当前位置: 仪器信息网 > 行业主题 > >

安立高精度分析

仪器信息网安立高精度分析专题为您提供2024年最新安立高精度分析价格报价、厂家品牌的相关信息, 包括安立高精度分析参数、型号等,不管是国产,还是进口品牌的安立高精度分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合安立高精度分析相关的耗材配件、试剂标物,还有安立高精度分析相关的最新资讯、资料,以及安立高精度分析相关的解决方案。

安立高精度分析相关的论坛

  • 高精度CT于制造业的应用与电子产品可靠性检测及失效分析研讨会

    随着社会进步和时代发展,电子电器作为一种高科技产品,在家用电器,消费电子,交通运输及日常生活等各个领域得到广泛应用。对于电子电器行业发展现状,加强技术研发,提高产品性能,拥有自主知识产权是提高企业核心竞争力的根本。 为了促进电子电器行业的发展,更好的帮助和服务电子电器企业在生产制造中减少成本浪费,提升产品可靠性,全面认识最终产品可靠性的影响因素,实现以低成本提升电子电器产品的品质,美信检测特别推出本次研讨会,旨在通过对先进技术—高精度CT检测技术、电子电器失效分析、高端表面分析的专业讲解,解决客户遇到的技术难题,为客户提供一站式解决方案。 高精度CT于制造业的应用与电子产品可靠性检测及失效分析研讨会 点击报名:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1970

  • 国产的高精度四极杆质量分析器

    国产的高精度四极杆质量分析器

    中国工程物理研究院机械制造工艺研究所以“解决国产科学仪器核心部件的国产化”为目标,成功研发了四极质量分析器零件专用精密加工机床,实现了制造工艺定型,形成了高精度、系列化、批量化零件制造能力。可根据用户要求,定制金属、陶瓷、陶瓷镀金、金属双曲面极杆等多种规格的四极杆,并可提供快速四极杆的维护和维修服务。http://www.instrument.com.cn/news/20160427/189755.shtmlhttp://ng1.17img.cn/bbsfiles/images/2016/04/201604271609_591643_1623180_3.jpg

  • 高精度气体压力控制中TESCOM ER5000及其配套背压阀的国产化替代案例分析

    高精度气体压力控制中TESCOM ER5000及其配套背压阀的国产化替代案例分析

    [size=14px][color=#ff0000]摘要:本文针对一个高精度气体压力程序控制工艺案例,分别对TESCOM ER5000及其配套背压阀和国产化产品的技术方案进行了计算分析。分析结果证明非标定制的国产化产品可以实现更高的测控精度,具有更便捷的操作性和更高的性价比。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、案例简介[/color][/size][size=14px]在某一压力工艺过程中,工艺设备中配备了一个缓冲罐以保证工艺压力准确和稳定,要求缓冲罐的气体压力可程序控制,技术指标如下:[/size](1)缓冲罐容积:200~300升。[size=14px](2)缓冲罐功能:升压、保压和泄压。最大压力:3~5MPa。[/size](3)压力控制程序:升压3天,保压1周,泄压15天。[size=14px](4)控压精度:±(0.02~0.1)MPa,最好能达到±0.02MPa。[/size]因产品生产工艺对压力控制精度比较敏感,现有压力控制系统无法满足要求,生产工艺需采用更高精度的气体压力控制装置进行升级改造。本文将针对此高精度压力控制技术要求,分别对艾默生和上海依阳的压力控制装置进行了分析和对比,以期实现国产化替代。[size=18px][color=#ff0000]二、TESCOM压力控制装置分析[/color][/size]TESCOM压力控制装置的结构如图1所示,具体包含TESCOM的26-20调压器(最大出口压力5.5MPa)和ER5000Sl-1电子气控执行器。[align=center][size=14px][img=ER5000替代,690,575]https://ng1.17img.cn/bbsfiles/images/2022/05/202205310852254352_3211_3384_3.png!w690x575.jpg[/img][/size][/align][size=14px][/size][align=center]图1 艾默生TESCOM压力控制装置结构示意图[/align][size=14px]因先导感压面积 S1 × 执行器输出压力=高压感压面积 S2 × 高压阀输出压力+部件阻力。[/size]部件阻力(静止到运动的启动阻力)主要来自阀芯开闭合时弹簧下压的变形,部件的滑动摩擦暂且不计。因下游缓冲罐为密闭状态,因此每次压力整定好后,阀芯处于闭合状态。[size=14px]此阀芯(Tescom其他型号的也是同款阀芯)的静启动推力,约为0.5kg。[/size]可得:高压阀自身的步阶精度Δ(MPa)[size=14px]=(先导感压面积S1 × 气动执行器最小分辨压力K - 部件阻力N)/高压感压面积S2[/size]=(S1× K-N)/S2 =(94. 99cm^2 × 0.0345kg/cm^2-0 .5kg)/4.91cm^2[size=14px]=Δ0.056MPa. [/size][size=18px][color=#ff0000]三、依阳公司压力控制装置分析[/color][/size][size=14px]依阳公司压力控制装置的结构如图2所示,具体包含高精度调压器(最大出口压力6MPa)和高精度电子气控执行器。[/size][align=center][size=14px][img=ER5000替代,690,653]https://ng1.17img.cn/bbsfiles/images/2022/05/202205310853043434_7346_3384_3.png!w690x653.jpg[/img][/size][/align][size=14px][/size][align=center]图2 依阳公司压力控制装置结构示意图[/align][size=14px]同样先导感压面积S1×执行器输出压力=高压感压面积 S2 × 高压阀输出压力+部件阻力。[/size]同样部件阻力(静止到运动的启动阻力)主要来自阀芯开闭合时弹簧下压的变形,部件的滑动摩擦暂且不计。因下游缓冲罐为密闭状态,因此每次压力整定好后,阀芯处于闭合状态。可得:高压阀自身的步阶精度Δ(MPa)=(先导感压面积S1 × 气动执行器最小分辨压力K - 部件阻力N)/高压感压面积S2[size=14px]=(S1× K-N)/S2 [/size]=(254.3cm^2 × 0.0615kg/cm^2-0 .6kg)/38.47cm^2[size=14px]=Δ0.039MPa. [/size][size=18px][color=#ff0000]四、结论[/color][/size][size=14px]通过上述计算,对比分析可得出以下结论:[/size](1)气体压力的控制精度,与气动执行器精度和背压调压阀精度密切相关。[size=14px](2)每次做压力调整,因冷启动阻力K值依然存在,也是阀门整体高压输出分辨率的瓶颈根源。最终分辨率的瓶颈,不是传感器和执行器的精度。[/size](3)通过上述计算公式可知加大执行机构的受力面积,可以对抗冷启动的阻力,从而提高每次调整步价的分辨率。阀体定制化服务,可以将执行机构的受力面积无限扩大,从而让输出的压力分辨率趋近无限细分。[size=14px](4)TESCOM或市场上的其他批量化商用阀门,考虑的是满足大多数使用场合的精度,因此更侧重的是体积紧凑和材料的节约,综合其性价比,并不完全适用和满足高精度或者特殊工况的使用。[/size]通过上述分析结论,可以明显看出通过依阳公司定制的气体压力控制装置可以达到比国外产品更高的控制分辨率和控制精度,完全能满足高精度高压控制要求等特殊工况,可实现有效的国产化替代。[size=14px][/size][align=center]=======================================================================[/align] [size=14px][/size]

