线水平激光仪原理

仪器信息网线水平激光仪原理专题为您提供2024年最新线水平激光仪原理价格报价、厂家品牌的相关信息, 包括线水平激光仪原理参数、型号等,不管是国产,还是进口品牌的线水平激光仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合线水平激光仪原理相关的耗材配件、试剂标物,还有线水平激光仪原理相关的最新资讯、资料,以及线水平激光仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

线水平激光仪原理相关的仪器

  • 水平式激光干涉仪 400-860-5168转4149
    应用领域 工业计量检测,光学加工车间检测,各种工业生产及加工现场检测包括:通讯、航空航天、汽车制造和消费电子等。 动态环境下,测量各种光滑表面面形,包括光学平面玻璃、窗口玻璃、金属平面、陶瓷平面,凸凹球面等。帮助光学车间和其它工业加工现场,控制和提高各种元件的光滑表面精度和表面质量。 产品综述 通用组合水平式检测干涉仪(数字化动态分析系列)是一种使用动态分析方法的斐索型激光干涉仪。该干涉仪具备良好的抗振性能,可以在有空气扰动,轻微振动的环境下检测。这使得该干涉仪在传统相移技术无法进行测试的环境中,仍能提供精密可靠的计量检测,这种具有可模块化组合和低成本等特点的无损检检测干涉仪是工业加工现场检测需求的新方向。 性能参数◆材质均匀性◆超精密平面/球面面形测量◆光学系统装调和校准◆光学组件透射波前测量◆光学均匀性测量◆平行度测量◆角锥角度测量 ◎◎我们会倾听您的需求,支持特殊需求定制我们的客户群体:苏州计量院,上海计量院,福建计量院,上海光机所,石家庄13所,上海现代先进超精密制造中心有限公司UPEC,长春理工,上海理工等。
    留言咨询
  • 程控水平激光拉制仪:P-2000仪器简介P-2000微移液管拉制仪代表了微移液管、光纤探针和纳米喷雾头制造技术的重大进步。P-2000将基于CO2激光的热源与我们在传统拉制仪方面的丰富经验相结合。该系统提供了其他拉制仪无法比拟的功能。虽然P-2000适用于大多数传统玻璃,但其主要优势是能够使用石英玻璃(熔融石英)。石英为各种研究应用提供了良好的材料性能。石英比其他玻璃更坚固,可以促进穿透坚硬的组织,这通常会打破传统移液管1。对于需要低噪音玻璃的应用,(盖尔德纳科技)用户会发现石英是可用的低噪音玻璃2,4。石英不含传统玻璃中使用的任何金属。从光学角度看,石英在发光时几乎没有荧光。选择CO2激光器作为P-2000的热源有几个原因:1)激光器的标称发射波长接近玻璃中SiO2晶格的共振频率。因此,当提供适当的激光功率时,(盖尔德纳科技)石英和其他传统玻璃可以熔化;2) 激光加热是清洁的,不会像传统加热丝那样在移液管上留下金属残留物;3) 激光加热可以立即关闭,不会留下残留的灯丝热量;4) 用户可以编程提供给玻璃的热量和分布;5) 激光热源意味着没有灯丝烧坏或更换。P-2000可以存储多达100个独立的程序,每个程序多达由8个命令行组成。可编程参数包括:(盖尔德纳科技)激光功率水平、扫描宽度、拉伸速度、延迟/激光接通时间和硬拉强度。使用P-2000的一个重要考虑因素是所用玻璃的直径。P-2000/G设计用于在外径高达1.2 mm的玻璃上均匀加热。直径较大的玻璃可用于P-2000/G(高达1.5 mm石英和1.8 mm常规玻璃),(盖尔德纳科技)但直径小于等于1.2 mm的玻璃性能良好。P-2000/F适用于小直径玻璃,如光纤,以及通常用于制造纳米喷嘴的小直径熔融石英毛细管。小直径玻璃(外径在0.125 mm到0.6 mm之间)需要特殊的拉具杆,以及(盖尔德纳科技)针对小直径材料优化的光学对准。与大直径玻璃一样,P-2000/F和小直径玻璃可以产生各种各样的针尖尺寸和(盖尔德纳科技)锥形几何形状。我们已经制作了从小于10 nm到大于5μm的光纤针尖。有关更多信息,请咨询我们的技术人员。基本应用P-2000/G的主要应用:膜片钳电极制作-单隔离以及全细胞记录细胞内记录电极的制作显微注射针的制作——(盖尔德纳科技)微量注射探针的制作——纳米探针研究SECM扫描电化学显微镜探针的制作——电化学电极(探针)的应用微流控针尖的制作P-2000/F的(盖尔德纳科技)主要应用:微喷头的制作——纳米喷雾质谱显微镜探针的制作——近场扫描光学显微镜NSOM的应用光纤——锥形光纤的制作等产品特点? 能够拉制石英、硼硅酸盐和铝硅酸盐玻璃。? 完全可编程-包括加热灯丝特性。? 与传统金属丝一样,(盖尔德纳科技)激光没有熔点限制;因此,它不会被烧毁。? 拉制出针尖直径小于0.03μm的电极。? 优化速度传感电路,大限度地提高灵敏度和再现性*? 正常使用情况下,(盖尔德纳科技)CO2激光器的工作寿命预计将超过十年,之后,Sutter仪器公司可以对激光器进行翻新,只需标称充电。? 可以对单个程序进行写保护,以保护它们不受意外更改的影响。? 在拉动过程中显示加热的总时间,(盖尔德纳科技)以改进程序开发和故障排除。? 