当前位置: 仪器信息网 > 行业主题 > >

计算峰度偏度标准

仪器信息网计算峰度偏度标准专题为您提供2024年最新计算峰度偏度标准价格报价、厂家品牌的相关信息, 包括计算峰度偏度标准参数、型号等,不管是国产,还是进口品牌的计算峰度偏度标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合计算峰度偏度标准相关的耗材配件、试剂标物,还有计算峰度偏度标准相关的最新资讯、资料,以及计算峰度偏度标准相关的解决方案。

计算峰度偏度标准相关的资讯

  • 国网江苏电科院:升级变压器高精度油色谱远程监护系统 保障江苏电网迎峰度冬
    1月9日,由国网江苏电科院自主研发并优化完善的“升级版”变压器高精度油色谱远程监护系统在特高压泰州换流站经过1个月试运行,状态保持稳定,正式投入使用,标志着江苏省变压器油色谱在线监测及缺陷预警能力建设取得新突破。油色谱分析是非停电状态下评估变压器(换流变)健康状况的关键手段,可预警其内部放电、过热等缺陷隐患,对保障设备安全稳定运行至关重要。目前,油色谱分析主要有实验室检测和在线监测两种手段。实验室检测精度高,但人工取样时效性差、人为因素干扰大且存在安全风险;在线监测相对及时,但检测误差大,可靠性和稳定性不足,误报警和漏报警现象频繁发生。为此,国网江苏电科院在省公司设备部指导下,创新提出油色谱远程监护技术路线,历时近一年成功研发出高精度油色谱远程监护系统,具体由油色谱监测装置和监护系统两部分组成。“第一代”油色谱远程监护系统已于2022年3月在特高压泰州换流站8221A相换流变部署应用,现场油色谱监测装置可将油色谱数据实时上传至后台监护系统,供特高压运维人员远程查看,监测设备运行状态。稳定运行9个月来,共排除在线监测装置误告警20余次。期间获取的近千条检测数据可证实,监护系统兼具实验室检测高精度和现场监测及时性,检测误差小于5%,重复性误差小于2%,最小检测周期为30分钟,装置稳定性以及时效性远优于传统在线监测装置(常规A级油色谱在线监测装置检测误差约为20%-30%,检测周期为1~2小时)。基于油色谱远程监护系统在检测精度和稳定性方面得良好表现,其在提升变压器异常缺陷及时预警能力方面有望发挥更重要作用。国网江苏电科院专业人员以进一步提升监测装置可靠性和降低现场安装运维难度为目标,结合“第一代”监护系统存在的问题和不足,历时近半年在完善整体结构布局、提高系统安全性能、集成和优化气源模块、装置小型化轻量化等方面对其进行了优化提升。“‘升级版’油色谱监测装置的体积减小为原来的二分之一,重量减轻了约三分之一,在相同运行条件下同等载气量的使用时间由大约40天延长至5个月左右,而且不再需要运维人员定期清理废油桶。因此‘升级版’监护系统可以在很大程度上减轻站内运维人员的工作压力,并更好地满足对变电站(换流站)现场设备状态监测可靠性的要求。”该院高级专家朱洪斌介绍,目前通过该系统实时监测特高压泰州换流站变压器油色谱情况,将根据一段时间运行情况,配合江苏公司进一步推进“升级版”高精度油色谱远程监护系统在超特高压变压器上的推广应用,作为油色谱在线监测装置的有力补充,确保准确实时掌握设备的异常发展,助力提升设备缺陷及时预警能力,保障江苏电网迎峰度冬。
  • 左心耳封堵器系统产品获批上市
    p   近日,国家食品药品监督管理总局经审查,批准了先健科技(深圳)有限公司生产的创新产品“左心耳封堵器系统”的注册。 /p p   该产品由左心耳封堵器和输送器两部分组成,其中左心耳封堵器由密封盘和固定盘组成。该产品主要用于卒中风险较高且长期口服抗凝治疗禁忌或抗凝治疗后仍有卒中风险的非瓣膜性房颤患者,可避免或降低左心耳内血栓脱落带来的卒中风险。 /p p   该产品的结构设计允许产品在手术过程中重复定位,利于密封左心耳口部,并降低产品脱落风险。该产品作为首个批准上市的国产左心耳封堵产品,为患者提供更多选择。 /p p   食品药品监督管理部门将加强该产品上市后监管,保护患者用械安全。 /p
  • 2022年第一季度有266个国家标准将实施
    2022年第一季度有266个国家标准将实施2022,已到!第一季度又有哪些与仪器及检测相关的标准将要实施呢?让我们一起梳理一下吧。第一季度的新实施标准涉及科学仪器、食品、药品医疗卫生、环境、机械、地质金属矿物金属、石油化工塑料、电力等多个行业领域共达266个标准。这些标准会涉及到色谱仪器、质谱仪器、光谱仪器、生命科学仪器、X射线等类别仪器。2022年第一季度即将实施的标准如下,需要的可以收藏。点击链接即可下载收藏↓科学仪器标准实施时间GB/T 10125-2021 人造气氛腐蚀试验 盐雾试验 2022/3/1GB/T 12810-2021 实验室玻璃仪器 玻璃量器的容量校准和使用方法 2022/3/1GB/T 12604.9-2021 无损检测 术语 红外热成像 2022/3/1GB/T 15726-2021 玻璃仪器 内应力检验方法 2022/3/1GB/T 40293-2021 红外硫系光学薄膜折射率测试方法 2022/3/1GB/T 40300-2021 微束分析 分析电子显微学 术语2022/3/1GB/T 40326-2021 实验室设备能效等级 药品稳定性试验箱 2022/3/1GB/T 40359-2021 计时仪器 光致发光涂层 试验方法和要求 2022/3/1食品农业标准GB 18394-2020 畜禽肉水分限量 2022/1/1GB/T 10781.9-2021 白酒质量要求 第9部分:芝麻香型白酒 2022/3/1GB/T 40345-2021 植物保护机械 确定可排放液体体积及浓度的试验方法 2022/3/1GB/T 40346-2021 植物保护机械 水平喷杆喷雾机潜在喷雾漂移试验台测量方法 2022/3/1GB/T 40347-2021 植物保护机械 往复式容积泵和离心泵 试验方法 2022/3/1GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法 2022/3/1GB/T 40361-2021 啤酒、碳酸饮料易拉罐灌装生产线 通用技术规范 2022/3/1GB/T 40360-2021 不含气饮料金属罐灌装封罐机 通用技术条件 2022/3/1GB/T 40392-2021 循环冷却水中军团菌的检测 2022/3/1GB/T 40445-2021 枣实蝇检疫鉴定方法 2022/3/1GB/T 40446-2021 果品质量分级导则 2022/3/1GB/T 40447-2021 鸭茅蜜穗病菌检疫鉴定方法2022/3/1GB/T 40448-2021 麦角检疫鉴定方法 2022/3/1GB/T 40453-2021 柑橘黑斑病菌检疫鉴定方法2022/3/1GB/T 40454-2021 家禽孵化良好生产规范 2022/3/1GB/T 40455-2021 蓝莓休克病毒检疫鉴定方法 2022/3/1GB/T 40456-2021 石蒜弗粉蚧检疫鉴定方法 2022/3/1GB/T 40457-2021 咖啡浆果炭疽病菌检疫鉴定方法 2022/3/1GB/T 40459-2021 肥料中多种植物生长调节剂的定性筛选 液相色谱-质谱联用法 2022/3/1GB/T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法 2022/3/1GB/T 40461-2021 肥料中钠含量的测定 2022/3/1GB/T 40462-2021 有机肥料中19种兽药残留量的测定 液相色谱串联质谱法2022/3/1GB/T 40467-2021 畜禽肉品质检测 近红外法通则 2022/3/1GB/T 40470-2021 畜禽屠宰加工设备 禽屠宰成套设备技术条件 2022/3/1GB/T 40486-2021 蜂毒干粉中蜂毒溶血肽含量的测定 高效液相色谱法 2022/3/1GB/T 40511-2021 农林生物质原料收储运通用技术规范 2022/3/1GB/T 40633-2021 茶叶加工术语 2022/3/1医疗卫生、化妆品标准GB 14232.1-2020 人体血液及血液成分袋式塑料容器 第1部分:传统型血袋 2022/2/1 GB 39669-2020 牙刷及口腔器具安全通用技术要求 2022/1/1GB/T 25915.10-2021 洁净室及相关受控环境 第10部分:按化学物浓度划分表面洁净度等级2022/3/1GB/T 25915.1-2021 洁净室及相关受控环境 第1部分:按粒子浓度划分空气洁净度等级 2022/3/1GB/T 25915.2-2021 洁净室及相关受控环境 第2部分:洁净室空气粒子浓度的监测2022/3/1GB/T 25915.8-2021 洁净室及相关受控环境 第8部分:按化学物浓度划分空气洁净度(ACC)等级 2022/3/1GB/T 26366-2021 二氧化氯消毒剂卫生要求 2022/3/1GB/T 20370-2021 酶制剂分类导则 2022/3/1GB/T 40352.1-2021 人类组织样本采集与处理 第1部分:手术切除组织 2022/3/1GB/T 40362-2021 电动牙刷 一般要求和检测方法 2022/3/1GB/T 40364-2021 人类生物样本库基础术语 2022/3/1GB/T 40365-2021 细胞无菌检测通则 2022/3/1GB/T 40369-2021 免疫层析试纸条检测通则 2022/3/1GB/T 40373-2021 一次性口罩制造包装生产线 通用技术要求 2022/3/1GB/T 40401-2021 骨架密度的测量 气体体积置换法 2022/3/1GBT 40452-2021 犬、猫静脉输液操作技术规范 2022/3/1GB/T 40458-2021 用于病原微生物高通量检测的核酸提取技术规范 2022/3/1GB/T 40472-2021 柱锈菌科实时荧光PCR检疫鉴定方法 2022/3/1GB/T 40966-2021 新型冠状病毒抗原检测试剂盒质量评价要求 2022/3/1GB/T 40982-2021 新型冠状病毒核酸检测试剂盒质量评价要求 2022/3/1GB/T 40983-2021 新型冠状病毒IgG抗体检测试剂盒质量评价要求 2022/3/1GB/T 40984-2021 新型冠状病毒IgM抗体检测试剂盒质量评价要求 2022/3/1GB/T 40991-2021 微量物证的提取、包装方法 2022/3/1GB/T 40999-2021 新型冠状病毒抗体检测试剂盒质量评价要求 2022/3/1环境标准GB/T 14636-2021 工业循环冷却水及水垢中钙、镁的测定 原子吸收光谱法 2022/3/1GB/T 14637-2021 工业循环冷却水及水垢中铜、铁、锌的测定 原子吸收光谱法 2022/3/1GB/T 40351-2021 循环再利用涤纶生态技术要求 2022/3/1GB/T 40378-2021 化学实验室废水处理装置技术规范 2022/3/1GB/T 40404-2021 渣类材料 熔化温度的测定 高温金相法 2022/3/1地质冶金标准GB/T 1425-2021 贵金属及其合金熔化温度范围的测定 热分析试验方法 2022/3/1GB/T 14949.11-2021 锰矿石 碳含量的测定 重量法和红外线吸收法 2022/3/1GB/T 14949.2-2021 锰矿石 镍含量的测定 火焰原子吸收光谱法 2022/3/1GB/T 15224.2-2021 煤炭质量分级 第2部分:硫分 2022/3/1GB/T 15970.10-2021 金属和合金的腐蚀 应力腐蚀试验 第10部分:反向U型弯曲试验方法 2022/3/1GB/T 19559-2021 煤层气含量测定方法 2022/3/1GB/T 20899.4-2021 金矿石化学分析方法 第4部分:铜量的测定 2022/3/1GB/T 20899.5-2021 金矿石化学分析方法 第5部分:铅量的测定 2022/3/1GB/T 20899.6-2021 金矿石化学分析方法 第6部分:锌量的测定 2022/3/1GB/T 223.90-2021 钢铁及合金 硅含量的测定 电感耦合等离子体原子发射光谱法2022/3/1GB/T 223.91-2021 钢铁及合金 铜含量的测定 2,2' -联喹啉分光光度法2022/3/1GB/T 24524-2021 金属材料 薄板和薄带 扩孔试验方法 2022/3/1GB/T 40311-2021 钒渣 多元素的测定 波长色散X射线荧光光谱法(熔铸玻璃片法) 2022/3/1GB/T 40312-2021 磷铁 磷、硅、锰和钛含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法) 2022/3/1GB/T 40320-2021 铝合金力学熔点测试方法 2022/3/1GB/T 40342-2021 钢丝热镀锌铝合金镀层中铝含量的测定2022/3/1GB/T 40374-2021 硬质合金化学分析方法 铅量和镉量的测定 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法 2022/3/1GB/T 40380.1-2021 金属粉末 高温时松装密度和流速的测定 第1部分:高温时松装密度的测定 2022/3/1GB/T 40380.2-2021 金属粉末 高温时松装密度和流速的测定 第2部分:高温时流速的测定 2022/3/1GB/T 40389-2021 烧结金属材料(不包括硬质合金) 表面粗糙度的测定 GB/T 40393-2021 金属和合金的腐蚀 奥氏体不锈钢晶间腐蚀敏感性加速腐蚀试验方法 2022/3/1GB/T 40403-2021 金属和合金的腐蚀 用四点弯曲法测定金属抗应力腐蚀开裂的方法 2022/3/1GB/T 40410-2021 金属材料 多轴疲劳试验 轴向-扭转应变控制方法 2022/3/1GB/T 40485-2021 煤的镜质体随机反射率自动测定 图像分析法2022/3/1GB/T 40545-2021 煤层气井压裂作业导则 2022/3/1GB/T 40549-2021 焦炭堆积密度小容器测定方法 2022/3/1GB/T 5187-2021 铜及铜合金箔材 2022/3/1GB/T 5195.11-2021 萤石 锰含量的测定 高碘酸盐分光光度法和火焰原子吸收光谱法 2022/3/1GB/T 5235-2021 加工镍及镍合金牌号和化学成分 2022/3/1GB/T 5687.13-2021 铬铁 铬、硅、锰、钛、钒和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法) 2022/3/1GB/T 7728-2021 冶金产品化学分析 火焰原子吸收光谱法通则 2022/3/1GB/T 7729-2021 冶金产品化学分析 分光光度法通则 2022/3/1GB/T 7731.10-2021 钨铁 碳含量的测定 红外线吸收法 2022/3/1GB/T 7731.1-2021 钨铁 钨含量的测定 辛可宁重量法和硝酸铵重量法 2022/3/1GB/T 7731.4-2021 钨铁 磷含量的测定 磷钼蓝分光光度法 2022/3/1GB/T 7731.5-2021 钨铁 硅含量的测定 硅钼蓝分光光度法 2022/3/1GB/T 7739.5-2021 金精矿化学分析方法 第5部分:铅量的测定 2022/3/1GB/T 7739.6-2021 金精矿化学分析方法 第6部分:锌量的测定 2022/3/1机械标准GB/T 13203-2021 摩托车轮胎性能试验方法 2022/3/1GB/T 14172-2021 汽车、挂车及汽车列车静侧倾稳定性台架试验方法 2022/3/1GB/T 17765-2021 航标术语 2022/3/1GB/T 18703-2021 机械振动与冲击 手传振动 手套掌部振动传递率的测量与评价 2022/3/1GB/T 20081.3-2021 气动 减压阀和过滤减压阀 第3部分:测试减压阀流量特性的可选方法 2022/3/1GB/T 20485.32-2021 振动与冲击传感器校准方法 第32部分:谐振测试 用冲击激励测试加速度计的频率和相位响应 2022/3/1
  • 硅量子计算机保真度获重大突破
    英国《自然》杂志19日连发三篇论文,来自三个团队的科学家们在开发容错量子计算机方面取得重要突破。他们验证了硅双量子位门保真度,超越了容错计算机的阈值(99%)。研究结果证实,硅材料中强大、可靠的量子计算正在成为现实。研究还表明,硅量子计算机与超导和离子阱一样,是实现大规模量子计算机研发的有前途的候选者。  澳大利亚新南威尔士大学研究团队在磷供体形成的两个核自旋之间创建了双量子位通用量子逻辑运算,通过行业标准的离子注入方法将其引入硅中。他们使用一种被称为“量子门集层析成像(GST)”的方法,对其量子处理器的性能进行了验证,实现了高达99.95%的单量子位保真度和99.37%的双量子位保真度。此外,根据研究结果,电子自旋本身就是一个量子位,可和两个原子核纠缠在一起,形成一个三量子位的量子纠缠态,这一保真度达到了92.5%。这为大型硅基量子处理器在现实世界中的制造和应用铺平了道路。  荷兰代尔夫特理工大学研究团队使用由硅和硅锗合金堆栈形成的材料创造了一个双量子位系统,其中量子信息被编码在限制于量子点的电子自旋中,最终实现99.87%的单量子位保真度和99.65%的双量子位保真度。  日本理化学研究所的研究团队采取了类似的路线,使用代尔夫特团队生产的相同材料堆栈,创建了双电子量子位,实现了99.8%的单量子位保真度和99.5%的双量子位保真度。研究结果首次使自旋量子位在通用量子控制性能方面与超导电路和离子陷阱相抗衡。  来自荷兰和日本的研究团队在合作实验过程中发现,一种名为拉比频率的属性是量子计算机系统性能的关键。他们还发现了一个频率范围,其中单量子位门保真度为99.8%,双量子位门保真度为99.5%,达到了所需的阈值。  研究人员证明了他们可实现通用运算,这意味着构成量子运算的所有基本运算,包括单量子位运算和双量子位运算,都可在高于纠错阈值的门保真度下执行。  为了测试新系统的性能,研究人员还采用了双量子位的Deutsch-Jozsa算法和Grover搜索算法。这两种算法都能以96%—97%的高保真度输出正确的结果,表明硅量子计算机可进行高精度的量子计算。
  • 【标准解读】非甲烷总烃新标准,7月1日起正式实施
    HJ 1331-2023 & HJ 1332-20237月1日正式实施2023年12月,生态环境部发布《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ1331-2023)和《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ1332-2023)2项标准,标准适用于固定污染源废气中总烃、甲烷和非甲烷总烃的测定,于7月1日正式实施。与现行监测标准《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》(HJ38-2017)相比,具有自动化程度高、抗干扰能力强等优点,可用于现场快速监测,对于同日实施的《石油炼制工业污染物排放标准》(GB 31570-2015)等三项标准修改单有重要支撑作用。明华电子自主研发的MH3500-A/B型 便携式甲烷非甲烷总烃分析仪分别参与两项标准的验证工作,本文结合现场经验对两项标准重点要点进行梳理总结。01便携式气相色谱-FID:通过定量环分离甲烷定量分析。02便携式催化氧化-FID:通过催化剂将甲烷以外物质催化氧化成CO2和H2O。↓↓↓标准分析步骤1.测试准备(1)开启电源预热至工作状态(约15~30分钟);(2)预估待测污染物浓度,选择仪器内置的校准曲线或校准量程。2.仪器核查(1)进行零点校准,总烃测试结果应不超过0.4 mg/m3(以甲烷计);(2)使用钢瓶法或气袋法进行量程校准► 标气浓度值>100 μmol/mol 时,测定相对误差和相对偏差应在±5%以内; ► 标气浓度值≤100 μmol/mol 时,测定绝对误差和绝对偏差应在±5 μmol/mol 以内。3.样品测定(1)将采样管前端置于排气筒中并尽量靠近中心位置,封堵采样孔;(2)启动采样泵,以适当的流量采样测定。采样时,流量波动幅度应在±10%以内,采样管和伴热管的加热、伴热温度应控制在120℃±5℃以内;(3)仪器运行稳定后,按分钟保存测定数据,连续采样测定5min~15min,全部有效分钟数据(至少5个)的平均值作为一次测量值。样品测定时,同步测定样品中水分含量;(4)全部样品测定后,用零点气清洗仪器,使仪器示值回到零点附近并保持稳定;根据要求测试零点漂移、量程漂移、示值误差、系统偏差等并记录;(5)关闭电源,断开仪器各部分连接并整理装箱,结束测定。4.结果表示(1)测定结果小于10 mg/m3时,保留至小数点后1位;(2)测定结果大于等于10 mg/m3,保留3位有效数字;(3)非甲烷总烃的质量浓度计算结果应为非负值,计算结果为负值时以0计。5.质量控制(1)仪器每半年至少核查1次总烃和甲烷的零点漂移、量程漂移;核查结果应满足:► 校准量程>100μmol/mol时,零点漂移和量程漂移应在±5%以内;► 校准量程≤100μmol/mol时,零点漂移和量程漂移应在±5μmol/mol以内;(2)样品测定前后,应核查总烃和甲烷的示值误差、系统偏差,并填写样品测定前后仪器性能核查记录表;核查结果应满足:► 标准气体浓度值>100μmol/mol时,测定相对误差和相对偏差应在±5%以内;► 标准气体浓度值≤100μmol/mol时,测定相对误差和相对偏差应在±5μmol/mol以内。(3)样品测定结果与校准量程之间应满足以下要求,不满足则应重新选择校准量程;► 样品总烃、甲烷的测定结果≥10μmol/mol,应处于校准量程的20%~100%;► 样品总烃、甲烷的测定结果<10μmol/mol,应不超过仪器校准量程且仪器校准量程应在10μmol/mol左右;► 采用内置校准曲线测定样品时,样品总烃、甲烷的测定结果应处于其线性范围内;(4)便携式催化氧化-氢火焰离子化检测器法每年至少用丙烷标准气体验证1次催化氧化单元的转化效率,结果应不低于95%,否则应更换或补充催化剂。(点击图片可查看详情)(点击图片可查看详情)
