多个销售和技术服务办事处和代理机构遍布全球各地。康塔还将参加2010年1月在代托纳比奇举行的先进陶瓷与复合材料会议暨博览会。
  • 科学家提出一种单质新原理开关器件 为研发海量三维存储芯片提供新方案
    中国科学院上海微系统与信息技术研究所宋志棠、朱敏研究团队在集成电路存储器研究领域获重大进展,成功研制出一种单质新原理开关器件,为海量三维存储芯片的研发提供了新方案。12月10日,这项成果发表于《科学》。  集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系国家的信息安全。然而,现有主流存储器——内存和闪存,不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。  针对以上问题,宋志棠、朱敏与合作者提出了一种单质新原理开关器件,该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变,产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态—液态新型开关机理,与传统晶体管等完全不同,是集成电路全新开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片的研发提供了新方案。  据悉,该单质新原理器件为我国首次发明,打破了外国公司的专利壁垒,为我国自主高密度三维存储器的研发奠定了坚实的基础。  意大利国家研究委员会微电子和微系统所教授Raffaella Calarco同期在《科学》上发表评论文章,认为该研究“取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新视角”。  相关论文信息:https://doi.org/10.1126/science.abi6332
  • 仪电物光发布WMD-1自动密度仪新品
    上海仪电物光WMD-1 自动密度仪【产品介绍】采用U型管振动工作原理,能快速测量液体密度,具有电子激发、振动频率计数及显示功能。通过把少量样品注入到振动试样管中,根据试样管振动频率发生的变化,结合标定的数据,从而计算样品的密度。操作界面:彩色液晶触摸屏显示,操作更直观更便捷。进样量小:每次只需要2~3ml待测样品,节省资源,降低成本。测量模式:内置酒精浓度、糖浓度、酸、碱浓度3种测量模式。 温度控制:帕尔帖控温装置 (Peltier),精确温控。仪器校准:误差校验简便,只需用空气和蒸馏水即可对仪器进行校准。通讯接口:配有多种通讯接口,数据可保存、导出和打印。上海仪电物光WMD-1 自动密度仪【主要技术参数】密度测量范围0.00000~3.00000 g/cm3测量准确度±0.0003g/cm3测量分辨率±0.00001g/cm3测量重复性±0.0001g/cm3温度分辨率 0.01℃控温范围15~40℃控温精度±0.02℃控温准确度±0.2℃校准方法 空气/蒸馏水数据储存1000组显示方式7寸彩色液晶触摸屏输出接口 RS232、USB、U盘打印机型号RD-TH32-SC(选配)输出报告PDF/ExceI电源220V±240V,50Hz±1Hz仪器体积 350mm×440mm×210mm仪器净重21kg创新点:操作界面:彩色液晶触摸屏显示,操作更直观更便捷。 进样量小:每次只需要2~3ml待测样品,节省资源,降低成本。 测量模式:内置酒精浓度、糖浓度、酸、碱浓度3种测量模式。 温度控制:帕尔帖控温装置 (Peltier),精确温控。 仪器校准:误差校验简便,只需用空气和蒸馏水即可对仪器进行校准。 通讯接口:配有多种通讯接口,数据可保存、导出和打印。 WMD-1自动密度仪
  • 上海微系统所新原理开关器件成果获2022年度中国科学十大进展
    3月17日,科技部高技术研究发展中心(基础研究管理中心)发布2022年度中国科学十大进展。中科院上海微系统所宋志棠、朱敏团队的“新原理开关器件为高性能海量存储提供新方案”脱颖而出,荣获2022年度中国科学十大进展(图1)。中国科学十大进展遴选活动由科技部高技术研究发展中心牵头举办,其遴选程序分为推荐、初选和终选3个环节。终选阶段,中国科学院院士、中国工程院院士、国家重点实验室主任等3500余位知名专家学者对30项候选科学进展进行网上投票,最终,得票数排名前10位的入选。图1 新原理开关器件成果荣获2022年度中国科学十大进展高密度与海量存储是大数据时代信息技术与数字经济发展的关键瓶颈。中国科学院上海微系统与信息技术研究所宋志棠、朱敏团队发明了一种新型基于单质碲和氮化钛电极界面效应的开关器件(图2),充分发挥纳米尺度二维限定性结构中碲熔融—结晶速度快、功耗低的独特优势,“开态”碲处于熔融状态是类金属、和氮化钛电极形成欧姆接触,提供强大的电流驱动能力,“关态”半导体单质碲和氮化钛电极形成肖特基势垒,彻底夹断电流。该晶-液态转变的新型开关器件,组分简单,可克服双向阈值开关(OTS)复杂组分导致成分偏析问题;工艺与CMOS兼容且可极度微缩,易实现海量三维集成;开关综合性能优异,驱动电流达到11 MA/cm2,疲劳108次以上,开关速度~15ns,尤其碲原子不丢失情况下开关寿命可大幅提升。该研究突破为我国发展海量存储和近存计算,在大数据时代参与国际竞争提供了新的技术方案。该成果发表在国际顶尖杂志Science (2021, 374, 1390-1394) 上。图2 新原理开关器件及其晶态-液态新型开关机理(Science, 2021, 374, 1390-1394)中国科学院上海微系统与信息技术研究所是我国著名的技术学科综合性研究所之一,前身是成立于1928年的国立中央研究院工程研究所。上海微系统所现有传感技术、集成电路材料、微系统技术三个国家级重点实验室,有无线传感网与通信、太赫兹固态技术、高端硅基材料三个中科院重点实验室。设有传感技术实验室、纳米材料与器件实验室,太赫兹固态技术实验室、微系统技术实验室、宽带无线通信实验室、硅基材料与集成器件实验室、超导电子学实验室、仿生视觉系统实验室、2020 X-Lab实验室等九个实验室。
  • 佳航仪器发布密度计 密度仪 U型密度仪Digipol-D50新品
    Digipol-D50密度计提高效率创新点: 1:自动化集成,实现一键测定功能; 2:内置帕尔贴控温,提高精度和稳定性; 3:高清视频避免气泡影响; 4: 可通过打印机直接打印数据; 5: 符合21CFR Part 11、审计追踪、药典及电子签名。 Digipol-D50全自动密度计采用U型管振荡法原理,完美结合Peltier精确控温技术和高清视频摄像技术,不但为用户提供准确、稳定、可靠的测试结果,还为用户带来高效便捷的测试感受。高清视频可方便看到样品中是否有气泡影响,采用脉冲激发,高精度检测技术,方便用户准确快速测得样品密度及密度相关参数。使用领域: 密度计在化工、石化、食品、医药研究中据有重要地位,是食品、药品、香料、日化、石油及其他液体样品测试的必备仪器。主要技术指标: 测量范围:0 g/cm3 至 3 g/cm3分辨率 :±0.00001g/cm3重复性 :±0.0001g/cm3准确度 :±0.0003g/cm3进样方式 :全自动(兼容手动)是否带视频:是控温方式 :帕尔贴控温控温范围 :5℃-45℃控温稳定度:±0.02℃显示方式 :10.4寸FTF彩色触摸彩屏数据存储 :16G输出方式:USB,RS232,RJ45,SD卡,U盘 用户管理:有/三级权限管理审计追踪:有电子签名:有自定义方法库:有导出文件验证高等级防护MD5:有WIFI打印:有多种文件格式导出:PDF和Excel尺 寸:480 mm x 320 mm x 200 mm(长 *宽*高)重 量:8kg电 源:110V-230V 50HZ/60HZ创新点:1:自动化集成,实现一键测定功能; 2:内置帕尔贴控温,提高精度和稳定性; 3:高清视频避免气泡影响; 4: 可通过打印机直接打印数据; 5: 符合21CFR Part 11、审计追踪、药典及电子签名。 密度计 密度仪 U型密度仪Digipol-D50