  • 真空热重分析仪多种气体低气压高精度控制解决方案

    真空热重分析仪多种气体低气压高精度控制解决方案

    [align=center][size=16px] [img=真空热重分析仪多种气体低气压高精度控制解决方案,550,383]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170921522574_4489_3221506_3.jpg!w690x481.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]==========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 热重分析(Thermogravimetric Analysis,TG或TGA)是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。而真空热重分析(Vac-TGA)则是在普通热重分析中增加了真空变量,允许在低至1Pa的绝对压力条件下对样品进行分析,适用于在使用中需要减压条件的客户应用。真空热重分析技术用于解决在工作中遇到低气压的专业化检测分析,Vac-TGA还可以实现更准确地观察薄膜、复合材料、环氧树脂等材料的挥发物、降解和排气等情况。[/size][size=16px] 真空热重分析仪一般都配备真空密闭的炉体和精确控制保护气和吹扫气流量的气体质量流量控制器(MFC),为TG与FTIR或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]等联用提供了便利。密闭系统的真空度最高可达1Pa(绝对压力),一般都包括两路吹扫气和一路保护气,由此可进行各种气氛环境下的热重分析,如惰性、氧化性、还原性、静态和动态气氛环境。[/size][size=16px] 目前常见的真空热重分析仪只能实现抽真空功能,普遍无法对密闭炉体内的气体压力进行准确控制,只有最先进的磁悬浮热重分析仪具有压力控制功能,但也仅适用于大于一个大气压的高压控制,其结构如图1所示,还是无法对低于一个大气压的低压环境进行调节控制,无法提供低压环境的模拟。[/size][align=center][size=16px][color=#339999][b][img=国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图,450,464]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170923427525_9766_3221506_3.jpg!w690x712.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 由于现有真空热重分析仪无法提供低压环境的真空控制,客户希望能对现有V-TGA进行技术改造,增加真空度控制功能,以对高原地区低氧、低气压条件下的煤燃烧过程开展研究。[/size][size=16px] 为了彻底真空热重分析仪的真空压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节热重分析仪的进气和排气流量,使内部气压快速达到动态平衡状态而恒定在设定真空度上,为热重分析仪提供可任意设定低气压值的精密控制,本文将提出以下技术改造实施方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 首先,根据客户要求以及今后真空热重分析仪的低压应用,本解决方案拟达到的指标如下:[/size][size=16px] (1)真空度控制范围:10Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:±1%(读数)。[/size][size=16px] (3)气氛:真空、单一气体和多种气体混合。[/size][size=16px] 为达到上述技术指标,解决方案设计的热重分析仪真空压力控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=真空热重分析仪低气压精密控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170924200752_5900_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热重分析仪低气压精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,为了实现10Pa~100kPa全量程内的真空度控制,控制系统的具体内容如下:[/size][size=16px] (1)配备了两只电容真空计,量程分别是10Torr和1000Torr,精度都为读数的±0.2%。[/size][size=16px] (2)采用了动态平衡法进行控制,其中在真空度10Pa~1kPa范围内采用上游(进气端)控制模式,而在1kPa~100kPa真空度范围内采用下游(排气端)控制模式。[/size][size=16px] (3)上游控制模式:上游控制模式是固定排气流量(真空泵全开,电动针阀2固定某一开度),通过自动调节电动针阀1开度来改变进气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施上游控制模式的闭环控制回路包括10Torr真空计1、电动针阀1和真空压力控制器的第一通道,如图2中的蓝色虚线所示。[/size][size=16px] (4)下游控制模式:下游控制模式是固定进气流量(电动针阀1固定某一开度),通过自动调节电动针阀2开度来改变排气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施下游控制模式的闭环控制回路包括1000Torr真空计2、电动针阀2和真空压力控制器的第二通道,如图2中的红色虚线所示。[/size][size=16px] (5)双通道真空压力控制器:所配备的VPC2021-2真空压力控制器具有两路独立的PID控制通道,与相应的真空计和电动针阀配合可组成上游和下游控制回路。在进行上游自动控制过程中,上游控制回路进行自动PID控制,而下游控制回路设置为手动控制并设定固定输出值以使得电控针阀2的开度固定。在进行下游自动控制过程中,下游控制回路进行自动PID控制,而上游控制回路设置为手动控制并设定固定输出值以使得电控针阀1的开度固定。[/size][size=16px] (6)电动针阀:所配备的NCNV系列电动针阀是一种步进电机驱动的高速针型阀,可在一秒时间内完成从关到开的高速线性变化,具有很好的线性度和重复性精度,具有极低的磁滞,可采用模拟信号(0-10V、4-20mA)和RS485进行控制,可对小流量气体流量进行精密调节。[/size][size=16px] (7)进气装置:图2所示的控制系统进气装置可实现多种气体的精密配比混合,每种气体的流量通过气体质量流量控制器进行调节和控制,多路气体在混气罐内进行混合,混合后的气体作为进入真空热重分析仪的进气。[/size][size=16px] (8)控制精度:由于整个控制系统采用了高精度的真空计、电动针阀和PID控制器,可实现全量程的真空度精密控制,考核试验结果证明控制可轻松达到±1%读数的高精度。[/size][size=16px] (9)控制软件:双通道真空压力控制器配备有计算机控制软件,通过控制器上的RS485通讯接口,计算机可远程操作真空压力控制器实现控制运行、参数设置和过程参数的采集、存储和曲线显示。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 本解决方案彻底解决了真空热重分析仪中存在的真空度精密控制问题,在满足用户所提的真空热重分析仪技术改造要求之外,本解决方案还具有以下优势和特点:[/size][size=16px] (1)本解决方案具有很强的实用性,并经过了试验考核和大量应用,按照解决方案可很快完成真空热重分析仪高精度真空压力控制系统的搭建和技术改造,无需对热重分析仪进行改动。[/size][size=16px] (2)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同范围和不同规格型号真空热重分析仪的真空压力控制,可满足各种真空热重分析仪的多种低气压控制需求。[/size][size=16px] (3)本解决方案可以通过增减高压气源来实现不同气体气氛环境的低压控制,也可进行多种气体混合后的低压控制,具有很大的灵活性。[/size][size=16px] (4)本解决方案还为后续的热重分析仪与其他热分析联用留有接口,如可以通过在排气端增加微小流量可变泄漏阀实现与质谱仪的联用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【短讯】四极质谱核心部件-高精度四极质量分析器通过验收