  • 国家药监局发布《中国医疗器械标准管理年报(2021年度)》
    2021年,国家药监局坚持以习近平新时代中国特色社会主义思想为指导,把握新发展阶段,贯彻新发展理念,以推动高质量发展为主题,以规范管理为切入点,严格落实“最严谨的标准”要求,统筹推动医疗器械标准各项工作。  一、 做好标准体系顶层设计  2021年3月26日,国家药监局、国家标准委联合发布《关于进一步促进医疗器械标准化工作高质量发展的意见》(国药监械注〔2021〕21号,以下简称《意见》)。《意见》明确了到2025年基本建成适应医疗器械全生命周期管理需要,符合严守安全底线和助推质量发展高线新要求,与国际接轨、有中国特色、科学先进的医疗器械标准体系,实现标准质量全面提升,标准供给更加优质、及时、多元,标准管理更加健全、高效、协调,标准国际交流合作更加深入、更富成效的目标;提出了推进医疗器械标准化工作高质量发展的六大任务和三大保障措施。结合各领域“十四五”标准体系发展规划和监管实际,印发了《意见》任务分工,擘画了“十四五”期间医疗器械标准体系建设的顶层设计和标准化工作高质量发展的蓝图。  二、 健全标准组织架构  2021年,国家药监局整合各方资源,积极推动在监管急需领域、创新领域成立标准化技术组织,先后批准成立全国医疗器械临床评价、医用高通量测序2个标准化技术归口单位。  截至2021年12月31日,医疗器械标准化(分)技术委员会或技术归口单位[以下统称标委会(技术归口单位)]数量已增长到35个,包括13个总标委会(TC)、13个分标委会(SC)和9个技术归口单位,医疗器械标准组织架构见图1。图1. 医疗器械标准组织架构图  指导全国外科植入物和矫形器械等4个标准化技术委员会换届和全国麻醉和呼吸设备等9个标委会委员调整。全国医用临床检验实验室和体外诊断系统标准化技术委员会(SAC/TC136)及全国医疗器械生物学评价标准化技术委员会 (SAC/TC248)2个标委会先后在国家标准委组织开展的全国专业标准化技术委员会考核评估中结果为一级。  三、 研制疫情防控标准  (一) 健全我国疫情防控标准体系  1.组织制定《新型冠状病毒核酸检测试剂盒质量评价要求》《新型冠状病毒抗原检测试剂盒质量评价要求》《新型冠状病毒抗体检测试剂盒质量评价要求》《新型冠状病毒IgM抗体检测试剂盒质量评价要求》《新型冠状病毒IgG抗体检测试剂盒质量评价要求》5项推荐性国家标准,已于2021年11月26日正式发布,从核酸、抗原及抗体检测为新型冠状病毒检测试剂的质量评价提供技术支撑。  2.结合疫情防控常态化管理的要求,以及医用防护产业发展的需求,组织 GB 19083-2010《医用防护口罩》和GB 19082-2009《医用一次性防护服》修订;组织制定正压防护服、传染病患者运送负压隔离舱等4项生物防护相关行业标准。  (二) 积极助力国际疫情防控  1.2021年8月30日,国际标准ISO 80601-2-90:2021《医用电气设备 第2-90部分:高流量呼吸治疗设备的基本安全和基本性能专用要求》,由国际标准化组织(International Organization for Standardization,ISO)和国际电工委员会(International Electrotechnical Commission,IEC)官网发布,这是由我国提出并负责完成的首个新冠肺炎疫情防控医疗器械国际标准项目。该标准的发布填补了此类产品国际标准的空白,为保障高流量呼吸治疗设备的安全有效,促进国际流通起到了积极作用,为全球疫情防控提供技术支持和贡献中国智慧。  2.积极参与国际标准技术规范ISO/TS 5798《通过核酸扩增方法检测新冠病毒的质量规范》制定工作,目前已进入工作组草案(WD)阶段。  3.组织制定的《医用防护口罩技术要求》等2项新冠疫情防控相关国家标准外文版已正式发布。  四、 优化评估强制性标准  2021年3月29日,为进一步优化医疗器械强制性标准体系,国家药监局综合司印发《医疗器械强制性标准优化工作方案》,确定了工作目标、总体要求,进一步明晰了医疗器械强制性标准和推荐性标准的范畴,以及标准修订、废止、转化的情形,明确了职责分工、进度安排和工作要求。  根据工作方案,拟转化为推荐性标准126项,转化为强制性国家标准14项,废止17项,修订(含整合)122项,保持继续有效179项(见图2),上述优化评估结果正在国家药监局网站公示。图2. 医疗器械强制性标准优化评估公示结果统计图  五、 完成标准制修订任务  2021年下达医疗器械国家标准制修订计划38项,医疗器械行业标准制修订计划79项;发布医疗器械国家标准35项,医疗器械行业标准146项,医疗器械行业标准修改单3项。截至2021年12月31日,医疗器械标准共计1849项(见表1),医疗器械标准体系持续优化。    (一) 标准数量持续提升  2021年共发布医疗器械标准181项,标准发布数量较上一年度增长21%。近3年来,医疗器械标准发布数量稳步提升(见图3)。其中,国家标准发布数量增长显著。图3. 2019年—2021年医疗器械标准发布情况统计图  (二) 体系结构更加优化  截至2021年12月31日,按标准规范对象统计,现行有效的医疗器械标准中基础标准301项,占比16%;管理标准47项,占比3%;方法标准448项,占比24%;产品标准1053项,占比57%。2021年发布的181项标准中,基础标准44项,占比24%;管理标准8项,占比4%;方法标准32项,占比18%;产品标准97项,占比54%。  重点支持基础通用和监管急需标准制定,2021年发布的35项国家标准中,18项为医用电气设备GB 9706.1配套的系列专用安全标准,5项为新冠病毒检测试剂质量评价要求标准,6项为临床检验医学实验室质量和能力要求系列标准,2项为医疗器械生物学评价系列基础通用标准,基础通用标准和疫情防控、监管急需标准占比达89%。  (三) 覆盖领域更加全面  截至2021年12月31日,按标准规范对象统计,现行有效的医疗器械标准按照《中国标准文献分类法》,主要归类在医疗器械综合(C30)至医用卫生用品(C48)之间,占比前5位的分别是:医用化验设备(C44)14%,矫形外科、骨科器械(C35)11%,一般与显微外科器械(C31)11%,口腔科器械、设备与材料(C33)10%,医用射线设备(C43)9%(见4)。医疗器械标准基本覆盖医用电气设备、手术器械、外科植入物等医疗器械各技术领域。图4. 医疗器械标准各领域覆盖情况统计图(文献分类法)  2021年发布的181项标准中,发布数量排名前3的领域分别是医用化验设备(C44)、医疗器械综合(C30)、医用射线设备(C43),各领域发布标准数量见图5。图5. 2021年发布医疗器械标准各领域分布情况统计图  推进急需标准快速制定,落实《意见》要求,对新兴产业等监管急需标准紧急立项、快速制定、及时发布。如加快组织制定发布《重组胶原蛋白》等产业监管急需标准。  (四) 标准效力得到增强  在对存量医疗器械强制性标准进行优化评估的基础上,进一步落实《意见》要求,将增量医疗器械强制性标准严格限定在涉及基本安全、性能要求,涉及安全的基础通用性技术要求和涉及《医疗器械安全和性能的基本原则》有关要求的范畴。2021年共发布医疗器械强制性标准41项,其中国家标准17项,行业标准24项。41项强制性标准中,34项为GB 9706.1配套的医用电气设备并列和专用安全标准,占比达83%;其余7项强制性标准中,有 2项强制性标准整合代替了原来的8项强制性标准。  六、 建立标准管理长效机制  (一) 优化标准制修订工作机制  鼓励企业、科研院所、社会团体等各相关方积极参与标准制修订工作。建立并完善标准信息化平台,在标管中心网站及时公开标准发布公告、计划通知、立项/委员征集信息等,标准制修订过程信息100%对外公开,引导各方积极参与标准制修订工作。  (二) 完善标准实施反馈机制  2021年国家药监局建立并运行医疗器械标准实施反馈机制,形成了标准制修订全链条闭环管理。  建立医疗器械标准意见反馈信息系统。自2021年7月1日起在标管中心网站运行,进一步健全了医疗器械标准实施反馈平台和沟通渠道。对公众反馈的标准实施意见,组织研究处理,做到条条有回复,件件有处理。  七、 参与国际标准制修订 (一)我国主导制定的2项国际标准正式发布  除由我国主导制定的首个新冠疫情防控相关医疗器械国际标准ISO 80601-2-90:2021外,首个由我国医疗器械行业标准(标准号:YY/T 1553-2017)转化的国际标准ISO 22679-2021《心血管植入物-心脏封堵器》于2021年11月正式发布。该国际标准的发布标志着我国医疗器械标准在持续提升与国际标准一致性程度的基础上,逐步开始探索将我国标准推广到国际。  (二)积极研提国际标准新项目  2021年共提出《计算机体层摄影设备的能谱成像 性能评价方法》《外科器械 吻合器 第1部分:术语和定义》《外科器械 吻合器 第2部分:通用要求》《胶原蛋白特征多肽定量测定方法标准》《脱细胞基质支架材料中残留DNA定量测定方法标准》等6项医疗器械国际标准立项申请。  (三)积极推进国际标准制定  我国主导制定的国际标准ISO 8536-15《医用输液器 第15部分:一次性使用避光输液器》目前处于最终国际标准草案(FDIS)投票阶段;国际标准ISO/DIS 24072《输液器进气器件气溶胶细菌截留试验方法》和技术规范ISO/TS 24560-1《组织工程医疗产品 软骨核磁评价 第1部分:采用延迟增强磁共振成像和 T2 Mapping技术的临床评价方法》已进入国际标准草案(DIS)阶段。  (四)积极参与国际标准化活动  组织参加国际标准化会议50余次,及时跟踪国际标准新动态,代表我国参与国际标准投票共计193次,新推荐16名专家成为国际标准组织注册专家,积极参与国际标准化活动。  八、 提升标准服务水平  一是按技术领域研究编印《医疗器械标准目录》,在国家药监局和标管中心网站面向社会公开。二是现行333项医疗器械强制性行标文本和871项非采标推荐性行标文本全部公开,提高标准可及性,服务标准各相关方。三是制定并公开医疗器械标准年度宣贯计划和通知,共组织对123项医疗器械标准进行宣贯培训。  九、 宣传推广标准理念  一是成功举办2021年“世界标准日”医疗器械标准化主题宣传活动。在北京举办“标准助推医疗器械高质量发展”为主题的首届中国医疗器械标准论坛活动,并组织医用X射线分标委在深圳举办了以“创新科技时代下的医疗器械标准”为主题的第七届IEC国际医疗器械标准论坛。   二是配合“2021年全国医疗器械安全宣传周”,组织举办医疗器械标准管理线上分会。解读最新医疗器械标准规划政策,讲解医用电气设备基础通用安全标准相关要求和实施要点,进一步宣传标准理念。  三是举办医疗器械标准综合知识培训班和GB 9706.1-2020免费线上公益培训班,5300余人参训,进一步统一认识、提高理解、促进标准顺利实施。附表3.doc附表4.doc附表1.docx附表2.doc附表5.doc
  • 如何理解经认证的标准品的不确定度
    目的许多公司都需要进行风险评估,以便采取预防措施来降低风险、防止发生生产事故。在制药和半导体行业,测量的准确性至关重要,了解和评估工艺或产品的风险因素是生产规划和质量管理体系的重要组成部分。苏伊士公司是Sievers品牌分析仪器和耗材的生产供应商,我们非常了解仪器和标准品对工艺风险评估的重要影响。Sievers产品的测量不确定度都经过严格的表征,能够帮助用户进行全面性判断,使用户在工艺风险评估中正确使用Sievers产品。本文详细介绍如何确定Sievers认证标准品的不确定度,以及Sievers认证标准品如何满足国际标准化组织(ISO)17034号文件的要求,即《标准品供应商能力认可的一般性要求(General Requirements for the Competence of Reference Material Producers)》。概述不确定度是指测量结果值的可能范围,可被视为测量值不确定性的量化表现。了解不确定度及其对总体质量管理体系的影响,对于确保进行正确的风险管理和运营决策来说至关重要。在报告样品的测量值(例如总有机碳TOC)时,测量值的质量和可靠性必须有很高的置信度。用户必须了解测量系统的不确定度以及造成这些不确定度的原因。造成测量值的总体不确定度的两大原因是:- 测量仪器的不确定度- 用于校准或确认测量仪器的经认证标准品的不确定度测量仪器的不确定度来自于多种因素,其中包括仪器的精确度、仪器的维护、以及其它环境条件1。对于经认证标准品来说,必须了解标准品本身的不确定度、该不确定度对其认证值的意义、以及如何解释标准品的不确定度对应用的影响。在评估测量值的限值范围以及该范围对所监测的工艺或产品的影响时,必须充分了解经认证标准品的不确定度,这一点至关重要。在评估不同供应商的经认证标准品时,必须正确理解供应商提供的分析证书上的信息,方能确保符合企业内部要求和当地法规要求。不应将分析证书上标明的经认证标准品的不确定度当作该标准品的实际接受标准。在设定接受标准时,必须同时考虑标准品的不确定度和测量仪器所造成的不确定度或偏差。分析证书上标明的标准品不确定度,只源自造成该标准品认证值偏差的因素。以下介绍ISO 17034标准所要求的5个项目,这5个项目构成认证标准品的分析证书上标明的总体不确定度。本文参照ISO 17034的要求,比较了几家标准品供应商的不确定度。虽然这里讨论的是TOC,但同样的道理也适用于其它认证数据,比如电导率。影响不确定度的因素ISO 17034 是国际标准,定义了对经认证标准品的要求,其中包括总体不确定度(UCRM,Uncertainty of Certified Reference Materials)。ISO文件规定,在计算每个认证标准品的不确定度时,都必须包括以下5项2 :1) Ults — 长期稳定性的差异2) Usts — 短期稳定性的差异3) Uhom — 同批标准品的同质性差异4) Uchar — 标准品制备的差异5) k — 包含因子长期稳定性长期稳定性的不确定度(Ults)是指标准品在有效期内的TOC变化。TOC标准品会随着时间而变化,同一批标准品在有效期内的不同时间会报告不同的结果,因此必须量化这种不稳定性。这种不稳定性通常是导致总体不确定度的最重要因素。影响TOC标准品稳定性的因素包括:化学品的不稳定性、使用的防腐剂的不稳定性、标准品的储存条件的差异。短期稳定性短期稳定性的不确定度(Usts)是指标准品在转移过程中的TOC变化。当标准品暴露于不同的存储条件(例如不同的温度或光照)时,TOC就会发生变化,因此必须考虑这些短期变化所造成的不确定度。如果标准品的供应商能够提供恰当的运输条件,通常可以忽略此项。3同质性同质性的不确定度(Uhom)是指同一批次标准品的同质性差异,即同一批次的标准品之间的差别4。在计算Uhom时,必须考虑以下两个因素:“样品瓶内差异(Uwb)”和“样品瓶间差异(Ubb)”4。对于TOC标准品来说,同一批次的各个样品瓶之间(Ubb)以及同一个样品瓶之内(Uwb)都有一定的差异,必须充分考虑和量化这种差异。造成TOC标准品的同质性差异的因素包括:存储TOC标准品的容器的清洁度、样品制备区的清洁度、确保溶液同质性的生产工艺的总体稳定性。同质性差异也是造成总体不确定度的重要因素,其重要程度取决于企业对产品质量的要求。表征表征的不确定度(Uchar)是指在设定标准品认证值的过程中所产生的不确定度。对于TOC标准品来说,表征不确定度等于标准品制备工艺的不确定度。造成表征不确定度的因素包括:生产标准品的设备和原料的不确定性、操作人员的技术不确定性、标准品制备工艺的质量和一致性的不确定性。由于经认证标准品的生产商通常会花大力气来培训技术熟练的操作人员,来维护高质量的标准品制备设备,来制定完善的标准品制备工艺,因此表征不确定度对总体不确定度的影响较小。TOC标准品的生产工艺通常使用经过校准的天平和玻璃器皿。ISO 4787或ASTM E438所规定的高质量玻璃器皿的不确定度通常在0.1%至1%之间5。对于典型的TOC标准品制备工艺来说,如果使用经过校准的天平,而且操作人员训练有素,则预期测量值的表征不确定度估计在0.5%范围内。包含因子包含因子(k)为标准品供应商报告的总体不确定度提供一定的置信度。包含因子定义了一定比例的标准品的不确定度范围。标准品供应商根据想要的置信度来设定经认证标准品的包含因子。较小的包含因子会产生较小的标称不确定度,但同时也会降低分析证书上标明的标准品不确定度范围的置信度。包含因子通常为2,可以得到约95%的置信度4。比较供应商我们在比较研究中评估了几个标准品供应商的标称不确定度和实测结果。如表1所示,苏伊士公司和供应商A的分析证书上所标明的不确定度差别很小,而供应商B的不确定度就要低得多。这表明他们在不确定度计算中使用了不同的包含因子,供应商B的数据不完全符合ISO 17034要求。表1:各供应商的两种经认证标准品的报告的不确定度。表中是各供应商的标准品分析证书上标明的不确定度比较研究中的数据表明,如果使用2作为分析证书中的包含因子,供应商B的两种经认证标准品的实际不确定度就要比表1中所列的不确定度高出约3倍。供应商B的长期稳定性的实测不确定度(Ults)要高于其分析证书所报告的总体不确定度。关键性的工艺必须有明确定义的和易于理解的不确定度范围,才能确保将产品控制在这些范围之内。如果标准品制备工艺的不确定度范围不明确,就会增加工艺风险,发生代价高昂的质量偏差。总结在综合评估工艺的不确定性时,必须将认证标准品的不确定度这个重要因素考虑进去,并且在公司的风险管理评估中予以充分重视。Sievers经认证的标准品都经过严格的测试和表征,通过了ISO 17034认证。苏伊士Sievers分析仪致力于提供最优产品,符合全世界的法规和各个行业用户的需求。我们的技术人员将帮助您分析和解释如何使Sievers产品的不确定度适用于您的应用,使您可以高效、自信地进行操作。如果发生不合规的情况,我们会提供《Sievers事故分析报告》,帮助您快速完成事故调查并降低损失。从仪器和经认证标准品,到产品质量和技术服务,苏伊士Sievers分析仪为您提供最完整的解决方案,确保您的工作成功,并将风险降到最低。参考文献1.Joint Committee for Guides in Metrology. (2008, September). Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement.2.International Organization for Standardization. (2016). ISO 17034: 2016-General Requirements for the Competence of Reference Material Producers.3.Lensinger, T. P., Van der Veen, A. M., & Lamberty, A. (2001). Uncertainty Calculation in the Certification of Reference Materials 3. Stability Study. Accreditation and Quality Assurance, 257-263.4.International Organization for Standardization. (2017). Guide 35-Reference Materials-Guidance for characterization and assessment of homogeneity and stability. Geneva, Switzerland.5.American Society for Testing and Material. (2018). ASTM E438-Standard Specification for Glasses in Laboratory Apparatus.Conshohocken, PA, USA.
