当前位置: 仪器信息网 > 行业主题 > >

氨一氯胺分析仪

仪器信息网氨一氯胺分析仪专题为您提供2024年最新氨一氯胺分析仪价格报价、厂家品牌的相关信息, 包括氨一氯胺分析仪参数、型号等,不管是国产,还是进口品牌的氨一氯胺分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨一氯胺分析仪相关的耗材配件、试剂标物,还有氨一氯胺分析仪相关的最新资讯、资料,以及氨一氯胺分析仪相关的解决方案。

氨一氯胺分析仪相关的资讯

  • 中国氨氮在线分析仪市场解析
    p  近年来,水体污染事件频发,水体富营养化已经成为备受世界关注的问题。水体中氨氮的含量与水体富营养化有着密不可分的关系,氨氮含量的变化可以客观地反映水体受污染的程度。/pp  为了解中国水质氨氮在线分析仪的应用现状、各品牌占有率以及市场前景等内容,仪器信息网特组织了“氨氮在线分析仪市场”调研活动。此次调研,面对的调研对象包括氨氮在线分析仪用户、氨氮在线分析仪制造/应用领域专家以及部分氨氮在线分析仪生产厂商等。/pp  《中国氨氮在线分析仪市场调研报告(2018版)》就目前国内市场上氨氮在线分析仪的产品、市场等情况进行了调研分析,内容包括氨氮在线分析仪的不同原理、国内氨氮在线分析仪用户的地域分布、行业分布、单位类型分布、以及主流品牌的产品价格及市场份额等。报告中对用户以及业内专家对于氨氮在线分析仪产品、品牌的评价进行了汇总分析,报告的最后为广大仪器厂商指出了氨氮在线分析仪市场增长潜力所在。/pp  本次调研活动得到了广大用户、企业以及业内专家的大力支持,共有近四百位来自水中氨氮监测/检测相关行业的专家和实验室用户参与了此次调研,其中将近200家相关用户单位接受了我们的电话访谈。/pp  span style="font-size: 18px "strong节选/strong/span/pp  第一章 氨氮在线分析仪概述/pp  1.2氨氮在线分析仪/pp  据了解,目前可用于氨氮在线分析仪的方法原理主要有6种,分别是纳氏试剂分光光度法仪器、水杨酸分光光度法仪器、氨气敏电极法仪器、电导法仪器、滴定法仪器以及铵离子选择法仪器。据本次调研结果显示,目前国内市场上最常见的氨氮在线分析仪方法原理为......本小结就这几种方法原理进行一个简要概述。/pp  ....../pp  第二章 氨氮在线分析仪市场抽样统计分析/pp  2.2氨氮在线分析仪使用单位行业分布/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/e6d374b8-6adf-4f98-b116-c2327bef4bde.jpg" title="用户行业分布.jpg"//pp style="text-align: center "  图2.2 单位行业分布/pp style="text-align: right "  (数据来源:抽样调研)/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/435a47e7-3e1c-459e-b68c-30453c2cb4a4.jpg" title="单位性质分布_副本.jpg"//pp style="text-align: center "  图2.3 单位性质分布/pp style="text-align: right "  (数据来源:抽样调研)/pp  在对本次调研结果进行统计分析后发现,氨氮在线分析仪的用户单位所属行业分布较为广泛,主要集中在....../pp  第三章 氨氮在线分析仪主流品牌及产品分析/pp  3.2氨氮在线分析仪主流品牌2017年销量情况/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/a3224644-b3d4-4d0e-a30d-e8ea28609699.jpg" title="厂商分析_副本.png"//pp style="text-align: center "  图3.1不同品牌氨氮在线分析仪2017年销量占比/pp style="text-align: right "  (数据来源:仪器信息网)/pp  据本次调研结果显示,2017年氨氮在线分析仪的市场总量估计在C套左右。据了解,目前我国国内氨氮在线分析仪的生产企业为60多家,其中90%左右为国产厂商,部分外企在国内建有生产基地。/pp  ....../pp  报告目录:/pp  第一章 氨氮在线分析仪概述...... 1/pp  1.1水中的氨氮...... 1/pp  1.2氨氮在线分析仪...... 1/pp  1.2.1纳氏试剂分光光度法氨氮在线分析仪...... 2/pp  1.2.2水杨酸分光光度法氨氮在线分析仪...... 