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 新闻快讯—仪电物光密度仪获CISILE2021自主创新金奖
    新闻快讯—仪电物光密度仪获CISILE2021自主创新金奖由中国仪器仪表行业协会组织的“CISILE2021科仪展自主创新金奖”评选活动,经过了长达数月的遴选和评审后,获奖名单于2021年5月10日在北京国家会议中心正式公布。 CISILE每年从参展的数百家企业中横向评比数以千计的科学仪器设备,并从中遴选出性能优异的或极具创新的自主研发制造的科学仪器设备,并颁发“CISILE科仪展自主创新奖金奖”。上海仪电物理光学仪器有限公司生产的自动密度仪WMD-330入选并成功获奖。仪电物光WMD-330自动密度仪采用U型振荡法原理检测液体密度,仪器具有测量精度高、样品消耗量少、自动测量、测试速度快、示值重复性好等特点。中国仪器仪表行业协会评议专家组成员,一致认为仪电物光推出的这款仪器,技术参数和产品性能与国际接轨,体现了国内分析仪器企业强大的科技研发和自主创新的能力,产品获得了评审专家组的一致好评。 当前,国内自动密度仪(数字式密度计)的市场供应,绝大部分被国外几家大型的仪器生产商垄断。上海仪电物光作为自动密度仪国产化的引领者,有责任和义务将这个具备良好经济效益和社会效益的产品更好的推向市场,提升国产科学仪器的技术水平。
  • 点赞 | 实现性能调控的纳米尺度结构设计
    p   在物理与材料研究领域中,众多问题的解决受限于样品质量、尺寸、探测极限等因素制约而搁置,而这些问题是可以通过电子显微学方法来实现突破。近年发展起来的球差矫正等先进电子显微学方法,为在纳米乃至原子尺度对众多物理量及其耦合关系的测量与表征提供了可能,也为实现性能调控的纳米尺度结构设计提供了依据。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/a8bbe64e-d38a-46f2-b984-3ba9190a2d19.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" style=" width: 450px height: 325px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 田鹤老师科研工作照 /span /p p   众所周知,大多数材料在温度变化时呈现热胀冷缩的性质,而有一类特殊的材料因其在温度变化时体积基本保持不变,被称为零膨胀材料。一直以来,零膨胀材料因其在高精度仪器、极端条件元器件等方面极具应用价值而备受关注。然而,目前发现的零膨胀材料仍非常稀少,设计制备宽服役温度范围、低膨胀系数的零膨胀材料是该领域的核心目标。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/84763b66-77b5-492c-be61-1be8b29b18d9.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 281" border=" 0" vspace=" 0" style=" width: 600px height: 281px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图a /span /p p   针对这一问题,张泽院士带领下的田鹤团队进行了系统的原位实验及微结构研究,表明铁电材料中,封闭介孔内存在着正负铁电极化表面,这些表面分别由氧离子、氧空位的聚集而被屏蔽。这一特殊的自发铁电极化屏蔽机制使得介孔微区附近的铁电性消失,从而显示出正膨胀性能。这一特性与钛酸铅本征的负膨胀性质相协同,从而使单晶介孔钛酸铅纤维表现出零膨胀的特性。成功将大量纳米尺度的封闭介孔引入到单晶钙钛矿钛酸铅中,这有效地调制了热膨胀性能,其晶胞体积在极宽的温度范围内基本保持不变。这一研究揭示了铁电体内部表面微结构的构建及其铁电极化屏蔽机制对材料热膨胀性能起到了显著调控作用,为设计、制备性能优异的新一类单相零膨胀材料提供了新思路。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/45816567-b796-4776-9c9f-f02335703bfd.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 455" border=" 0" vspace=" 0" style=" width: 600px height: 455px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图b /span /p p   另一方面,由于尺寸、表面和界面效应以及量子效应等因素,材料中的有序结构,如铁磁有序、铁电有序等,通常在极限尺寸下被显著抑制。由于长程有序的尺寸限制,到目前为止,在室温下实现具有垂直于表面极化的原子厚度铁电薄膜仍然是一个艰巨的挑战,严重制约了高密度非易失性存储器件的发展与小型化。针对这一问题,我们团队利用球差矫正电子显微镜,在一个单位晶胞厚的BiFeO3薄膜中直接观察到了面外的强自发极化,并且实现了高达370% 的隧道电流变效应。这一发现证实了BiFeO3薄膜中的铁电临界厚度可以通过结构设计以实现突破,这对于高密度数据存储显示出巨大的应用前景,将为铁电基器件的小型化突破开辟可能性。 /p p   借助先进电子显微学方法,在纳米乃至原子尺度对众多物理量及其耦合关系进行研究的能力,可以为探索材料性能与微结构关系提供依据,为设计、优化功能性材料特性,实现纳米尺度结构设计调控宏观性能提供新的途径。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/59832007-ec42-4212-85c3-242933457bcf.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 275" border=" 0" vspace=" 0" style=" width: 600px height: 275px " / /p p   在此工作基础上,田鹤负责的“实现性能调控的纳米尺度结构设计”成功入围浙江大学“2018年度十大学术进展评选”活动。以下为该项目具体情况: /p p    strong 项目名称 /strong :实现性能调控的纳米尺度结构设计 /p p    strong 申报单位 /strong :材料科学与工程学院 /p p    strong 负责人 /strong :田鹤 /p p    strong 项目简介 /strong /p p   在过渡族金属氧化物这类强关联电子体系中,电子表现出的不仅是电荷,还有自旋、轨道这些复杂的属性,相互耦合诞生了如高温超导、庞磁电阻、多铁性等诸多具有重要应用前景的特性。