当前位置: 仪器信息网 > 行业主题 > >

线水平激光仪原理

仪器信息网线水平激光仪原理专题为您提供2024年最新线水平激光仪原理价格报价、厂家品牌的相关信息, 包括线水平激光仪原理参数、型号等,不管是国产,还是进口品牌的线水平激光仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合线水平激光仪原理相关的耗材配件、试剂标物,还有线水平激光仪原理相关的最新资讯、资料,以及线水平激光仪原理相关的解决方案。

线水平激光仪原理相关的方案

  • 激光粒度仪在色釉料行业中的应用
    本文简述了激光粒度仪的原理和结构,指出了它的性能特点和对色釉料行业的适用性,举例说明了它在色釉料日常生产性测试和研发性测试中的作用,最后探讨实际应用中遇到的问题和及其解决办法。关键词:色釉料,激光,粒度,测试
  • 机器学习辅助优化铟锡氧化物衬底P1激光划线工艺
    目前的研究使用皮秒激光器(532 nm),用于在铟锡氧化物(ITO)层上选择性地进行P1激光划线以及随后利用机器学习(ML)技术对P1划线条件进行微调。最初,通过改变不同的激光参数来进行划线,并通过光学显微镜和两个探针电阻率测量来进一步评估这些参数。相应的划线宽度和薄层电阻数据被用作ML分析的输入数据库。基于分类和回归树(CART)的ML分析显示,中值脉冲能量5.7 μJ,APL   35%,也是   46%,处理速度≥1250mm s−1给出≥16 μm的划线宽度。此外,决策树(DT)分析表明,脉冲能量≥8.1 μJ和LSO ≥ 电气隔离线路需要37%。特征重要性得分表明,激光注量和脉冲能量决定了划线宽度,而电隔离在很大程度上取决于LSO和加工速度。最后,ML实现了通过扫描电子显微镜进行实验验证和重新评估的条件,原子力显微镜与光学显微镜测量结果很好地一致。
  • 激光干涉仪精确测量的局限性
    激光干涉测试方法常用于高精度测量和定位,这是由于这种方法具有较高的测量分辨率和精度,甚至可以用于大尺寸范围的测量。本文重点讨论了外差式和单频式干涉仪的基本原理,并进行了相应的计量分析来描述激光干涉法的优势和局限性。本文还讨论了光纤耦合式微型干涉仪的设计和功能,以及在显微技术、纳米技术和高精度机电一体化等方面的广泛应用。
  • 应用:attocube激光干涉仪组建高精度X射线显微镜
    德国attocube公司的激光干涉仪具备皮米精度分辨率,激光探头可在真空环境中使用,是同步辐射研究的良好选择。在现有激光探头中,标准激光探头M12是已经被证实可以在辐射环境中使用(大10MGy)。
  • 激光中激光脉宽检测方案(光学测量仪)
    由于飞秒激光的频率远远高于THz的频率,可以认为,在第二束飞秒激光到探测晶体的时候,对此时的THz信号进行探测。达由于延迟线可以控制探测束飞秒激光的光程,因此,可以让探测的时间点和产生的THz信号的时间起点有一定的时间差,通过不断地改变这个时间差(光程差),可以探测到不同时间点的THz信号。由于飞秒激光是连续不断地发射,每一次飞秒激光的发生都会得到一个探测信号,通过若干次地改变延迟线的长度,进而改变对透射(反射)THz信号的探测时间点,最终就可以得到一个完整的透射(反射)THz信号的强度随时间变化的图谱,也就是THz-TDS结果。
  • 激光中激光脉宽检测方案(激光产品)
    由于飞秒激光的频率远远高于THz的频率,可以认为,在第二束飞秒激光到探测晶体的时候,对此时的THz信号进行探测。达由于延迟线可以控制探测束飞秒激光的光程,因此,可以让探测的时间点和产生的THz信号的时间起点有一定的时间差,通过不断地改变这个时间差(光程差),可以探测到不同时间点的THz信号。由于飞秒激光是连续不断地发射,每一次飞秒激光的发生都会得到一个探测信号,通过若干次地改变延迟线的长度,进而改变对透射(反射)THz信号的探测时间点,最终就可以得到一个完整的透射(反射)THz信号的强度随时间变化的图谱,也就是THz-TDS结果。
  • 用激光粒度仪测量D0和D100的讨论
    D0表示粉体粒度的最小粒径,D100表示粉体粒度的最大粒径,这两个值是粉体粒度的两端极限边界值——极值。对粉体粒度分布规律来看,极值颗粒是最少的,可能只有几个甚至1个。那么激光粒度仪能不能测量测粉体粒度的极值呢?答案是否定的,一是取样代表性上受到限制,二是激光粒度测量原理上不可行。在激光粒度仪中测出的D0或D100不具有真实意义,也不具有比较意义。一般用D3和D97来代表粉体的粒度极值。