    记者近日从中国工程物理研究院机械制造工艺研究所获悉,被列入科技部首批国家重大科学仪器设备开发专项的《高精度四极质量分析器工程化研制与应用》项目,日前通过项目初步验收。  质谱仪是以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,再利用电磁学原理使离子按不同的质荷比分离后,测量各种离子强度,确定被测物质的分子量和结构的科学仪器。四极质谱仪具有灵敏度高、样品用量少、分析速度快、分离和鉴定同时进行等优点,广泛应用于化工、环境、能源、医药、生命科学、材料科学等各领域。而四极质量分析器是四极质谱仪的核心部件,此前完全依赖进口,国产高端四极质谱仪一直处于“空心化”状态。  2011年,中物院机械制造工艺研究所牵头,联合复旦大学、北京普析通用仪器有限责任公司等单位建立研究团队,几年中,团队成功研制出系列四极质量分析器产品,综合性能指标均达到国际先进水平。  “四极质量分析器要求在一定频率的射频电压与直流电压作用下,只允许一定质荷比离子通过到达接收器,从而实现不同质荷比离子分离,其设计、制造精度要求极高。”中物院机械制造工艺研究所所长王宝瑞说。

  • 高精度一乎面加工与检浏

    高精度平面主要包括平晶、平行平晶、标准平面和分划板等。高精度平面的平面度一般γ/20,平行度<2′′。 1高箱度平面的加工方法 a古典抛光法 在一般抛光机上采用柏油模、分离器抛光.这种方法与操作者的技能有较大关系, b.蟹钳式分离器加工法 它在很人程度上减小了倒翻力矩的挤压作用,同时也采用新型抛光模(如混合模、聚四氟乙烯抛光模等),明显提高了加效率利和精度。 c.环形抛光模加工法 它用校正板和夹持器代替分离器.不仅能保持分离器的功能,又使抛光速度趋于均匀。采用了膨胀系教很小的玻璃作为基底,其上涂以聚四氟乙烯塑料为抛光膜层,加上校正板的连续自动修正作用,所以可在连续加工中保持抛光模的面形稳定.能获得γ/10~γ/200的面形精度和平行度为1"~0.1"的平行平晶.也可加工棱镜、多面体等。 d.离子抛光法 一般是将氢等惰性气体原子在真空中用高频放电方法使之离子化,由高压场使离子加速,轰击光学玻璃表面。通常能以原子为单位去除表面材料,形成所需要的抛光面。这种方法可获得高精度的光学表面,井能通过控制程序进行自动加工。 e.电子计算机控制撇光法 用计算机控制光学磨具在零件表面上的运动轨迹、进给速度和压力等工艺因素达到修磨零件表面的目的。这种方法的优点是工具位置、停留时间、运动轨迹及操作参数等均可实现最优化、加工精度可达γ/80,适合于高精度大型光学零件的最后修磨加工。2.高精度平面的检测 测试方法有液面法、等倾干涉法、多光束干涉法、阴影法和三面法等。