  • 【标准解读】GB/T 4985-2021 石油蜡针入度测定法
    国家标准《石油蜡针入度测定法》由TC280(全国石油产品和润滑剂标准化技术委员会)归口上报,TC280SC3(全国石油产品和润滑剂标准化技术委员会石油蜡类产品分会)执行,主管部门为国家标准化管理委员会。本标准将于2022年5月1日正式实施,主要起草单位:中国石油化工股份有限公司大连石油化工研究院、中国石油化工股份有限公司荆门分公司、中国石油化工股份有限公司茂名分公司、中国石油天然气股份有限公司大连石化分公司、中国石油天然气股份有限公司抚顺石化分公司、辽宁省检验检测认证中心。主要起草人:郭士刚、王少军、高旭锋、凌凤香、张会成、蒋秀华、刘锦凤、于锡闻、吕申宏、段卫宇。本文由标准由中国石化大连石油化工研究院首席专家 张会成著,文章禁止任何形式的转载、摘录,违者必究。一、修订背景石油蜡针入度是在规定条件下标准针刺入蜡试样的深度,是石油蜡硬度的测量结果,影响到蜡的使用性能。GB/T 4985-2010随着形势发展已不能满足指标表征的需要:一是蜡的来源渠道增加,市场出现非天然石油蜡蜡等产品;二是GB/T 254《半精炼石蜡》、NB/SH/T 0013《微晶蜡》中含有35℃下针入度指标,而方法中未规定测定精密度,市场又出现了40℃针入度要求;三是部分石油蜡产品25℃下针入度不能充分区分产品性能;四是方法中缺乏自动化仪器操作过程,而市场用户已普遍使用;五是我国是蜡生产大国,更是蜡出口大国,但不是标准强国,执行标准需紧跟国际先进标准或严于先进标准。满足要求的修订标准已发布实施。不同试验温度针入度,1/10mm样品25℃30℃35℃40℃45℃半精炼蜡60#1523314871半精炼蜡54#183977139163全精炼蜡64#1619233244微晶蜡70#1922324968 二、修订的技术内容标准主要修订技术内容:1.增加了费托蜡、合成蜡、生物蜡等产品;2.增加了自动针入度计的试验过程;3.修订了制样试验温度;4.增加了质量控制内容;5.增加了35℃、40℃下结果精密度。标准主要技术变化GB/T 4985-2010GB/T 4985-2021适用范围石油蜡石油蜡、费托蜡、合成蜡、生物蜡仪器设备手动针入度计手动针入度计、自动针入度计制样温度23.9℃±2.2℃24.0℃±2.0℃质量控制无增加了质量控制要求精密度25℃精密度25℃、35℃、40℃下精密度三、修订过程大连石油化工研究院负责起草,组织6家单位参与,共使用5种自动和手动设备,10个样品包括全精炼蜡、半精炼蜡、粗石蜡、工业石蜡、食品添加剂石蜡、费托蜡、石蜡,测定结果使用GB/T 6683进行数据处理,获得精密度。四、试验过程注意事项1、仪器调节:水准仪保证标准针垂直,脱落无明显阻力。2、零”点调节:自动设备科自动零点调节,手动设备可以转动数字表盘达到指针指“0”,也可以记录指针位置作为相对零点,用减差法计算针入度。3、水浴控制:温度变化控制在±0.1 ℃以内,水液面高于试样上表面25mm。4、温度测量:全浸型温度计保证水液面高于水银柱,必要时需进行校正。5、精密温度计、标准针、秒表须检定校准并实验室确认。
  • 《木质活性炭试验方法 表观密度的测定》等2214项国家标准复审结论进行公示
    各有关单位:按照《国家标准化管理委员会关于开展推荐性国家标准复审工作的通知》(国标委发【2022】10号)要求,标准委已完成相关国家标准复审工作。现将《木质活性炭试验方法 表观密度的测定》等2214项复审结论为修订或整合修订的项目进行公示。如对复审结论有不同意见,请于2023年4月9日前,登录征求意见公示网页 https://std.samr.gov.cn/gb/search/withdrawnReviewDetail?id=6233CB31322EB499374C40DE7FE1C039,通过意见反馈功能,将意见反馈至标准委。国家标准化管理委员会2023年3月10日 相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 12496.1-1999木质活性炭试验方法 表观密度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20172GB/T 12496.10-1999木质活性炭试验方法 亚甲基蓝吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20173GB/T 12496.11-1999木质活性炭试验方法 硫酸奎宁吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20174GB/T 12496.12-1999木质活性炭试验方法 苯酚吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20175GB/T 12496.13-1999木质活性炭试验方法 未炭化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20176GB/T 12496.14-1999木质活性炭试验方法 氰化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20177GB/T 12496.15-1999木质活性炭试验方法 硫化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20178GB/T 12496.16-1999木质活性炭试验方法 氯化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20179GB/T 12496.17-1999木质活性炭试验方法 硫酸盐的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201710GB/T 12496.18-1999木质活性炭试验方法 酸溶物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201711GB/T 12496.19-2015木质活性炭试验方法 铁含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201712GB/T 12496.2-1999木质活性炭试验方法 粒度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201713GB/T 12496.20-1999木质活性炭试验方法 锌含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201714GB/T 12496.21-1999木质活性炭试验方法 钙镁含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201715GB/T 12496.22-1999木质活性炭试验方法 重金属的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201716GB/T 12496.3-1999木质活性炭试验方法 灰分含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201717GB/T 12496.4-1999木质活性炭试验方法 水分含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201718GB/T 12496.5-1999木质活性炭试验方法 四氯化碳吸附率(活性)的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201719GB/T 12496.6-1999木质活性炭试验方法 强度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201720GB/T 12496.7-1999木质活性炭试验方法 pH值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201721GB/T 12496.8-2015木质活性炭试验方法 碘吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201722GB/T 12496.9-2015木质活性炭试验方法 焦糖脱色率的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201723GB/T 12901-2006脂松节油国家林业和草原局整合修订整合修订标准号:GB/T 12901-2006,GB/T 31756-201524GB/T 12902-2006松节油分析方法国家林业和草原局整合修订整合修订标准号:GB/T 12902-2006,GB/T 33029-201625GB/T 13803.1-1999木质味精精制用颗粒活性炭国家林业和草原局整合修订整合修订标准号:GB/T 13803.1-1999,GB/T 13803.3-199926GB/T 13803.2-1999木质净水用活性炭国家林业和草原局修订27GB/T 13803.3-1999糖液脱色用活性炭国家林业和草原局整合修订整合修订标准号:GB/T 13803.1-1999,GB/T 13803.3-199928GB/T 13803.4-1999针剂用活性炭国家林业和草原局修订29GB/T 13803.5-1999乙酸乙烯合成触媒载体活性炭国家林业和草原局修订30GB/T 14020-2006氢化松香国家林业和草原局修订31GB/T 14021-2009马来松香国家林业和草原局整合修订整合修订标准号:GB/T 14021-2009,GB/T 14020-200632GB/T 14022.1-2009工业糠醇国家林业和草原局整合修订整合修订标准号:GB/T 14022.1-2009,GB/T 14022.2-200933GB/T 14022.2-2009工业糠醇试验方法国家林业和草原局整合修订整合修订标准号:GB/T 14022.1-2009,GB/T 14022.2-200934GB/T 17664-1999木炭和木炭试验方法国家林业和草原局整合修订整合修订标准号:20220535-T-43235GB/T 17666-1999黑荆树栲胶单宁快速测定方法国家林业和草原局修订36GB/T 18247.1-2000主要花卉产品等级 第1部分:鲜切花国家林业和草原局修订37GB/T 18247.2-2000主要花卉产品等级 第2部分:盆花国家林业和草原局修订38GB/T 18247.3-2000主要花卉产品等级 第3部分:盆栽观叶植物国家林业和草原局修订39GB/T 18247.4-2000主要花卉产品等级 第4部分:花卉种子国家林业和草原局修订40GB/T 18247.5-2000主要花卉产品等级 第5部分:花卉种苗国家林业和草原局修订41GB/T 18247.6-2000主要花卉产品等级 第6部分:花卉种球国家林业和草原局修订42GB/T 1926.1-2009工业糠醛国家林业和草原局整合修订整合修订标准号:GB/T 1926.1-2009,GB/T 1926.2-198843GB/T 1926.2-1988工业糠醛试验方法国家林业和草原局整合修订整合修订标准号:GB/T 1926.1-2009,GB/T 1926.2-198844GB/T 20399-2006自然保护区总体规划技术规程国家林业和草原局修订45GB/T 20416-2006自然保护区生态旅游规划技术规程国家林业和草原局修订46GB/T 20449-2006活性炭丁烷工作容量测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201747GB/T 20450-2006活性炭着火点测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201748GB/T 20451-2006活性炭球盘法强度测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201749GB/T 22347-20084号系列紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201850GB/T 22348-20084号紫胶虫种胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201851GB/T 26424-2010森林资源规划设计调查技术规程国家林业和草原局修订52GB/T 31756-2015重松节油国家林业和草原局整合修订整合修订标准号:GB/T 12901-2006,GB/T 31756-201553GB/T 33024-2016柳编制品国家林业和草原局修订54GB/T 33029-2016松节油及相关萜烯产品组成 毛细管气相色谱分析方法国家林业和草原局整合修订整合修订标准号:GB/T 12902-2006,GB/T 33029-201655GB/T 8137-2009颗粒紫胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201856GB/T 8138-2009紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201857GB/T 8139-2009脱蜡紫胶片、脱色紫胶片和脱色脱蜡紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201858GB/T 8140-2009漂白紫胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201859GB/T 8141-2009军用紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201860GB/T 8142-2008紫胶产品取样方法国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201861GB/T 8143-2008紫胶产品检验方法国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201862GB/T 15691-2008香辛料调味品通用技术条件中华全国供销合作总社修订63GB/T 18525.6-2001桂园干辐照杀虫防霉工艺中华全国供销合作总社整合修订整合修订标准号:GB/18525.3-2001,GB/18525.4-2001,GB/18525.5-2001,GB/18525.6-200164GB/T 20573-2006密蜂产品术语中华全国供销合作总社修订65GB/T 21488-2008脐橙中华全国供销合作总社修订66GB/T 21528-2008蜜蜂产品生产管理规范中华全国供销合作总社修订67GB/T 21532-2008蜂王浆冻干粉中华全国供销合作总社修订68GB/T 22299-2008辣椒粉 天然着色物质总含量的测定中华全国供销合作总社修订69GB/T 22300-2008丁香中华全国供销合作总社修订70GB/T 22303-2008芹菜籽中华全国供销合作总社修订71GB/T 22306-2008胡荽中华全国供销合作总社修订72GB/T 17924-2008地理标志产品标准通用要求全国知识管理标准化技术委员会修订73GB/T 20402-2006超市鲜、冻畜禽产品准入技术要求中国商业联合会修订74GB/T 8935-2006工业用猪油中国商业联合会修订75GB/T 12309-1990工业玉米淀粉中国轻工业联合会修订76GB/T 4548-1995玻璃容器内表面耐水侵蚀性能测试方法及分级中国轻工业联合会修订77GB/T 11186.1-1989涂膜颜色的测量方法 第一部分:原理全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198978GB/T 11186.2-1989涂膜颜色的测量方法 第二部分:颜色测量全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198979GB/T 11186.3-1989涂膜颜色的测量方法 第三部分:色差计算全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198980GB/T 13491-1992涂料产品包装通则全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 9750-1998,GB/T 13491-199281GB/T 13492-1992各色汽车用面漆全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 13492-1992,GB/T 13493-199282GB/T 13493-1992汽车用底漆全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 13492-1992,GB/T 13493-199283GB/T 1710-2008同类着色颜料耐光性比较全国涂料和颜料标准化技术委员会修订84GB/T 1749-1979厚漆、腻子稠度测定法全国涂料和颜料标准化技术委员会修订85GB/T 20623-2006建筑涂料用乳液全国涂料和颜料标准化技术委员会修订86GB/T 21866-2008抗菌涂料(漆膜)抗菌性测定法和抗菌效果全国涂料和颜料标准化技术委员会修订87GB/T 5208-2008闪点的测定 快速平衡闭杯法全国涂料和颜料标准化技术委员会修订88GB/T 6753.4-1998色漆和清漆 用流出杯测定流出时间全国涂料和颜料标准化技术委员会修订89GB/T 9750-1998涂料产品包装标志全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 9750-1998,GB/T 13491-199290GB/T 9754-2007色漆和清漆 不含金属颜料的色漆漆膜的20°、60°和85°镜面光泽的测定全国涂料和颜料标准化技术委员会修订91GB/T 19629-2005医用电气设备 X射线诊断影像中使用的电离室和(或)半导体探测器剂量计全国医用电器标准化技术委员会修订92GB/T 20013.1-2005核医学仪器 例行试验 第1部分:辐射计数系统全国医用电器标准化技术委员会修订93GB/T 20013.2-2005核医学仪器 例行试验 第2部分:闪烁照相机和单光子发射计算机断层成像装置全国医用电器标准化技术委员会修订94GB/T 20013.3-2015核医学仪器 例行试验 第3部分:正电子发射断层成像装置全国医用电器标准化技术委员会修订95GB/T 19042.2-2005医用成像部门的评价及例行试验 第3-2部分:乳腺摄影X射线设备成像性能验收试验全国医用电器标准化技术委员会修订96GB/T 16867-1997聚苯乙烯和丙烯腈-丁二烯-苯乙烯树脂中残留苯乙烯单体的测定 气相色谱法全国塑料标准化技术委员会整合修订整合修订标准号:GB/T 16867-1997,GB/T 38271-201997GB/T 30924.1-2016850GB/T 16860-1997感官分析方法 质地剖面检验全国感官分析标准化技术委员会修订851GB/T 20861-2007废弃产品回收利用术语中国标准化研究院修订852GB/T 8223-1987价值工程 基本术语和一般工作程序中国标准化研究院修订
  • 国家标准委发布国家技术标准创新基地申报指南,聚焦高端芯片、碳达峰碳中和等领域
    国家技术标准创新基地(以下简称创新基地)是围绕全类型标准和标准化全生命周期,创新标准化与科技创新互动发展方式、创新标准实施应用方式、创新国内国际标准化工作同步推进方式的重要平台。为做好创新基地申报和建设工作,国家标准化管理委员会印发《国家技术标准创新基地申报指南(2023—2025年)》。提出,“十四五”期间,拟新批准建设领域类创新基地不超过20个。重点聚焦人工智能、量子信息、区块链、数字孪生、操作系统、高端芯片、高端装备、元宇宙、数字乡村、新一代信息技术、数字经济等新兴领域,以及生物技术、新型电力系统、碳达峰碳中和、生命健康、共同富裕、农业高新技术产业等经济社会发展重点领域。具体内容如下:国家技术标准创新基地申报指南(2023—2025年)国家技术标准创新基地(以下简称创新基地)是我国标准化工作体系的重要组成部分,是有效整合标准技术、检测认证、知识产权、标准样品以及科技和产业等资源,围绕全类型标准和标准化全生命周期,创新标准化与科技创新互动发展方式、创新标准实施应用方式、创新国内国际标准化工作同步推进方式的重要平台。为贯彻落实《国家标准化发展纲要》,做好创新基地申报和建设工作,依据《国家技术标准创新基地管理办法(试行)》,制定本申报指南。一、申报范围“十四五”期间,拟新批准建设领域类创新基地不超过20个。申报领域围绕落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《国家标准化发展纲要》《“十四五”推动高质量发展的国家标准体系建设规划》等国家重要规划和战略,重点聚焦人工智能、量子信息、区块链、数字孪生、操作系统、高端芯片、高端装备、元宇宙、数字乡村、新一代信息技术、数字经济等新兴领域,以及生物技术、新型电力系统、碳达峰碳中和、生命健康、共同富裕、农业高新技术产业等经济社会发展重点领域。通过开展创新基地建设,形成科技研发、标准研制、产业应用一体化推进,国内国际协同发展的标准化工作新模式,推动标准化改革创新,提升产业标准化水平,有力支撑经济社会高质量发展。二、申报主体基本要求(一)创新基地申报主体。创新基地的申报主体包括申报单位、申报组织单位和推荐单位。1. 申报单位。指申请承担创新基地建设和运行任务的主体。其中,创新基地的申报单位主要为企事业单位等。2. 申报组织单位。创新基地的申报组织单位指所属领域国务院有关行政主管部门的标准化主管机构或所在地省级标准化行政主管部门。3. 推荐单位。创新基地的推荐单位指所属领域国务院有关行政主管部门或所在地省级人民政府。(二)申报单位资质条件。1. 具有独立法人资格,并得到行业部门、地方政府的支持;2. 具有结构合理的高水平标准化工作队伍,能够提供必要的办公条件及经费支持;3. 在标准化工作中具有较高知名度和影响力,拥有丰富的标准制修订经验,承担相关领域标准化技术组织,或与相关领域标准化技术组织合作紧密;4. 能够有效汇聚标准技术、检测认证、知识产权、标准样品以及科技、产业等资源,具有较强聚集创新资源和提供市场化服务的能力;5. 具有承担省部级以上科技计划项目的经验;6. 其他有利于创新基地建设和运行的条件。三、申报程序和要求创新基地申报程序主要包括申报组织、网上申报、审核推荐、形式审查、专家评审、网上公示、批准建设等7个环节。(一)申报组织。申报组织单位根据《国家技术标准创新基地管理办法(试行)》及本指南要求,重点做好以下工作:1. 根据本指南确定的申报范围,结合本领域或本地区的标准创新需求、工作基础和优势条件,初步确定创新基地建设方向;2. 组织本领域或本地区有意愿申报创新基地的单位编制《国家技术标准创新基地申报方案》(以下简称《申报方案》),并对《申报方案》进行审核把关;3. 指导申报单位进行网上申报。(二)网上申报。申报单位登录“国家技术标准创新基地管理系统”(以下简称管理系统),注册账户,并在线填报《申报方案》。申报单位将系统生成的《申报方案》用A4纸双面打印,装订成册(一式4份),加盖单位公章并报送申报组织单位,由申报组织单位审核盖章后报送至推荐单位。(三)审核推荐。推荐单位对收到的申报材料进行审核,符合相关条件的出具正式推荐函,将《申报方案》和推荐函邮寄或交换至标准委,同时将《申报方案》和推荐函扫描件(PDF格式)上传至管理系统。(四)形式审查。标准委根据申报推荐情况,适时组织对申报材料进行形式审查。需要进一步补充材料的,相关单位应在规定时间内补充材料并报送标准委。通过形式审查的纳入专家评审范围。(五)专家评审。标准委组织有关专家召开《申报方案》评审会,综合考虑创新基地建设的必要性、可行性、目标任务、保障措施等,并形成评审意见。申报单位根据评审意见对《申报方案》进行修改完善,并在规定时间内提交标准委。(六)网上公示。标准委对通过专家评审的申报方案进行研究,符合要求的按程序在官方网站上进行公示,公示信息包括拟批准建设创新基地的名称、承担单位、推荐单位等,公示时间不少于5个工作日。(七)批准建设。标准委对公示后无异议或异议处理完毕符合要求的予以批准建设,建设期一般不超过3年。四、其他事项(一)数量和时间要求。1. 对于领域类创新基地,同一推荐单位每年度只能推荐一个相同或相近领域的申报方案;2. 申报推荐系统常年开放,根据申报推荐情况按年度滚动批准建设。(二)联系方式。1. 咨询电话:010—82262652/82262610。2. 书面材料接收地址:北京市东城区安外大街56号市场监管总局标准创新司(邮编:100088)。邮寄前请拨打咨询电话联系确认地址,材料上请注明“国家技术标准创新基地申报材料”。