  • 百特激光粒度仪检测露点温度
    样品池结露对粒度测试有这么大的危害,如果我们在发现测试过程或测试结果异常才去处理,将可能出现错误的结果,提供错误的信息,带来重大的损失。为此百特在激光粒度仪中安装了露点温度监测系统,这在国内外激光粒度仪中首次采用此项技术。该系统实时监测仪器运行环境的温度、湿度以及用介质温度,并将温湿度数据实时传输到电脑中用来监测露点温度,一是用来指导用户通过控制介质温度来使样品池远离露点温度,使测试结果准确有效。二是当发生样品池结露现象时,电脑系统会自动报警提示,以方便用户提高介质温度,消除结露现象
  • 改善激光焊接工艺缺陷的方法
    激光焊接质量在实际生产过程中受到多个因素影响,如激光焦点位置、热丝电流、板材间隙及表面清洁度等。而板材表面清洁度对于焊接质量非常重要。当工件表面存在油污、油脂、手指纹、脱模蜡等污染物,激光产生的热量会使油脂沸腾,造成炸点,导致焊接不牢固,所以在焊接前需要清洗零部件并检测产品表面清洁度确定稳定的焊接质量。
  • 光声成像应用的激光器选择
    光声成像技术的简单原理是:当物质(比如生物组织)被脉冲宽度为若干纳秒的激光脉冲照射时,物质会吸收激光能量并将其转换为热能,会产生瞬间的热膨胀并迅速的恢复,这个瞬间膨胀并恢复的微小弛豫过程会导致频率落在超声波段的振动,这个振动是可以方便的被超声波换能器接收并实现超声波成像。简而言之,就是脉冲光诱导超声,后续实现超声成像,即光声成像(Photoacoustic Imageing) .
  • IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用
    在搭建具有纳米分辨率的X射线显微镜时,对于系统稳定性的要求提出了更高的要求。在整个过程中实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,表现出优异的性能。IDS3010在40小时内具有优于1.25nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300pm的分辨率。因此,IDS3010是对所述X射线显微镜装置中使用的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45nm。
  • 4D原位同步辐射X-射线层析显微测量以及激光加热研究油页岩热解
    采用LaVison的DVC体视全场形变应变分析软件包,对动态X-射线断层扫描结果数据进行分析。同时辅以激光加热,观察到了页岩油样件内部,随着温度升高,裂纹断裂的产生和发展。将X-射线断层扫描,DVC和激光加热结合起来研究页岩油热解过程,可以对优化碳氢燃料提取过程提供有用信息。
  • 光频梳与高稳定性飞秒激光器解决方案
    飞秒锁模激光器是产生宽带光频梳的适合设备。锁模激光器的频谱包括系列分立的谱线,相邻谱线之间的频率差等于锁模振荡器的重复频率(frep). 一台锁模飞秒激光器天然就是一台光频梳,具备数纳米~数十纳米的谱宽;通过强非线性光学作用,例如高度非线性的光纤 (HNLF),光梳的谱宽更可以进一步扩展。这种技术可以产生“倍频程”光谱,即光谱中高频率分量至少是低频率分量的二倍.?
  • 共聚焦显微镜+半导体激光器+缺陷检测及尺寸测量
    利用共聚焦显微镜,进行半导体激光器的晶圆缺陷检测,以及波导结构的尺寸测量
  • 激光剥蚀电感耦合等离子体质谱法(英文原文)
    多参数表征单个细胞的全新分析技术可能揭示有关单细胞水平免疫反应异质性的重要信息。本原理验证研究采用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)方法,同时检测人白细胞表达的24系及活化标志物。这种方法足够敏感,可以准确识别分离的T、B和自然杀伤细胞的亚群。白细胞亚群在未分离的外周血单核细胞制剂中也得到了准确的检测。因此,我们认为LA-ICP-MS是一种适合于评估多种组织抗原在固相生物标本(如组织切片、细胞自旋或载玻片上生长的细胞)中表达的方法。这些结果预示着面向普通用户的基于LA-ICP-MS的生物成像仪器的未来发展。
  • 激光衍射元件DOE在激光医美行业的应用
    激光正在成为医疗美容中越来越流行的工具,而在激光医美设备中,对作用光斑的控制非常重要。通过衍射光学元件(DOE)可以各种方式操纵光束,同时重量轻、结构紧凑、使用简便,具备独特的优势。