  • E+H恩德斯豪斯高精度pH标定液

    E+H恩德斯豪斯高质量CPY20标定液提供了最高精度的pH标定。它们在已经通过权威DAkkS永久认证(德国认证机构)的标定实验室内进行生产和装瓶。标定液的准确率是+/-0.02 pH,它们使用NIST和PTB标准进行配置,只包含FDA认证防腐剂。使用CPY20可以得到可靠的准确值。E+H恩德斯豪斯高精度pH标定液的优势高精度和可再现的标定液帮助您优化过程中的pH测量值,提高产品产量和质量CPY20 pH标定液按照 NIST (USA) 和 PTB (Germany)标准配置,可溯源,并满足生命周期内严格的文档要求所用防腐剂均为FDA认证介质,确保最高的产品安全CPY20 pH标定液的温度曲线预设置在Liquiline系列变送器中 ,方便传感器标定和调节,降低维护工作量易访问的标定液证书简化您的审计跟踪流程,并提高SOPs可靠性详细,单独的标定液分析证书可在 下载区 下载. 在“文本搜索”字段中输入您的批号,然后点击“开始搜索”按钮.E+H恩德斯豪斯高精度pH标定液的应用领域CPY20 pH 标定液用于各类行业pH电极的标定和校准,适用于生产过程和实验室中高精度传感器的日常校准标定和校准可以采用:Memobase Plus CYZ71D 软件Liquiline 系列变送器各类常规的 pH变送器了解标定液和装瓶尺寸,请点击“特性和说明”.[b][color=#ffffff]文章来源:E+H http://www.china-endress.com/[/color][/b]

  • 玻璃生产窑内压力高精度控制解决方案

    玻璃生产窑内压力高精度控制解决方案

    [align=center][img=玻璃窑炉精密压力控制解决方案,600,293]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131721313475_1541_3221506_3.jpg!w690x338.jpg[/img][/align][size=16px][b][color=#333399]摘要:在玻璃生产中对玻璃窑炉中窑压的要求极高,通常需要控制微正压[/color][color=#333399]4.7Pa(表压),偏差控制在±0.3Pa,而窑炉压力还会受到众多因素的影响,所以实现高稳定性的熔窑压力控制具有很大难度,为此本文提出了新的解决方案对现有玻璃窑炉压力控制系统进行改进。解决方案采用不同口径双蝶阀并联结构进行排气,并通过使用高速蝶阀、高精度压力传感器和超高精度分程式压力控制器,可大幅度提高窑炉压力的控制精度和稳定性。[/color][/b][/size][align=center][size=16px][color=#333399][b]=====================[/b][/color][/size][/align][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 窑炉是玻璃生产制造过程使用的重要设备之一,担负着熔化原材料、调节玻璃液气泡等缺陷。在玻璃生产中对玻璃窑炉中窑压的要求极高,通常需要控制微正压4.7Pa(表压),偏差控制在±0.3Pa,因此需要极其精确的窑压检测和灵敏准确的窑压控制。在玻璃生产中,影响窑炉压力主要有以下几方面的因素:[/size][size=16px] (1)窑炉温度需控制在上千摄氏度的高温环境才能使原材料熔制成均匀、无气泡的玻璃液,如此高温环境往往使部分原材料在窑炉熔化时易产生大量气体,导致窑炉内的玻璃液位波动大,使得窑炉内的压力不稳定,进而干扰生产工艺,影响玻璃液的品质。[/size][size=16px] (2)玻璃熔窑由于采用的热源不同,结构形式有较大差别,如火焰熔窑、电熔窑和火焰?电熔窑具有不同的结构,而且玻璃液与生产窑内部顶侧壁之间留有气体空间,受玻璃液进液量的影响,也会引起玻璃窑内气体空间的压力时常变化。[/size][size=16px] (3)在实际生产中,受外界天气变化、窑炉外部环境变化以及窑炉内部温度变化等多种的影响,导致窑炉内外的压力差产生波动,导致玻璃液位波动进而影响窑炉压力变化。[/size][size=16px] (4)此外,从玻璃窑炉中排出的烟气带有较高的热量,且国家对玻璃窑废气的环保标准越来越高,为了充分利用此部分热量和减少环境污染,达到节能减排的目的,现有的玻璃窑炉一般都连接有余热回收装置和除尘装置,这些装置对于玻璃窑炉中的压力稳定也会产生影响。[/size][size=16px] 目前,国内常用玻璃窑炉压力控制系统的典型结构如图1所示,其工作原理是通过控制器采集压力传感器与压力设定值进行比较后输出控制信号,控制信号分别驱动引风机改变功率和调节闸板开度来实现熔窑内的压力稳定。但这种引风机和闸板在排气烟道内的串联结构很难实现高稳定性的压力控制,为此本文提出了改进的解决方案,以更好实现玻璃熔窑内压力的长时间的稳定控制,并快速降低各种影响因素对压力稳定的影响。[/size][align=center][size=16px][color=#333399][b][img=现有玻璃窑炉的典型压力控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131722577919_8122_3221506_3.jpg!w690x383.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 现有玻璃窑炉的典型压力控制系统结构[/b][/color][/size][/align][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 改进后的解决方案将采用以下几方面的技术措施来实现窑炉压力的稳定控制:[/size][size=16px] (1)图1所示的风机和调节闸板的串联结构使得烟道内的排气速率完全受到风机和闸板两者之一的最小流量限制,很难实现既要保持正压、又要控制压力微小波动。为此,解决方案将采用如图2所示的并联结构,即在主烟道上并联一个小口径的旁路烟道,这样既能保证以较大抽速使高温下的窑炉压力快速回归至微正压附近,同时又能采用旁路的较小抽速进行精细调节使压力稳定。[/size][align=center][color=#333399][b][img=改进后的玻璃窑炉高精度压力控制系统结构,600,350]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131724197314_7449_3221506_3.jpg!w690x403.jpg[/img][/b][/color][/align][b][/b][align=center][b][color=#333399]图2 改进后的玻璃窑炉高精度压力控制系统结构[/color][/b][/align][size=16px] (2)使风机处于全速工作状态,而在主烟道和旁路烟道上分别增加不同口径、且具有较快响应速度(1秒以内)的电动通风蝶阀。这样,通过不同口径高速蝶阀的快速开度变化,可以对窑炉压力进行快速调节并达到稳定。[/size][size=16px] (3)压力传感器的测量精度是决定玻璃窑炉内部压力稳定控制的关键要素之一,因此本解决方案采用了0.1%的高精度压力传感器,压力测量范围尽可能的小,如0~100Pa(表压)。[/size][size=16px] (4)决定窑炉压力稳定控制的另一个关键因素是压力控制器的测量精度、控制精度和控制模式,为此本解决方案选择了VPC2021系列超高精度压力控制器,其具有24位AD、16位DA和最小输出百分比为0.01%,这是目前工业用PLC根本无法实现的测控精度。另外,VPC2021系列压力控制器具有分程控制功能,可同时对两个不同口径通风蝶阀进行快速控制,且控制器同时还具有PID参数自整定功能、标准的MODBUS通讯协议和相应的计算机测控软件。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,解决方案通过采用不同口径双蝶阀并联结构,可在排气方式上既能实现大流量排气,又能进行微小排气流量的调节,从结构上保证了窑炉压力的稳定性控制。另外,通过采用高速蝶阀、高精度压力传感器和超高精度分程式压力控制,从自动控制方面更进一步的保证了压力控制精度,比传统的PLC控制具有更好的控制精度和稳定性。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 高精度计数秤的参数有哪些?