但对电荷、轨道、自旋间的耦合关系,及其有序性与晶格的耦合、相互作用理解的依然不足,制约了对此类功能性材料性能有效调控的探索。 /p p   项目的主要特色是摆脱性能测试宏观、平均的限制,在纳米乃至原子尺度通过对各物理量间耦合关系的研究,直接构建微观结构对宏观性能的影响。通过纳米尺度结构设计,探索调控宏观性能的途径,为设计新型的功能性材料与器件提供了新的机遇。证实了针对性纳米尺度结构设计,对宏观性能的有效调控。成功研制了一种具有宽温度服役范围(低温、室温与高温区)的单相零膨胀系数材料,为航天、航空等领域,精密载荷关键部件的高精度、高稳定性需求提供了新的解决方案 在常温下实现了具有原子级别厚度,面外铁电极化的高密度纳米器件,打破了铁电薄膜临界厚度的认知。 /p p    strong 项目团队 /strong /p p   张泽院士领导的田鹤团队利用自主发展的电子显微学方法,在纳米乃至原子尺度对各物理量间耦合关系开展研究,有针对性的探知耦合本质与性能的依存关系,并探索性能调控的途径。揭示了在铁电材料内部,引入纳米尺度极化表面,对单相铁电材料宏观热膨胀行为调控的物理机制。与浙江大学韩高荣、任召辉团队合作,设计并制备出一种PbTiO3单相铁电介孔零膨胀系数材料 创新提出了一种调制铁电材料热膨胀系数的新途径,为设计、制备性能优异的单相零膨胀材料提供了新思路。(Nature Communications, 9 (2018) 1638 )进而,发现了晶格调控可突破极限尺寸对铁电极化的抑制作用。与新加坡国立大学陈景生团队合作,实现了四方相BiFeO3薄膜在室温二维极限尺度下的铁电序 证实了极限尺度下(一个单胞厚)的BiFeO3薄膜,所具有的超强铁电性与自发的面外极化 揭示了铁电极化产生、稳定和转化的物理机制 奠定了其作为高密度非易失性存储器的科学基础。(Nature communications 9 (2018) 3319) /p
  • 专家有话说|如何解读《中国药典》0992固体密度测试法?
    p style=" text-align: justify text-indent: 2em " 2020版《中国药典》增加了0992固体密度测试法和0993堆密度和振实密度测定法,对应于美国药典USP699和USP616。关于固体密度,0992中定义了3种固体密度的表示方法,分别为真密度、颗粒密度以及堆密度。密度问题看似简单,但由于其体积的定义不同,虽然此前已经有不少关于这部分的解读文章,但依然在概念上含混不清,或者由于历史原因,对同一定义存在多种命名,容易造成混淆。本文以ISO标准、ASTM标准及相关国家标准为基础,对有关密度的定义及中英文名称进行系统地梳理,并介绍真密度分析的原理及其前沿表征技术。 br/ /p p style=" text-align: justify text-indent: 2em " strong 一、有关体积的定义和名称: /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/bb0681d4-6775-417b-b228-447bd7aba0d4.jpg" title=" 药4.png" alt=" 药4.png" / /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 堆体积或容积(Bulk volume): /p p style=" text-align: justify text-indent: 2em " 颗粒在容器中堆积所占的体积,它包括颗粒体积,颗粒内体积和颗粒间的空隙体积(图1O)。其对应的密度叫做堆密度或堆积密度(Bulk density)。 /p p style=" text-align: justify text-indent: 2em " 堆密度中实际又包含了两个密度概念: /p p style=" text-align: justify text-indent: 2em " a)& nbsp 松装密度(Loose density):在规定条件下颗粒材料自然填充的单位容积的质量,是颗粒自然堆积的堆密度。其测定过程中要排除对颗粒堆积过程的扰动,包括颗粒重量本身下落的影响。测量过程参见GB/T31057.1-2014和中国药典0993-1堆密度测定法。 /p p style=" text-align: justify text-indent: 2em " b)& nbsp 振实密度(Tap density 或 Tapped density):在规定条件下粉体经振实后所测得的单位体积的质量。测量过程参见GB/T31057.2-2018和中国药典0993-2振实密度测定法。 /p p style=" text-align: justify text-indent: 2em " 在中国药典中,0993跟随了USP616的概念,将堆密度(Bulk density)等同于了松装密度(Loose density)。而在材料科学界,这是两个不同的概念,美国材料实验协会(ASTM)将其分别称作松装堆密度(Loose bulk density)和振实堆密度(Tapped bulk density),或堆积松装密度(Bulk loose density)和堆积振实密度(Bulk tapped density)。 /p p style=" text-align: justify text-indent: 2em " ——参见ASTM D7481 - 18& nbsp 《Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder》和ASTM C1770-13《Standard Test Method for Determination of Loose and Tapped Bulk Density of Plutonium Oxide》 /p p style=" text-align: justify text-indent: 2em " 在中国粉体材料界的应用中,如果堆密度不特指的话,一般指的是振实密度。这一点特别需要引起注意,以避免混淆。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 颗粒体积(Particle volume): /p p style=" text-align: justify text-indent: 2em " 颗粒体积(Particle& nbsp volume)也叫包封体积(Envelope& nbsp volume)、几何体积(Geometric volume)或表观体积(Apparent& nbsp volume),它是从堆体积中扣除颗粒间孔隙的体积,即颗粒骨架体积和颗粒内开孔体积之和(图1A)。其对应的密度分别是颗粒密度、包封密度、几何密度或表观密度。 /p p style=" text-align: justify text-indent: 2em " 事实上,有关表观体积(Apparent& nbsp volume)的定义还相当混乱,莫衷一是,有的将其等同于松装体积(GB/T31057.1-2014),有的则将其等同于骨架体积(图1右B)。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 骨架体积(Skeleton& nbsp volume)和真体积(True volume): /p p style=" text-align: justify text-indent: 2em " a)& nbsp 开孔(open pore):多孔固体中与外界连通的空腔和孔道称为开孔,包括交联孔、通孔和盲孔。