将显示日期和时间戳,(盖尔德纳科技)以显示程序上次更改的时间。? P-2000/F是纳米喷涂和(盖尔德纳科技)NSOM等应用的理想选择。? 细胞内记录电极和(盖尔德纳科技)膜片钳电极的预编程样本程序。P-2000/F还附带了NSOM tip程序。 基本参数1.程序控制,精确程度高。2. 仪器内部具有CO2 激光器,除拉制普通硼硅酸盐和铝硅酸盐玻璃微电极外,还可拉制(盖尔德纳科技)石英微电极。3. CO2激光器可正常工作十年以上。4. 采用激光,不使用加热丝/片,不存在烧坏的情况。5. 可编写并存贮多达100个拉制程序。6. 提供膜片钳微电极与细胞内记录(盖尔德纳科技)电极的拉制程序样例。7. 每次拉制都产生两个对称的电极,重复性好。8. 拉制温度不受限制,可满足多种需求。9. 可进行两次以上的循环拉制,有效控制(盖尔德纳科技)微电极杆部的长度。10. 能拉制稳定、可靠的针尖小于0.03μm的电极。11.具真空荧光显示。12. 拉制程序可写保护锁,避免不经意的改动。13.每个程序多达由8个命令行组成。14.可编程参数包括:激光功率水平、扫描宽度、拉伸速度、延迟/激光接通时间(盖尔德纳科技)和硬拉强度。15.质量控制:电镜检测电极针尖变化小于0.1μm,一般大约为0.06μm。16.在拉动过程中显示加热的总时间,以改进程序和故障排除。17.有两种类型:P-2000/G用于拉制直径在0.6mm以上的玻璃/石英毛坯,适用于膜片钳等电生理实验;P-2000/F用于拉制直径小于0.6mm的玻璃/石英毛坯,应用在纳米喷雾技术(Nanospray)和近场扫描光学显微镜(NSOM)中。18.尺寸:30 in x 14.25 in x 13.25 in| 76 cm x 36 cm x 33.5 cm19.重量:90 lbs | 41 kg20.电源:115/230 VAC| 50/60Hz
    留言咨询
  • 膏药包装易撕线激光打标机 包装膜激光打撕裂线虚线不打穿膏药包装易撕线激光打标机的技术优势  激光易撕线工艺是一种瞬间高温处理使孔周围热融保护,因此解决了后期热收缩后出现的断裂现象,在手感上也非常平滑,在感官上给客户一种新的体验。武汉三工激光是国内先针对薄膜包装行业提出激光代替机械加工工艺的企业,专为各类包装易撕线、定量透气孔设计开发的。与传统的机械齿轮压孔相比速度更快,孔径孔距大小可调更加均匀,可以实现各个方向易撕孔(线)标刻,无需耗材电脑控制,更智能。  包装袋激光划线打孔技术是一种更先进、灵活的技术,激光划线技术将激光能量集中在需要划线的薄膜层上,而不损坏整个薄膜。 因为,复合膜例如PET、PP或PE,它们都具有不同的吸收和发射二氧化碳激光波长的特性,所以当一层薄膜吸收激光能量而消失后,其他的材料薄膜层则保持完好受不到任何影响。 另一方面,铝箔层或着其他镀上金属层的薄膜,则成为了阻挡激光通向其它材料层的屏障。 所以这些材料的特性可以使得激光技术能在包装材料上进行精确的定位、划线。 同时,撕开线通过人的人眼清晰可见,于是撕开包装对消费者来说就显得轻而易举了。 此为,值得注意的是,激光划线技术对于食品包装来说是非接触式的且无磨损的过程,所以也保证了包装内的商品不会因为包装过程而受到损坏,确保了商品的稳定性与可靠性。膏药包装易撕线激光打标机参数表膏药包装易撕线激光打标机特点1、速度快设备在线飞行标刻易撕线速度280-300m/min(根据工艺而定)2、加工幅面大幅面300×300mm范围内实现标刻、切割任意图形3、稳定性好设备采用全封闭光路、原装进口CO2射频激光器、均配装有高速扫描振镜和扩束聚焦系统、严格多重保护控制设计(电网电压欠压保护,工作电流过流保护,冷却循环水流量、水位、水温保护),保证设备整体的稳定,高稳定抗干扰工业计算机智能控制,实现24小时连续稳定可靠运转。4、操作简单专用控制软件,实现任意形状标刻5、设备小巧设备占地约为1.5m2, 大限度减少空间占用6、高精度传感器旋转模拟编码器(国产) 检测流水线速度RGB传感器(日本进口) 精确高速定位飞行打标位置包装膜激光打撕裂线户技术总机  随着激光应用 域越来越广泛,激光对薄膜包装行业应用也得到进一步提升,激光加工成为了PE、PVC、PET薄膜加工行业新的工艺标准。武汉三工激光是国内率先针对薄膜包装行业提出激光代替机械加工工艺的企业,专为薄膜易撕线、定量透气孔设计,打标速度快,设备易操作,性能稳定,使用寿命长等。SCM-55集合了激光技术、光学技术、精密机械、电子技术、计算机软件技术以及制冷等学科于一体的高科技产品,与传统的机械齿轮压孔相比速度更快,孔径孔距大小可调更加均匀,可实现各种多条易撕线标刻。  激光打孔方法是利用激光器产生的光束,通过聚焦在设计好的实线、虚线、波浪线、易撕线处均匀的切割出一条深仅若干微米的细线,由于激光在聚焦上的优点,聚焦点可小到亚微米数量级,从而对材料的微处理更具优势,切割、打标、划线、打孔深度可控。即使在不高的脉冲能量水平下,也能得到较高的能量密度,有效地进行材料加工。可将激光设备装置在分切机或者复卷机上,应用激光技术在OPP、BOPP、PE、PET(聚酯)、铝箔、纸等软包装材料上切割、划线、打孔、层切。
    留言咨询