  • 上海市分析测试协会立项《氘化铝锂同位素丰度的测定》等2项团体标准
    各会员单位及有关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《上海市分析测试协会团体标准管理办法》规定,在相关部门指导下,结合行业发展需要,上海市分析测试协会对《氘化铝锂同位素丰度的测定》、《锂电池电解液成分检测》2项团体标准进行了立项审查,经相关专家审议,上述所申报的2项团体标准符合立项条件,批准立项,现予以公告(详见附件)。请各制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。同时,欢迎有关企业和机构加入团体标准的起草编制工作。联系人:钱相如电话:15751007487邮箱:1318155546@qq.com上海市分析测试协会2024年2月6日上海市分析测试协会关于《氘化铝锂同位素丰度的测定》等 2 项团体标准立项的公告.pdf
  • 曾静研究员浅谈轮状病毒核酸标准物质研究
    轮状病毒核酸标准物质研究曾静,徐蕾蕊近年来,由食源性病毒引起的食品安全事件呈增长态势。食源性病毒一直难以得到及时、有效的监控,不仅对食品卫生和人民健康构成严重威胁,也对食品工业和国民经济造成很大影响。食源性病毒是以食物为载体,导致人类患病的病毒。轮状病毒(Rotavirus,RV)是在世界范围内引起儿童急性腹泻和儿童重症腹泻的最常见的病毒。自1973年Bishop发现RV以来,人们对RV的危害性认识越来越清楚。据统计,全球每年约有1.14亿儿童腹泻与RV有关,导致52.7万人死亡。 在我国,RV腹泻每年大约导致27 000名5岁以下儿童死亡;全国范围内因腹泻入院的5岁以下儿童中,RV阳性检出率高达47.8%。 快速可靠的检测技术对控制轮状病毒引起的食源性腹泻,尤其是儿童重症腹泻,保障人民健康具有重要意义。目前,RV的检测方法主要包括电镜观察、细胞培养、核酸杂交、酶联免疫及分子生物学方法等。 尤其以PCR为基础的核酸扩增方法,逐步应用在食源性病毒的检测中,可缩短检测时间,完善食源性病毒检测方法。检验检疫行业标准对该病毒的检测也是基于PCR技术的qRT PCR方法,然而实际操作过程中存在较多问题,如实验人员操作的随机误差, 标本核酸提取后抑制物的残留,带扩增靶核酸浓度、逆转录效率等均可影响扩增效率,造成检测结果偏差。一个稳定可靠,无生物传染危险性的标准物质,对于保证RV核酸扩增检测质量具有重要意义。以往多采用质粒DNA或含有病毒颗粒的阳性样本,如腹泻患者粪便样品作为核酸扩增检测时的阳性对照。而质粒DNA无法对病毒RNA逆转录的过程进行控制,在用于定量分析时很难直观传达病毒含量信息。患者粪便样品有潜在的传染性,均一性差,制备运输困难,且反复冻融后病毒载量会明显降低。人工合成的cRNA恰好能弥补此不足,只需经过一定处理,保证其稳定性,就可作为理想标准品对检测过程中的逆转录和PCR两个环节进行质量控制。本研究构建含T7启动子的重组质粒,选择RV目的基因下游的Ham HⅠ限制性内切酶位点进行单酶切,可有效避免非目的基因的转录,易于转录和富集含RV目的基因的cRNA片段。获得的cRNA与RV基因(accession no. EU868888)100%同源,且与重组质粒pcDNAII-NSP3测序结果一致,为RV核酸标准物质的溯源性提供了基础。均一性研究结果显示:RV核酸标准物质样品的均一性引入的不确定度为 0.21×107 拷贝/μL,瓶间精密度与瓶内精密度差异无统计学意义, 符合JJG 1006-94《一级标准物质》的相关要求。稳定性研究方面,RV核酸标准物质样品在40 ℃高温下迅速降解,在RT,4 ℃,-20 ℃条件下分别稳定保存3,7,21d,该标准物质的运输条件为低温(<4 ℃)运输,最长运输期限为7d;趋势检验分析表明,-80 ℃时,在保存时间6个月内,RV核酸标准物质样品cRNA含量无显著差异,满足标准物质的实际应用,稳定性引入的不确定度为0.18×107拷贝/μL。目前,国内外没有相应的可供RV核酸标准物质样品进行对比溯源定值的有证标准物质,因此采取多家有资质的独立实验室应用数字PCR方法联合定值的方式进行定值研究和不确定度评价。近年来发展起来的数字PCR(Digital PCR,dPCR)技术是一种全新的核酸定量检测方法。1999 年 Vogelstein与Kinzler首次提出了数字PCR的概念,逐步形成了微反应室/孔板数字PCR(Chamber digital PCR,cdPCR)、微流体数字PCR(Microfluidic digital PCR,mdPCR)(大规模集成微流控芯片)和微滴式数字PCR(Droplet digital PCR,ddPCR)3种dPCR系统。 在3种dPCR系统中,ddPCR 采用油包水的微滴方式将含有DNA或cRNA模板的PCR反应体系分割到 10 000~20 000个独立反应单元中,每个独立反应单元内均包含DNA或cRNA单分子和PCR反应溶液,并且独自进行逆转录和PCR扩增反应,最后微滴逐一通过微滴检测器,有荧光信号的微滴记为阳性,无荧光信号的微滴记为阴性,记录每个样品中阳性微滴的比例,按照泊松分布原理,计算反应体系内模板的拷贝数,根据模板的稀释倍数,计算样品中的模板含量,不依靠校准物或外标,实现核酸精准定量。在实际操作过程中,ddPCR 系统能够分割形成的小反应单元数目有限,一般在10000-20000之间,因此需要对核酸模板适度稀释,方能用ddPCR方法进行精准定量。本研究首先对cRNA 采用天平称重法进行10倍梯度稀释至合适的浓度,应用ddPCR方法在多家有资质的实验室内进行定值研究,以含有RV目的片段的cRNA的拷贝浓度,即每μL溶液中所含的cRNA拷贝数作为标准值。根据ddPCR原理,实现 RV 核酸标准物质特向量值的溯源,且所用天平、移液器等所有设备在投入使用前都进行校准,确保定值结果的准确、有效和可溯源性。定值研究得到的5组有效检测数据总体近似符合正态分布,而各组检测数据不等精度,故对定值结果进行不等精度加权处理, 将加权平均值6.60×107 拷贝/μL 作为 RV 核酸标准物质的标准值。定值不确定度评价应包括测量平均值的标准偏差(A类分量)和定值过程人员、设备、环境等引入的不确定度(B类分量),考虑到测量过程中B类分量被随机体现在定值结果中,故将多家实验室定值数据加权平均值引入的不确定度分量作为RV核酸标准物质的定值不确定度,为 0.10×107拷/μL。综合均匀性引入的不确定度ubb及稳定性引入的不确定度us计算RV核酸标准物质的标准不确定度uCRM=0.30×107拷贝/μL。报告标准物质特性量值的测量结果时,需要使用扩展不确定度,特性量值表达为标准值±扩展不确定度。扩展不确定度是指:确定测量结果区间的量,合理赋予被测量值分布的大部分可望含于此区间。根据定值结果符合正态分布,本研究中取置信概率 95%,扩展因子 k=2,计算相对扩展不确定度,得到 RV 核酸标准物质特性量值为(6.60±0.60)×107 拷贝/μL。食源性病毒检测已由“定性检出”步入到“精准定量”时代,越来越多的医疗机构和检测单位都意识到病毒精准定量的重要性和必要性。本标准物质的研制,对食源性病毒检测标准物质的制备技术和稳定保存技术的发展,积极开展相关病毒检测标准物质的制备,填补相关检测领域的空白,进一步推进食源性病毒检测的标准化和规范化具有重要意义。作者简介中国海关科学技术研究中心 曾静 研究员毕业于中国农业大学微生物专业,获理学博士学位。在微生物专业领域具有30年工作经验。第一届食品安全国家标准评审委员会委员,第二届食品安全国家标准评审委员会副主任委员;参与制定国家食品安全卫生标准 微生物限量标准GB29921;主持和参与科技部重大专项6项,获得省部级一、二、三等奖共计9项,制定行业标准30余项,发表科研论文40余篇。 (本文编辑:刘立东)【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式分享,欢迎自荐或引荐投稿联系人:刘编辑word图文/视频投稿邮箱:liuld@instrument.com.cn
  • AB SCIEX推出四款质谱新品 全面拓展市场维度
    仪器信息网讯 2012年6月15日上午9时,AB SCIEX公司在北京港澳中心隆重举办“2012年AB SCIEX公司新产品发布会”,来自各大科研机构、院校、企业等90余位客户出席了此次新品发布会,仪器信息网作为特邀媒体也出席了此次发布会。 AB SCIEX公司高层和质谱界资深专家为新产品揭幕   发布会现场,AB SCIEX公司的高层和技术专家等从不同角度分别介绍了刚刚推出的质谱产品。精彩内容如下: AB SCIEX公司北方区销售经理蒋宏健先生致辞   蒋宏健先生讲到,在过去的30年中,AB SCIEX公司推出了很多具有革命性的新产品,目前,AB SCIEX公司还掌握着600多项新的专利技术,为了不断满足各个阶层的客户的需求,AB SCIEX公司会继续增大自己的研发速度,产品应用领域涵盖药物研发、生命科学和常规应用市场等,其中常规应用市场包括食品安全检测、环保、公安和临床诊断等。另外,蒋宏健先生指出这次在发布会上推出的质谱新产品很可能为质谱行业带来新的革命。   LC/MS/MS 4500和6500对准普通、高端用户群 AB SCIEX公司亚太区市场部总监Matthew Grigg博士   AB SCIEX公司的市场部总监Matthew Grigg博士讲到,最新优化设计的主力LC/MS/MS 4500系列具备同时定量分析和谱库检索的世界领先的解决方案,集LC/MS/MS 4000和5500的优点于一身,将全球销量最大的串联四极杆质谱家族的最新硬件技术与新一代兼具超快扫描和超高灵敏度的Linear AcceleratorTM离子阱技术有机地结合起来,其超高的性价比特别适用于普通科研人员。具有IonDrive™ 技术的全新的LC/MS/MS 6500系列质谱仪具有极佳的灵敏度和卓越的性能,突破了分析性能的极限,该质谱仪可为客户提供最低的定量检出限,并具有高达6个数量级以上的动态范围,且持久耐用,是当今世界上最灵敏的三重四极杆质谱仪。 AB SCIEX公司中国区市场发展经理药物市场杜萍女士   AB SCIEX公司中国区市场发展经理药物市场杜萍女士讲到,从LC/MS/MS 3200到LC/MS/MS 4000再到LC/MS/MS 5000,这一系列仪器在制药行业已经保持了10年的黄金标准,标准表现在准确性、稳定性、重现性和灵敏度方面。在这个基础之上,今年AB SCIEX公司又发布了LC/MS/MS 4500和LC/MS/MS 6500两款质谱仪。LC/MS/MS 4500是LC/MS/MS 4000和LC/MS/MS 5500的完美结合,在保持灵敏度高的情况下,不会限制它的分子质量。此外,无论在中草药还是小分子药分析方面,LC/MS/MS 4500的正负切换速率都很快,可以同时进行多组分定量分析。   另外,杜萍女士还讲到,无论是哪一款仪器,都会产生海量的数据,一般的工作流程是先得到一个二级质谱图,再返回进行数据处理,通过质量亏损计算出代谢产物。而现在的技术可以把质量亏损计算放在采集数据过程当中,同时还可以扣除动态背景,在做二级质谱图选择的时候,用户可以把动态背景离子直接排除掉,在做很多物质鉴定分析的时候,通过实时的动态质量亏损,有效地选择用户真正感兴趣的成分做二级谱图,从而对药物进行有效的检测,这是AB SCIEX公司的一个独特技术。 AB SCIEX公司资深应用专家赵贵平先生   AB SCIEX公司资深应用专家赵贵平先生讲到, AB SCIEX公司不断推出新的产品,将串联质谱技术的定性/定量性能提高到更高的水平,QTRAP独特的扫描技术可以更加可靠地分析杂质中的低含量残余污染物。而TripleTOF快速高分辨率的扫描技术可同时获取全扫描一级谱图数据和二级谱图数据,寻找到相应的标志物。   赵贵平先生还谈到,LC/MS/MS 6500系列质谱仪是目前选择性最好,有着更宽的动态范围的仪器,具体来说质量范围从1250Da提高到了2000Da,客户可以根据自己的不同需求自由选择质量范围。此外,LC/MS/MS 6500系列质谱仪有三个重要的技术改进,一是离子源得到了改进;二是采用离子导向技术,通过离子场对离子进行聚焦,促使更多的离子进入,使得离子利用率大幅提高,改善了气体的状态和动态范围;三是检测器做了很大的变化,提高离子化的稳定性。   TripleTOF™ 4600和5600+对复杂基质展开全面的定性探索 AB SCIEX公司中国区应用支持中心经理谢永明博士   AB SCIEX公司中国区应用支持中心经理谢永明博士讲到,TripleTOF™ 5600+系统扩展了TripleTOF家族的市场领先地位,能够对复杂基质提供全面的定性探索,也能够对样品进行快速全貌解析和高分辨定量分析,是突破性技术的新一代高分辨质谱系统。而TripleTOF™ 4600系统为分析科学家进行复杂样品的日常分析,提供了一个可靠的、具有精确质量的主力LC/MS/MS。TripleTOF™ 5600系统所具有的创新性特点,如高灵敏度、高分辨率、快速的采集速度,在高性价比的TripleTOF™ 4600系统上均可实现。 AB SCIEX公司中国区市场发展经理蛋白质组学市场孙世新博士   AB SCIEX公司中国区市场发展经理蛋白质组学市场-孙世新博士讲到,AB SCIEX公司作为一个老牌的质谱公司,近年来,公司研发本着五个S(灵敏度、选择性、分析速度、稳定性和简约性)的原则,在质谱技术方面不断推陈出新。TripleTOF™ 5600+是在TripleTOF™ 5600的基础上构造的,它融合了TripleTOF™ 5600的所有的优势,又加入了一些新的强大的功能,例如SWATHTM技术。   TripleTOF™ 5600+可以同时做定性和定量分析,在定性方面,在两个小时内,可以鉴定3000多个蛋白质。在定量方面,速度和灵敏度也更高,TripleTOF™ 5600+每秒可以得到100张谱图,这是其它的任何机型不能比拟的。另外,TripleTOF™ 5600+可以检测低峰度的蛋白,从而可以检测到更多的多肽,提高蛋白质的覆盖度,对蛋白质组学的研究有重要意义。此外,TripleTOF™ 5600+质量准确度很高,检测限可以达到ppm级,提高了蛋白质检测的可信度。 发布会现场
  • 山东省市场监督管理局等八部门印发山东省建立健全碳达峰碳中和标准计量体系工作方案
    《山东省建立健全碳达峰碳中和标准计量体系工作方案》已经山东省绿色低碳高质量发展先行区建设领导小组审议通过,现印发给你们,请结合实际认真贯彻落实。山东省市场监督管理局 山东省发展和改革委员会山东省工业和信息化厅 山东省自然资源厅山东省生态环境厅 山东省住房和城乡建设厅山东省交通运输厅 山东省气象局2023年4月27日(此件主动公开)山东省建立健全碳达峰碳中和标准计量体系工作方案建立健全碳达峰碳中和标准计量体系,充分发挥计量、标准基础性和引领性作用,对夯实碳排放数据基础,支撑实现碳达峰碳中和目标具有重要意义。为深入贯彻落实碳达峰碳中和决策部署,扎实推进我省碳达峰碳中和标准计量体系建设,制定本方案。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,深入践行习近平生态文明思想,立足新发展阶段,完整、准确、全面贯彻新发展理念,融入新发展格局,按照市场监管总局、国家发展改革委等九部门《建立健全碳达峰碳中和标准计量体系实施方案》(国市监计量发〔2022〕92号)的要求,突出系统性、科学性、创新性的总体思路,坚持体系完整、目标合理、科技支撑、措施得力的总方针,统筹推进碳达峰碳中和标准计量体系建设。(二)工作原则。系统谋划,统筹推进。聚焦我省碳达峰碳中和主要目标和重点任务,充分发挥计量、标准等质量基础设施对行业碳达峰碳中和工作的支撑作用,做好与钢铁、化工、有色金属、建材、电力、交通等重点领域计量测试与标准研制需求的有效衔接,完善量传溯源体系,积极构建统一协调、运行高效、资源共享的计量、标准协同发展机制。科学规划,标杆引领。针对产业结构、能源结构转型升级,研制先进完善的计量标准能力,创新标准体系,发挥标杆示范引领作用,带动各行业各领域提升碳计量、标准能力和水平。需求牵引,重点突破。面向碳达峰碳中和的计量、标准需求,加强科技创新和技术研究,突破一批碳计量技术难题,研制一批先进标准,形成一批重大计量科研成果,发挥计量、标准先行带动和创新引领作用。夯实基础,完善体系。聚焦重点领域和重点行业,加强基础通用标准制修订,实现标准重点突破和整体提升,推动计量智能化、数字化转型升级,建立健全碳达峰碳中和计量技术体系、管理体系和服务体系。(三)主要目标。到2025年,基本建立与碳达峰碳中和目标任务相适应的标准计量体系。计量能力水平稳步提升,力争在关键领域碳排放计量测试技术取得重要突破,重点排放单位碳排放测量能力基本具备,新建或改造50项计量标准,制修订50项计量技术规范,研制50种标准物质/样品,碳排放计量体系不断完善。推动建立以国际标准为引领,国家标准和行业标准为基础,地方标准为补充的碳达峰碳中和标准体系。筹建一批绿色低碳技术标准创新中心和研发平台,推进创新技术的标准转化。围绕碳排放、碳核算、碳交易、碳汇、减污降碳协同等重点工作,支持我省企业主导和参与制定相关领域的国际和国家标准不少于50项,海洋碳汇等领域国际标准研制取得突破,市场自主制定标准供给数量和质量大幅提升。到2030年,碳达峰碳中和标准计量体系更加健全。计量基础支撑和引领作用更加凸显,建成满足碳达峰需求的计量能力。绿色低碳技术标准转化机制更加成熟,转化平台更加健全,标准约束和引领作用更加显着,标准化工作重点实现从支撑碳达峰向碳中和目标转变。到2060年,全面建成技术水平更加先进、管理效能更加突出、服务能力更加高效的碳中和标准计量体系,服务全省经济社会发展全面绿色转型,有力支撑碳中和目标实现。(四)体系框架。按照碳达峰碳中和目标与重点任务的要求,围绕应用领域和应用场景,构建碳达峰碳中和标准计量体系总体框架(如图1所示)。二、重点任务(一)加强工业绿色低碳转型标准制修订。聚焦钢铁、地炼、焦化、煤电、水泥、轮胎、煤炭、化工等重点行业,加快修订我省重点行业能耗、效益等地方标准。严格标准实施,加快行业转型升级步伐。以推动传统产业绿色低碳转型为重点,聚焦五大传统优势产业以及纺织、建材建筑、体育等代表性产业,实施对标达标工程,融合大数据、云计算、人工智能、5G等先进技术,开展传统产业绿色化、数字化转型标准研制,健全智能制造、绿色制造标准体系。充分发挥我省产业优势,推动我省龙头企业参与国家节能低碳技术、绿色制造、资源综合利用等关键技术标准研制。(省发展改革委、省工业和信息化厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省市场监管局、省能源局按职责分工负责)专栏1 工业绿色低碳转型标准研究关键技术攻坚。重点支持高端铝绿色技术产业链、高性能钛合金管材、高端耐磨钢核心等工业生产关键技术标准战略性重点项目;推进轮胎绿色制造与试验测试标准化攻坚,支持山东省增材制造技术标准创新中心、山东省连续流化工装备技术标准创新中心、山东省铜冶炼及稀贵金属综合回收利用技术标准创新中心等技术标准创新中心开展绿色智能制造标准制修订工作;推动利用大数据、5G、工业互联网等新兴技术与绿色低碳产业深度融合,加快推进数字孪生、区块链、人工智能、物联网等新一代信息技术在工业低碳制造领域的应用。碳排放核查核算。针对我省钢铁、铝、化工、建材等重点工业行业碳达峰碳中和需求,从园区、企业、项目、技术、产品等层面,在IS014064、IS014067、PAS 2050、PAS 2060等通用方法基础上结合产业特色研究重点行业园区、企业、项目及产品的碳排放核算模型和方法,形成碳排放核查核算标准;加快推进《石油库碳排放核算和碳中和核定技术规范》《二氧化碳驱油封存项目碳减排量核算技术规范》等碳排放核算标准实施,支持山东省海洋国际标准创新中心持续开展碳排放基础共性标准研究。重点产品能耗。研究支撑重点行业碳达峰碳中和的能耗、能效、低碳等系列关键和配套技术标准并开展符合性验证。开展能效、低碳等领域强制性国家标准对标达标工作;支持山东省绿色造纸技术标准创新中心、山东省现代航运综合服务技术标准创新中心持续开展技术、装备降耗标准攻坚。工业低碳运行。建立健全低碳工业标准体系,加强近零碳园区建设与评价标准研制;研究氢冶金、铝电解惰性阳极、绿色氢能煅烧水泥熟料、水泥窑炉烟气二氧化碳捕集与纯化催化转化利用等典型关键节能低碳技术方案,开展标准化试点应用;鼓励山东茂盛管业智能制造标准化试点、核芯光电科技制造业标准化试点等智能制造标准化试点形成绿色制造典型案例;围绕钢铁、石化化工、有色金属、建材等我省重点工业行业开展行业低碳运行研究,针对行业低碳运行管理全流程,形成规范行业低碳运行管理行为的管理标准。(二)加强能源标准制修订。围绕风电、光伏发电、氢能、海洋能、地热能、核能等重点领域建立完善标准体系,强化关键装备和系统的设计、制造、维护、废弃后回收利用等标准制修订。开展煤炭绿色智能开采标准研制。完善煤炭废弃物及资源综合利用标准。开展石油天然气开采、储存、加工、运输等节能低碳生产技术标准研制,推动将我省先进技术转换为国家标准、行业标准。充分发挥新型电力系统技术标准创新中心作用,开展重点领域标准研制与产业升级,以技术标准加速科技创新成果产业化,提升发展的质量效益。(省市场监管局、省能源局按职责分工负责)(三)加强交通运输低碳发展标准制修订。落实交通强国山东示范区建设部署,以相关国家和行业标准为基础,在交通基础设施和运输装备等领域,推动绿色低碳技术的标准转化,开展节能降碳设计、建设、运营、监控、评价等关键技术标准研制,完善物流绿色设备设施、运输等标准。支持我省企业积极参与交通运输低碳发展领域国家、行业标准制定。实施绿色交通标准支撑工程,开展绿色交通标准化试点。(省交通运输厅、省商务厅、省市场监管局、省能源局按分工负责)(四)加强农业农村降碳增效标准制修订。聚焦粮食主产区、果菜茶优势产区等重点区域,加大测土配方施肥技术标准的实施应用,推动实现高产、优质、增收。加快制定粮食供应链、高效仓储、深加工创新技术等领域标准,促进节粮减损。建立统筹高效生态农业、现代乡村产业等的现代农业标准体系,建设现代农业全产业链标准集成应用基地,推进全国蔬菜质量标准中心、全国畜禽屠宰质量标准创新中心建设。开展盐渍土生态改良、耐盐碱地作物品种选育、农业节水等关键技术标准研发,促进盐碱地产能提升。按照“智慧化、绿色化、均衡化、双向化”要求,全面落实新型城镇化国家标准,健全全省新型城镇化标准体系,持续完善我省生态宜居乡村标准体系。(省自然资源厅、省农业农村厅、省市场监管局、省粮食和储备局、省畜牧局按职责分工负责)(五)加强公共机构节能和循环经济标准制修订。加快构建公共机构节约能源资源标准体系,鼓励制定公共机构低碳建设、低碳评估考核等相关标准,鼓励制定节约型机关、绿色学校、绿色场馆等评价标准。健全资源循环利用标准体系,加快循环经济相关标准研制,健全清洁生产、再生资源回收利用、大宗固废综合利用标准,支持建设循环经济标准化试点。(省教育厅、省住房城乡建设厅、省生态环境厅、省市场监管局、省机关事务局按职责分工负责)(六)完善碳计量技术体系。1.加强基础前沿计量技术研究。追踪基于量子效应和物理常数的碳计量技术和量子传感技术研究,开展在线、动态、远程量传溯源技术和精密测量技术研究与应用,建立完善碳计量标准。