这些孔道的表面积可以通过气体吸附法进行分析。 /p p style=" text-align: justify text-indent: 2em " b)& nbsp 闭孔(close pore):除了可测定孔外,固体中可能还有一些孔,这些孔与外表面不相通,且流体不能渗入,因此不在气体吸附法或压汞法的测定范围内。不与外界连通的孔称为闭孔。 /p p style=" text-align: justify text-indent: 2em " 开孔与闭孔大多为在多孔固体材料制备过程中形成的,有时也可在后处理过程中形成,如高温烧结可使开孔变为闭孔。 /p p style=" text-align: justify text-indent: 2em " c)& nbsp 骨架体积(Skeleton volume):不含开孔的颗粒体积(图1B),即其体积包括可能存在的闭孔体积,但不包括开孔体积以及颗粒间隙的体积。其对应的密度就是骨架密度。0992中用气体置换法测的“真密度”实际就是骨架密度,参见ISO 12154-2014《骨架密度的测量 气体体积置换法》。相应的国家标准也将很快出台,由于未经烧结的粉体材料很难存在闭孔,以下我们还是按习惯称呼叫做“真密度”。 /p p style=" text-align: justify text-indent: 2em " d)& nbsp 真体积(True volume):是颗粒骨架体积扣除闭孔体积后的体积(图1C)。 /p p style=" text-align: justify text-indent: 2em " 综上所述, /p p style=" text-align: justify text-indent: 2em " 骨架体积 = 真体积 + 闭孔体积 /p p style=" text-align: justify text-indent: 2em " 颗粒体积 = 骨架体积 + 颗粒内开孔体积 /p p style=" text-align: justify text-indent: 2em " 堆体积(容积)= 颗粒体积 + 颗粒间孔隙或空隙体积 /p p style=" text-align: justify text-indent: 2em " strong 二、气体体积置换法测量真密度原理及其需要注意的事项 /strong /p p style=" text-align: justify text-indent: 2em " 气体置换法也叫体积膨胀法。该技术实际用的就是阿基米德原理,不过排除的不是液体而是气体,即这种技术是以固体空间置换一定体积的气体为基础的。气体真密度分析仪具有与气体吸附法比表面分析仪一样的气路,有样品室和气体膨胀参比室(相当于歧管)。通过在等温条件下测量气体从一个气室膨胀到另一个气室,用一个压力传感器或表压传感器在样品室和参比室之间测量气体膨胀前后的压力变化,然后通过理想气体方程计算出样品的骨架体积,从而计算出样品的真密度值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e18ea259-91d0-455c-8cd6-d5e7cdfcd0c0.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " 这种动态流动仪器的特点是:不需要测量绝对大气压值,不需要测量压力校正曲线;但需要将表压传感器调零,需要标准体积(标准球或标准块)测量参比室体积。仪器包括两种结构,见图2。二者的差别在于进气端是在样品室(结构1),还是在参比室(结构2)。结构2的工作序列与结构1正好相反,即先在参比池加压,然后气体膨胀进入样品池。这种设计的优势在于可以最大程度地减小在样品池中的死体积,从而提高少量样品的测量准确性(参见ISO 12154-2014和Multipycnometer,Quantachrome Instruments)。 /p p style=" text-align: justify text-indent: 2em " 与比表面测定一样,样品需要脱气。脱气一般在原位进行,可以连续流动脱气、脉冲增压脱气(也属于流动脱气)或真空脱气。在使用这种仪器测定时,需要注意以下事项: /p p style=" text-align: justify text-indent: 2em " 1.因为仪器原理是理想气体方程,所以测定结果和稳定性与温度有关。因此,要求实验室内温度恒定,波动在2度以内。但是因为仪器内部会发热,所以最好真密度仪配有恒温装置。 /p p style=" text-align: justify text-indent: 2em " 2.氦气比氮气更接近理想气体,所以重复性精度高;但因为氦气分子太小,可以进入闭孔引起误差,所以含闭孔较多的材料应选用氮气。 /p p style=" text-align: justify text-indent: 2em " 3.与比表面分析仪一样,死体积的概念在这里同样重要。最好分析尽可能多的样品(达到仪器的物理极限),以最大限度地提高称重精度和减小死体积。即所装样品量至少是样品池的2/3,并尽可能接近标准球体积。比如135ml的样品池通常测量误差在60μl以上,若装50ml& nbsp 以下的样品,则测量误差较大,重现性也差。 /p p style=" text-align: justify text-indent: 2em " 4.可以通过套筒尽可能多地消除“死体积”,用以减少样品室的内部体积(图3左)。但是,随着样品量的减少,其它因素的误差也随之放大。比如100ml时的误差为± 0.03%,而小于1ml时,误差则为± 3%了。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/67e2b2d0-781d-4a87-8556-7ae400e83540.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 对于体积密度较低的样品,样品池看起来很满,但固体可能只占样品池的百分之几!在这些情况下,必须使用与被测样品最相似的参比体积校准仪器(图3右)。 /p p style=" text-align: justify text-indent: 2em " 5.& nbsp 因为存在仪器稳定和样品脱气的问题,一般测定都要求至少设定测量5次以上。前面几次测量会存在误差,因为测量过程也是脱气过程。仪器会在设定的允许误差范围内(一般是0.01)停止测定并打印报告。报告给出的误差值,是最后三次结果的误差,不是所有运行测量的误差。 /p p style=" text-align: justify text-indent: 2em " 综上所述,气体真密度分析仪原理经典,操作并不复杂。但是,要获得高精度的测量结果需要真空脱气,恒定仪器温度以及比较大的样品量,而获得10ml左右的样品量往往是非常难的,尤其对于原研药,1ml的样品量是非常珍贵的。如何解决微量样品与测量精度之间的关系?为此,我们利用在超低比表面测定中发展的新技术,继续开发了静态真空气体置换法的新技术,使对少于1ml的样品测定,体积测量误差小于5μl,彻底解决了这个难题。 /p p style=" text-align: justify text-indent: 2em " strong 三、真密度测量新技术及其对仿制药应用的优势 /strong /p p style=" text-align: justify text-indent: 2em " iPyc30真密度测量新技术采用结构2的方式(图1),并引入真空体积法测比表面的关键技术,拥有2个分析室及2种测试模式,既能按常规动态气体体积置换实现快速测试,也能选择静态真空体积置换法实现精准测试(图2)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b1e95443-22f3-4a8d-8369-c1fbe3090f4b.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 该技术核心是,处于样品室中的样品不仅被真空脱气,提高了表面清洁效率,而且在静态真空条件下,基本排除了死体积的影响。此时,参比室就是定量投气的歧管,通过绝对压力传感器精确计量投入样品室的气体,直至达到平衡。因此如图3A情况的测定,不再成为问题。这意味着在20ml的样品池中测量1ml样品也无需更换样品池,具有极大的灵活性;如果同时采用图3B的套筒方式,将能进一步提高分析精度。 /p p style=" text-align: justify text-indent: 2em " 当样品量少时,测定结果对温度极其敏感。该系统采用先进的风热循环装置,进行全系统恒温,包括样品室、测控装置、气路和温度控制系统(图4)。从图4还可以发现,具有32位ADC电子电路系统的iPYC 30样品室真空度高达0.004KPa,即3.95 x 10 sup -5 /sup 大气压。如此高的真空度和压力及温度的计量精度,不仅能将复杂孔道中多孔材料的样品彻底脱气,而且能将体积的计量精度接近纳升(nl)级别。因此,对于体积<10mL的样品,静态真空体积置换法重复性和平行性均能优于± 0.03%(表1);对于体积<1mL的样品,静态真空体积置换法也具有极其出色的重复性(表2)。 /p p style=" text-align: justify text-indent: 2em " 综上所述,静态真空体积置换法测量真密度的新技术可以测量微量样品,不需要更换小样品室,不需要增加样品量,不需要套筒填充死体积,不需要多次测量取平均值,这为微量的API的测定寻找到解决方案。iPYC30可以同时测量两个样品,使得原研药与仿制药可以在同一平行环境下进行测定比较,判断工艺的符合程度。 /p p style=" text-align: center text-indent: 0em " strong 表1 & nbsp 某样品的真密度重复性和双站平行性(重现性)测定 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9cd58801-5ee1-4f25-88fd-81087860dc91.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center text-indent: 0em " strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong 表2 & nbsp 六个微量样品的真密度重复性测定(约0.2ml) /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/54723390-cb15-462d-9be6-305ff94e1fc4.jpg" title=" 6.jpg" alt=" 6.jpg" / /p
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • 上海微系统所Science:单质Te新原理开关器件
    2021年12月10日,中科院上海微系统与信息技术研究所宋志棠、朱敏研究团队在国际顶级期刊《Science》上发表了题为“Elemental Electrical Switch Enabling Phase-Segregation-Free Operation”的研究论文(图1)。中科院上海微系统所博士生沈佳斌、贾淑静为共同第一作者,宋志棠研究员、朱敏研究员为通讯作者,中科院上海微系统所为第一完成单位和唯一通信单位。图1 科院上海微系统所在Science上发表单质新原理器件文章集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系到国家的信息安全。然而,现有主流存储器-内存(DRAM)和闪存(Flash),不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器(PCRAM)是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。图2 单质Te开关器件结构与性能针对以上问题,中科院上海微系统与信息技术研究所宋志棠、朱敏与合作者在Science (2021, 374, 1390) 上提出了一种单质新原理开关器件(图2):该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级,图3);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变(图4),并产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态-液态新型开关机理与传统器件等完全不同,是一种全新的开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片提供了新方案。图3 单质Te器件低漏电流物理机制:单质Te与电极形成的高肖特基势垒图4 单质Te器件新型开关机理:晶态-液态-晶态转变意大利国家研究委员会微电子和微系统所Raffaella Calarco教授同期在Science (2021, 374, 6573)上发表了评论文章,高度评价道:“沈等人取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新的视角”(What has been achieved by Shen et al., is unprecedented and provides a robust method to realize crystalline elemental switches that bear new perspectives for 3D Xpoint architectures)。该研究工作得到复旦大学刘琦教授、剑桥大学Stephen R. Elliott教授、日本群马大学Tamihiro Gotoh教授、德国亚琛工业大学Richard Dronskowski教授、赛默飞世尔科技中国有限公司史楠楠和葛青亲博士的大力支持。相关工作得到了国家重点研发项目(2017YFB0206101)、中科院先导B(XDB44010000)、中科院百人计划C类和上海科技启明星项目(21QA1410800)的资助。文章链接:https://www.science.org/doi/10.1126/science.abi6332评论文章链接:https://www.science.org/doi/10.1126/science.abm7316