2/pp  1.2.3氨气敏电极法氨氮在线分析仪...... 3/pp  第二章 氨氮在线分析仪市场抽样统计分析...... 5/pp  2.1氨氮在线分析仪使用单位地域分布...... 5/pp  2.2氨氮在线分析仪使用单位行业分布...... 7/pp  2.3氨氮在线分析仪使用单位性质分布 ......9/pp  2.4 2017年氨氮在线分析仪中标信息统计 ......10/pp  2.4.1中标公告中招标单位性质分析 ......10/pp  2.4.2中标公告中招标单位地区分布 ......11/pp  2.5氨氮在线分析仪需求趋势分析 ......12/pp  2.6氨氮在线分析仪网上询盘量 ......13/pp  2.7相关分析 ......14/pp  第三章 氨氮在线分析仪主流品牌及产品分析...... 16/pp  3.1氨氮在线分析仪主流品牌产品及价格分析...... 16/pp  3.2氨氮在线分析仪主流品牌2017年销量情况...... 19/pp  3.3国内市场主流类型氨氮在线分析仪占比分析...... 20/pp  3.4氨氮在线分析仪使用与维护 ......21/pp  3.4.1纳氏试剂分光光度法仪器 ......21/pp  3.4.2水杨酸分光光度法仪器 ......21/pp  3.4.3氨气敏电极法仪器...... 22/pp  第四章 氨氮在线分析仪用户反馈分析...... 23/pp  4.1产品评价及未来发展趋势 ......23/pp  4.2用户采购行为分析...... 24/pp  第五章 结论...... 26/pp  报告链接:span style="text-decoration: underline color: rgb(192, 0, 0) "a href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=150" target="_self" title="" style="text-decoration: underline color: rgb(192, 0, 0) "《中国氨氮在线分析仪市场调研报告(2018版)》/a/span/pp  strong欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/p
  • 应用案例 | HT8700大气氨激光开路分析仪用以测量广州塔附近大气氨通量
    项目内容:中国科学院广州地球化学研究所测量广州塔附近的大气氨通量,并进行实验比对项目时间:2023年9月项目地点:广州塔仪器安装项目意义&bull 空气质量监测:氨是一种有害气体,常常与空气污染和城市环境质量相关。通过在广州塔上安装氨激光开路分析仪,可以实时监测城市空气中的氨浓度,有助于评估空气质量,并提供数据支持,以采取必要的措施来改善空气质量。&bull 健康保护:氨的高浓度对人类健康有害,可能导致呼吸问题和其他健康问题。通过监测氨浓度,可以提前发现潜在的危险,采取措施来保护城市居民的健康。&bull 环境保护:氨还可以对周围的生态系统产生不利影响,对水体和土壤造成污染。通过监测氨的浓度,可以采取措施来减少氨的排放,降低对环境的不良影响。&bull 科学研究:广州塔上的氨监测数据可以用于科学研究,例如气象学、环境科学和大气化学。这些数据有助于研究氨在城市大气中的来源、传播和化学反应,从而更好地理解城市大气环境。&bull 污染源追踪:氨的监测可以帮助确定城市内潜在的氨排放源,这有助于政府和监管机构采取措施来减少污染源并加强环境管理。知识分享:通量塔的选址和建设原则在生态学、气象学和环境科学等领域,通量塔是一种用于测量大气层中气体和能量交换的设备。这些通量塔用于监测大气和地表之间的物质通量,例如水蒸气、二氧化碳、热量等,以了解生态系统和大气中的不同过程。通量塔通常包括一系列仪器和传感器,用于采集大气和地表参数的数据。选址和建设原则:&bull 代表性地点:通量塔的选址应考虑到它们所监测的生态系统或气象过程的代表性。选择代表性地点可以确保测量结果对于整个区域或生态系统有意义。&bull 最小扰动:通量塔的建设应尽量减少对周围环境的扰动。这包括减少人工结构对生态系统或气象过程的影响,以确保测量的准确性。&bull 高度选择:通量塔通常会建立在不同的高度,以测量气体和能量通量在大气中的垂直分布。选择适当的高度可以提供更全面的数据。&bull 安全考虑:通量塔的建设和维护应符合安全标准,以确保工作人员和环境的安全。通量塔在环境科学研究中起着重要作用,帮助科学家了解大气和生态系统之间的相互作用,以及气体和能量的交换过程。选择合适的位置和正确的建设原则对于获得准确和可靠的数据非常关键。
  • “氨氮在线分析仪市场”调研活动首批话费奖励已发放!