  • 汽车保险杠覆盖物用聚丙烯(PP)的CO2激光打孔
    聚丙烯(PP)是一种热塑性聚合物,因其对化学溶剂、酸和碱的特殊耐受性而广泛应用于汽车保险杠罩。PP保险杠盖在自定义位置容纳各种传感器。这些传感器安装在精密切割的“选项”孔中。这种精度是通过使用CO2激光器来实现的,该激光器具有孔尺寸的巨大灵活性、高通量和激光切割后的迷人外观。
  • 激光钻孔( CCIT )微泄露无损泄漏测试仪
    为了进行泄漏测试孔系统验证,在玻璃和聚合物样品瓶/安龋中激光打微孔。可以创建一系列孔尺寸,以复制小瓶中的缺陷,以便在校准泄漏检测误备时使用。根据样品瓶/安甑的壁厚,孔的大小可小至1um。除了小瓶之外,箔片和泡置包装也可以进行激光钻孔。
  • 用于原子冷却和俘获的衍射受限1瓦紧凑型可调谐二极管激光器
    自从引入中性原子激光冷却技术以来,增强具有优异光谱和空间质量的高功率激光一直是一个重要的研究课题。我们报道了一种在外腔中直接使用高功率激光二极管的新原理。非常紧凑的设计提供高达1W的输出功率和光束质量(M2<1.2)。单模光纤的耦合效率超过60%。中心波长可以在775nm和785nm之间调谐。该激光器工作于单模,无模式跳变调谐范围高达15GHz,无电流调制,侧模抑制优于55dB。为了证明中性原子冷却的适用性,我们使用该激光器作为光源生产了超过一百万个87Rb原子的BEC。
  • 使用同时双线平面激光诱导荧光和粒子测速仪研究水平管道中液 - 液流动的动力学
    采用LaVision公司的双线平面激光诱导荧光(2-line-PLIF)和粒子成像以及粒子跟踪测速技术(PIV/PTV),研究了水平管道中,油-水两种液体的流动特性。
  • 激光中激光脉宽检测方案(激光产品)
    但是,自相关仪得到的只是一个大概的脉宽数据,它只能大概估算简单脉冲波形的形状,而对于复杂的波形,自相关仪的测试可能就会出现偏差。如下图两个脉冲。两束脉冲的形状是不一样的,但是,脉冲波形却一致。自相关仪的局限性,迫使另一种超快激光测量技术的发展——FROG。
  • 超短激光脉冲与透明介质相互作用
    飞秒激光具有超短脉冲和超高电场强度两个特征。它已广泛应用于物理化学反应的动力学过程分析和热效应可忽略的超精细加工。在这个过程中,飞秒激光显示出与皮秒、纳秒脉冲不同的特性,如热影响区域小、作用效果能够超过光学衍射极限、良好的空间选择性等。这些特性在许多领域有着重要的应用价值,如超精细加工、微光子器件制造、医学精密手术、高密度三维光存储等。本文针对这一领域中的一些问题进行了讨论,特别是对飞秒激光脉冲与透明介质非线性相互作用进行了初步的研究。1分别使用脉冲宽度为ps和fs量级,波长为800nm,重复频率lkHz的激光脉冲,在熔融石英中形成了单发脉冲导致的损伤位点阵列。并对单个损伤位点,使用光学显微镜和图像传感器对其形态进行了观测。分析了激光照射后沿入射光方向将出现分立的损伤结构原因。另外,发现透明介质的材料损伤阈值与聚焦条件有关系,随着数值孔径的增加,阈值能量逐渐减小。2使用不同脉冲宽度的激光照射白宝石晶体,得到不同的损伤形态。白宝石在rlS激光脉冲作用下形成的典型的“米”字形结构,这与白宝石晶体结构相对应。在2.Ips激光脉冲作用下,晶体内部产生的“十”字形损伤。fs激光脉冲聚焦到白宝石内部时,出现“一”字形结构。损伤外型与偏振方向无关,显然不同脉宽的激光照射晶体产生不同的热效应。3近红外飞秒激光在石英玻璃照射后诱导产生色心,分析认为,在近红外飞秒激光强度低于宏观破坏阈值时,纯石英玻璃中SiE’心的形成主要是由于超短脉冲激光引起的焦点区域激光能量沉积和激子自陷引起的,属于玻璃网络的本征结构改变。4采用高温熔融法制备了银掺杂的锂铝硅酸盐微晶玻璃。经近红外飞秒激光照射和热处理后,通过显微镜观察及x射线衍射分析,发现玻璃内部形成以银原子为晶核的工f204,2033Si02多晶结构微晶,晶体细小,呈乳白色,为六方晶系。呈现空间取向分布结构。飞秒激光照射部位玻璃折射率发生明显变化,出现析晶:末照射部位折射率无明显变化,仍为玻璃体。
  • 使用激光测径仪测量光缆直径的操作步骤
    使用激光测径仪来测量光缆直径的操作步骤如下:准备工作:a. 确保激光测径仪已经校准并处于正常工作状态。b. 准备待测的光缆样品。
  • 半导体激光器光斑在线调试的高效方法