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 原理革新!超透镜分辨率提升一个量级
    超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测。然而,超透镜的本征损耗一直是该领域长期存在的关键科学问题,限制了成像分辨率的进一步提升。  近日,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员密切合作,提出了多频率组合复频波激发超透镜成像理论机制,通过虚拟增益来抵消本征损耗,成功提高了超透镜的成像分辨率约一个量级。该研究成果于8月18日在《科学》杂志上在线发表。  “超透镜”概念最早由英国帝国理工学院教授John Pendry于2000年首次提出。根据理论预测,超透镜将具有突破传统光学成像分辨率极限的能力。随后,为实现超透镜构想,中国科学院外籍院士、香港大学教授张翔团队率先提出了新型银-聚合物超透镜的实验方案,极大推动了超透镜技术的发展和应用。此后,各国科学家纷纷加大研究投入,超透镜迅速成为光学领域的热门课题,并被广泛应用于生物医学、光纤通信、光学成像等场景。合成复频波方法提升超透镜成像质量的原理示意图(研究团队供图)  目前,基于极化激元材料和超构材料的超透镜已被广泛验证可以实现亚衍射成像,但其本征损耗的严重限制了其分辨率进一步提升,从而也限制了其应用发展。  为了解决这一重大挑战,由香港大学教授张霜、张翔、国家纳米科学中心研究员戴庆以及John Pendry组成国际科研团队开展联合攻关。  在最新发表的论文中,张霜介绍:“针对光学损耗提出一种实用的解决方案,即借助多频率组合的复频波激发来获得虚拟增益,进而抵消光学体系的本征损耗。”  作为验证,他们把这一方案运用到超透镜成像机制,理论上实现了成像分辨率的显著提升。最后,进一步借助微波频段双曲超构材料的超透镜实验进行了论证,获得与理论预期一致的良好成像效果。  戴庆团队基于长期对原子制造技术下的高动量极化激元的积累,创制了基于合成复频波的碳化硅声子极化激元超透镜。“我们最终实现了超透镜成像分辨率约一个量级的提升,相信这将对光学成像领域产生巨大影响。”戴庆表示。  科研人员介绍,合成复频波技术是一种克服光子学系统本征损耗的实用方法,不仅在超透镜成像领域有卓越的表现,还可以扩展到光学的其他领域,包括极化激元分子传感和波导器件等。该方法还可以针对不同的系统和几何形状进行定制化应用,为提高多频段光学性能、设计高密度集成光子芯片等方向提供了一条潜在的途径。  “这是一个优美而普适的方法,可以拓展到其它波动体系来弥补损耗问题,如声波、弹性波以及量子波等。”张翔说。  香港大学博士后管福鑫、国家纳米科学中心特别研究助理郭相东和香港大学博士生曾可博为本文共同一作。张霜、张翔、戴庆和John Pendry为本文共同通讯作者。
  • 远离雾霾,自由呼吸——芯硅谷口罩专题
    雾霾来袭近年来,我国雾霾情况越发严重,雾霾已经成为时下热门话题,关于雾霾你了解多少?雾霾天里我们应该如何应对?什么又是雾霾呢? 雾霾,是雾和霾的组合词。雾霾常见于城市。 雾霾是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM 2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。 芯硅谷的产品优势芯硅谷蚌型高效过滤防尘口罩 ,采用双层抗压技术,耐热耐潮,低呼吸阻力设计便于使用和佩戴.耐用的橡胶带,可调节的鼻夹及柔软的鼻梁海绵条,便于使用者更舒适地佩戴 呼吸阀的安装减少热空气形成,在湿热空气中易于呼吸 夹层活性炭有效阻挡外界灰尘。 芯硅谷 四层活性炭口罩 ,四层构造,内外层分别采用水刺布、活性炭布、过滤纸和无纺布制成,可减少纤维脱落现象及增加佩戴的舒适度,有效过滤细菌和颗粒物.可调节鼻梁夹设计可依据不同脸型做最舒适的调整,获得最佳舒适度.广泛应用于用于电子制造业、学校、医院、制药、工厂、喷油、化工厂、家具厂、电子厂、油漆厂、公共场合等。选择芯硅谷防雾霾口罩,让您自强不&ldquo 吸&rdquo 。 产品列表&mdash &mdash 芯硅谷口罩系列项目号品名详细参数包装F1597-06FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,带活性炭,防雾霾类型:耳挂式,带呼吸阀,带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAF1597-07FFP2蚌型高效过滤防尘口罩(单只装),防雾霾类型:耳挂式,不带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAF1597-08FFP2蚌型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:海绵鼻梁条,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAF1597-09FFP3蚌型带阀高效过滤防尘口罩,带呼吸阀,防雾霾类型:耳挂式,带呼吸阀,不带活性炭 层数:四层(PP纺粘布+熔喷材料+PET预过滤层+PP纺粘布) 材质:PVC密封,塑料夹,橡胶捆带 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAF5952-01四层活性炭口罩层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAF5952-02四层活性炭口罩(单片装)层数:4 材料:25gPP无纺布+45g活性炭+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAP1590-09FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭 层数:四层(涤纶槽+熔喷材料+活性炭+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-10FFP2杯型高效过滤防尘口罩,带呼吸阀,带活性炭,防雾霾类型:头带式,带呼吸阀,带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:浅灰色 过滤级别:FFP2 过滤效率:94%10EAP1590-11FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-12FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:黑色海绵条和氨纶焊带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-13FFP3杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈,塑料夹,高密度带 颜色:白色 过滤级别:FFP3 过滤效率:99%5EAP1590-14FFP2杯型高效过滤防尘口罩,防雾霾类型:头带式,不带呼吸阀,不带活性炭 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%20EAP1590-15FFP2杯型高效过滤防尘口罩,带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC鼻梁垫和高密度带 颜色:白色 过滤级别:FFP2 过滤效率:94%10EAP1590-16FFP3杯型高效过滤防尘口罩(单只装),带呼吸阀,防雾霾类型:头带式,带呼吸阀,不带活性炭,翘角 层数:三层(涤纶槽+熔喷材料+PP纺粘布) 材质:PVC环形密封圈和翘角 颜色:白色 过滤级别:FFP3 过滤效率:99%10EAT5944-01三层无纺布口罩层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EAT5944-02三层无纺布口罩(单片装)层数:3 材料:25gPP无纺布+25g过滤纸+35g水刺布 尺寸:175× 95mm50EA更多产品信息请点击这里