    高精度计数秤的参数高精度计数秤型号最大称量分度值最大可读精度ACS-3-SC713kg0.05g1/60000ACS-6-SC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/sc71/sc71canshu.pnghttp://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计数秤ACS-SC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有抗静电,高频干扰,读数稳定具有LCD三窗白色背光液晶显示,字幕清晰易读取计数秤ACS-SC71具有运送保护,过载保护设计高精度计数秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计数秤ACS-SC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 高精度食品重金属检测仪介绍【云唐】

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405150953250257_9894_5604214_3.jpg!w690x690.jpg[/img]  高精度食品重金属检测仪是一种用于检测食品中重金属含量的专业设备。在现代食品安全管理中,重金属污染已经成为一个不可忽视的问题。为了保障消费者的健康,高精度食品重金属检测仪的应用显得尤为重要。  该设备采用先进的光谱分析技术,可以快速、准确地检测出食品中多种重金属元素的含量。与传统的检测方法相比,它具有更高的灵敏度和更低的检测限,可以及时发现食品中的微量重金属污染。  高精度食品重金属检测仪的使用十分便捷,用户只需将待检测的食品样品放入仪器中,仪器即可自动完成检测过程,并输出准确的检测结果。此外,该设备还具备数据记录和分析功能,可以方便用户进行数据管理和比对分析。  在食品安全领域,高精度食品重金属检测仪的应用范围广泛。它可以用于食品生产、加工、储存等各个环节的监测,确保食品中的重金属含量符合国家标准和法规要求。同时,该设备还可以用于食品质量监测和风险评估,为食品安全管理提供有力的技术支持。  总之,高精度食品重金属检测仪是保障食品安全的重要工具之一。它可以帮助企业和监管部门及时发现和控制食品中的重金属污染,保护消费者的健康和权益。随着技术的不断进步和应用领域的拓展,相信高精度食品重金属检测仪将在未来的食品安全管理中发挥更加重要的作用。

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 【云唐推荐】高精度食品安全检测仪应用领域

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405090923504443_8618_5604214_3.jpg!w690x690.jpg[/img]  高精度食品安全检测仪的应用领域极为广泛,几乎涵盖了食品产业链的各个环节。以下将详细介绍几个主要的应用领域。  首先,高精度食品安全检测仪在食品生产企业中发挥着重要作用。在食品生产过程中,企业需要实时监控食品的质量和安全,以确保产品的合格率和消费者的健康。高精度食品安全检测仪能够快速、准确地检测出食品中的有害物质,如农药残留、重金属等,从而帮助企业及时发现并解决问题,保障食品的安全。  其次,高精度食品安全检测仪在食品流通环节中也扮演着重要角色。在食品流通过程中,食品可能会受到各种污染和不良因素的影响,如运输过程中的温度、湿度等。高精度食品安全检测仪能够快速检测出这些不良因素,从而保障食品在流通环节中的安全。  此外,高精度食品安全检测仪还在食品监管部门中得到了广泛应用。食品监管部门需要对市场上的食品进行定期检测和监督,以确保食品的安全和合格。高精度食品安全检测仪能够提供准确、可靠的检测结果,为食品监管部门提供有力的技术支持,保障食品市场的安全和稳定。  最后,高精度食品安全检测仪还在科研领域发挥着重要作用。食品科学研究者可以利用高精度食品安全检测仪进行食品中有害物质的深入研究和分析,为食品安全和食品科技的进步提供有力支持。  综上所述,高精度食品安全检测仪在食品生产、流通、监管和科研等领域都有着广泛的应用前景。随着科技的不断进步和人们对食品安全要求的不断提高,高精度食品安全检测仪将会发挥更加重要的作用,为保障人们的健康和食品安全做出更大的贡献。