线水平激光仪原理相关的方案

  • 激光粒度仪在色釉料行业中的应用
    本文简述了激光粒度仪的原理和结构,指出了它的性能特点和对色釉料行业的适用性,举例说明了它在色釉料日常生产性测试和研发性测试中的作用,最后探讨实际应用中遇到的问题和及其解决办法。关键词:色釉料,激光,粒度,测试
  • 机器学习辅助优化铟锡氧化物衬底P1激光划线工艺
    目前的研究使用皮秒激光器(532 nm),用于在铟锡氧化物(ITO)层上选择性地进行P1激光划线以及随后利用机器学习(ML)技术对P1划线条件进行微调。最初,通过改变不同的激光参数来进行划线,并通过光学显微镜和两个探针电阻率测量来进一步评估这些参数。相应的划线宽度和薄层电阻数据被用作ML分析的输入数据库。基于分类和回归树(CART)的ML分析显示,中值脉冲能量5.7 μJ,APL   35%,也是   46%,处理速度≥1250mm s−1给出≥16 μm的划线宽度。此外,决策树(DT)分析表明,脉冲能量≥8.1 μJ和LSO ≥ 电气隔离线路需要37%。特征重要性得分表明,激光注量和脉冲能量决定了划线宽度,而电隔离在很大程度上取决于LSO和加工速度。最后,ML实现了通过扫描电子显微镜进行实验验证和重新评估的条件,原子力显微镜与光学显微镜测量结果很好地一致。
  • 激光干涉仪精确测量的局限性
    激光干涉测试方法常用于高精度测量和定位,这是由于这种方法具有较高的测量分辨率和精度,甚至可以用于大尺寸范围的测量。本文重点讨论了外差式和单频式干涉仪的基本原理,并进行了相应的计量分析来描述激光干涉法的优势和局限性。本文还讨论了光纤耦合式微型干涉仪的设计和功能,以及在显微技术、纳米技术和高精度机电一体化等方面的广泛应用。

线水平激光仪原理相关的论坛

  • 激光粒度仪的测试原理

    激光粒度仪一般采用米氏散射原理。米氏散射理论是对处于均匀介质中的各向均匀同性的单个样品,在单色平行光照射下的Maxwell方程边界条件的严格数学解;当微粒半径的大小接近于或者大于入射光线的波长时,大部分的入射光线会沿着前进的方向进行散射,这种现象被称为米氏散射。与其他光学散射理论相比,米式散射的程度跟波长是无关的,而且光子散射后的性质也不会改变,因此在测量精度要求高的测试仪器中应用广泛。济南微纳等激光粒度仪生产厂家都是采用的这种原理~