    p  为更好地了解氨氮在线分析仪市场情况,仪器信息网特组织“氨氮在线分析仪市场”问卷调研活动,旨在给用户在使用和选购仪器的过程中做出参考。/pp  截至目前,经仪器信息网对问卷的完整性和真实性经过初步筛选后,首批获得20元话费奖励的用户名单已出炉!据统计,首批获得20元话费奖励的用户共计38人,现将获奖者名单公布如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/13138be2-35cb-4380-95af-a85af1e86a41.jpg" title="氨氮在线分析仪.png"//pp  a href="http://cn.mikecrm.com/gZGL4Q2" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "“氨氮在线分析仪市场”问卷调研活动/span/strong/a还在继续,认真、如实填写问卷的相关仪器用户及厂商均可获得话费奖励,动动手指赶快参与吧!/p
  • 哈希Amtax NA8000氨氮在线分析仪精彩上市
    哈希新一代氨氮在线分析仪——Amtax NA8000震撼来袭!为更好的满足中国市场对氨氮仪器的更高要求,哈希结合多年研发、生产、销售及维护氨氮在线检测仪器的经验,升级研发了全新一代氨氮在线检测产品。Amtax NA8000在测量准确性,稳定性及维护等方面做出了改进。在低排放浓度工况下有更优异的分析性能,响应速度快,并拥有更宽的量程范围,将为您带来更加安心,更轻松便捷的在线氨氮检测体验。哈希Amtax NA8000氨氮分析仪采用双波长及双光程的比色皿设计(专利号:ZL201720404712.9)可通过参比光束的测量,消除样品浊度、电源波动等因素对测量结果的干扰。配有哈希先进的Prognosys预诊断技术,提供预防性维护提醒,有效降低停机风险。同时具备自动校准和自动清洗等功能与数据存储功能,有多种固定量程及自动量程供您选择。哈希Amtax NA8000氨氮分析以更优异的性能为您带来安全,快速,轻松的测量体验。
  • 海尔欣发布高精度大气氨本底激光开路分析仪新品
    开路气体分析技术:不同于常见的抽取式采样+闭路气体池技术,开路气体分析技术对浓度变化的响应时间可达0.1秒,不存在采样和预处理通道管壁对分子的吸附和滞后现象。低功耗、部署范围广:无需采样泵降低了整机功耗和质量,方便携带,结合太阳能电池板,有利于在无供电电网地区部署,提高了用户选择研究地点的自由度。波长调制技术:采用预设的程序,在目标气体的吸收范围内选取波长进行扫描式复合测量,以此获得更佳的峰型(用于光谱积分反演),排除非目标气体的干扰。信号噪音屏蔽:优化的模拟电子技术,极低噪声激光电流源,探测器前放,结合锁相放大数字信号处理算法,避免了自然环境中的电磁干扰,以及光电子噪声的影响,以此获得更准确的测量结果。中心波长控制器:通过参考光路以及自动反馈将激光器中心波长锁定在特征吸收谱中心,确保获得更准确的特征波谱。稳定的温度控制:通过被动散热和半导体制冷,保证激光器温度的精准控制。在外界不断变化的温度条件下获得更准确的测量结果。稳定的环境气压和温度测量补偿:对环境温度和压力实时精准测量,结合内置的温度和压力补偿算法,确保在环境条件不断变化下获得更准确的测量结果。冬季/夏季两种工作模式:冬季,夏季模式可根据环境温度进行切换,拓展仪器工作温度范围,提高测量准确度。创新点:海尔欣公司自主研发的大气氨激光开路分析仪采用红外激光吸收光谱技术(LDIR),结合开路式多次反射气体池,使得测量有效光程达数十米,实现了对大气氨分子进行10Hz,亚ppb精度的高速测量,该大气氨开路分析仪采用车辆移动平台搭载的形式,形成一整套车载巡检系统。1、避开了传统的闭路氨分析仪器由于采样管路的传输时间和吸附效应,响应速度很慢的缺点,创新性的采用开路测量方案,无需采样,响应速度非常快,由高浓度恢复至零点时间小于1秒,尤其适合车载平台高速运动中收集到瞬时浓度变化,避免漏检氨排放源;2、开路分析仪无需采样泵,依靠大气的自然流动经过光路分析,大大降低了整机功耗(50W)和质量(5kg),因此可使用小型车载电源或电池供电,适合多种巡检车型。海尔欣的分析仪甚至结合太阳能电池板可在无电网覆盖区域部署,提高了用户选择测量点的自由度。
  • 重磅!王牌产品LGM1600氨逃逸分析仪升级啦!