  • 【云唐】高精度综合农药残留检测仪优势

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404120914418944_2982_5604214_3.jpg!w690x690.jpg[/img]  随着农业生产的快速发展,农药的使用越来越广泛,农药残留问题也日益引起人们的关注。为了保障食品安全和人民健康,高精度综合农药残留检测仪应运而生,其独特的优势在农药残留检测领域发挥着重要作用。  高精度综合农药残留检测仪拥有卓越的检测精度。通过采用先进的光学、电化学等技术手段,该仪器能够准确、快速地检测出农产品中的农药残留量,有效避免了传统检测方法中可能出现的误差和干扰。这种高精度检测不仅提高了检测效率,还为食品安全监管提供了更加可靠的数据支持。  高精度综合农药残留检测仪具有广泛的适用范围。它可以检测多种农药残留,包括有机磷、氨基甲酸酯、拟除虫菊酯等不同类型的农药。这种广泛的适用范围使得该仪器能够满足不同农作物和食品的农药残留检测需求,为农业生产提供了全面的技术保障。  高精度综合农药残留检测仪还具备自动化、智能化的特点。通过内置的软件系统和自动化控制装置,该仪器能够自动完成样品处理、数据分析等步骤,大大降低了检测人员的操作难度和劳动强度。同时,该仪器还能够实时记录检测数据,方便用户进行数据管理和追溯。  高精度综合农药残留检测仪在农药残留检测领域具有显著的优势。其高精度、广适用范围和智能化特点使得该仪器成为保障食品安全和人民健康的重要工具。随着科技的进步和应用的推广,相信高精度综合农药残留检测仪将在未来发挥更加重要的作用。

  • 最新研发出的便携式高精度水中含油量监测仪不知道市场怎么样?

    最新研发出的便携式高精度水中含油量监测仪不知道市场怎么样?

    [align=left][/align][align=left]新研发的便携式高精度水中含油量分析仪是使用非接触式双光路紫外荧光法原理。[/align][align=left]免试剂监测方法,测量精度高、灵敏度高。量程:含油量(0-50ppm);检出限:0.1mg/L; 分辨率:0.01mg/L。[/align][align=left]目前国内红外测油仪比较多,不知道研发的这款紫外荧光法的仪器市场认可度和需求大不?请各位大神指教下。[/align]

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 地面高精度气压传感器让气象预报更精准

    导读:我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    近些年来,我国气候异常事件频发,如南方冰冻雨雪极端低温,南方持续干旱后的集中降雨引起的洪水,还有部分地区的高温天气。2008年奥运会开幕前每隔1小时的天气预报,让人们对天气的精准预报有了更高的期待。    我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。目前我国应对突发性自然灾害侧重在事后应急机制,对事前防范、强化气象预测和预警的力度不够。尽管,我们现在具备很多现代化的技术手段进行气象预报,如卫星、雷达等监控措施,但是由于在极端天气下设备的稳定性能差,边远地区通讯障碍等局限因素,直接导致我国的气象预报精度不够。    地质灾害催熟气象智能化    目前我国气象监控预测技术还比较落后,集中暴露出预警不精确、人为干扰大、自动化水平低下等问题。在这种情况下,就对气象智能化的发展提出了更高要求。    在信息化社会,任何气象智能化技术的发展和应用都离不开传感器和信号探测技术的支持。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    将物联网技术应用到自然灾害的监控领域是必然之举,与传统气象预测相比,无线化、智能化的气象预测监控系统之所以倍受青睐,就在于其畅通、快速、精确稳定的通信信道。    地面高精度气压传感器让气象预报不再“爽约”    频频发生的自然灾害并不是不可控的,更重要的是要提高气象预测的精准度,真正实现灾害提前预警,从而将灾害损失减到最低。    传统的气象预测精度差有多方面的因素,我国地形复杂、技术设备在极端天气下的稳定性能差、边远地区通讯信号差等。这些都制约着气象预测数据的精准度和及时性。地面高精度气压传感器是以无线遥感网络来测量边远和恶劣地区的环境情况,将监测数据借助通讯产品进行传输,反馈到地面自动气象站,利用监控软件对数据进行分析处理,实施气象预警的分级告警。这一监控预警系统为自然灾害的及时检测和预警预报提供了畅通、快速、精准可靠的信号通道,让气象预报不再“爽约”,全面提升气象预测的信息化和智能化水平。    责任重于泰山,技术造福人类    面对国内日益频发的自然灾害,北京市科学技术委员会推出“地面高精度气压传感器产业化关键技术攻关”科技计划项目,进行利用物联网传感技术预测自然灾害的研究。昆仑海岸作为物联网技术应用领域内的骨干企业,承接了本次研究项目的关键技术攻关和传感器芯片的批量化生产关键技术的研发。    作为中国物联网行业传感器领域快速前进的参与者、见证者和领跑者,北京昆仑海岸一直紧贴物联网行业应用的脉搏,深入研究物联网技术在各行各业的应用。凭着对物联网行业的专注和默默耕耘,公司始终以技术创新为发展动力,重视研发新产品和新技术,同时积极开展与相关机构的科研合作和技术交流。北京昆仑海岸在压力、湿度、流量、风向等传感器(变送器)以及相应的仪器仪表研发方面具备很好的研究经验和研发能力。凭着丰富的行业经验、领先的技术优势,北京昆仑海岸一定会成为气象智能监测预警的先导。

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • :PDHID跟质谱仪什么关系? 有人忽悠我说高精度就需要质谱仪?