  • 【分享】激光测距仪测量原理

    【分享】激光测距仪测量原理

    激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图所示。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具,宏诚科技的CEM手持式激光测距仪LDM-100就是测量的最佳助手。 手持式激光测距仪使用注意事项 [font=Times New Rom

  • 【资料】激光原理及其应用

    激光是二十世纪六十年代出现的一种新型光源——激光器发出的光。激光一词的本意是受激辐射放大的光。1960年美国休斯研究实验室的梅曼制成了第一台红宝石激光器,1961年9月中国科学院长春光学精密机械研究所制成了我国第一台激光器。此后,在激光器的研制、激光技术的应用以及激光理论方面都取得了巨大进展,并带动了一些新型学科的发展,如全息光学、傅立叶光学、非线性光学、光化学等,激光还与当今的重点产业——信息产业密切相关。与激光有关的诺贝尔物理学奖获得者有:1964年,美国汤斯、原苏联巴索夫和普洛霍罗夫因在激光理论上的贡献而获奖。1981年美国肖洛因发展激光光谱学及对激光应用作出的贡献、美国布隆伯根因开拓与激光密切相关的非线性光学共同获奖。1997年美国朱棣文、科恩和飞利浦因首创用激光束将原子冷却到极低温度的方法共同获奖。 激光原理一.物质与光相互作用的规律光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202115_32995_1634962_3.gif[/img]微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。1. 受激吸收(简称吸收)处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。2. 自发辐射粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202116_32996_1634962_3.gif[/img]3. 受激辐射、激光1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。二.粒子数反转爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。