开展碳计量测试仪器设备、关键核心部件和技术、高精度测量仪器仪表和计量校准装置的研制与应用,加强高精密、集成化、微型化、智能化的新型传感技术研究,建立碳计量仪器仪表产业发展集聚区。建立温室气体、新能源、新材料等重点领域标准物质体系,研制烟道温室气体、天然气、发热量定值等标准物质。加强碳排放、碳监测计量技术研究和碳排放测量方法研究,开展碳排放直测方法与核查方法的差异化研究。(省市场监管局牵头,省发展改革委、省工业和信息化厅等有关部门配合)2.加强共性关键计量技术研究。开展关键碳排放监测数据质量提升、计量测试和评价技术研究;开展光伏、风能、氢能、核能等清洁能源发电、储能及并网控制计量测试技术研究与应用;开展碳排放因子、碳排放量在线监测、碳汇、碳捕集利用与封存、区域综合能源利用与碳排放计量监测反演等关键计量技术研究;开展碳排放量不确定度评定方法研究。(省市场监管局牵头,省发展改革委、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)3.加强重点领域计量技术研究。加强煤炭、石油、天然气、电力、钢铁、有色金属、石油化工、交通运输、城乡建设、农业农村等重点领域先进碳排放计量测试方法研究和应用。开展重点排放单位碳排放报告复核工作,提升碳排放数据准确性和一致性,探索推动重点领域由宏观“碳核算”向精准“碳计量”转变。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)专栏2 碳达峰碳中和关键计量技术研究碳排放领域。完善碳排放计量体系,提升碳排放计量监测能力和水平。开展多行业典型用能设施及用能系统碳排放计量测试方法研究和碳排放基准数据库建设。开发高精度温室气体分析仪、高准确度烟气流速测量装置等关键测量设备。开展碳排放量不确定度评定方法等关键计量技术研究。加强计量测试技术在碳足迹、碳捕集、碳封存等方面的应用。能源领域。开展清洁能源材料和器件性能参数准确测量方法研究和标准物质研制,推进光伏、风电、核电、水电等清洁能源发电、储能及并网控制计量测试技术研究与应用。开展流量仪表、电能表等仪器仪表在线计量技术研究。开展氢气中痕量杂质、氢气泄漏、氢气瓶气密性等测量技术研究及氢能汽车动力测试系统、燃料电池堆测试台等氢能产业专业测量设备溯源技术研究。推进新能源汽车充电桩检定技术研究和应用。生态环境监测领域。研制高端电化学传感器、光学传感器、光离子化传感器等环境监测装备核心零部件。实现高端紫外光谱类气体分析仪、红外光谱类气体分析仪等环境监测设备国产化突破。开展海洋、森林、湿地生态系统碳储量、碳汇量计量监测技术、碳汇计量重要参数测量技术研究。标准物质研制。加快环境监测等重点领域标准物质的研制和应用,开展痕量标准气体配制技术研究。研制烟道温室气体、大气环境监测温室气体等标准物质。研制挥发性有机污染物、微(纳)米尺度颗粒物等环境监测用标准物质。自然资源领域。开展自然资源节约集约利用、地质、气象监测预警、湖泊和测绘地理信息仪器计量测试技术研究应用。(七)加强碳计量管理体系。1.完善碳计量制度规则。加强碳达峰碳中和相关计量制度研究,落实国家碳计量监督管理制度,明确各部门各行业碳计量工作职责和要求,研究制定碳计量监督管理办法、重点行业碳计量监督管理规定、碳排放在线监测、碳计量审查等有关制度;推进能源计量与碳计量有效衔接;建立健全“两高”行业计量器具配备管理办法。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)2.制定碳计量技术规范。合理规划全省碳计量标准建设,成立山东省碳达峰碳中和计量技术委员会,加强碳计量政策研究和计量技术规范制修订。编制碳计量技术体系、管理体系、服务体系的技术规范,重点行业企业碳排放计量器具配备和管理技术规范;结合行业领域碳排放、碳监测特点及测量需求,加强温室气体监测能力建设,制定在线监测设备校准、碳排放与碳监测关键参数测量方法、碳计量数据监测方法、碳计量数据不确定度评定方法、企业碳排放直接测量方法等计量技术规范体系。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)3.加强碳计量监督管理。落实碳排放单位计量主体责任,督促其依法配备使用和管理碳计量器具,提升计量数据应用和监测信息化水平,建立健全碳排放测量管理体系。开展重点排放单位能源计量审查和碳排放计量审查,强化重点排放单位的碳计量要求,加强计量数据的监测、分析和利用。组织开展碳排放相关计量标准、标准物质量值比对,加强对碳排放相关计量技术机构的监督管理。将年综合能耗超过1万吨标准煤的数据中心全部纳入重点用能单位能耗在线监测系统,开展能源计量审查。综合运用行政处罚、信用监管等手段,严厉打击违法违规行为。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省生态环境厅、省住房城乡建设厅、省能源局等有关部门配合)专栏3 碳计量技术规范器具配备管理。根据重点排放单位碳达峰需求,制定重点碳排放单位碳计量器具配备与管理规范,石灰、陶瓷、化肥等“两高”行业计量监测计量器具配备等行业碳计量相关技术规范。碳排放测量。编制省级温室气体排放清单,企业温室气体排放量、产品温室气体排放量、交通温室气体排放量等相关计量技术规范。碳排放校准。制定碳排放在线计量监测系统现场校准、远程校准、碳排放转化利用评价等计量技术规范。碳排放计量评价。制定碳排放计量审查、碳排放计量数据质量评价方法等计量技术规范。新能源。制定氢能、太阳能、风能、核能、生物质能及多种能源综合利用等相关领域计量技术规范。重点领域。制定电力、钢铁、煤炭、有色金属、石化、交通运输等重点领域碳排放相关计量技术规范。(八)健全碳计量服务体系。1.强化碳计量社会公共服务。发挥地方各级计量技术机构和行业主管部门专业计量技术机构的作用,推动建立碳计量区域中心和技术创新共同体,提升碳排放计量监测能力。积极建设碳计量中心,搭建碳计量公共服务平台,为政府、行业、企业提供差异化、多样化、专业化的碳计量服务。培育一批碳计量数据应用基地,进一步规范碳计量数据应用,开展碳计量数据的采集监测、质量评价、收集共享、挖掘利用等服务。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)2.完善行业领域碳计量服务。完善电力、钢铁、建筑等重点行业领域碳计量服务体系,提升碳计量服务能力和水平。编制省级温室气体排放清单,推动重点行业和重点领域开展碳计量数据在线采集与监测。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)3.加强第三方碳计量服务。充分利用市场资源和力量,吸纳各类社会组织参与碳计量工作,构建多元、开放的碳计量新格局。大力发展碳计量测试、碳产业计量等高技术服务新业态,培育和壮大碳计量专业技术服务市场,提供碳排放量预测分析、碳达峰碳中和路径推演、节能降碳技术方案等全方位、专业化的碳计量服务,不断满足市场多样化、个性化需求。建立一批碳计量监测和技术服务中心,加强碳排放相关计量技术研究,开展碳计量监测等技术服务。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省农业农村厅、省气象局、省能源局等有关部门配合)专栏4 碳达峰碳中和计量服务平台碳达峰碳中和计量技术委员会。成立山东省碳达峰碳中和计量技术委员会,加强碳计量政策研究,加快省内各领域碳计量技术规范的制定,保障碳数据的准确性和可靠性。碳计量中心。推动建设国家碳计量中心(山东),聚焦黄河流域9省化工和有色金属行业,建立化工及有色金属行业能耗和碳监测系统,组织重点企业能耗和碳排放比对,搭建化工、有色金属等行业碳排放因子库。国家市场监管技术创新中心。支持大气环境监测装备及溯源技术领域国家市场监管技术创新中心建设,集中科研力量实现高端大气环境监测、碳排放监测等仪器设备及高端电化学传感器、光学传感器、光离子化传感器等关键零部件的国产化突破。产业计量测试中心。培育建设碳达峰碳中和领域产业计量测试中心,研究产业专用计量测试技术,完善全产业链计量支撑体系,提供全产业链、全溯源链、全寿命周期和具有前瞻性的计量测试服务。三、重点工程和行动(一)实施碳计量科技创新工程。加强科技创新对碳排放计量以及碳汇技术体系的支撑保障,针对绿色低碳重大技术需求,加强碳计量关键核心技术攻关和科技成果转化应用,推动实现计量协同创新,为低碳技术研究、清洁能源使用、能源资源利用、碳汇能力提升、碳排放在线监测等提供计量技术支持。推动互联网、大数据、人工智能、5G等新兴技术与碳计量产品装备产业深度融合发展,研究新材料在高精尖传感设备仪器上的应用。聚焦能源、工业、城乡建设、交通等重点领域,研发适用不同场景、不同计量要求的产品装备,在支撑相关领域绿色低碳发展的同时,实现计量产业的高质量发展。开发企业、园区、城市和重点行业等层面碳排放核算技术,探索建立温室气体排放监测计量核查系统。支持龙头企业、科研院所搭建低碳技术服务平台,开放技术资源,为行业提供计量测试监测等技术服务。(省发展改革委、省科技厅、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省国资委、省市场监管局、省能源局等按职责分工负责)(二)实施碳计量基础能力提升工程。面向实现碳达峰碳中和目标的重大战略需要,开展计量标准能力提升行动和标准物质能力提升行动,加快碳达峰碳中和相关量值传递溯源体系建设,构建社会公用计量标准、部门行业计量标准、企事业单位计量标准为主体的层次分明、链条清晰的计量标准基础设施网络。围绕产业链,紧贴测量链,加快新能源新材料、智慧海洋、绿色化工等重点产业标准物质的研制,增强核心材料和关键技术自主可控能力。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省能源局等按职责分工负责)(三)实施碳计量标杆引领工程。以典型示范、标杆引领为主线,探索有效模式和有益经验,全面梳理各行业、各地区碳计量典型案例和经验,总结形成可复制、可推广的碳计量先进经验和典型模式,组织开展重点行业、重点领域推荐活动,加大宣传力度,推动项目成果向标准、技术规范转化。(省市场监管局、省发展改革委牵头,省工业和信息化厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省国资委、省能源局等按职责分工负责)(四)实施碳计量精准服务工程。持续开展计量服务中小企业纾困解难行动。鼓励各级计量技术机构组建碳计量技术服务队。开展计量专家走进企业、走进社区服务低碳行活动。加快内燃机、节能家电、核电核岛、碳纤维、氢能源新材料、高端化工等产业计量测试中心建设。编制企业碳计量服务指南,为有条件的地方和重点行业、企业率先实现碳达峰提供计量技术支持。依托具备条件的计量技术机构,成立双碳计量技术服务部门,积极开展双碳计量技术研究和服务,引导企业通过技术改进主动适应绿色低碳发展要求,提升绿色创新水平。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省住房城乡建设厅、省交通运输厅、省能源局等按职责分工负责)(五)实施碳计量交流合作工程。鼓励与国际计量组织、中国计量科学研究院、大区计量技术机构等国内外先进计量技术机构开展交流与合作,积极参与碳计量相关技术研究和计量比对。充分结合山东海洋碳汇院士工作站和海洋负排放研究中心及各省海洋碳汇重点实验室的科研成果,推进我省海洋碳计量工作的高质量发展。成立黄河流域计量创新共同体,推动黄河流域计量一体化发展。积极参与国家碳计量规则和规范的制修订。(省市场监管局牵头,省发展改革委、省能源局等按职责分工负责)(六)开展核心技术标准制定行动。围绕能源、工业、建筑、交通等重点领域,强化核心技术标准攻坚,加快支撑碳达峰碳中和目标实现的绿色技术标准研制,完善绿色低碳标准体系,建立碳达峰碳中和技术急需标准快速制定机制,到2025年,完成5项碳达峰碳中和领域地方标准制修订。支持具有影响力的社会团体制定高质量团体标准,将技术水平高、实施效果好的团体标准转化为国家标准、行业标准。(省发展改革委、省工业和信息化厅、省民政厅、省住房城乡建设厅、省交通运输厅、省市场监管局、省能源局按职责分工负责)(七)开展创新技术标准转化行动。发挥好我省技术标准创新中心作用,强化企业创新主体作用,通过平台聚集优势资源,加强标准研发和成果转化应用,完善技术研发、专利创造、标准研制一体化发展机制。聚焦重点创新链、产业链,整合标准化要素资源,到2025年布局5个碳达峰碳中和领域省级技术标准创新中心,培育建设一批原创性、高质量标准,有效发挥标准在碳达峰碳中和领域的支撑引领作用。(省科技厅、省工业和信息化厅、省市场监管局等按职责分工负责)(八)开展海洋碳汇标准制定行动。突出山东海洋创新技术优势,聚焦海洋碳汇重点领域,围绕现代渔业、海水淡化、海洋调查、海洋装备、海洋生态保护等方面,加快创新技术标准转化。支持智慧港口、海洋碳汇、海洋渔业种质资源等创新性标准研究,争取突破一批国际、国家标准,建设培育一批标准化重点项目。(省海洋局、省市场监管局牵头,省农业农村厅等有关部门配合)四、保障措施(一)加强组织领导和统筹协调。加强碳达峰碳中和标准计量体系的整体部署和系统推进,在省碳达峰碳中和工作领导小组的领导下,发挥省实施标准化战略领导小组和山东省计量工作联席会议作用,统筹研究重要事项。加强部门工作协调,明确任务、压实责任,统筹推进碳达峰碳中和标准计量体系建设。各部门、各地方要按照标准计量体系的统一要求,研究制定具体落实方案,明确任务分工,确保各项目标任务稳步有序推进。(各有关部门按职责分工负责)(二)加强政策激励和资源保障。统筹利用现有资金渠道,积极引导社会资本投入,支持碳达峰碳中
  • 《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》等两项标准提案获通过
    近日,由北京理工大学牵头提案的《电动汽车用碳化硅(SiC)电机控制器评测规范》以及由广州南砂晶圆半导体技术有限公司牵头提案的《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》两项团体标准提案,经CASA标准化委员会(CASAS)管理委员会投票,根据《CASAS管理和标准制修订细则》,两项联盟团体标准投票通过立项,分配编号分别为:CASA 012、CASA 013。据了解,第三代半导体产业技术创新战略联盟(CASA)是2015年9月9日,在国家科技部、工信部、北京市科委的支持下,由第三代半导体相关的科研机构、大专院校、龙头企业自愿发起筹建的“第三代半导体产业技术创新战略联盟”(以下简称“联盟”)在北京国际会议中心举行了成立大会。 科技部曹健林副部长、高新司赵玉海司长、科技部高技术研究发展中心秦勇主任,北京市科学技术委员会闫傲霜主任,中国科学与科技政策研究会李新男副理事长等领导出席了成立大会。南京大学郑有炓院士代表45家发起机构单位正式宣布第三代半导体产业技术创新战略联盟成立。科技部曹健林副部长、南京大学郑有炓院士、北京市科学技术委员会闫傲霜主任、北京半导体照明科技促进中心吴玲主任共同为联盟揭牌。以下为通知原文:联盟两项团体标准提案获管理委员会投票通过各有关单位:由北京理工大学牵头提案的《电动汽车用碳化硅(SiC)电机控制器评测规范》以及由广州南砂晶圆半导体技术有限公司牵头提案的《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》两项团体标准提案,经CASA标准化委员会(CASAS)管理委员会投票,根据《CASAS管理和标准制修订细则》,两项联盟团体标准投票通过立项,分配编号分别为:CASA 012、CASA 013。 标准提案投票具体情况为: 1、电动汽车用碳化硅(SiC)电机控制器评测规范:应投25票,实投21票,赞成19票,反对1票,弃权1票。 2、导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法:应投25票,实投21票,赞成19票,反对0票,弃权2票。立项通知请查看附件:附件1.关于《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》联盟团体标准立项的通知附件2.关于《电动汽车用碳化硅(SiC)电机控制器评测规范》联盟团体标准立项的通知
  • 《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》等多项标准工作会成功召开
    2021年6月3日下午,《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》、《碳化硅衬底基平面弯曲的测定 高分辨X射线衍射法》两项标准工作会成功召开。与会人员围绕标准草案的范围、术语与定义、试验方法等内容进行充分讨论,并提出了诸多修改意见。来自广州南砂晶圆半导体技术有限公司、山东大学、深圳第三代半导体研究院、芜湖启迪半导体有限公司、浙江博蓝特半导体科技股份有限公司、国宏中宇科技发展有限公司等单位的多位专家参加了会议。对位错缺陷进行有效的表征与分析对单晶工艺及外延工艺改进优化进而提高器件性能至关重要。位错具有随机分布且密度量级大的特征,随着单晶尺寸的增大,人工统计位错密度的困难增加,过少的统计区域则又无法代表整个晶片的位错密度,《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》规定了用化学择优腐蚀结合图像识别法检测碳化硅晶片中位错密度,适用于4H及6H-SiC晶片材料中位错检测及其密度统计。对于碳化硅材料只有掌握了基平面弯曲的特性,才能够深入了解基平面弯曲产生的原因,提供单晶生长条件优化的方向,进而提升单晶质量。《碳化硅衬底基平面弯曲的测定 高分辨X射线衍射法》适用于正向及偏向的6H和4H-SiC单晶衬底中基平面弯曲的检测,填补我国以高分辨X射线衍射法表征SiC单晶片的晶面弯曲特性领域的空白。
  • 国家标准委印发《国家标准验证点申报指南(2022年度)》
    各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),国务院有关部门、行业协会(联合会),各有关单位:现将《国家标准验证点申报指南(2022年度)》印发给你们,请根据指南开展相关工作。 国家标准化管理委员会2022年4月1日(此件公开发布)国家标准验证点申报指南(2022年度)为贯彻落实《国家标准化发展纲要》,加快构建推动高质量发展的标准体系,提升标准化服务业发展水平,推进国家标准验证点(以下简称标准验证点)建设,依据《国家标准化管理委员会关于加强国家标准验证点建设的指导意见》,制定本指南。一、总体要求(一)加强标准验证点工作体系布局。重点围绕国民经济和社会发展重点领域,与国家鼓励发展和支持的重点行业、重点领域和重点项目相结合,聚焦提高标准质量,兼顾各类标准验证需要,构建覆盖面广、重点突出、需求引领、动态调整的标准验证点工作体系,提高标准验证点建设布局的科学性。(二)提升标准化科技支撑水平。按年度滚动批设标准验证点,稳步推进。集聚科技研发、测量测试、检验检测、认证认可等科技资源,深化科技资源的融通创新,形成新型标准化科技支撑力量,助力提升标准的科学性、合理性和适用性,提高标准质量。(三)促进社会优势力量共同参与。鼓励社会各方积极参与标准验证工作,各企事业单位自主决定、自愿申报,充分发挥标准验证点聚合作用,推动优势互补和融合共享。二、申报重点标准验证点申报以构建推动高质量发展的标准体系为指引,服务国家重大战略、重大工程、国民经济重要行业、新兴产业和重点项目、重要领域标准化发展需求,合理布局,为开展标准验证工作提供有力支撑。2022年,按照系统规划、改革创新、开放融合、注重实效的原则,综合考虑确定申报范围,优先在以下领域设立标准验证点,其他领域有重大需求且具备申报条件的也可参照申报。(一)环保低碳领域。重点在应对气候变化、污染防治、碳排放监测、绿色低碳、节能等方向设立标准验证点。(二)新一代信息技术领域。重点在人工智能、大数据、物联网、云计算、区块链、脑机接口、量子技术、集成电路、信息基础设施等方向设立标准验证点。(三)高端装备与智能制造领域。重点在智能装备、智能工厂、大规模个性化定制、网络协同制造、先进基础工艺及核心基础零部件、供应链管理和协同等方向设立标准验证点。(四)卫生健康领域。重点在公共卫生、消毒用品、医疗保障、无源医疗器械、医用电器等方向设立标准验证点。(五)新能源与新能源汽车领域。重点在新能源利用、新型电力系统及设备、能源互联网、电力储能、新能源汽车、智能网联汽车等方向设立标准验证点。(六)新材料领域。重点在纳米生物材料、先进半导体材料、稀土新材料等方向设立标准验证点。(七)服务业领域。重点在食品冷链、电子商务、快递物流等方向设立标准验证点。(八)农业农村领域。重点在农业投入品、动植物疫病防控、现代林业、水利、农产品质量检测、农业种养殖技术等方向设立标准验证点。(九)公共安全领域。重点在个体防护装备、消防救援器材、刑事技术等方向设立标准验证点。三、申报主体要求(一)标准验证点申报主体。标准验证点的申报主体包括申报单位、组织单位和推荐单位。1. 申报单位申报单位是指申请承担标准验证点建设和运行任务的企事业单位。2. 组织单位组织单位在标准验证点申报工作中负责本地区或本行业的组织申报,一般为标准验证点所在地的省级标准化行政主管部门,或国务院有关行政主管部门的标准化主管机构、具有标准化管理职能的行业协会(联合会)。3. 推荐单位推荐单位负责标准验证点申报工作的审核推荐,应为标准验证点所在地的省级人民政府,或国务院有关行政主管部门、具有标准化管理职能的行业协会(联合会)。(二)申报单位资质条件。1. 我国境内依法设立、具有独立法人资格的企事业单位。2. 具有较为扎实的标准化基础和较为丰富的标准化工作经验,开展标准化工作5年以上;有承担相关领域国际、国内标准化技术委员会秘书处工作,或具有主导、参与相关领域标准制修订的工作经验。3. 具备先进的测量测试和检验检测能力,拥有先进的测量测试、检验检测等仪器设备,测量测试、检验检测水平处于国内领先地位,或具备相关领域的国家实验室、国家重点实验室、国家工程研究中心等科技、产业创新平台和资源,具备出具权威验证数据的能力。4. 具备完善的内部管理制度,具有以标准化工作经验为基础、并从事测量测试、检验检测或实验验证等相关工作经验的人才队伍。主要技术负责人具备5年以上标准化、测量测试、检验检测或实验验证等工作经历;关键技术人员具有3年以上标准化、测量测试、检验检测或实验验证等工作经历。质量管理体系经评价符合并持续满足相关的国家标准和国际准则的要求。5. 能为标准验证点建设提供必要的办公条件及经费支持。四、申报程序和要求标准验证点申报程序主要包括组织申报、审核推荐、形式审查、论证评审、批准设立5个环节。(一)组织申报。组织单位根据《国家标准化管理委员会关于加强国家标准验证点建设的指导意见》及本指南要求,重点做好以下工作:1. 结合所在区域或所属行业领域的工作基础和优势条件,组织遴选符合条件的申报单位。2. 组织申报单位编制《国家标准验证点申报方案》(以下简称《申报方案》,见附件)。3. 对申报材料审核把关后报送至推荐单位。(二)审核推荐。推荐单位对收到的申报材料进行审核,根据审核结果,行文向标准委进行推荐。(三)形式审查。标准委依据相关评审要求,适时组织对标准验证点申报材料进行形式审查,审查合格后,纳入论证评审范围。(四)论证评审。标准委依据相关评审要求,组织有关专家召开《申报方案》论证会,必要时,可组织现场审核。申报单位根据专家论证意见对《申报方案》进行修改完善,并在规定时间内提交标准委。(五)批准设立。经评审符合条件的,由标准委向社会公示,公示期30天。公示期满并经标准委委务会审议通过后,由标准委公告设立,纳入标准验证点工作体系。五、其他事项申报单位提交申请材料中,如出现隐瞒事实或提供虚假材料的情况,标准委不予设立或撤销设立,申报单位在一年内不得再次申请。六、联系方式联系电话:010-64525490 010-82262913通信地址:北京市朝阳区北三环东路18号14号楼308室 邮编(100029)国家标准验证点申报方案.docx.docx
  • 一发入魂|新污染物筛查准确度评定技术指南之解读---气质篇