  • Granutools发布粉体振实密度分析仪 Granupack新品
    说明由于松装密度、振实密度和豪斯纳比的测量方法简单、快速,因此在粉体表征中得到了广泛的应用。此外,粉体的密度和增加其密度的能力是影响储存、运输、结块等表现的重要参数。这个简单的测试有三个主要缺点。首先,人为操作影响因素大。事实上,充填方法不同会影响初始粉体体积。其次,通过肉眼观察获得的体积测量结果存在较大误差。最后,使用这种简单的方法完全忽略了初始和最终测量之间的压缩动力学。原理GranuPack是基于近年来的基础研究成果而发展起来的一种自动化、经过改进的振实密度测量方法。用自动化装置分析了连续震动过程中粉体的行为。通过从压实曲线精确测量了豪斯纳比Hr、初始密度和振实密度(精度0.4%)。此外,通过振实曲线精确获得动力参数n1/2和最大密度ρ(∞)。粉体通过严格的自动初始化过程放置在金属管中。振实过程中,在粉床顶部放置一个轻质空心圆筒,保持粉/气界面平整。粉体样品的管上升到一个固定的高度ΔZ并执行自由下降。自由落体的高度通常是固定的ΔZ = 1毫米或ΔZ = 3毫米。每次振实后自动测量粉床高度h。优势测量简单、快速、直观。直观的软件计算并报告物理数据。在不同条件下得到的结果可以进行比较。所有数据自动收集和存储,以备后处理。方便的数据传输并能够自动生成报告。封闭系统满足安全要求。仪器尺寸设计合理,可满足在保护罩内使用。可记录的标准操作程序,增加测量的重复性。独特性符合欧洲药典。样品池易于填充和清洗。它提供了粉体透气性和压缩性的信息。系统稳定。应用完美的工具,区分不同批次的粉体之间的差异。通过压实动力学,可以帮助选择最适用于为压片/压实工艺的粉体。由于其极高的准确度(金属0.4%,药用辅料0.6%),粉体的流动性/压缩性的分类很容易实现。这是表征粉体行为最精确的测试。可选配件适合小样本量测量的样品池。低强度振实附件。校准套装。GRANUPACK 参数创新点:符合欧洲药典。 样品池易于填充和清洗。 它提供了粉体透气性和压缩性的信息。 系统稳定。 粉体振实密度分析仪 Granupack
  • 安东帕数字式密度计轻松实现《2020中国药典》相对密度的测定
    安东帕物性标准方案精准应对《2020版中国药典》4.22 earth day活动回顾近期,安东帕中国参加了在黑龙江举行的2021药品监管与检验技术论坛。在展会现场,安东帕展出了完全符合2020版药典相对密度测定法的振荡型密度计——dma系列数字式密度计。众多与会观众来到了安东帕展位,实际操作安东帕dma1001及dma4500 m全自动密度计,体验数字式密度计为相对密度的测定带来的高度便利性。dma 1001精准控温的经济之选7英寸触摸屏,中文操作轻松便捷内置帕尔贴精准控温自动进样检查功能,确保结果准确性5000个存储数据,多种导出方式dma m系列高精度密度仪10.4英寸中文触摸屏,操作简便独家pem专利,结果更精准热平衡功能,可实现密度温度扫描测量高清摄像头,自带进样监控功能可根据需求定制专属测试方法dma 系列数字式密度计采用安东帕革命性的脉冲激发法(pem),为广大用户提供了无与伦比的精确度与测量体验。其全范围黏度自动修正的特点,无需用户手动输入样品黏度值,即可准确测量样品的密度值,完全符合2020中国药典的要求。同时,作为参展代表,安东帕在该论坛进行了制药行业解决方案的应用分享,内容涵盖固体和液体密度测量、黏度与流变、光学产品、微波消解与合成、粒度与比表面分析以及锥入度、软化点和自动馏程分析,同时也分享了安东帕在制药行业合规性的支持方案。安东帕作为全球物性表征专家,致力于与制药行业用户进行深度的本地化合作,开发适用于研发、过程监控以及成品药品检验的各类应用解决方案。
  • 浅析2020版药典新增的堆密度和振实密度测定法
    《中国药典》2020年版征求意见稿中,新增了粉末样品堆密度和振实密度测试的方法、装置和要求。本文中,小编将为小伙伴们带来有关堆密度和振实密度测试的内容。本法用于测定药物或辅料粉体在松散状态下的填充密度。松散状态是指将粉末样品在无压缩力的作用下倾入某一容器中形成的状态。 堆密度是粉体样品自然地充填规定容器时,单位体积粉体的质量,堆密度测定值受样品的制备、处理和贮藏的影响,即与处置过程相关。颗粒的排列不同可导致堆密度在一定范围内变化,即便是轻微的排列变化都可能影响堆密度的值。 堆密度可通过测量过筛后一定质量的粉末样品在量筒中的体积来确定,或使用专用的体积计进行测定,也可通过测定过筛后充满具有一定容积容器的粉末样品的质量来确定。下图为征求意见稿中的装置的示意图:下图为月旭科技du家代理的Copley堆密度测试仪,符合征求意见稿中对堆密度的测试要求。Copley堆密度测试仪和选配件信息如下:振实密度是指粉末在振实状态下的填充密度。振实状态是将容器中的粉末样品按某一特定频率下,向下振敲直到体积不再变化时粉体柱的状态。机械振动是通过上提量筒或量杯并使其在重力作用下自由下落一段固定的距离实现的。振实密度可通过测定固定质量样品的振实体积(第yi法和第二法)或测定样品在已知容积量器中振实后的质量(第三法)求得。下图为征求意见稿中的装置示意图:下图为月旭科技du家代理的Copley振实密度测试仪,符合征求意见稿中对振实密度的测试要求,作为常规测量粉末振实密度的可靠解决方案,Copley JVi测试仪是市场上唯yi一款提供药典指定的三种测试振实密度方法的系统。触摸屏操作,可直接计算压缩性指数和豪斯纳比率(计算方式符合征求意见稿)。
  • 新品发布 | 安东帕新一代数字式密度计
    安东帕密度计历史悠久距离安东帕在法兰克福阿赫玛(Achema)展示首台数字密度计,已经过去了一段时间。早在1967年推出的密度计DMA 02 C是液体分析领域创新的缩影,这对后续密度测量技术的发展影响深远。直到今天我们仍持续不断地发展密度测量技术,虽然测量方法本身(u型振荡管技术)在过去的50年没有改变,但技术进步是巨大的。新一代数字式密度计新一代密度计依旧证明了安东帕在密度测量领域的成熟技术与应用经验。通过独特的脉冲激发法(PEM)作为核心测量原理进行驱动,安东帕的数字式密度计保证了0.000005 g/cm3的准确度,使其成为了全世界最为准确的密度计。全新系列的产品满足了现代数字化测量系统的需求:高速操作系统、用于快速数据导出的大容量空间、高分辨率可变焦的摄像头和高性能触摸屏现已成为标准配置。这款全新的数字式密度计可连接到各种数据接口,包括安东帕全新的AP-Connect数据管理平台。全新系列的三款型号概览:- DMA 4101:最快且高效的测量——借助超快测量模式以实现高性能的质量控制- DMA 4501:适用于所有行业的全能型产品——经众多行业认可且验证的仪器,可对各种样品进行精确测量- DMA 5001:适用于要求苛刻样品的精度——精确测量模式可在要求苛刻的高端应用中实现性能