线水平激光仪原理相关的耗材

  • PD42手持激光测距仪
    PD42手持激光测距仪 喜利得测距仪,建筑类单位专用测距仪,喜利得华东代理商,价格最优惠的测距仪 详细说明 德国喜利得公司07年新款激光测距仪,精度最高1.0mm,性能更优! 特点: ●操作界面简单,使用方便 ●12CM长,220克重,可轻松放入衣袋 ●测量单位多样:米,毫米,英寸、英尺、码 ●测量快,精度高,1.0mm ●量程宽0.05-200m,无目标板:100 m ●采用工程塑料,机身坚固,防水防尘, ●功能强大:测距、连续跟踪测距、面积、 体积、 存储最后5个测量值、距离相加相减计算功能及图像说明 侧面测量键,狭窄空间操作依然自如 超大清晰显示屏,大数字显示,测量数据一目了然 测量时光线较暗背景灯自动亮,方便清晰读数 折叠式角落测量延长片,灵巧稳定,适合从墙角开始测量 ●多种起测点选择(前,后,延长片),更符合工作要求 ●一体化水平气泡,易于水平测量 ●清除键:可以清除错误数据 ●背景光照明,电池电量显示 ●工作时:10000次(AA电池) ●外形尺寸:120*55*28mm ●配置包括:PD40主机,黑色软包,手带,塑料钥匙,2节AA电池,操作说明书,原厂质保书,鉴定证书, PD42除具有PD40所有特点外还具有以下特点: 更多功能 - 能进行体积测量,累加多个测量面积,更方便实用 - 有最大值/最小值测量功能,方便确定平行线及核查直角度 - 有三角测量功能(勾股定理),且测量模式有3种,方便测量难以接近的距离 - 延时测量功能(最长20秒)、数据存储功能(最后30组数据) 更方便使用 - 内置望远镜,适合远距离及室外测量 - 内置垂直方向水平珠,提高垂直方向测量准确性 - 有4个测量起始点可供选择(前、后、延长片,三角架螺纹接口中心点) - 有标准三角架螺纹接口,便于精准测量
  • LMP激光雨滴谱仪
    LMP激光雨滴谱仪可以用来测量降雨和降雪。不仅对降雨降雪过程进行监测而且对降雨降雪的特性可以进行详细分析。可以监测区分下落中的毛毛雨、大雨、冰雹、雪花、雪球以及各种介于雪花和冰雹之间的降水。可以计算各种降雨类型的强度、总量、能见度,所有的数据都以RS485协议传输,再通过协议转换器转接到其它设备。 LMP激光雨滴谱仪广泛应用于交通控制、气象监测与服务、科学研究、机场观测、公路气象监测、水文地理学、气象雷达数据校正等应用领域。LMP激光雨滴谱仪几乎不需要保养,它的光学配件性能优越,可以工作在各种恶劣的环境中。激光发射器可以保证长时间的正常使用。特殊的工艺设计排除了外在光源对测定的影响,通过多方面的精心设计对环境的温度和尘土对测定带来的误差作了可靠的补偿。系统具有额外接口,还可以连接风速传感器、风向传感器、温湿度传感器等,所有的数据可通过激光雨滴谱仪的数据接口一起输出。测量原理:应用激光原理对高速运动物体进行测定。可测定运动物体的总量,大小,强度,和运动速度。它的优越性能尤其表现在对微小物体的测定,测定对象最小直径达到0.16mm。 技术参数LMP激光雨滴谱仪技术参数主要输出数据降雨量,降雨速度,降雨粒径大小,降雨强度,降雨等级(synop/r),雷达校正(z/r ratio),能见度(mor)可选输出数据风速,风向,空气温度,相对湿度(需单独订购传感器)操作原理785nm激光,最大0.5mw ,激光等级1m测定区域 46 cm2 (23 x 2.0 cm)操作环境-40~+70度; 0~100%相对湿度防护等级IP65供电24 v ac/dc /750 ma,或230 vac(可选12vdc)外箱不锈钢制,270x 170x 540 mm重量4.8 kg数据输出RS485双路输出 1200~115200波特率,全双工/半双工粒子速度范围0.2 ~20 m/s粒子等级440种(22种直径x 20种速度) 降雨降雪等级区分度 97%最小强度0.005 mm/h 毛毛雨最大强度250 mm/h雨中能见度0 ~99999m雷达反射率-9.9 ~99.9dbz 产地:中国
  • 激光甲烷探测器
    激光甲烷探测器是德国进口的高精度甲烷浓度探测仪器,它采用全球领先的调谐二极管激光吸收光谱技术(TDLAS),能够在60米远的距离高精度探测甲 烷浓度,瓦斯浓度和甲醇浓度,探测灵敏度高达1ppm,探测速度高达0.1秒。激光甲烷探测器特点可探测60米外的甲烷瓦斯甲醇浓度,超级安全,非常适合危险区域作业超级紧凑,超轻设计,装入口袋即可携带操作方便,手持式操作,如同使用大哥大超级易用,一键即可获得结果是最快最安全的高精度瓦斯浓度探测器激光甲烷探测器参数尺寸:70x179x42毫米重量:600克探测气体:甲烷,瓦斯,CH4技术原理:可调谐二极管激光吸收光谱技术TDLAS探测距离:高达60米测量范围:1-50000ppm.m测量精度:+/-10%@100ppm.m测量速度: 约0.1秒报警声响:72-76dB电池:可充电NIMH电池充电时间:4小时电池续航:充满后工作6小时工作环境温度:-17到50摄氏度工作环境湿度:30-90%RH

线水平激光仪原理相关的资料

线水平激光仪原理相关的资讯

  • 中央民大可调谐光纤激光器达国际先进水平
    近日,由中央民族大学主办的“中央民族大学国际联合光子技术研发中心学术委员会第一次会议”和由中关村光电产业协会组织的“成果鉴定会”举行。   针对国际联合光子技术研发中心研发的基于MEMS的三通道C波段可调谐光纤激光器原理样机,由中国工程院周立伟院士和中国科学院杨国桢院士、陈良惠院士等国内相关领域十余位权威专家学者组成的鉴定委员会在听取研制报告、测试报告和查新报告,观察样机演示,并通过质询和讨论认为,该原理样机在多波长激射和调谐机制、光纤谐振腔与光路设计等多方面具有创新性,多项性能指标达到国际先进水平。   中央民族大学副校长宋敏出席会议,并为新成立的国际联合光子技术研发中心学术委员会委员颁发聘书。宋敏表示,中央民族大学通过搭建研发平台推动科研攻关,不仅是推动少数民族和民族地区发展的有效方法,更是建成特色鲜明、国际知名的高水平研究型大学的新途径。国际联合光子技术研发中心平台建设是中央民族大学的一次新尝试,在较短时间内推出科研成果振奋人心,不仅对人才培养模式指明了新方向、提出了新思考,而且积极探索了开展产学研用深度合作的有效方式。   国际联合光子技术研发中心由中央民族大学理学院联合北京交通大学、北京邮电大学、大恒科技股份有限公司、澳大利亚埃迪斯科文大学、韩国光州科学技术研究院共同组建,旨在结合国际光电科研与行业需求研发新型光电技术和产品。可调激光器是该中心研究团队推出的最新研究成果。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制