    一发入魂|新污染物筛查准确度评定技术指南之解读---气质篇原创 飞飞 赛默飞色谱与质谱中国王伟 邢江涛CAS REGISTRY® CAS REGISTRY® ,作为全球科学家、制造商及监管机构所信赖的化学物质信息的权威资源,在1965年至2015年这50年的时间里,登记在册的化学物质超过了1亿。然而我们人类仅用8年(2015年-2023年)就将这个数字改写到2亿。这些化学物质在生产、运输以及使用中势必会有意或无意地排放至环境中。环境介质的输送以及化学物质可能发生反应与降解,让环境保护与治理问题变得尤为复杂。我国生态环境部2020年发布的《化学物质环境与健康危害评估技术导则》规定了化学物质环境与健康危害评估的工作程序、评估内容、基本方法和技术要求。由此,若化学物质为新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的则被成为新污染物。(点击查看大图)新污染物的研究与治理注定是需要跨多学科的。《新污染物治理行动方案》(国办发〔2022〕15号)中提出要构建有毒有害化学物质环境风险管理“筛、评、控”技术体系。其中,新污染物的准确定性是筛查的关键环节。基于质谱的筛查技术已广泛用于识别复杂环境介质中的新污染物。由于数据库范围、化合物丰度以及复杂基质干扰等原因,利用质谱数据筛查定性化合物的准确性差异显著。为进一步健全新污染物筛查技术质量控制体系,提高筛查结果的准确度,统一筛查准确度评定等级,指导相关实验室科学评定新污染物定性的准确度级别,中国环境监测总站组织编制了« 新污染物筛查准确度评定技术指南» 。该指南由气相色谱-质谱法与液相色谱-质谱法两部分文件构成,提出了筛查新污染物的技术要点与技术路线,包括常用定性方法、准确度评定分级、筛查技术路线及质量保证和质量控制措施等。其中,涉及气相色谱-质谱法的内容中提到:1. 2种分析技术:气相色谱-低分辨质谱(GC-LRMS)及气相色谱-高分辨质谱(GC-HRMS)2.2种筛查路线:基于GC-LRMS与GC-HRMS两种分析技术的筛查路线;3. 2种筛查技术:非靶向筛查技术与疑似筛查技术;4. 6个用于化合物准确定性的常用方法:1.标准品确认;2.离子数量与离子丰度比;3.同位素峰识别;4.质量准确度限定(仅限高分辨质谱);5.保留指数定性;6.质谱数据库匹配。5. 3个准确度评定分级:等级3 未知化合物(Unknown feature)、等级2 疑似化合物(Probable compounds)、等级1 确认化合物(Confirmed compounds)一句话可以概括为,2种分析技术根据各自的筛查路线进行2种筛查,根据提供的用于化合物准确定性的指标,对筛查结果进行3个准确度评定分级。基于GC-LRMS开展新污染物筛查适用于污染场地未知化合物的初步筛查及应急监测场景下未知化合物的初步筛选,样品中待定性化合物浓度较高,技术路线如图。等级2的分级主要由Fullscan扫描结合谱库检索,并通过匹配度判定。若结合有解卷积谱图解析及保留指数辅助判定功能,可进一步提高准确度。等级1的分级主要由Fullscan、SIM或SRM扫描结合标准品、离子数量与离子丰度比等来判定。(点击查看大图)基于GC-HRMS筛查技术主要分为疑似筛查与非靶向筛查两类。疑似筛查受到疑似化合物列表限制,适用于各地已有新污染物管控清单,根据清单自建数据库或商业数据库开展快速筛查,确认后再建立准确定量方法进行监测;非靶向筛查无筛查范围限制,但受限于前处理方法、色谱条件、数据筛选方法等,适用于未知化合物的广谱筛选。(点击查看大图)对于疑似筛查,主要提供保留时间或保留指数信息、具有精确质量数的特征碎片离子、同位素分布匹配等定性指标。如若有标准品确认,则为等级1。无标准品确认则为等级2。若均不符合则为等级3。赛默飞为客户提供不同种类的疑似污染化合物高分辨数据库,TraceFinder软件允许实验人员基于具体情况,使用该数据库对上述定性指标自定义判定权重进行批处理筛查,并在软件中显示各个定性指标的匹配情况。(点击查看大图)(点击查看大图)对于非靶向筛查,主要通过解卷积进行峰提取与峰识别,谱库检索进行峰匹配。依据保留指数信息、谱库匹配度等定性指标。如若有标准品确认,则为等级1。无标准品确认则为等级2。若均不符合则为等级3。赛默飞同时提供最新版本的通用商业低分辨谱库(NIST、Wiley等)以及基于GC-Orbitrap/MS污染物的高分辨谱库(高分辨谱库持续更新,目前版本可以免费升级)。TraceFinder软件允许实验人员基于具体情况,跨多谱库同时进行检索。针对低分辨谱库,还提供HRF高分辨过滤打分进一步验证谱库匹配结果(否则跟GC-LRMS又有什么区别呢?)。另一方面,软件还可提供保留指数信息,进一步提高定性准确度。针对一些复杂情况,赛默飞还提供VeV及CI源的软电离技术、未知物碎裂机理预测、保留指数预测等方案。(点击查看大图)(点击查看大图)(点击查看大图)(点击查看大图)向下滑动查看所有内容 结 语 赛默飞是全球领先的科学研究和分析解决方案的提供者,拥有业界最全的GC/MS产线,包括单四极杆质谱ISQ7610、三重四极杆串接质谱TSQ9610以及Orbitrap-MS 的Exploris GC系列产品。实验室已成功依据《重点管控新污染物清单(2023年版)》和《新污染物筛查准确度评定技术指南 气相色谱-质谱法》推出新污染物定量和筛查方案,方便客户快速落地新污染物的筛查定量工作。(点击查看大图)如需合作转载本文,请文末留言。
  • 2016年度“中国高等学校十大科技进展”:颜宁、郭雪峰领衔
    2016年12月26日,由教育部科学技术委员会组织评选的2016年度“中国高等学校十大科技进展”经过形式审查、学部初评、项目终审评选专项工作等流程后在京揭晓。  “中国高等学校十大科技进展”的评选自1998年开展以来,至今已19届,这项评选活动对提升高等学校科技的整体水平、增强高校的科技创新能力发挥了积极作用,并产生了较大的社会影响,赢得了较高的声誉。  现将2016年度入选项目名单(附后)予以公布。入选项目名单按主持单位拼音顺序排序,排名不分先后。2016年度“中国高等学校十大科技进展”入选项目名单序号项目名称申报学校项目负责人合作单位1世界首例真实稳定可控的单分子电子开关器件北京大学郭雪峰美国杜克大学、中科院物理所、华东理工大学等2发现原子核手征对称性和空间反射对称性的联立自发破缺北京大学孟 杰山东大学(威海)、清华大学、北京航空航天大学、中国科学院理论物理研究所3高效率高比冲磁聚焦霍尔推进技术哈尔滨工业大学于达仁航天五院第五〇二研究所4高效钙钛矿发光器件研究南京工业大学黄 维浙江大学、英国剑桥大学、瑞典林雪平大学、南京邮电大学5复杂电网自律-协同无功电压自动控制系统关键技术及应用清华大学孙宏斌北京清大高科系统控制有限公司6植物分枝激素独脚金内酯的感知机制清华大学谢道昕中国科学院生物物理研究所、中国科学院遗传与发育生物学研究所、中国科学院上海药物研究所7肌肉兴奋-收缩偶联的分子机理探索清华大学颜 宁无8亚洲季风的变化规律及其与全球气候变化的关系西安交通大学程 海美国明尼苏达大学、美国加利福尼亚州立大学、奥地利因斯布鲁克大学、同济大学、南京师范大学、新加坡南洋理工大学9脑机融合的混合智能理论与方法浙江大学吴朝晖无10肝癌肝移植新型分子分层体系研究浙江大学郑树森无  注:按申报学校首字母排序,排名不分先后2016年度“中国高等学校十大科技进展”入选项目介绍  一、世界首例真实稳定可控的单分子电子开关器件  利用单分子构建电子器件对突破目前半导体器件微小化发展的瓶颈意义重大。实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键。自上个世纪70年代以来,设计构筑稳定可控的单分子器件,探索其与微电子工艺的兼容性,并获得真正意义上的分子电子开关,在当代纳米电子学研究中具有重大的科学意义。  郭雪峰团队围绕单分子光电子学领域开展了长达9年的潜心钻研和持续攻关。他们原创性地发展了以石墨烯为电极、通过共价键连接的稳定单分子器件的关键制备方法,解决了单分子器件制备难、稳定性差的难题。在此基础上,通过功能导向的分子工程学成功地克服了二芳烯分子与石墨烯电极间强耦合作用的核心挑战性问题,从而突破性地构建了一类全可逆的光诱导和电场诱导的双模式单分子光电子器件。这项研究工作使得在中国诞生了世界首例真实稳定可控的单分子电子开关器件。这也是几十年来我国在分子电子学领域的科学研究第一次发表在《Science》杂志上。  论文于2016年6月17日发表在《Science》上,申请了发明专利。这项研究证明功能分子可以作为核心组件来构建电子回路,为将功能分子应用到实用电子器件中迈出了关键的一步。《Science》同期配发了长篇正面评述,得到了国内外同行的广泛认可和各种媒体的亮点报道。  二、发现原子核手征对称性和空间反射对称性的联立自发破缺  对称性及其破缺是基本的科学问题。手征对称性(又称手性)在自然界中广泛存在,如左右手、海螺壳、某些化学和药物分子等都有手性。原子核层次的手征对称性由孟杰及其合作者于1997年预言,后来得到证实,引起广泛关注。探索原子核的手征对称性,可以获得原子核形状及其运动模式等信息,具有重要的科学意义。  北京大学孟杰教授领导的研究团队长期致力于原子核手征对称性研究且持续取得进展:2006年预言原子核的多重手征对称性,激发国际相关研究,推动实验验证并得到证实 2011年发现手性原子核Br-80,将原子核手征对称性研究扩展到新的核区。2016年,通过重离子熔合蒸发反应,利用在束伽玛符合、带电粒子符合、线性极化等实验测量手段,在原子核Br-78中发现了宇称相反的两对手征双重带,以及表征它们之间八极关联的电偶极跃迁,给出了手征对称性和空间反射对称性联立自发破缺的证据。  研究结果于2016年3月发表在《物理评论快报》,并被遴选为封面文章。这是核物理领域,中国学者在该刊发表的首篇封面文章。该工作发现了目前最轻的手性原子核Br-78,以及手征对称性和空间反射对称性联立自发破缺的证据,深化了对原子核复杂结构及其表现形式的认识。  三、高效率高比冲磁聚焦霍尔推进技术  2016年11月3日我国空间电推进技术取得重大进展,由哈尔滨工业大学于达仁、贾德昌教授团队和中国航天科技集团公司第五研究院第五〇二研究所联合研制的磁聚焦霍尔推力器HEP-100MF成功搭载长征五号运载火箭在实践十七号卫星上进行了飞行验证,这是世界首次磁聚焦霍尔推力器实现空间应用。  目前,该磁聚焦霍尔推力器已完成了包括点火、性能标定、长稳态测试及卫星系统兼容性等所有在轨考核,各项参数均满足指标要求,其中磁聚焦与羽流发散角控制技术达到国际领先水平。  该团队历经14年,充分发挥学科交叉的创新优势,先后突破了宽范围磁聚焦、热/电/磁耦合设计、放电低频振荡控制、低功耗高可靠空心阴极稳定放电、耐离子溅射氮化硼基特种陶瓷材料等关键技术,研制的磁聚焦霍尔推力器比冲比国际著名同类产品SPT-100提高20%,羽流发散角减小了60%,大幅降低了推力器燃料消耗,并显著降低了羽流对航天器的影响,为我国新一代长寿命航天平台提供了具有自主知识产权的新型电推进技术。该成果将为我国新一代通讯卫星、遥感卫星、空间站及深空探测提供技术支撑,是国际电推进技术发展史上的一个重要里程碑。  四、高效钙钛矿发光器件研究  照明对于人类文明的重要性不言而喻。从远古时期的火把、中世纪的蜡烛,到近代的油灯、现代的电灯和当代的LED,人类寻找新型光源的脚步从未停歇。当前,照明消耗了全球发电量的30%以上,探索环境友好、高效节能的照明系统愈发重要。有机无机杂化钙钛矿材料因其优异的发光性能和可大面积低成本加工的潜力,在照明与显示领域具有广阔前景。  南京工业大学黄维院士和王建浦教授领导的创新团队是国际上最早认识到此类材料的发光潜力,并着力制备钙钛矿发光二极管器件的团队之一。2016年,他们创造性地利用溶液自组装方法制备了多量子阱结构的钙钛矿发光材料。该材料不仅保持了二维钙钛矿成膜质量高、稳定性好的优点,而且在不同带隙量子阱之间可发生快速的阶梯能量转移,有效克服了常温下二维钙钛矿激子易猝灭的缺点。在世界上首次实现了外量子效率达11.7%的高效钙钛矿电致发光器件,同时器件寿命较三维钙钛矿器件提高了两个数量级。  系列创新性研究成果相继发表在国际顶级学术期刊上,并已申请两项发明专利。其中,代表性成果于2016年9月26日在Nature Photonics上发表,是全球首篇钙钛矿发光器件外量子效率突破10%的报道,也是目前此类器件的世界最高效率,为钙钛矿材料及其在发光领域的研究开拓了新方向。  五、复杂电网自律-协同无功电压自动控制系统关键技术及应用  电压是智能电网运行的核心指标。电压问题已成为全球历次重大停电事故的关键诱因,同时也是大规模可再生能源并网的一个主要障碍。复杂电网电压控制(AVC)是世界性难题,在该领域国际权威、美国一流大学课题组研究搁浅后,美国电网转而寻求与该项目组合作。  该项目历经20余年,创造性提出了“自律+协同”的技术路线,突破了AVC从单控制中心到多控制中心、从常规电网到可再生能源电网、从中国电网到北美电网应用中的系列关键难题,研制出自主知识产权AVC系统,已在我国6大区电网、22个省级电网和6个千万千瓦级风光基地应用,控制了全国56%的常规机组与37%的风/光机组,在智能电网安全经济运行和大规模可再生能源接纳等方面取得了巨大经济社会效益。同时,该项目突破了美国三轮严酷的信息安全检查,历时3年零4个月,解答了3千余个信息安全问题,控制了包括美国首都和东部十三个州的PJM电网,实现了美国首例AVC,是我国先进电网控制系统首次出口美国。  由教育部组织、六位院士领衔的鉴定委员会认为:项目是“重大的原创性科研成果,引领了电力系统电压控制领域的发展与技术进步”、“具有里程碑意义”。美国能源部顾问、工程院院士Prof. BOSE认为该成果“使中国在电压控制领域遥遥领先于世界”。  六、植物分枝激素独脚金内酯的感知机制  植物分枝是农业生产中的重要农艺性状,对于植物株型和作物产量有重要影响 植物激素独脚金内酯不仅调控植物分枝,还调节植物与共生真菌及寄生杂草的相互作用。阐明激素感知机制,是生物学领域的重大科学问题,对揭示生命现象的本质、提高生物的生存和发展能力具有重要意义。迄今发现的动植物经典激素,都遵循1880s年代以来揭示的“配体-受体”可逆识别规律:激素活性分子通过非共价键可逆地结合受体,循环地触发信号传导链,调控各种生命活动。  清华大学谢道昕、饶子和及娄智勇等合作发现了独脚金内酯的活性分子、阐明了独脚金内酯的受体、揭示了新型的“受体-配体”不可逆识别机制:D14蛋白作为新型激素受体,首先参与合成独脚金内酯活性分子CLIM,然后通过共价键不可逆地结合CLIM、触发信号传导链、调控植物分枝,最终水解CLIM、释放没有活性的分子。  该工作于2016年8月发表在《Nature》上。《Nature》、《Science Signaling》和《Science China Life Sciences》发表专文高度评价该工作,新发现的“受体-配体”不可逆识别机制不同于百年研究历程所建立的“配体-受体”可逆识别机制,是生命科学领域激素研究的重大突破,具有重大科学意义。该研究可为作物株型改良和寄生杂草防治提供理论指导,具有潜在应用前景。  七、肌肉兴奋-收缩偶联的分子机理探索  肌肉兴奋收缩偶联(Excitation-contraction coupling, E-C coupling)指的是肌肉接受神经信号发生收缩的过程,是动物最基本的生理过程之一。该过程涉及到两类重要的钙离子通道,分别是位于细胞膜上的电压门控钙离子通道Cav和位于肌质网膜上的兰尼碱受体RyR。Cav被细胞膜的动作电位激活,进一步诱导下游RyR的激活开放,从而引发钙离子大量快速从肌质网释放至细胞质,进而引起肌肉的收缩。Cav的功能异常会导致心率紊乱、癫痫等疾病 RyR的异常则会导致肌中央轴空病等疾病。因此,它们是重要的药物靶点,其结构的解析工作具有重要的生理学和药理学意义。  颜宁研究组利用前沿的单颗粒冷冻电镜技术,在世界上首次解析了骨骼肌中RyR1和Cav1.1以及心肌中RyR2的近原子分辨率结构,这一系列突破为理解肌肉兴奋收缩偶联过程提供了关键的结构基础。尤为值得一提的是,Cav1.1系首个真核电压门控钙离子通道的结构,此成果备受瞩目,不仅为理解与多种疾病相关的电压门控钙离子通道和钠离子通道的功能和机理提供了分子基础,也为基于结构的药物研发提供了理论指导。  相关成果共发表5篇高水平论文。其中Cav1.1相关工作于2015年12月18日和2016年9月8日分别在Science和Nature发表 RyR1相关工作于2015年1月1日和2016年7月29日发表在Nature和Cell Research RyR2工作于2016年10月21日在Science发表。  八、亚洲季风的变化规律及其与全球气候变化的关系  西安交通大学全球变化研究院程海团队在国际合作的基础上发展了国际先进水平的铀系质谱测量技术(包括提高 230Th和234U半衰期的精准度),在此基础上分别建立了世界最长尺度的东亚季风(64万年)、印度季风(28万年)、南美季风(25万年)和中亚?中国西部西风带(13.5和50万年)的高精度高分辨率石笋同位素记录、及其与全球气候变化之间的相关关系,为全球气候变化研究提供了重要的时间标尺。特别是于2016年6月在《Nature》上以Article形式发表“64万年以来的亚洲季风记录与冰期终止”的论文,通过建立具有精确的绝对年代控制的石笋同位素记录、及其与海洋和冰芯记录的对比关系,进一步揭示了10万年的冰期?间冰期循环是4?5个岁差周期的平均 发现去除太阳辐射影响后的亚轨道尺度石笋气候变化序列与去趋势后的南极温度记录呈精致的反相关关系,并且两者的亚轨道尺度变化都具有比地球偏心率周期更强的岁差和倾角周期 结合深入解析过去64万年以来不同幅度千年气候事件(包括冰期终止事件)之间的内在相似性,进一步回答了“100ka problem”这一经典科学问题。从一定意义上讲,上述工作为洞穴沉积成为古气候变化研究领域的‘第四大支柱’、以及我国石笋古气候研究在国际上取得领先地位做出了重要贡献。  九、脑机融合的混合智能理论与方法  当天生“弱视”的大鼠通过脑机通讯“嫁接”上机器视觉,它就如看懂了路标,在迷宫里里识别路标沿路成功找到目标物 当一只猴子想喝一口面前的饮料,它可以通过“意念”控制远处的机械手作出抓、勾、握、捏四种手势,完成不同的任务。这一些充满科幻色彩的“不可能”,正在浙江大学的实验室成为现实。  在国家973计划、国家基金委重点项目等支持下,浙江大学吴朝晖、郑筱祥教授率领的团队围绕脑机融合问题潜心研究十余年,在国际上率先提出“混合智能”的研究范式——生物智能与机器智能的融合,形成了一系列突破理论与创新技术。研究团队认为,将生物自身的感认知能力与机器的计算能力深度结合,有望产生超越现有系统的更强智能形态。这一探索在残障康复、抢险救灾、国防安保等关系到国计民生和国防安全等领域具有重大应用前景。  目前,团队在国际上首次实现将计算机的听视觉识别能力“嫁接”到生物体上,构建了听视觉增强的大鼠机器人 在国内首例实现人意念控制机械手,完成“石头-剪刀-布”猜拳游戏 实现了用机器智能增强大鼠自身的学习能力,回答了脑机融合是否能使生物体获得学习增强的疑问。面对人类疾病,研究团队还实现了动物平台的“癫痫预测-电刺激抑制”脑机互适应融合机制。部分成果还实现了初步转化,成功开发了若干神经康复设备,并用于临床试验。  十、肝癌肝移植新型分子分层体系研究  我国是病毒性肝炎和肝癌的高发国家,其中乙肝病毒携带者约9000万,每年新发肝癌40余万,占全球新发肝癌病例的55%,严重危害国民健康。肝移植是治疗肝癌等终末期肝病的最有效手段。  目前国际上最常用的肝癌肝移植受者选择标准是意大利米兰标准。如果按照国外的标准,肿瘤直径小于5cm才适合做移植,那么我国有许多肝癌患者将失去肝移植的机会。为建立适合我国国情的选择标准,2008年郑树森院士团队创新性地提出了肝癌肝移植杭州标准, 认为肿瘤累计直径小于8cm,或者肿瘤大于8cm,但只要甲胎蛋白水平小于 400ng/ml,而且肿瘤组织学分级为中、高分化者,也适合肝移植。这是国际上首个引入肿瘤生物学特征及病理学特征的受者选择标准,被誉为是肝癌肝移植研究的“分水岭”。2016年,郑树森院士团队进一步开展了全国多中心6012例全球最大样本的研究,发现杭州标准使肝癌病人增加了52%的移植机会,同时5年存活率高达72.5%,居国际领先水平。同时,该研究也将杭州标准进一步细化,实现了肝移植受者的精准筛选和个性化治疗。  该研究成果发表于消化病学顶级期刊《Gut》,引起国际移植学界的高度关注和肯定,被欧美10余家国际移植中心引用和验证,成为肝移植学界高度认可的国际标准。美国UCLA、克利夫兰医学中心、日本东京大学等国际著名移植团队高度评价杭州标准是一个非常卓越的标准,第一次将肿瘤生物学特征纳入肝癌肝移植标准中,优于其它标准,为肝癌肝移植病人选择作出重要贡献。杭州标准是我国提出的首个被国际移植学界接受的医学标准,是我国器官移植领域最具有国际竞争力和自主创新价值的科研成果,该项创新性研究作为核心标志性成果获得2015年度国家科技进步创新团队奖。
  • Illumina在中国发布BaseSpace零维度基因云计算平台
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/b0b9cbb3-d710-4d50-8952-524179cb2596.jpg" title=" 1.jpg" style=" width: 600px height: 330px " width=" 600" vspace=" 0" hspace=" 0" height=" 330" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong 为蓬勃发展的中国市场提供强大的基因数据存储、分析和协作能力 /strong /span /p p br/ /p p   对人类健康的探索是人们共同的主题。为了更多地破解疾病之谜,世界各国都在发布大规模精准医疗计划来检查成千上万人们的基因数据。中国政府领先在2016年公布了为期15年的中国精准医疗计划,过去两年内已经部署了两批约100个具体的精准医疗项目,这受到了行业的广泛关注,也切实推动了了中国大型测序中心、日益增长的新兴企业以及研究科学家的多领域创新。人们每天都在发现对基因测序信息的新应用。 /p p   为了支持中国的项目,Illumina很高兴地宣布,基于中国北京的BaseSpace& reg 零维度& #8482 基因云计算平台正式发布。零维度云平台是Illumina提供的基因云计算服务,可以提供基因数据的存储、管理和分析,它可以使得新兴公司快速投入运行,帮助现有企业提高测序能力。同时,它提供给客户一个完整的生态系统,可以对Illumina平台产生的测序数据很方便地进行分析和管理,并支持各种文库,包括刚刚发布的AmpliSeq for Illumina化学试剂产品。 /p p   利用零维度云平台,中国的研究科学家可以在测序的同时向云平台上传数据。一旦测序完成,研究科学家就可以立即使用一系列的工具进行分析,并开展科研合作。零维度云平台上的合作工具支持精准医疗计划的不同研究小组,在属于同一个或不同机构的测序平台间进行协作。 /p p   “对于能够成为中国的基因创新浪潮中的一部分,我们感到非常激动!”Illumina全球副总裁、大中华区总经理赵瑞林先生说,“BaseSpace零维度云平台提供给基因行业一个强健的可扩展的数据管理和分析解决方案。” /p p   BaseSpace零维度云平台交由位于北京的光环新网技术有限公司托管运行,这是一家Amazon网络服务公司的合作伙伴,获得ISO27001认证规范,符合中国地区的基因数据隐私和合规相关规定。Illumina已经在美国和德国法兰克福提供BaseSpace云平台服务。所有的站点都将支持最近发布的iSeq测序设备。 /p p br/ /p p strong 关于Illumina /strong /p p Illumina公司通过解码基因组而改善人类健康。我们注重创新,这使我们成为DNA测序和芯片技术的全球领导者,并为科研、临床和应用市场的客户提供服务。我们的产品应用在生命科学、肿瘤学、生殖保健、农业及其他新兴市场上。如欲了解更多信息,请访问Illumina官网或关注微信@illumina。 /p p style=" text-align: right " 本文由Illumina供稿 br/ /p p br/ /p
  • “风度• 气度• 力度”培训讲座成功举办