  • PHASE发布全自动柴油专用倾点、凝点、浊点、粘度、密度五合一分析仪新品
    全自动柴油专用倾点、凝点、浊点、粘度、密度五合一分析仪产品名称:全自动柴油专用倾点、凝点、浊点、粘度、密度分析仪(标配自动进样器)产品型号: DFA-70Xi产地、厂家名称: 加拿大 Phase检测范围:柴油专用分析标准:倾点 :ASTM D 5949,SH/T 0771 中国国家标准ASTM D 97,GB/T 3535凝点 :GB/T 510 浊点 :ASTM D5773,ASTM D2500粘度:ASTM D 445,GB/T265密度: ASTM D 4052,SH/T0604 重复性及再现性:严格符合以上分析方法分析精度: 0.1 摄氏度样品分析范围: -88 ℃~+55 ℃进样量: 25毫升分析时间:15-30分钟/次电源: 90-280 V 功率: 350 瓦 重量: 28 公斤尺寸: 33.7x54.6x44.5cm ( 宽 x 深 x 高 )操作时间: 0.5 分钟分析仪特色:小巧,结构紧凑,超快速和高精度。标配自动进样器,完全实现自动进样,自动清洗等功能。操作界面完全汉化,全中文显示。直接进样,无需样品预处理全内置:内置冷浴,无需外接冷浴,仅需电源真彩色 15 英寸触摸液晶屏,无需连接电脑,直接显示分析结果和分析仪状态可存储超过 10,000 个分析结果 ,数字图像显示分析结果同一台分析仪可具有倾点、凝点、浊点、粘度、密度五种功能。可通过内置调制解调器与分析仪进行远程通讯,直接获得分析结果和故障诊断创新点:1、将柴油五种低温特性基于一台分析仪。 2、一次进样,五种数据全部分析完毕。 3、五种数据在25分钟内全部分析完毕。 4、不需要外不制冷器,移动检测车都可以使用。 全自动柴油专用倾点、凝点、浊点、粘度、密度五合一分析仪
  • 【安东不怕扰e直播】康塔真密度仪新品发布
    Ultrapyc系列基于数十年材料密度的测试研发经验,安东帕近日发布了新一代真密度及开闭孔率分析仪。在原有仪器的基础上,在硬件及软件上进行了技术升级,进一步提高了测试的精准度和运行的稳定性,以满足最广泛的测试需求。可视化的用户界面配置,帕尔贴温控器实现管路温度自动控制,内置超大触摸显示屏及高速处理器,让整个测试过程更简洁,更准确。型号Ultrapyc 3000Ultrapyc 5000Ultrapyc 5000 FoamUltrapyc 5000 Micro特点直观的用户操作界面,让客户可以快速进入所需界面,设置参数,用户可以随时控制测试的过程仪器内置多个不同体积的参比池 、易于使用的TruLock密封系统,确保使用不同体积样品池测试数据的准确和重复性Ultrapyc 5000型具有独创双向气体扩散设计,用户可自主选择扩散方向,其中提供的PowderProtect模式可以避免细粉样品的污染问题Ultrapyc 5000型号内置帕尔贴温控系统,管路温度的稳定可控实现Ultrapyc 系列的特点大幅度提高了仪器测试样品的准确性及稳定性。人性化的触屏设计,让操作变得更简洁直观应用领域一直以来,气体比重计型的真密度仪利用阿基米德原理和波义耳定律来测量固体材料,奠定了其在此领域的领先地位。而且固体密度的应用领域极为广泛:采矿、石油勘探、水泥、陶瓷、添加剂、催化剂、冶金、聚合物泡沫、制药及绝大多数粉末材料。
  • 安东帕密度检测新国标宣贯会及新品发布会
    石油化工产品“数字密度计测试液体密度、相对密度和API比重的试验方法”( GB/T 29617-2013)由国家质量监督检验检疫总局和国家标准化管理委员会发布,并已于2013年12月15日起正式实施。 作为此次发布的最重要的几项新国标之一,是怎样的现实和未来需求推动了它的出台,它的具体内容包含哪些,又将给大家日后的工作带来哪些帮助和机遇?本次宣贯会特别邀请了标准的主要起草者赵彦高级工程师(深圳市计量质量检测研究院化工产品检测所副所长),届时她将详细阐述,并现场解答各位的问题。 作为该标准仪器构造和原理方面的技术支持的单位,奥地利安东帕公司将分享其发明的U-型振荡管法密度测量技术,及其独特的创新优势所能带来的巨大收益。它不但具备无与伦比的温度测量精度和黏度自动校正功能,且具有快速、小巧,用途广泛,节省能源、样品和溶剂等多种优点。 我们诚邀您参加此次会议,与国标起草者以及安东帕公司密度、黏度、折光仪、石油化工等产品线的技术专家一起,面对面探讨各种创新技术和解决方案,分享和交流如何应对现有应用中面临的困惑与疑难,并亲身体验安东帕产品的精确、可靠与便捷。 我们携卓越的产品、先进的解决方案和翔实的应用案例,恭迎您的莅临。 日期:2014 年5月16日时间:09:00 – 16:00地点:总统大酒店14楼总裁厅(广州市天河路586号 )下载报名回执,请点此处如果您有任何咨询或问题,请直接与我们联系:联系人:田园电话:021-6485 5000 传真:021-6485 5668 邮件:info.cn@anton-paar.com 网址:www.anton-paar.com 诚挚敬意!奥地利安东帕(中国)有限公司
  • 安东帕:国标委发布石油产品密度检测新国标
    2013年7月19日起,石油化工产品“数字密度计测试液体密度、相对密度和APT比重的试验方法”( GB/T 29617-2013)由中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会发布,并将于2013年12月15日起正式实施。安东帕公司参与了该标准的编辑工作,并提供了仪器构造和原理方面的技术支持。此项重要国家标准的颁布实施,意味着奥地利安东帕公司发明的U-型振荡管法密度测量技术,可以和更多的中国用户分享其独特的创新优势,使大家更真切地感受到安东帕密度计所带来的巨大收益。   自推出以来,安东帕密度计依托其卓越的性能和可靠的稳定性,在国际上赢得了广泛的赞誉。它不但被Shell(壳牌)等国际顶级石油公司所青睐,成为中石油,中石化等国内大型集团采油、炼油、运输、销售等关键环节油品实验室的质控必备仪器,同时还是SGS和国家各级质检所石油化工产品检测机构的最理想选择。与安东帕黏度计、折光仪等产品的联用,更是为客户提供了无与伦比的多功能检测平台,实现全范围多参数的准确测量。  DMA M系列密度计是根据ASTM D4052方法测量油品等样品的密度, 并以此结果自动计算API度等参数。它拥有无与伦比的温度测量精度和黏度自动校正功能,且具有快速,小巧,用途广泛,节省能源、样品和溶剂等多种优点。 产品特点:范围宽广:一个测量池覆盖全范围一次测量,同时获得多个结果 大大节省样品和清洗溶剂帕尔贴控温技术使控温更精准、变温更快捷、结果更可靠独特的紧凑设计理念,适合于车载和船载实验室 内置10种油品常用测量方法,包括密度温度曲线等组合使用Xsample自动进样器实现全自动清洗测量针对特殊样品有多种可选解决方案   自2012年并购Petrotest以来,安东帕已经成为石油化工行业检测解决方案的关键供应商,可以为油品检测和质量控制提供包含:密度、黏度、折光、流变、闪点、燃点、馏程、氧化安定性、摩擦学特性、锥入度等众多参数的各类产品的测量方法。   关于安东帕(中国)  奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。  安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制