    给各位拜谢了,路过帮帮忙: 我们一定要PDHID,因为需要高精度 问题1:安捷伦 GC7890能不能装PDHID检测器。 安捷伦的7890算比较出名了,想必大家会比较清楚; 问题2:布鲁克(前瓦里安)的GC-450 是什么时候上市的? 别说是好几年前的老物。这款能装PDHID,也有人给我推荐这款,不知道大家觉得如何。 问题3:PDHID跟质谱仪什么关系? 有人忽悠我说高精度就需要质谱仪,不知道真的假的。 注:目前我有一台安捷伦GC7820,TCD检测器。

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 食品快检设备如何校准高精度的传感器

    食品快检设备如何校准高精度的传感器

    [size=16px]  食品快检设备如何校准高精度的传感器  食品快检设备校准高精度的传感器的方法包括以下步骤:  准备标准溶液:选择合适的标准溶液,如已知浓度的食品样品溶液或标准物质,用于校准高精度的传感器。  插入电极:将用纯化水清洗过的电极插入标准溶液中,等待读数稳定。  定位标定:在读数稳定后,按“定位”键(此时pH指示灯慢闪烁,表明仪器在定位标定状态),使读数为该溶液当时温度下的pH值。  确认标定:按“确认”键,仪器进入测量状态,pH指示灯停止闪烁。  斜率标定(如果需要):如果标准溶液的pH值不在仪器可测范围内,需要使用斜率标定功能。将电极插入另一个标准溶液中,待读数稳定后,按“斜率”键(此时pH指示灯闪烁,表明仪器在斜率标定状态),使读数为该溶液当时温度下的pH值。然后按“确认”键,完成斜率标定。  重复标定:根据需要,可以重复以上步骤,对多个标准溶液进行标定,以验证传感器的准确性和稳定性。  数据记录与分析:记录每个标准溶液的标定结果,包括读数、温度和时间等信息。根据记录的数据进行分析,如计算误差、偏差等指标,以评估传感器的准确性和可靠性。  校准证书:根据标定结果,可以生成校准证书或报告,用于记录传感器的校准结果和性能指标。  维护与保养:定期对传感器进行维护和保养,如清洗、更换部件等,以保持其良好的性能和准确性。  需要注意的是,具体的校准方法和步骤可能会因食品快检设备的型号、品牌和用途而有所不同。因此,在进行校准时,应遵循设备说明书或相关操作规程,以确保准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311201015280285_6173_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 基于半导体制冷片的高精度温度控制系统

    基于半导体制冷片的高精度温度控制系统

    成果简介 半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/07/201607121459_600117_3112929_3.jpg图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600118_3112929_3.png图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600119_3112929_3.jpg图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600120_3112929_3.jpg图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600121_3112929_3.jpg图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571-86872415、0571-87676266;Email:yangsuijun1@sina.com;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。 更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 高精度食品安全检测仪可以检测什么

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  高精度食品安全检测仪可以检测什么,高精度食品安全检测仪是一种能够检测各类食品中可能存在的安全问题的先进设备。它可以检测的项目非常广泛,涵盖了食品安全的多个方面。具体来说,高精度食品安全检测仪可以检测以下内容:  一、食品种类  高精度食品安全检测仪能够检测多种食品的安全性,包括但不限于:  肉类:如瘦肉、肉制品、禽肉、家畜肉等。  蔬菜:检测蔬菜中是否含有农药残留、重金属超标等污染物。  海鲜:检测海鲜中的重金属、细菌和病毒等污染物。  粮食和米面制品:检测其中的霉菌毒素等污染物。  饮料和乳制品:检测其中的添加剂、防腐剂等超标污染物。  二、检测项目  农药残留:检测食品中是否含有农药残留,确保食品在种植或养殖过程中未受到农药的过量污染。  重金属:检测食品中的重金属含量,如铅、汞、镉等,这些重金属对人体健康有害。  微生物:检测食品中的微生物污染,如细菌、霉菌等,这些微生物可能导致食品腐败或引发食物中毒。  添加剂和防腐剂:检测饮料和乳制品等食品中的添加剂和防腐剂是否超标,确保食品的合规性。  病害肉:检测肉类食品中是否存在病害肉,如病猪、病牛等肉类,这些肉类可能携带病毒或细菌,对人体健康构成威胁。  兽药残留:检测动物性食品中的兽药残留,确保食品在养殖过程中未受到兽药的过量使用。  化学类残留:检测食品中的非食用化学物质残留,如工业染料、塑化剂等。  真菌毒素类残留:检测粮食等食品中的真菌毒素含量,如黄曲霉毒素等,这些毒素对人体肝脏等器官有损害作用。  三、技术特点  高精度食品安全检测仪采用先进的光谱分析、质谱分析和生物传感器等技术,对食品样本进行快速、准确的检测。这些技术使得检测仪能够在短时间内完成大量样品的检测,大大提高了检测效率。同时,检测仪还具有高精度和高灵敏度,能够准确快速地检测出食品中微量的污染物。  四、应用场景  高精度食品安全检测仪广泛应用于食品生产、加工、流通和监管等各个环节。在食品生产企业中,检测仪可以用于原料验收、生产过程监控和成品检验等环节 在监管部门中,检测仪可以用于市场抽检、食品安全事件应急处理等方面。  综上所述,高精度食品安全检测仪是一种功能强大、应用广泛的检测设备,它在保障食品安全方面发挥着重要作用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407111116427921_8570_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度测厚仪哪个好