    为了使员工的综合素质和修养得到进一步提升,公司于2012年4月6日(周五)下午在附楼二楼多功能室开展 &ldquo 风度&bull 气度&bull 力度&rdquo 三度培训,公司领导及全体员工参与了培训。 本次培训特邀请调研员别道林老师给大家分别从风度、气度、力度三个方面展开讲解,并对这三项素质的培养方法进行了深入的交流及分享。本次培训使全体员工受益非浅,对今后日常生活工作中综合素质的培养具有较大的指导意义。 培训结束后,熊总对此次培训进行总结,希望通过此次培训大家能够注重自身素质的培养和提升,共同将四方光电营建成一家更高素质、更高效益的企业。
  • 100篇!中国科协2023年度优秀科研仪器案例成果公布
    近日,中国科协科学技术创新部按照《关于开展2023年度优秀科研仪器案例成果征集遴选活动的通知》相关安排,中国仪器仪表学会组织专家通过两轮同行评议,从1000余篇投稿中遴选认定了100篇拟入选的优秀案例,现面向社会进行公示。2023年度优秀科研仪器案例成果征集遴选活动拟入选案例名单(排名不分先后)序号题目作者单位1高端电子显微镜实验室环境设计与建设技术要点郭振玺,张斌,豆瑞发,茶丽梅,陈永圣,邵博,裴霞北京大学2浅谈单分子荧光检测技术的原理及其在生命科学中的应用吴晶,刘皎北京大学3核磁共振氢谱法定量测定肺炎球菌荚膜多糖中C-多糖杂质含量扶晖北京大学4X射线荧光光谱铸片法研究程斌北京化工大学5风险防控为核心构建高校实验室应急管理体系孟兆磊,白亮,赵雨霄,徐宁,陈杰,陈超鹰北京科技大学6核电材料锆合金制样伪氢化物引入的解决方案乔祎北京科技大学7“大安全观”下材料类专业实验安全教学体系构建孟二超,徐宁,孙建林,白亮,赵雨霄北京科技大学8基于NOAH技术的2D NMR快速测定闫丽,熊嫣,彭绍春北京理工大学9三种基于热技术的树干液流传感器系统研制田晓楠北京林业大学10基于原子吸收光谱法对苏州种植土壤重金属污染研究邹晓通常熟市检验检测中心11原子力显微镜-扫描电镜共定位系统研发与应用蔡蕊大连理工大学12基于ZigBee生物标本馆温湿度监测系统的研究董金源大连民族大学13基于CMA管理体系的送样模式大仪共享信息化系统建设王楠东北大学14纺织高校大仪共享平台建设及其在培养创新人才的实践与探索杨明,杨健茂,刘晓云,赵辉鹏,周剑锋东华大学15UHPLC-MS为基础的靶标代谢组学方法快速定量分析氨基代谢物王琪复旦大学16多位储存式TG-DSC/FTIR/GC-MS联用系统原理及测试方案设计杨春晓广东工业大学17薄膜半导体材料环境失效的准原位XPS分析方法严楷广东工业大学18降水瞬态微物理特征测量仪的研制及应用刘西川,刘磊,高太长,赵世军国防科技大学19基于GIS的北京市大型科研仪器空间聚集性分析岳琦,王晋国家科技基础条件平台中心20船舶动力发动机低压天然气喷射阀测试体系开发董全,战宇,杨晓涛,魏代君哈尔滨工程大学21电介质材料多通道介电温谱表征系统的研制及应用孟祥达,田浩,王宇,谭鹏,胡程鹏哈尔滨工业大学22BPF算法赋能大视场直线扫描显微计算机断层成像汪志胜,李尚舆,李宗峰,邓子涵,林乐赓,崔俊宁哈尔滨工业大学23利用磁谱特性检测大肠杆菌生命周期电子属性赵贞,孙作达,练政赫哈尔滨工业大学24儿茶素对不同加热方式大马哈鱼鱼肉糜贮藏品质的影响赵钜阳,袁惠萍,孙昕萌,王新语哈尔滨商业大学25国产核磁与CT仪器能力提升及典型应用马晓凡,陈红,王颖,梅红,邹丽芳,宋泽卓河海大学26防晒类化妆品中功能粒子的扫描电镜检测方法刘娟华东理工大学27基于多孔石墨碳柱的新型离子色谱体系的构建 沈睿华东理工大学28离子色谱-脉冲安培新方法测定微量硫化物高晓静华东理工大学29智能互联技术在高精密实验室安全工作中的应用和晓晓,杨岩,孔利利,丁旵明,张三军,潘海峰华东师范大学30飞秒-微秒时间分辨圆偏振发射光谱仪研制贾梦辉,崔童,陈缙泉华东师范大学31罐采样-预浓缩/气相色谱-质谱联用测定污染源废气中118种挥发性有机物李光辉暨南大学32脉冲电场快速解冻设备的应用案例姚黄兵,张孝,杨哪江南大学33微型化荧光量子产率测试系统的搭建研究魏巍江苏大学34《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1-2022)标准解读及应用注意事项赵飞,王凤齐,周小萌辽宁省检验检测中心35螺旋相差生物显微镜的研制及应用洪煦昊南京大学36三维空间结构叠加单原子成份信息的四维成像刘吉梓,祝斌鹏,张瑞升南京理工大学37电化学原位红外光谱的原理及装置搭建张妍南开大学38固体核磁样品制备工具的自主研制陈阳清华大学39北京电子能谱中心安全管理探索与实践杨立平清华大学40共享开放与研究并重,支撑多学科发展——清华大学分析中心的定位与思考周群清华大学41基于准原位X射线光电子能谱的锂电池表面化学分析段建霞清华大学42原位拉曼在电催化二氧化碳还原中的应用研究郭冲清华大学43“飞书”应用于高校科研条件平台管理——基于清华大学分析中心杜翼清华大学44高校实验室智慧化建设的探索与实践——以厦门大学为例张晶,施芝元,郭志福,张泽华厦门大学45原位高压多光学观测系统的开发与应用赵国群山东大学46低噪声大光敏面 InGaAs 近红外单光子探测器研制董亚魁山东大学47单晶X射线衍射仪和透射电子显微镜结合测定单晶取向生长方法李小菊山东大学48小动物多通道、长时间烟雾暴露系统的开发及应用王朝霞上海交通大学49基于集中供气系统的实验室安全防护机制研究朱娜上海交通大学50表面等离子体共振技术在药物筛选中的应用侯敬丽上海交通大学51原子力显微镜纳米力学表征中的影响因素研究单齐冀上海交通大学52元素微课堂-元素分析制样小技巧朱燕上海交通大学53大型分析测试技术助力支撑废弃物粉煤灰“变废为宝”王林霞,徐鑫涛,陶菲菲绍兴文理学院54基于表面扩增技术的高通量测序仪的研制及应用吴平,刘永锋,郑焦,周志良,孙雷,颜钦深圳市真迈生物科技有限公司55石油深加工中常见杂质分析的研究 周萍,李璐沈阳化工股份有限公司56沈阳农业大学食品科学学科共享平台智能化建设陶冬冰,安悦嘉,潘松,张琦,张旋沈阳农业大学57原子吸收光谱法检测血浆与全血锂的比较研究赵韩,李学芝,谢俊微,王奕朦,黄达,林庆宇,戴鑫华四川大学58基于高分辨及能量分辨质谱的离子型铱(III)配合物同位素指纹特征和裂解规律研究谢小波四川大学59高校分析测试中心实验室安全管理探索李成辉四川大学60大鼠股骨骨小梁微观结构的显微CT评价陈立四川大学61催化发光-X-射线光电子能谱联用设计闫曙光四川大学62基于扫描电镜和能谱仪的MOFs材料表征刘士新,何清,田娜娜,刘娜,邹少兰,梁国弘,方卉,翟勇,靳凤民天津大学63光热联动,看得见的相变——原位变温紫外可见近红外光谱测试方法王意,刘洋,范涛天津大学64光谱多元建模中代表性样本选择方法研究综述张可欣,张强,刘鹏,卞希慧天津工业大学65近红外应用过程中的影响因素研究魏钠万华化学(宁波)有限公司66肉品中食用胶检测方法的研发端礼钦,王静,耿士伟,吴琼,王丰存,杨洪生,孟勇,陶利明,庄丽萍徐州市农产品质量安全中心67使用TD-GC/MS-O分析螺蛳粉挥发性风味成分朱建设哲斯泰(上海)贸易有限公司68大型仪器共享平台运行模式的创新和实践方三华,刘丽,杨丹,刘双双,尹伟,李艳伟,黄莹莹浙江大学69磁共振成像共享实验室数字化管理与质量控制的探索与实践丁秋萍,张真真,何宏建,浙江大学70新时期科学仪器“国产替代”的研究与探索袁勇,张燕勤,付国春,李俊峰,骆锋生浙江中医药大学71探索仪器共享生态系统,促进创新可持续发展-以中国计量院为例郑宇,谢一航,荣婕,唐杰,卢祝华,李大博,隋志伟中国计量科学研究院72高准确度气体标准物质研发平台的建立和应用王德发,吴海,胡树国,刘沂玲,周泽义,马浩淼,毕哲,张体强,王红红中国计量科学研究院73超燃冲压发动机燃烧状态诊断-吸收光谱法金熠中国科学技术大学74从芝麻粒和头发丝来说扫描电子显微镜周宏敏中国科学技术大学75新型透射电镜样品和样品杆前处理装置的开发唐旭中国科学院地质与地球物理研究所76高水平应用评价助力高端活细胞超分辨成像设备实现高质量国产化替代张文娟,涂溢晖,边玮中国科学院分子细胞科学卓越创新中心77标样选择对碳元素电子探针定量分析的影响王一凡中国科学院过程工程研究所78冷冻电镜技术在电子束敏感材料表征中的应用岳纪玲,刘凯昂,关波中国科学院化学研究所79安捷伦5200片段分析系统维护方案的优化周桢宁中国科学院脑科学与智能技术卓越创新中心80拉伸速率对GH4169合金高温拉伸性能的影响张明珠,郑永健,兰福立,张公军,张浩,卢焕明中国科学院宁波材料技术与工程研究所81测定含金属化合物碳同位素时Isolink装置存在的问题苏静,于一帆中国科学院深海科学与工程研究所82气传花粉采集装置及其辅助设备的研制与开发孟龄中国科学院生态环境研究中心83冷冻结构光照明荧光显微成像系统HOPE-SIM的自主研发李硕果,贾星,牛彤欣,张小云,孙飞,季刚中国科学院生物物理研究所84氢-氮远程相关实验在天然产物结构研究中的应用任晋玮,王瑛,刘钢,罗元明中国科学院微生物研究所85伏安极谱仪测定海水中活性态痕量金属韩海涛,潘大为中国科学院烟台海岸带研究所86连续流动分析仪的土壤中总氮检测模块装置的设计及调试吴学丽,谭扬,周娜,栾传磊中国科学院烟台海岸带研究所87原子力显微镜原位检测样品紫外老化功能的开发蔡明军中国科学院长春应用化学研究所88叶绿素荧光显微成像技术在光合作用研究中的应用尹燕,唐为江,赵长征中国科学院植物研究所89光-电镜联用技术在拉曼选区分析中的应用戴玉洁,常林,赵复庆中国科学院重庆绿色智能技术研究院90原子力显微镜的双扫描器系统的开发赵复庆,戴玉洁,胡磊中国科学院重庆绿色智能技术研究院91食品接触纸中高关注度污染物的气质联用定量分析黄越,卫晓慧,李悦还,易靓,董一童中国农业大学92农业科研公共实验室智能化建设与实践饶正华,刘娜,梁洺源,焦京琳,杨迎康中国农业科学院北京畜牧兽医研究所93细胞培养技术在植物学与农学研究中的应用杨佳莹,张丽娜中国农业科学院作物科学研究所94利用MGI平台对大豆进行全基因组重测序分析许亚茹,孙莹璐,巫祥云中国农业科学院作物科学研究所95中国药科大学500兆核磁共振波谱仪机柜和探头的国产替代开发及应用宋喆,沈文斌,刘剑锋中国药科大学96电感耦合等离子体质谱(ICP-MS)法同时测定生物样品中24种元素的方法王刚中国医科大学97超薄切片技术在显微分析中的应用董鑫中山大学98《化妆品用原料中月桂酰甘氨酸及其盐(以酸计)含量测定 高效液相色谱法》团体标准研制过程解析卓文珊中山大学99电感耦合等离子体原子发射光谱法测定聚乙烯中硼、铬、铅的不确定度评定梁敏思中山大学100结合机器学习的光谱技术在塑料鉴别中的应用研究进展褚小立,杨健,许育鹏,陈瀑,李敬岩,刘丹中石化石油化工科学研究院有限公司
  • 《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)发布
    为系统部署和科学规划汽车芯片标准化工作,引领和规范汽车芯片技术研发和匹配应用,推动汽车芯片产业的健康可持续发展,我们组织有关单位编制完成了《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)(见附件1)。现公开征求社会各界意见,如有意见或建议,请填写《征求意见反馈信息表》(见附件2)发送至 KJBZ@miit.gov.cn (邮件主题注明:国家汽车芯片标准体系建设指南征求意见反馈)。公示时间:2023年3月28日-2023年4月28日联系电话:010-68205261《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)一、基本要求(一)指导思想坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大和历次全会精神,积极落实《国家标准化发展纲要》要求,加快推进科技强国、制造强国建设,构建跨行业、跨领域、适应我国技术和产业发展需要的国家汽车芯片标准体系,充分发挥标准的基础性、引领性和规范性作用,有序推进标准研制和贯彻实施,加速推动汽车芯片研发应用,支撑和保障汽车产业健康可持续发展。(二)基本原则立足国情,统筹资源。结合我国汽车芯片技术和产业发展的现状及特点,发挥政府主管部门在顶层设计、组织协调和政策制定等方面的引导作用,鼓励行业机构、上下游企业积极参与,协力制定政府引导和市场驱动相结合的建设方案,建立与国家芯片等元器件标准体系相衔接,适合我国国情的汽车芯片标准体系。基础先立,急用先行。分阶段规划布局汽车芯片标准体系建设重点任务,结合行业发展现状和未来应用需求,合理统筹技术标准的制修订工作进度,注重国家标准、行业标准与国外标准相协调,加快推进基础、共性和重点产品等急需标准项目的研究制定。创新驱动,融合发展。发挥标准在技术创新、成果转化、整体竞争力水平提升等方面的规范和引领作用,以产业创新发展需求为导向,充分融合汽车和集成电路行业在技术研发、产业化发展和市场推广等方面优势,加强行业统筹协调,推动汽车芯片产业健康有序发展。开放合作,协同推进。发挥汽车、集成电路标委会积极作用,构建统筹协调的工作机制,整合汇聚汽车、集成电路等行业优势资源,强化各方通力协作,注重与国际标准协调统一,以开放兼容的视野建立并持续完善汽车芯片标准体系,形成标准对技术进步与产业发展的有效支撑。(三)建设目标根据汽车芯片技术现状、产业应用需要及未来发展趋势,分阶段建立适用我国技术和产业需求、与国际标准协调统一的汽车芯片标准体系;优先制定基础、通用、重点产品等急需标准,推动汽车芯片共性技术发展;根据技术成熟度逐步推进产品应用和匹配试验标准制定,满足汽车产业发展需求。通过建立完善的汽车芯片标准体系,引导和推动我国汽车芯片技术发展和产品应用,培育我国汽车芯片技术自主创新环境,提升整体技术水平和国际竞争力,构建安全、科学、高效和可持续的汽车芯片产业生态。到2025年,制定30项以上汽车芯片重点标准,涵盖环境及可靠性、电磁兼容、功能安全及信息安全等通用要求,控制芯片、计算芯片、存储芯片、功率芯片及通信芯片等重点产品与应用技术要求,以及整车及关键系统匹配试验方法,以引导和规范汽车芯片产品实现安全、可靠和高效应用。到2030年,制定70项以上汽车芯片相关标准,实现基础、通用要求、产品与技术应用以及匹配试验等重点领域均有标准支撑,加快推动汽车芯片技术和产品健康发展。二、建设思路汽车芯片标准体系规范对象包括汽车用集成电路、分立器件、传感器和光电子等元器件及模块。为保证该标准体系的可读性和贯彻推广,采用行业惯常使用的名称“汽车芯片”作为该标准体系的名称。整体建设思路:基于汽车芯片技术结构,适应我国汽车芯片技术产业现状及发展趋势,形成从汽车芯片应用场景需求出发,以汽车芯片通用要求为基础、各类汽车芯片应用技术条件为核心、汽车芯片系统及整车匹配试验为闭环的汽车芯片标准体系技术结构。汽车芯片标准体系技术结构,以“汽车芯片应用场景”为横向出发点,包括动力系统、底盘系统、车身系统、座舱系统及智能驾驶五个方面;向上延伸形成基于应用场景需求的汽车芯片各项技术规范和试验方法,根据标准内容分为基础通用、产品与技术应用和匹配试验三类标准:基础通用类标准包含汽车芯片的共性要求;产品与技术应用类标准基于各类汽车芯片产品技术和应用特点分为多个技术方向,结合我国汽车芯片产业成熟度和发展趋势确定标准制定需求,制定相应标准;匹配试验类标准包含芯片与系统和整车两个层级的匹配试验验证。三类标准共同实现不同应用场景下汽车关键芯片从器件-模块-系统-整车的技术标准全覆盖,汽车芯片标准体系技术结构图如图1所示。图1汽车芯片标准体系技术结构图应用场景:芯片在汽车不同零部件系统、不同工作场景的功能性能差异较大,因此标准体系应充分考虑汽车芯片的应用场景。芯片在汽车上的应用场景按汽车主体结构,划分为动力系统、底盘系统、车身系统、座舱系统和智能驾驶。基础通用:基于汽车行业对芯片的可靠性、运行稳定性和安全性等应用需求,提取出汽车芯片共性通用要求,主要包括环境及可靠性、电磁兼容、功能安全和信息安全共4个基础通用性能要求。产品与技术应用:根据实现功能的不同,将汽车芯片产品分为控制芯片、计算芯片、传感芯片、通信芯片、存储芯片、安全芯片、功率芯片、驱动芯片、电源管理芯片和其他类芯片共10个类别,再基于具体应用场景、实现方式和主要功能等对各类汽车芯片进行技术方向和标准规划。其中,控制芯片包括,通用要求、发动机、底盘等技术方向;计算芯片包括,智能座舱和智能驾驶等技术方向;传感芯片包括,图像传感器、红外热成像、毫米波雷达、激光雷达、电流传感器、压力传感器、角度传感器等技术方向;通信芯片包括,蜂窝、直连、卫星、蓝牙、无线局域网(WLAN)、超宽带(UWB)、以太网等技术方向;存储芯片包括,静态存储(SRAM)、动态存储(DRAM)、非易失闪存(包括NOR FLASH、NAND FLASH、EEPROM)等技术方向;安全芯片包括通用要求等技术方向;功率芯片包括,绝缘栅双极型晶体管(IGBT)、碳化硅和金属-氧化物半导体场效应晶体管(MOSFET)等技术方向;驱动芯片包括,通用要求、功率驱动芯片、显示驱动芯片等技术方向;电源管理芯片包括,通用要求、电池管理系统(BMS)模拟前端芯片、数字隔离器等技术方向;其他类芯片包括电池管理系统基础芯片(SBC)等技术方向。匹配试验:汽车芯片在满足芯片通用性能要求和自身技术指标基础上,还应符合在汽车行驶状态下与所属零部件系统及整车的匹配要求,因此需要对芯片与系统和整车匹配情况进行试验验证。其中,整车匹配包括整车匹配道路试验、整车匹配台架试验2个技术方向。三、标准体系(一)体系架构依据汽车芯片标准体系的技术结构,综合各类汽车芯片在汽车不同应用场景下的性能要求、功能要求和试验方法,将汽车芯片标准体系架构定义为“基础”、“通用要求”、“产品与技术应用”、“匹配试验”四个部分,同时根据各具体标准在内容范围、技术要求上的共性和区别,对四部分做进一步细分,形成内容完整、结构合理、界限清晰的17个子类(如图2所示,括号内数字为体系编号)。图2汽车芯片标准体系架构(二)体系内容汽车芯片标准体系表见附件,涵盖如下标准类型及标准项目。1. 基础(100)基础类标准主要包括汽车芯片术语和定义标准。术语和定义标准主要用于统一汽车芯片领域的基本概念,对汽车芯片标准制定过程中涉及的常用术语进行统一定义,以保证术语使用的规范性和含义的一致性,为各相关行业统一用语奠定基础,同时为其他各部分标准的制定提供规范化术语支撑。汽车芯片术语和定义标准将在现行集成电路相关标准基础上,从芯片产品搭载在汽车上的实际功能和应用角度,对其特有术语进行定义和说明。2. 通用要求(200)通用要求类标准是对汽车芯片的主要共性要求和评价准则进行统一规范,主要包括环境及可靠性、电磁兼容、功能安全和信息安全等方面。环境及可靠性标准主要规范在复杂环境条件下汽车芯片或多器件协作系统的物理可靠性,预防可能发生的各种潜在故障,对芯片的可靠性提出要求,从而提高汽车芯片产品的稳定性。电磁兼容标准主要规范汽车芯片内部系统或多器件协作系统各主要功能节点及其下属系统在复杂电磁环境下的功能可靠性保障能力,其主要目的一是规定芯片电磁能量发射,以避免对其他器件或系统产生影响;二是规定芯片或多器件协作系统的电磁抗干扰能力,使其可在汽车电磁环境之中可靠运行。功能安全标准主要规范汽车芯片企业及芯片产品内部多功能模块的流程管理措施、技术措施等要求,其主要目的是避免系统性失效和硬件随机失效导致的不合理风险。信息安全标准主要规范汽车芯片应满足的信息安全需求和应具备的信息安全功能。通过芯片的信息安全设计、流程管理等措施,避免因攻击导致的芯片数据、外部接口及软硬件安全等受到威胁。3. 产品与技术应用(300)产品与技术应用类标准主要规范在汽车各零部件系统上应用的各类芯片,因其特有功能、性能等不同所应具备的技术指标要求及相应试验方法。此类标准涵盖,控制、计算、传感、通信、存储、安全、功率、驱动、电源管理和其他10个大类。控制芯片标准主要规范汽车上用于整车、发动机、底盘等系统的控制芯片的技术要求及试验方法。计算芯片标准主要规范汽车用于人机交互、智能座舱、视觉融合处理、智能规划、决策控制等领域执行复杂逻辑运算和大量数据处理任务的芯片的技术要求及试验方法。传感芯片标准主要规范感知环境及汽车各系统物理量,并按一定规律转换成可用输入信号的芯片的技术要求及试验方法。通信芯片标准主要规范汽车用于内部设备之间及汽车与外界其他设备进行信息交互和处理的芯片的技术要求及试验方法。存储芯片标准主要规范汽车用于进行数据存储的芯片的技术要求及试验方法。安全芯片标准主要规范汽车内部用于提供信息安全服务的芯片的技术要求及试验方法。功率芯片标准主要规范汽车用于各系统具有处理高电压、大电流能力的芯片的技术要求及试验方法。驱动芯片标准主要规范汽车用于驱动各系统主芯片、电路或部件进行工作的芯片的技术要求及试验方法。电源管理芯片标准主要规范汽车用于内部电路的电能转换、配电、检测、电源信号(电流、电压)整形及处理的芯片的技术要求及试验方法。其他类芯片标准主要规范不属于上述各类的汽车芯片的技术要求及试验方法。一般此类汽车芯片包括,尚在发展阶段的新技术、新产品,暂无法明确固定分类;或者对于汽车应用,该芯片数量较小,无法与上述芯片类别并列。4. 匹配试验(400)匹配试验类标准包括汽车芯片在所属零部件系统或整车搭载状态下的测试试验方法。系统匹配标准主要规范汽车各类芯片在所属零部件系统搭载状态下的功能及性能匹配试验方法,以检测汽车芯片在所属零部件系统上的工作情况。整车匹配标准主要规范汽车各类芯片在汽车整车搭载状态下的功能及性能匹配试验方法,以检测汽车芯片在整车工况下的工作情况。四、组织实施加强统筹组织协调。发挥好全国汽车标准化技术委员会、全国集成电路标准化技术委员会组织作用,组织成立汽车芯片标准联合工作组,加强与全国通信标准化技术委员会、全国信息技术标准化技术委员会、全国北斗卫星导航标准化技术委员会等标准化机构的工作协同,发挥标委会专业优势,做到以汽车行业实际应用需求为导向,充分调动科研院所、行业组织、相关企业及高等院校等单位的积极性,持续完善汽车芯片标准体系,加快推动各项标准制修订工作。强化行业沟通交流。聚焦汽车芯片领域,整合汽车产业链上下游优势资源力量,构建跨行业、跨领域、跨部门协同发展、相互促进的工作机制,集聚相关领域内标准化资源,建立满足发展需求、先进适用的汽车芯片标准体系。实施定期动态更新。加强汽车产业发展中急需的汽车芯片标准需求调研分析,明确汽车芯片技术要求和应用需求,结合汽车芯片技术创新和产业发展趋势,建立相关标准试验验证流程,持续完善汽车芯片标准体系,为推进汽车芯片产业发展和行业管理提供有力保障。深化国际交流合作。加强国际标准和技术法规跟踪研究,深化与国际标准化组织的交流与合作,积极参与联合国世界车辆法规协调论坛(UN/WP.29)、国际标准化组织(ISO)和国家电工技术委员会(IEC)等国际标准化活动,借鉴吸收国际先进标准法规,畅通国际标准及技术交流机制,在汽车芯片相关国际标准制定中发声献智。附件:1.《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)2. 征求意见反馈信息表工业和信息化部科技司2023年3月28日
  • 上海市市场监督管理局印发《2023年度上海市地方标准立项指南》