    重磅!王牌产品LGM1600氨逃逸分析仪升级啦!宁波海尔欣光电旗下品牌昕甬智测自主研发的LGM1600便携式高精度氨逃逸分析仪升级啦!LGM1600氨逃逸分析仪作为昕甬智测明星产品,自推出以来业绩颇佳,频频传出中标喜讯,客户也给予了一致好评。而昕甬智测的工程师们从未停止优化和升级的脚步,在今年7月,昕甬智测LGM1600氨逃逸分析仪完成新升级!在产品方面,昕甬智测非常注重用户体验和设备“硬实力”,在新一代的LGM1600对于体积重量、采样连接、操作软件等细节做了新的升级,并且优化了LGM1600仪器整体稳定度,支持更多应用场景。关于LGM1600:昕甬智测自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,使用世界领先的半导体量子级联激光器(QCL)作为光源,激光通过独创的MIR-SHORT超小气体吸收池,光电探测器接收透射光并提取和分析透射光谱,准确反演获得氨浓度,由于LGM1600采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。实现对氨分子的高选择、抗干扰、高精度测量。LGM1600升级后:1, 产品体积更小,重量更轻,更加便携性;2, 采样管线采用快速接头连接,操作更便捷;3, 人机操作界面优化设计,数据查看更直观;4, 仪器测量稳定性更佳,环境适应性更好。可以说在原有LGM1600的基础上做出了更细节和人性化的优化升级,仪器的稳定性也更好。测量原理红外激光吸收光谱技术(QCLAS)技术指标测量组分NH3量程0 〜20/50/100/200 ppm检出限0.1 ppm检测精度±0.1 ppm (1s积分时间)±0.01 ppm (100s 积分时间)响应时间15s(取决于取样长度及流量)线性误差±1%F.S.零点及量程漂移±2%F.S.尺寸重量分析主机486×170×340 mm3 (长×宽×高) 〜10 kgLGM1600测试数据:昕甬智测的工程师们对于LGM1600进行了针对测量精度、响应速度、灵敏度等的多项专业测试,可以看到,LGM1600实现了对氨分子的高选择、抗干扰、高精度测量。LGM1600便携式氨逃逸分析仪在不同标气浓度下的数据响应和测量精度,在0-20ppm的测量范围,最大绝对误差0.5%.图一 昕甬智测LGM1600氨逃逸分析仪在不同标气浓度下的数据响应和测量精度曲线LGM1600氨逃逸分析仪在0-20ppm的测量范围的线性系数表现,线性度大于R20.999.图二 LGM1600氨逃逸分析仪在0-20ppm的测量范围的线性系数表现阿兰偏差分析表明LGM1600氨逃逸分析仪在1Hz采样下达到0.1ppm的测量灵敏度。图三 阿兰偏差分析表明LGM1600氨逃逸分析仪测量灵敏度达到0.1ppm。关于我们:宁波海尔欣光电科技有限公司长期专注于激光光谱检测技术(QCL/ICL+TDLAS),在高灵敏度痕量气体分子光电分析领域拥有核心知识产权。旗下品牌昕虹光电提供围绕高灵敏度痕量气体分析的光电器件、模块及解决方案;昕甬智测专业开发面对污染气体和温室气体的分析仪器,适应各类场景的气体浓度/通量监测,为碳中和研究与减污降碳协同效应监测提供先进水平的国产仪器设备。
  • 日立全自动氨基酸分析仪测定生物胺
    生物胺(biogenic amine,BA)是一类具有生物活性、含氨基的脂肪族或杂环类低分子化合物,对动植物和微生物活性细胞有重要的生理作用。适量的生物胺有助于人体正常的生理功能,但是过量的生物胺会使人体中毒,其潜在毒性而引发的食品安全问题引起越来越广泛的重视,食品中生物胺的检测也成为评价食品品质的一个重要指标。日立超高速全自动氨基酸分析仪LA8080,采用日立独家的双柱技术使氨基酸的分析进入一个超高速全自动分析的时代。同时,LA8080也可用于生物胺的全自动分析,LA8080自动进行衍生,无需复杂的手动衍生,提供标准分析和快速分析两种分析方法。 