    一、“CinAlign在线调试光束分析仪”可以确保每次调试的准确性和一致性:1)实时监控光斑尺寸2)光斑尺寸pass/fail设置3)RayCi软件可以提供多达10种光斑尺寸算法,基本可以完全满足所有客户应用的算法要求二、实时监控激光的功率:1)实时监控激光功率。该功能不仅可以取代功率计,在调试时,用户可以同时监控激光功率和光斑尺寸。2)给出功率等高线,根据功率计算光斑的尺寸三、实时监控光束轮廓的变化,以及光束的椭圆度(圆度),用于光束整形四、实时监控光束重心位置的变化(即重心的坐标系),可以用于激光准直调试、或者相对位置的调试五、实时监控光束的二维、三维能量分布六、测量近场、原厂发散角
  • 基于激光剥蚀-电感耦合等离子体质谱技术的生物元素成像分析
    生物体内的微量元素具有十分重要的生物功能,也与许多疾病密切相关。现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。本研究建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)原位分析生物样品的方法。采用线扫描模式和较小的激光输出能量(<1 J/ cm2),得到了鼠脑切片和金纳米颗粒暴露后单细胞的金属元素成像图。LA-ICP-MS 具有空间分辨率高、检出限好、运行成本较低等优势,有望在生物医学研究中得到更广泛的应用,发挥更重要的作用。
  • 激光粒度仪对水泥粉磨过程的指导作用
    水泥是一种粉体产品。和其他粉体一样,粒度分布(简称“粒度”,水泥行业称“颗粒级配”,本文统称“粒度”或“粒度分布”)对水泥性能(比如强度、流动性、混合材的掺加比例等)有强烈影响。然而到目前为止,粒度测试技术在水泥行业的应用并不普遍。究其原因,作者以为主要有两点:(一)水泥的粒度分布较宽,测量比较困难,加上水泥不宜在水介质中测量,测量成本高;(二)水泥的生产和使用都是粗放式的,对粒度这类“微观”、深层次的问题没有去细究。随着社会的进步,人们对水泥性能的要求越来越高。例如,泵送混凝土要求强度能满足需要的前提下,流动性也足够好;环保政策要求水泥在生产过程中能源消耗要降低,混合材的添加要增加等等。在熟料指标确定的情况下,改善粉磨工艺,使水泥粒度达到较理想的目标,是水泥工业满足社会进步要求的主要途径之一。国家发改委于2006年5月发布了建材行业推荐性标准《水泥颗粒级配测定方法 激光法》[1],目前国内外激光粒度仪的技术水平也完全能够满足水泥粒度测量的需要,这些都为粒度测量技术在水泥行业的推广应用打下良好基础。鉴于目前水泥行业的研究和工程技术人员对粒度测量理论、粒度仪器以及粒度数据如何指导粉磨过程等问题还不十分了解,作者特作此文,以助推水泥行业粉磨技术的进步。
  • API激光干涉仪在双轴同步测量中的应用
    双轴机床的同步性能测试,我们API公司只需要借助本公司生产的激光干涉仪即可做到A/B轴的同步性测量,XD-3D只能实现前三个参数的同步性测量,如果选择XD-6D则可以完成六组主要同步性参数的测量。而且我们API最大的优势就在于一次安装,可同时完成以上所有同步参数的测量,是目前激光测量设备中唯一可以做到的检测仪器。
  • 激光测量
    随着激光器的制作工艺的完善和成本的降低,激光器已被广泛应用于光纤通信、测量技术、医疗、生物工程等多个技术领域,在这些领域中,使用者对激光器的各项性能指标越来越关注。
  • 氦质谱检漏仪封装激光芯片检漏
    激光芯片是光通信设备的重要组成部分, 具有高回波损耗, 低插入损耗 高可靠性, 稳定性, 机械耐磨性和抗腐蚀性, 易于操作等特点. 激光芯片在 Box 内封装, 对密封性的要求极高, 上海伯东客户某生产激光芯片客户采购干式氦质谱检漏仪 ASM 340 D 进行封装激光芯片的泄漏检测.
  • 积分球 精确测量大功率激光器功率
    弥补热电堆和光电二极管测量激光功率缺陷,实现大功率激光器功率精确快速测量。 采用积分球-光纤-光功率计整体校准,组成全新的功率检测系统。由积分球和光电二极管组合成的传感器呈现出了一个几近完美的激光功率测量传感器。对于高功率激光器的测量,该组合可以让操作者看到热电堆探测器无法捕捉到的激光功率波动。这些波动包括:CW模式运行其间波动,启动激光器时的瞬态和过冲波动,以及运行其间的短时下降波动。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制