    在选择高精度测厚仪这样大型的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密高精度测厚仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,得到了得到了消费者的大力认可,下面我们就来介绍一下,它好在哪些方面吧:   1、操作简单方便  简单方便的设备仪器不管是谁,都会非常喜欢的。如果设备仪器的操作比较繁琐或是需要专业人员来操作。厂家就会考虑很多方面,一来操作繁琐要对工作人员进行一系列的培训,二来请来的专业人员所需要的成本就会有所上升,利益就会相应减少。高精度测厚仪操作十分简单方便,这是厂家选择他们的其中一个理由。  2、能连接数据进行打印  测厚仪有电脑连接接口,在使用的时候可以购买相关软件,从而实现对测两次数据的储存打印,而且相关的软件还能够对测量数据进行统一,用专业的方式显示出来,从而让我们更加简单的了解测量数据机器所具有的特点。  http://www.dcprecision.cn/Uploads/201601/56a1a0aa23fb3.jpg  3、采用国外进口的优质元件  专业的测厚仪传感器部件通常采用的都是国外进口的优质元件,这些优质传感器元件能够让测厚仪的测厚分辨率比普通测厚仪增加很多,这种仪器对于零点一微米的距离都能精准的测量。然而测厚仪里面的优质传动元件也是确保测厚仪工作稳定性和准确性的重要因素。  激光测厚仪是近年来开发出的高科技实用型设备,是用于热轧生产线上实时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境,具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点,并为轧制钢材厚度控制提供了准确的信息,从而提高了生产效率和产品质量,降低了劳动强度。  使用大成精密激光测厚仪以来,具不完全统计,因板厚误差造成的废品率下降了50%以上,创经济效益近千万元,受到各级部门和工作人员的肯定与赞赏。

  • 【分享】校验仪器(3)——CPR-001型高精度气体配气仪

    【分享】校验仪器(3)——CPR-001型高精度气体配气仪

    CPR-001型高精度配气仪是微处理器控制的数字化配气系统,它适用于工厂、实验室、科研单位使用标准气体标定,校准气体分析仪器标气的样品制备,其精度远远高于其他同类型控制的配气系统。CPR-001型高精度配气仪可以单独操作,也可以与微机联用。该系统配有与微机通讯的并行口与串行口。CPR-001型高精度配气仪的配气比可在0~100%范围内连续可调。http://ng1.17img.cn/bbsfiles/images/2011/04/201104051430_287200_1638489_3.jpg

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 云唐高精度农药残留检测仪应用范围

    云唐高精度农药残留检测仪应用范围

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311220939078895_6993_5604214_3.png!w690x690.jpg[/img]  随着人们生活水平的提高,对食品安全和环境保护的关注度也不断提高。农药残留检测作为食品安全的重要环节之一,越来越受到各级政府和广大民众的关注。为了满足市场需求,高精度农药残留检测仪应运而生。本文将详细介绍高精度农药残留检测仪的应用范围。  一、高精度农药残留检测仪概述  高精度农药残留检测仪是一种基于色谱原理的仪器,可以快速、准确地检测食品中农药残留的含量。该仪器采用先进的检测技术,具有高灵敏度、高分辨率和高重复性的特点,能够检测出多种不同类型的农药残留,包括有机磷、有机氯、拟除虫菊酯类等。  二、高精度农药残留检测仪应用范围  1. 农产品质量安全监测  农产品质量安全事关人民群众的健康和生命安全。高精度农药残留检测仪可以广泛应用于农产品质量安全监测领域,如蔬菜、水果、粮食、茶叶等农产品的农药残留检测。通过该仪器检测,可以及时发现农产品中的农药残留超标问题,保障人民群众的饮食安全。  2. 生态环境监测  生态环境监测是保护生态环境的重要手段之一。高精度农药残留检测仪可以用于监测环境中的有害物质,如土壤、水体中的农药残留物等。通过该仪器检测,可以了解环境污染状况,为环境保护提供科学依据。  3. 进出口农产品检验检疫  随着国际贸易的不断扩大,各国对进出口农产品的质量要求也越来越严格。高精度农药残留检测仪可以用于进出口农产品的检验检疫,确保出口农产品的质量符合国际标准。通过该仪器检测,可以提高我国农产品的国际竞争力,促进我国农业的发展。  4. 科研机构应用  高精度农药残留检测仪还可以广泛应用于科研机构,如农业科学研究院、食品质量安全研究院等。通过该仪器检测,可以深入研究农产品中农药残留的分布、变化规律等,为农业生产提供科学指导。  三、高精度农药残留检测仪的优势  1. 高灵敏度:可以检测出低浓度的农药残留物,保证检测结果的准确性。  2. 高分辨率:可以分离多种不同类型的农药残留物,避免出现交叉干扰。  3. 高重复性:采用先进的色谱技术,保证了每次检测结果的重复性和稳定性。  4. 操作简便:仪器自动化程度高,操作简便,可以大大缩短检测时间。  5. 安全可靠:不使用有毒有害试剂,对环境和人体无害,安全可靠。  四、结语  随着人们对食品安全和环境保护的关注度不断提高,高精度农药残留检测仪将会发挥越来越重要的作用。通过该仪器检测,可以保障人民群众的饮食安全,保护生态环境,提高我国农产品的国际竞争力等。因此,我们应该积极推广高精度农药残留检测仪的应用范围,为推动我国农业和食品行业的健康发展做出贡献。  ?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制