PH色谱柱标准分析PH 60mm色谱柱是LA8080的标配色谱柱,可以在30min内分离26种氨基酸,且分离度大于1.2,如果LA8080用户同时有生物胺测定的需求,可以不用增加或者更换任何硬件配置,即可实现生物胺分析。七种生物胺分离度良好PH色谱柱快速分析如果需要更快的分析速度,提高分析速率,也可选择快速分析法,仅需35min即可实现7种生物胺的分离。35min内就可实现七种生物胺的分离分析,并且分离度良好。 日立超高速全自动氨基酸分析仪LA8080,不仅可以实现氨基酸的超高速全自动分析,同时也可以用于生物胺的全自动分析,为用户带来更多的便利和解决方案。
  • 文章推荐 | 量子级联激光开路分析仪检测农田氨干沉降的日变化
    氨(NH3)是大气中最重要的碱性气体。农业活动,特别是施用合成肥料后的氨挥发,是人为氨排放的主要来源之一,也是农田养分流失的重要途径。这些氮(N)负荷有利于生态系统作为初级生产的营养投入,但也会导致许多环境和公共卫生问题,如生物多样性丧失、富营养化和雾霾污染。因此,特别是在农业地区,准确定量氨挥发和沉积通量对于了解地方和区域氮预算至关重要。然而,氨通量的现场测量仍然存在巨大的不确定性和挑战。 到目前为止,涡流协方差(EC)技术,基于同时测量地面上的湍流空气运动和气体浓度,是测量生态系统和大气之间的能量和质量交换的最直接的方法。对于氨通量测量,EC比其他方法有优势,因为它可以直接量化氨发射和沉积通量,并产生代表场尺度上空间平均的时间连续数据。然而,在过去,由于缺乏快速响应(≥10Hz)和高灵敏度的氨分析仪,特别是那些可以由现场太阳能电池驱动的分析仪,EC的应用受到了严重的限制。海尔欣昕甬智测推出一种采用量子级联激光吸收光谱技术的HT8700大气氨激光开路分析仪。根据实验室和现场测试,该仪器已被证明是在各种环境条件下测量氨通量的有效工具。 HT8700大气氨激光开路分析仪开创性的开路设计用于氨气测量基于量子级联激光技术,自主研发、设计、生产了的开路分析仪,具有低功耗(太阳能供电)、高精度(亚ppbv级)、快响应(10Hz)等特点,特别适合于地面氨排放和大气氨沉降通量的涡动相关法高频自动连续监测。 本研究采用HT8700大气氨激光开路分析仪,在全球氨热点地区之一华北平原的一个典型农业站点进行了氨通量测量。该实验时间持续了5周,并在小麦季节进行。本研究的主要目的是调查该农业基地秋季氨通量的特征,并量化氨对农田的干沉积和氨挥发造成的氮损失。
  • 珀金埃尔默推出三聚氰胺分析仪
    珀金埃尔默三聚氰胺分析仪筛查奶制品中三聚氰胺、三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸  奶粉中检测出三聚氰胺事件引起人们普遍关注后,三聚氰胺这一名字很快被大众熟知。根据2007年春季美国宠物食品检出三聚氰胺的研究结果,科学家们相信除了三聚氰胺,其类似物――三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸都有可能导致宠物生病。为完成对含蛋白质原材料的调查,需要测定包括三聚氰胺及其类似物的所有可以提高原料中含氮量的化合物。故此次对于奶粉的检测也应该注意不至分析三聚氰胺,同时对所有类似物进行同时分析。  珀金埃尔默三聚氰胺分析仪做为目前市场上唯一的一台专门用于食品中三聚氰胺及其类似物的分析仪,可以完全符合美国FDA有关快速消费品中筛查三聚氰胺及其类似物的方法要求。该分析仪包括带有程序升温功能的分流不分流进样口和液体自动进样器的气质联用仪,分析所用的消耗品、色谱柱、仪器方法和目标化合物衍生后的质谱库、标准的实验操作步骤,以及经过实验证明的数据。以下是奶粉实际样品加入四种标样后所得到的数据,该分析仪对奶制品类样品中三聚氰胺及其类似物有很好的检出能力。有关详细信息,请访问 http://www.perkinelmer.com/melamine
  • “氨氮在线分析仪市场”调研活动第二批话费奖励已发放!