    各有关单位:为贯彻落实市委、市政府印发的《上海市标准化发展行动计划》,做好2023年本市地方标准制(修)订工作,不断完善本市地方标准体系,根据《上海市标准化条例》《上海市地方标准管理办法》等规定,我局制定了《2023年度上海市地方标准立项指南》,现印发给你们,请根据指南范围和有关要求提出地方标准立项申请。上海市市场监督管理局2023年3月30日2023年度上海市地方标准立项指南为深入推进实施标准化战略,落实《国家标准化发展纲要》《上海市标准化发展行动计划》等文件要求,进一步发挥标准化工作服务本市高质量发展、高品质生活以及高效能治理中的技术基础保障和引领作用,加快构建高水平的标准体系,根据《上海市标准化条例》和《上海市地方标准管理办法》等有关规定,制定2023年度上海市地方标准立项指南。一、基本要求1.符合法律规定。申请的地方标准应当符合法律、法规、规章对地方标准制定范围的规定,突出地方标准公益属性、技术属性和地方属性。应由市场主体制定以及应由国家统一制定的,原则上不制定地方标准。2.满足发展需求。市有关行政管理部门在汇总、研究立项建议的基础上,根据本部门、本行业市级需求,向我局提出地方标准立项申请。申请的地方标准原则上应有明确的法律、法规、规章、政策、规划等依据。3.突出标准实效。市有关行政管理部门应采取配套措施,负责组织推动本部门提出地方标准的宣贯、实施及评估、复审等工作。二、立项重点领域和范围本年度上海市地方标准的立项重点领域和具体范围如下:1.社会管理:安全生产、特种设备安全、风险防控、应急管理、防灾减灾、消防安全、物资储备、城市基础设施、公共交通、水务海洋、气象、市容环卫等。2.公共服务:公共卫生、智慧医疗、养老服务、公共教育、政务服务、公共数据、信息安全等。3.工业/高新技术:氢能、新能源汽车、生物医药、航空航天、电子信息、生命健康、绿色低碳能源装备、先进材料、智能交通、工业互联网、时尚消费品产业以及制造业数字化转型等。4.服务业:人工智能、区块链、云计算、元宇宙等信息技术服务;现代物流、现代供应链、技术成果转移转化、人力资源、会展、金融服务;电子商务、现代商贸、家政、电子竞技、健康体育、文化创意、旅游等。5.节能环保:生态环境质量、生态环境风险管控、生态环境治理与修复、污染物排放控制、废弃物综合利用、碳排放限额、碳清除、能耗限额、绿色低碳设计评估改造和管理、节能环保服务等。6.农业农村:装备农业、智慧农业、种源农业、绿色农业、品牌农业;乡村基础设施、农村人居环境、乡村治理、数字乡村等。三、申请时间地方标准可以全年在线申请,原则上每年安排两次集中受理,分批受理的截止日期分别为上半年的4月15日和下半年的9月15日。对于为保障重大公共利益或者应对突发事件,需要及时出台相关地方标准的,可以根据《上海市地方标准管理办法》有关要求予以快速立项。四、申请方式及要求1.申请单位请登录上海市一网通办官方网站(zwdtuser.sh.gov.cn),搜索“上海市地方标准制修订”进行在线办理。2.申请单位完成网上申报后,在线打印申请表,一式一份加盖提出单位及技术归口单位印章后寄送地方标准技术审评中心。五、管理要求1.存在逾期未完成地方标准的市有关行政管理部门应减少新地方标准的申请,尽快完成已下达计划。2.地方标准自下达立项计划到报送报批文本的期限一般不超过15个月,确有必要延期的,市有关行政管理部门应当在期限届满30日前提出延期申请,延期时间不超过6个月。六、联系方式1.地方标准技术审评中心联系方式。地址:徐汇区长乐路1227号12楼,联系人:李燕,联系电话:54046795。2.立项重点领域工作人员联系方式。社会管理领域联系人:刘文涛,联系电话:64220000转2527分机;公共服务领域联系人:胡伟,联系电话:64220000转2525分机;工业/高新技术领域联系人:王宝斌,联系电话:64220000转2509分机;服务业、农业农村领域联系人:倪敏,联系电话:64220000转2507分机;节能环保领域联系人:刘宙君,联系电话:64220000转2526分机。附件: 167936816665873103.doc
  • 中旺全自动乌氏黏度仪在聚偏氟乙烯PVDF行业中的应用
    前言聚偏氟乙烯PVDF,是一种高度非反应性热塑性含氟聚合物,溶于二甲基乙酰胺等强极性溶剂。相对分子质量为40~60万,PVDF生产工艺主要包括乳液聚合法、悬浮聚合法、溶液聚合法以及超临界聚合法等。它除了具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐气候性、耐紫外线、耐辐射性能,还有压电性、热电性等特殊性能,其广泛应用于涂料、注塑、锂电池、水处理、光伏等领域。其中PVDF的特性黏度是其非常重要的一项技术指标,是企业鉴别PVDF合格与否的手段之一。就目前PVDF产能情况而言,随着下游需求的增长,尤其是新能源汽车带来锂电池的爆发式增长,国内企业纷纷扩产,开工率保持高位。鉴于这样的背景和企业需求,杭州中旺科技生产的全自动乌氏黏度仪有效地应用了聚偏氟乙烯PVDF特性黏度的检测。某PVDF厂家的IVS400-6全自动黏度仪全自动IVS400全自动黏度仪以乌氏黏度计为核心,依据ISO/GB/DIN相关标准,实现自动测试、自动计算、自动排废、自动干燥等功能,乌氏黏度管固定无需拆装,有效地减少了配件损耗。主要组成部分:▂高精密恒温水槽(控温25.00±0.01℃);▂自动黏度测量单元(自动计时:精度0.001S,自动清洗,自动排废等);▂主控制器(最多可同时控制6个测试单元);▂乌氏黏度计(符合ISO3105规定);▂流经式制冷器(连续不间断工作);▂Viscobee软件:覆盖大部分测试结果(特性黏度、分子量、黏数、聚合度等),并且可免费添加其他特殊公式。某企业PVDF特性黏度检测:测试流程▂称样用万分之一天平称取PVDF样品,放入到溶样瓶中,用DP25自动配液器移取溶剂到溶样瓶中;▂溶样将溶样瓶放入P12中旺聚合物溶样器中,按照规定的温度、时间溶样;▂黏度测试打开IVS400黏度仪,水槽温度设定为25℃±0.01℃,将溶液经过滤后加入乌氏黏度计中,打开软件,自动测试、计算;▂测试结果特性黏度:某一厂家PVDF黏度测量数据▂清洗乌氏黏度管自动清洗、自动排废、自动干燥。
  • 本源量子公司与晶合集成公司共建量子计算芯片联合实验室
    4月2日,合肥本源量子计算科技有限责任公司和合肥晶合集成电路股份有限公司共建量子计算芯片联合实验室签约仪式在合肥举行。省领导邓向阳、张红文出席签约仪式,省发展改革委相关负责同志主持,合肥市政府、省科技厅、省经济和信息化厅相关负责同志参加。量子科技是新一轮科技革命和产业变革的前沿领域。安徽省委、省政府高度重视量子科技产业发展,“十四五”将加快建设量子科技创新成果策源地和产业发展集聚区,形成量子科技产业创新链,打造具有全球影响力的“量子中心”。本源量子和晶合集成分别是量子计算和驱动芯片代工领域的龙头企业,双方的合作,是充分发挥量子计算和晶圆制造技术优势、共建创新联合体的一次探索,为新一代信息技术产业生态构建提供了新的路径。双方共建的安徽省首个量子计算芯片领域联合实验室,将在极低温集成电路领域进行工艺合作开发以及工程流片验证,实现从芯片设计到封装测试全链条开发。联合实验室的建设,将对量子计算芯片集成化发展、填补国内制造空白、加快应用落地具有重要的推动作用。量子科学技术受到广泛关注主要是由于其可以突破信息和物质科学技术的经典极限。量子科学技术主要研究方向包括量子通信,量子计算和量子精密测量。除了本源量子的量子计算外,以国仪量子为代表的量子精密测量产业也备受关注,量子精密测量的基本原理是利用磁、光与原子的相互作用,实现对各种物理量超高精度的测量,可大幅超越经典测量手段。目前量子精密测量已在生物与医疗、食品安全、化学与材料科学等领域显示出其独特的优势和广阔的应用前景。但我国量子精密测量在系统工程化和实用化仍有待探索,科研成果转化应用机制不成熟,产业合作和推动力量有限。为推动量子精密测量产业化进程,2021年4月23日,第十五届中国科学仪器发展年会(ACCSI2020)将召开量子精密测量产业化发展论坛,邀请领域内技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快量子精密测量产业化。现诚邀各领域相关从业人员参加学习 ! (报名参会)ACCSI 2021“量子精密测量产业化发展论坛”邀请报告及报告嘉宾一、论坛时间:2021年4月23日 9:00-12:00  二、论坛地点:无锡融创万达文华酒店  三、参会嘉宾:领域内技术专家教授、研究院、技术公司、资本投资专家;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。  四、会议形式:现场会议 / 线上会议内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽皮秒高重频相干脉冲产生及量子光学应用复旦大学 教授吴赛骏量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋2021第十五届中国科学仪器发展年会(ACCSI2021)将于2021年4月21-23日在无锡市召开。ACCSI定位为科学仪器行业高级别产业峰会,经过14年的发展,单届参会人数已突破1000人,被业界誉为科学仪器行业的“达沃斯论坛”。ACCSI2021以“创新发展,产业共进”为主题,力求对过去一年中国科学仪器产业最新进展进行较为全面的总结,力争把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等在最短的时间内呈现给各位参会代表。会议期间将颁发 “年度优秀新品”、 “年度绿色仪器”、“年度行业领军企业”、“年度十大第三方检测机构”、“年度售后服务厂商”、“年度网络营销奖”“年度人物”等多项行业大奖,引领科学仪器产业方向。参会咨询报告及参会报名:010-51654077-8124 13671073756 杜老师 15611023645李老师 赞助及媒体合作:010-51654077-8015 13552834693魏老师微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。报名链接:https://insevent.instrument.com.cn/t/qK 报名二维码扫描二维码查看最新会议日程
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 如何在药物开发中制定有效的粒度标准?
    本文摘要本文将介绍马尔文帕纳科全新升级的激光粒度仪Mastersizer 3000+在药物开发中的部分应用,以及我们是帮助客户如何制定有效的粒度标准?如何在药物开发中制定有效的粒度标准? 制药行业中,原料药的粒度分布可能会对产品的性能 ,如溶解度、生物利用度、含量均匀度、稳定性等,产生显著影响。ICH Q6A指导原则中给出了何时需要制定粒度标准的决策树,建议对固体制剂或含不溶原料药的液体制剂,当粒度大小是以下几方面的关键因素时,需要建立粒度标准。溶出度、溶解度或生物利用度;制剂生产;制剂稳定性;制剂含量均匀度制药行业内最广泛使用的粒度分析技术之一是激光衍射技术,具有广泛适用性,适用于粒径在0.1微米到3500微米范围内的湿法或干法系统。下文将以激光衍射法为例,讨论如何进行粒度标准制订。标准制订-选择合适的粒度指标测量不同粒度指标对样品配方变化的敏感性是作为参数选择的重要依据之一。图1中使用激光衍射法(马尔文帕纳科的Mastersizer)测量混合了不同比例细颗粒的样品,显示了随着细颗粒含量增加不同粒径指标的变化。图1. 不同粒度指标对细颗粒含量的敏感性这个例子中,显然Dv10和D[3,2]只在细颗粒含量占比低于10%时对粒径有相应的敏感性,而Dv90在细颗粒含量高于40%时能反映出粒径的变化。相比之下,Dv50和D[4,3]始终表现出对粒径变化好的表征效果,因此建议采用Dv50和D[4,3]制定粒径控制标准较为合适。标准制订-设定偏差范围激光衍射等技术具有出色的重复性、重现性和稳定性,能够提供高质量的数据。高重复性意味着在相同系统上运行的同一样品获得的结果一致,因此测量结果的好坏更多的取决于样品分散的重现性。重现性是一个更严格的参数,用于量化由操作员、样品、时间和仪器变化引入的误差;采样方法也至关重要。测量误差直接影响标准制定中偏差的设定。图2粒度分布曲线,红色实线是典型读数,黄色和橙色虚线表示偏差范围。如果该产品的标准规定是Dv50 =10 μm,那么图中对应的测量误差是+/- 5%。但是,不能因此就错误的以为小于10 μm的偏差也是该数值。如果标准规定样品中小于或等于10 μm的颗粒累积体积分布百分比为50%,测量误差就是+/-14%。图2 测量精度受指标规定的影响。随着测量误差的增加,测量结果更不可靠。这很容易理解,但在标准制订中并没有充分考虑这一点。以下是一个片剂混合物的标准要求(Evolutions in Direct Compression, Douglas McCormick, Pharmaceutical Technology, April 2005. Pg 52-62):Dv10 30 μm D[4,3] 80 μm Dv90 1000 μm上述标准设定没有考虑到任何由测量引入的误差,只是描述了最理想的结果。参照USP 的要求,中位值Dv50 RSD≤10%,两侧值Dv10和Dv90 RSD≤15%。那么 30 μm样品允许的Dv10最大测量值是34.5 μm(误差15%)。如果想确保样品的实际Dv10大于30 μm,需要调整相应的指标要求。调整后如下:Dv10 34.5 μm D[4,3] 88 μm Dv90 850 μm精度较低的方法则需要制定更严格的粒度标准。因此建议使用重现性更高的仪器和开发更稳定的方法。结论粒度和粒度分布是原辅料及药物颗粒的关键质量属性,直接影响药效,需要严格控制。激光衍射法是一种适用于多种行业的粒度分析技术。经典的马尔文帕纳科Mastersizer 3000激光粒度仪可提供高重现性的结果(+/-1%),避免因测量方法不准确而需要缩小偏差范围。今年马尔文帕纳科推出全新的Mastersizer3000+系列产品,提供更智能、准确的粒度解决方案。感兴趣的老师可观看新品发布回放,了解更多内容。 关注马尔文帕纳科微信公众号,观看回放视频:Mastersizer3000+新品发布(医药行业专场)参考资料https://www.malvernpanalytical.com/en/learn/knowledge-center/whitepapers/wp110325pharmamanufacspecs
  • 7项缝纫机行业标准10月1日起实施
    由我国缝制机械行业专业研究所以及多家骨干企业的技术专家等共同起草的《QB/T1179-2010工业用缝纫机机械离合器电动机》、《QB/T2034.2-2010缝纫机术语第2部分:刺绣机术语》、《QB/T2254-2010缝纫机专用螺纹》等7项行业技术标准不久前获得了工业和信息化部的批准,均将于今年十月一日起正式实施。   据了解,将于今年十月一日起正式实施的7项我国缝制机械行业技术标准分别是《QB/T1179-2010工业用缝纫机机械离合器电动机》、《QB/T2034.2-2010缝纫机术语第2部分:刺绣机术语》、《QB/T2254-2010缝纫机专用螺纹》、《QB/T 2255.1-2010工业用缝纫机机针第1部分:GC型和GN型》、《QB/T 2529-2010工业用缝纫机GK型筒式绷缝缝纫机机头》、《QB/T 2626.3-2010工业用缝纫机针板的通用技术条件第3部分:绷缝缝纫机针板》、《QB/T4007-2010工业用缝纫机高速平缝机伺服系统技术条件》。   《QB/T1179-2010工业用缝纫机机械离合器电动机》标准规定了:工业用缝纫机机械离合器电动机的产品分类、要求、试验方法、检验规则、标志、包装、运输和贮存。该标准适用于工业用缝纫机使用的单相(电容运转式)及三相机械离合器电动机。《QB/T2034.2-2010缝纫机术语第2部分:刺绣机术语》标准规定了:刺绣机的产品名称术语、基础术语、机构装置术语、控制系统术语、操作术语、花样制作术语。其主要适用于刺绣机专业领域设计、生产、维修及贸易。《QB/T2254-2010缝纫机专用螺纹》标准规定了:缝纫机专用螺纹的基本牙型、尺寸计算、螺纹的基本尺寸、公差带、螺纹标记以及螺纹的尺寸偏差和公差、螺纹牙侧角的定义和极限偏差等。其适用于缝纫机专用螺纹。   《QB/T2255.1-2010工业用缝纫机机针第1部分:GC型和GN型》则规定了:工业用缝纫机GC型和GN型机针的术语和定义、产品分类、要求、试验方法、检验规则、标志、包装、运输和贮存。该部分标准主要适用于平缝缝纫机用GC3×1型,刺绣机、双针平缝机用GC3×5型,包缝机用GN×1型机针的技术运用。《QB/T2529-2010工业用缝纫机GK型筒式绷缝缝纫机机头》标准则规定了:GK型筒式绷缝缝纫机机头的产品分类、要求、试验方法、检验规则、标志、包装、运输和贮存。该标准适用于缝制中厚料、厚料织物并形成400或600线迹的GK型筒式绷缝缝纫机机头。《QB/T2626.3-2010工业用缝纫机针板的通用技术条件第3部分:绷缝缝纫机针板》规定了:工业用缝纫机绷缝缝纫机针板的分类、要求、试验方法、检验规则和标志、包装、运输、贮存。该部分技术标准主要适用于工业用绷缝缝纫机针板。《QB/T4007-2010工业用缝纫机高速平缝机伺服系统技术条件》标准规定了:工业用缝纫机高速平缝机伺服系统的产品分类、要求、试验方法、检验规则、标志、包装、运输和储存。该标准主要适用于工业用高速平缝机伺服系统,类似工业用缝纫机的伺服系统可参照采用。   据了解,《QB/T1179-2010工业用缝纫机机械离合器电动机》等上述7项行业技术标准已于今年5月中旬工业和信息化部公布的工科〔2010〕96号《工业和信息化部批准等192项行业标准》公告获得批准。据悉,192项行业标准其中包括了,机械行业标准80项,轻工行业标准110项,包装行业标准2项。机械行业标准由机械工业出版社出版,轻工行业标准由中国轻工业出版社出版,包装行业标准由中国计划出版社出版。
  • 南科大科学家获固态量子计算突破,实现单原子直写的量子计算芯片
    如今,量子计算研究已成为全球科技发展的一大热点,各主要国家高度关注量子计算的发展,启动国家级量子战略行动计划,大幅增加研发投入,同时开展顶层规划以及研究应用布局。同时,国际产业界也纷纷投资量子计算,如谷歌、IBM、英特尔、微软等巨头企业更是积极推动量子计算产业的发展,其中以谷歌公司在 2019 年首次实现量子霸权,为产业界在量子计算方面发展的标志。据波士顿咨询公司(Boston Consulting Group)预测,量子计算机将很快开始解决许多今天的计算机无法解决的工业问题。那么量子计算机离我们还有多远呢?从当前硬件、算法和计算机架构上来说,量子计算机还不是很成熟。在 20 多年前,澳大利亚的量子计算机专家 Bruce Kane 在《自然》上发表了名为“A silicon-based nuclear spin quantum computer”论述了搭建硅基量子计算机的问题,并指出之中的关键是要将量子比特放置在间距 10—20nm 时所能够实现的一种两比特门。众所周知,我们的电脑是由很多具有特定功能的复杂电路组成,其中就有很多逻辑门电路。这些逻辑门电路及其有序组合就是电脑中形形色色的功能的基础,进而成就了人类数字社会的今天,而逻辑门操作的稳定性和开关特性决定了电脑的很多关键性能,例如计算速度等。这种特殊的两比特门就像是我们通向通用硅基单原子量子计算机的最后一道门一样,来自南方科技大学的贺煜副研究员也许就是开启这扇通向单原子级别硅基量子计算大门的开门人。他和团队成员一起,利用高精度微纳加工方式,将两个磷原子构成的量子点分别放置在相距 13nm(也就是130)的位置上,实现了第一个适用于量子计算机的高速两比特门。图 | 《麻省理工科技评论》中国区“35 岁以下科技创新 35 人”榜单入选者贺煜贺煜现在是南方科技大学量子科学与工程研究院的副研究员、独立 PI、硅量子器件和量子计算方向团队带头人。多年来,他在量子计算和量子网络方面取得了系列开创性成果,利用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来信息技术。突破关键量子门,推进量子计算机构建从硬件的角度来说,如果能基于硅制作量子计算机无疑是最方便的,因为从材料上来说,硅在地球上的含量是十分富足的。再者,如今的半导体工艺大都基于硅材料,那么与传统半导体工艺的兼容性也能使得量子计算机的构建变得更加方便。在 2019 年,贺煜带领团队证明了硅基磷原子体系第一个两比特门,是满足通用量子计算判据的最后一条,也正是 Bruce Kane 提出的量子计算方案中关键的一环。来自南方科技大学的俞大鹏院士以此推荐贺煜博士入选“35 岁以下科技创新 35 人”榜单,并表示:“这个工作为大规模量子计算芯片奠定了坚实基础,是一个里程碑式的工作。”该成果以封面文章发表在《自然》上,贺煜为第一作者,且该工作被列为“2019 年量子计算实验十大进展”。图 | 贺煜发表在《自然》的论文贺煜创造性地采用扫描隧道显微镜技术(STM)实现纳米尺度芯片加工,成功地以单原子级别的精度将两个磷原子构成的量子点放置在 13 纳米间距上,在硅基量子芯片上实现了第一个高速两比特门——800 皮秒的根号交换门,并实现了利用全统计计数方法对比特读出保真度的优化、参与构建比特读出保真度分析的理论工作等。这是一种高精度的微纳加工方式,可用于制备单原子、单电子量子器件以及人工量子材料,并能够实现单原子尺度的量子计算,为大规模可扩展的硅基量子计算奠定了坚实基础。师从潘建伟院士和陆朝阳教授多年来,贺煜在量子计算和量子网络方面取得了系列开创性成果,用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来量子信息技术平台。回顾他的求学之路,用“根正苗红”来形容再合适不过。自本科起,贺煜就在中科大这片量子的土壤中成长,并以优异的成绩保送本校硕博连读。期间在导师潘建伟院士和陆朝阳教授的指导下,贺煜主要研究砷化镓自组装量子点,核心成果包括一系列单光子源方面开创性工作,以及首次观察到自发辐射谱线擦除效应——实现量子光学的实验突破,以及单光子向单电子自旋的量子传态等。谈及选择量子技术作为研究方向的原因,他告诉 DeepTech:“之所以一直选择量子物理、量子计算的方向,首先是兴趣爱好,是自己对于微观世界的好奇心和对量子世界的喜爱所驱动,其次是因为量子计算是一个将改变人类未来的前沿科技,尤其是硅量子计算芯片具有很大的产业潜力,希望通过自己的耕耘为社会贡献一份力量,为科学发展做一份努力。”图 | 贺煜发表在《自然-光子学》的论文2015 年以后,贺煜继续在陆朝阳教授团队做了半年的博后研究,结合博士期间的工作,实现了当时世界最高光子数玻色抽样——证明了量子计算机对于第一台电子管计算机 ENIAC 的超越和第一台晶体管计算机 TRADIC 的超越,研究成果以论文形式发表于 2017 年的《自然-光子学》上,并入选“2017 年中国十大科技进展新闻”。论文指出,为完成高性能玻色抽样实验,研究团队克服的技术难点有两个:一是基于砷化镓量子点,研究团队设计了稳定的高亮度单光子源;二是设计并使用了性能卓越的多光子干涉仪(multiphoton interferometers),其传输效率高达 99%。研究团队完成并实现了 3 光子、4 光子以及 5 光子玻色抽样实验,采样率分别为 4.96kHz、151Hz 和 4Hz,都达到之前实验的 24000 倍以上。图 | 贺煜团队开发的高性能玻色抽样实验平台这是一项十分惊人的突破,是首次量子计算机超越传统计算机的案例。火车刚刚出现时比马车还慢,飞机刚刚问世时只能在空中短暂停留,如今都是改变生活的重要科技成果。量子计算机从理论上来说,会比传统计算机快很多,是基于量子比特运行的计算机。通过量子物理学中的两个奇异的原理——“纠缠(entanglement)”和“叠加(superposition)”,量子计算机能以指数形式扩展计算机的处理速度。着眼未来,布局固态量子网络从根本上来说,量子计算机目前仍处在产业发展的初期阶段,但军工、金融、石油化工、材料科学、生物医疗、航空航天、汽车交通等行业都已注意到其巨大的发展潜力。随着时间的推移,预计 2050 年左右将达到每年 3000 亿美元的营业收入,将成为改变世界的下一代技术革命关键领域之一。回顾计算机的发展历史,世界上的第一台计算机是 ENIAC,它生于第二次世界大战,主要任务是计算弹道,是一台军用计算机。而计算机的全面普及其实与商业计算机的出现和网络的构建息息相关。那么量子计算机会不会也沿着这一条“老路”发展呢?这也是一个值得思考的问题。贺煜认为,量子计算机要走向应用,量子网络和通信是十分关键的技术,必须做以突破。如今他任教于南方科技大学,除了量子计算之外,主要研究方向还有量子网络。2017 年,他和团队实现了单光子到单电子的量子传态,开发了一整套全新的单光子频率比特控制和测量方案,验证了单个光子和电子之间的纠缠,并且把光子的量子信息传递到 5 米远的电子自旋上去,为固态量子网络研究的重要突破。图 | 贺煜及研究团队完成的“单光子-单电子”量子传态而谈及接下来的研究方向,贺煜表示:“根据硅量子计算的发展趋势,在南方科技大学量子科学与工程研究院,我将带领硅量子计算团队,研究硅基量子计算芯片和量子计算,从根本问题入手,解决目前的一些技术瓶颈:进行硅基单原子量子器件的基本物理研究;研究新型的硅基原子比特和研究比特耦合技术;利用低温扫描隧道显微镜直写技术构建新型芯片等。并将研发的新工艺和半导体芯片产业化进行对接,为将来的广阔商业前景奠定基础。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制