    p  为更好地了解氨氮在线分析仪市场情况,仪器信息网特组织“氨氮在线分析仪市场”问卷调研活动,旨在给用户在使用和选购仪器的过程中做出参考。/pp  继首批获奖名单公布之后,第二批获奖用户名单也已经出炉。共有45位用户成功获得此次话费奖励,快来看看有没有你!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/2051cd7f-ce21-42df-8d85-9226f6fec342.jpg" title="话费充值.png"//pp  此外,有一位获奖用户(15850706006)充值失败,可尽快与我们联系!/p
  • 【激光氨气分析】AE: 华北农区秋冬季地气氨交换规律
    原文:中国科学院大气物理研究所 题注:宁波海尔欣光电科技有限公司和中科院大气物理研究所和深入合作,研发了一款便携式、高精度、快响应的HT8700开路多通池激光氨分析仪,并以HT8700为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统,这是目前测量地气氨交换通量的理想方法。 本文介绍了一个发表在Atmospheric Environment的研究工作。该项目采用了HT8700和涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据。============================================================================== 华北是我国氨的热点区域,大气中的氨含量高,空间覆盖范围广,这与区域内高强度的农业活动密切相关,如农业施肥、畜牧养殖等。高浓度的大气氨和由此引发的过量活性氮沉降,会导致重霾污染天气,也深刻改变了氮素的生物地球化学循环。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。 相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 鉴于此,中国科学院大气物理研究所联合中国农业大学、中国科学院亚热带农业生态研究所等单位,采用自主研制的开路激光氨分析仪(Wang et al.,2021)和基于大气湍流理论的涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,研究站点位于河北省曲周县,该地区的氨排放和沉降问题尤为突出。 研究团队成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据,并估算出由此损失的氮占氮肥施用量的0.57-0.71%,该结果远远低于同类观测研究的估算结果,这在很大程度上归因于优化后的施肥管理措施,为评估农业氨减排途径的有效性提供了观测证据。得益于观测设备在测量精度和频率上的优良性能,研究团队还首次获得农区高时间分辨率(半小时)的氨干沉降通量数据集,监测到平均沉降速率为14 g N ha-1 d-1,并发现迥然不同于自然生态系统的干沉降日变化规律。未来,利用该自主仪器及方法开展长期定位观测,可为氨干沉降通量的联网观测研究提供有效的验证数据,有助于提升对氨沉降时空变化规律的认识。 图1 基于自主研制仪器的氨湍流通量观测系统 图2 华北典型农区秋冬季氨浓度和氨通量半小时平均观测值(子图b和c中的通量值与子图a相同,纵轴坐标数值范围不同) 图3 华北典型农区秋冬季氨浓度和氨干沉降通量日变化趋势 上述研究成果近期发表于Atmospheric Environment,论文一作为大气物理研究所王凯博士和中国农业大学王敬霞研究生,通讯作者为中国农业大学刘学军教授。研究得到国家大气重污染成因与治理攻关项目(DQGG0208)、国家重点研发计划项目(2018YFC0213301、2017YFD0200101)、国家自然科学基金(41975169、42175137)等项目的资助。 相关文献:1. Wang K., Wang J., Qu Z., Xu W., Wang K., Zhang H., Shen J., Kang P., Zhen X., Wang Y., Zheng X., Liu X., 2022. A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment 278, 119070. 2. Wang K., Kang P., Lu Y., Zheng X., Liu M., Lin T., Butterbach-Bahl K., Wang Y., 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 凝聚创新力,守护农田环境——HT8700大气氨激光开路分析仪助力农田氨气排放监测
    引言在全球碳中和的浪潮下,农田环境的气体排放问题引起了广泛关注。氨气作为农田排放的主要气体之一,其监测对于农业的可持续发展和环境保护至关重要。宁波海尔欣光电科技有限公司推出的HT8700大气氨激光开路分析仪,以其光谱技术的高度精准性和学术应用价值,为农田氨气排放监测提供了新的解决方案。农田排放气体检测的重要性与必要性农田作为重要的碳循环环境,其气体排放直接关系到碳平衡和生态平衡。而其中的氨气排放不仅会影响空气质量,还可能导致氮肥的浪费和土壤污染。因此,精准监测农田中的氨气排放变得至关重要。合理的氨气排放监测不仅有助于农业的可持续发展,也能减少对环境的不良影响,助推碳中和目标的实现。农田氨气排放数据分析通过HT8700大气氨激光开路分析仪,我们能够获取农田氨气排放的精确数据,为进一步的学术研究提供了有力支持。这些数据不仅可以帮助我们更深入地了解农田氨气的季节性和地域性变化,还能够揭示不同施肥策略对氨气排放的影响。这些数据的分析和研究,将为农业生态环境的优化管理提供科学依据。HT8700大气氨激光开路分析仪的特点HT8700大气氨激光开路分析仪凭借其技术特点在学术应用中脱颖而出:高精度测量: 基于光谱技术,HT8700能够实现高精度的氨气浓度测量,确保数据的准确性和可靠性。多维数据采集: HT8700能够实时监测多个维度的氨气排放数据,为研究人员提供更全面的信息。实时数据传输: 设备支持实时数据传输,为学术研究提供了及时的数据支持。助力碳中和,共建美丽乡村随着碳中和目标的不断推进,农业的绿色可持续发展愈发受到关注。HT8700大气氨激光开路分析仪的推出,无疑为农田氨气排放监测注入了新的活力。通过精准监测,农民可以科学施肥,降低氨气排放,助力实现美丽乡村的愿景。宁波海尔欣光电科技有限公司的HT8700大气氨激光开路分析仪,以其精准、高效的特点,成为农田氨气排放监测的得力工具。在环境保护和碳中和的双重压力下,这款仪器不仅体现了技术的创新,更彰显了企业的社会责任。愿HT8700在未来的道路上,为农田环境守护贡献更大的力量,为美好的农村生活贡献一份坚实的保障。
  • PerkinElmer三聚氰胺分析仪保障您对奶粉及食品的信心
    由于近日发生在奶粉及食品中掺杂三聚氰胺的事件,美国食品和药物管理局(FDA)为干蛋白原料类食品的筛查制定了指导方针。 三聚氰胺是一种非蛋白质且廉价的高含氮化工原料,用常规的凯氏氮测定法判定蛋白质含量无法避免三聚氰胺的干扰,导致蛋白质含量虚假的偏高。 在食品工业中,为确保产品品质和真实的蛋白含量,必需进一步执行三聚氰胺的分析。 珀金埃尔默与美国FDA认证的独立测试实验室-Flora研究中心合作,开发了一项新的专用分析仪,用于测定三聚氰胺及相关化合物-&ldquo EcoAnalytix&trade 三聚氰胺分析仪&rdquo 。您的实验室需要三聚氰胺的分析吗? 您是一个: ――食品添加剂的进口商? ――独立的测试实验室? ――食品加工制造公司? ――功能食品生产商? 您的产品是一种蛋白质含量丰富的食物或仅属于保健用的补充饮食? 您使用小麦面筋蛋白,乳清或大豆蛋白?如果对上述任何一个问题,您回答&ldquo 是&rdquo ,那么EcoAnalytix三聚氰胺分析仪就是为您而特制的。 用PerkinElmer EcoAnalytix三聚氰胺分析仪,确保您的食品品质和正确的蛋白含量。这是市场上第一个使用气相层色谱/质谱联用技术的完整的解决方案,能满足您实验室需要的一切快速而简便的分析: &bull Clarus 600T GC/MS内置带程序升温功能的分流/不分流进样口和液体自动进样器 &bull Turbomass&trade 气相色谱/质谱软件 &bull 分析所需的消耗品 &bull 三聚氰胺分析的应用光盘 应用光盘中包括方法、范例数据、应用说明、应用指导和一个衍生化合物的质谱图库。由于目前商业化的质谱图库并未包含这些衍生化合物的质谱图,专属应用包中包含由Clarus 质谱仪所获得的这些成分的质谱图库以便分析比对。 货号 描述 N6570200 三聚氰胺分析仪 120V 20 AMP N6570202 三聚氰胺分析仪 220V 15 AMP
  • 全球水污染严重!多参数水质分析仪如何成为“水污染预言家”?
    如果人类不改变目前的消费方式,到2025年全球将有50亿人的生活用水无法完全满足生活需求,其中25亿人将面临用水短缺。第四届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有数百万吨垃圾倒进河流、湖泊和小溪,每升废水会污染8L淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质勉强能用。水污染是由有害化学物质造成水的使用价值降低或丧失,污染环境的水。“水污染预言家”—多参数水质分析仪如果水中检出亚硝酸盐氮,说明水污染正在进行。亚硝酸盐氮(NO2-N,Nitrite nitrogen)是含氮有机物受细菌作用分解的氮循环中间产物,在水中不稳定,在氧和微生物的作用下易被氧化成硝酸盐,在缺氧条件下也可被还原为氨。根据水中亚硝酸盐氮的存在水平,再结合水中氨氮和硝酸盐氮的含量,可以评价水体受污染的程度及自净状况。水中NO2-N的来源主要为生活污水中含氮有机物的分解和化肥、酸洗等工业废水,此外农田排水也可引入较高浓度的NO2-N。未受污染地面水中亚硝酸盐氮一般低于0.1mg/L,某些地下水可能会由于地层结构的还原作用出现较高浓度的亚硝酸盐氮。本次检测实操,选用的是奥谱天成ATE3000手持式多参数水质分析仪,在《GB/T 7493-1987 水质 亚硝酸盐氮的测定 分光光度法》的基础上,将重氮法分光光度法的改进,通过将磷酸改为盐酸,增加了检测试剂的稳定性和贮存时间,并将显色时间缩短,使得此方法更为快速便捷。水样采集可用玻璃瓶或聚乙烯塑料瓶,采样后应尽快测定,以避免细菌将亚硝酸盐还原成氨。若不能立即测定,可于每升水样中加入40mg氯化汞抑菌,并置4℃冰箱避光保存,可稳定1~2天。实验原理:在磷酸介质中,pH值为1.8±0.3时,亚硝酸盐与对氨基苯磺酰胺反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成粉红色染料。在540nm波长处有最 大吸收。测量原理图-根据朗伯比尔定定律注意点:水样采集可用玻璃瓶或聚乙烯塑料瓶,采样后应尽快测定,以避免细菌将亚硝酸盐还原成氨。若不能立即测定,可于每升水样中加入40mg氯化汞抑菌,并置4℃冰箱避光保存,可稳定1~2天。手持式多参数水质分析“傻瓜式”操作高测量精度:相关系数可以达到0.999X以上显色时间短,让您可以轻松,快速的完成检测任务稳定的灯源,让您可以准确可靠地进行检测。ATE3000是奥谱天成高性价比的亚硝氮水质分析仪,整机不到1kg,使用和携带都很方便,适合实验室和野外场景。
  • 禾工仪器三聚氰胺液相分析系统验收通过率100%
    禾工科学仪器三聚氰胺分析液相色谱仪自年后不断刷新销售周纪录,自春节过后一个多月来,又有近二十家奶制品企业购买禾工科学仪器STI系列液相色谱仪作为三聚氰胺分析仪;至今为止,禾工科学仪器售出的三聚氰胺分析液相色谱仪经技术监督部门验收通过率100%。获得了广大用户的好评。 禾工科学仪器感谢众多的液相色谱仪用户为我公司推介了较多客户,我们将努力做好每一位新老客户的售后服务,同时为更多的客户提供我们超高性价比的液相色谱分析系统。 在相关国家标准推出后,禾工科学仪器在第一时间推出三聚氰胺分析液相色谱系统,并在每一个月就销售出12套相关设备,获得了良好的销售业绩。此后在众多购买的用户的推介下,禾工科学仪器三聚氰胺分析系统不断创造销售纪录。并与大量的奶制品企业建立了良好的合作关系。 禾工科学仪器三聚氰胺分析系统简介: 禾工科学仪器三聚氰胺分析系统是禾工科学仪器技术部在GB/T22388-2008《原料乳与乳制品中三聚氰胺检测方法》、和GB/T22400-2008《原料乳中三聚氰胺快速检测液相色谱法》的国家标准推出后,结合禾工历史调试相关企业液相色谱仪经验,经过大量的实验后,与相关企业合作建立的三聚氰胺检测解决方案。 禾工科学仪器三聚氰胺分析系统适用于原料乳,乳制品以及含乳制品中的三聚氰胺含量的测定。适用的客户对象有:各质检所,奶粉制造企业,乳品饮料制造企业,含乳产品制造企业。及各种奶油、奶酪、巧克力食品生产企业等。 禾工科学仪器三聚氰胺分析系统包含下列仪器与设备: STI P501/STIP5000高压输液泵系统, 1台 STI UV501/STIUV5000高灵敏度紫外可见检测器,1台 美国原装 Reodyne7725i手动进样阀,1套 VERTEX STI C18 150×4.6mm 液相色谱柱,1支 平头微量进样针 25ul/50ul,2支 N2000色谱数据工作站软件,1套 液相色谱仪维护工具包,1套 STI系列液相色谱仪三聚氰胺分析专用检测包: 电子天平(100g/0.1mg, 进口原装产品) 氮吹仪 漩涡混合器 高速离心机(10000转以上,含角转子) 。。。。
  • 多通道近位抽取高精度脱硝氨逃逸在线分析系统技术应用
    p  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的意义/span/strongbr//pp  当前,随着我国经济的持续发展,能源压力日趋紧张,环境污染已严重危害到我国人民的健康和生活质量。近年来河北、山东、北京等地被持续的大范围雾霾天气所笼罩,引发全社会的广泛关注。二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成。为了降低经济快速发展带来的雾霾、臭氧层破坏、温室效应及酸雨现象,我国要求使用燃煤的工厂(主要是火电厂和水泥厂)安装脱硝装置,降低氮氧化物的排放。/pp  国内外应用较多且工艺成熟的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)烟气脱硝,均需要向烟气中喷入还原剂氨,使烟气中的氮氧化物还原成氮。/pp  为了保证氮氧化物充分反应,提高脱硝效率,需要实现还原剂氨注入量的最优化。如果喷氨过多,则会产生氨逃逸,造成更严重的危害:/pp  1.逃逸的氨与烟气中的SOsub3/sub反应生成NHsub4/subHSOsub4/sub,当后续烟道烟温降低时,NHsub4/subHSOsub4/sub就会附着在空气预热器表面和飞灰颗粒物表面。/pp  2.NHsub4/subHSOsub4/sub可以沉积并积聚在催化剂表面,引起催化剂的失活。/pp  3.NHsub4/subHSOsub4/sub在低于150℃时,以液态形式存在,腐蚀空气预热器,并通过与飞灰表面物反应而改变飞灰颗粒物的表面形状,最终形成一种大团状粘性的腐蚀性物质。/pp  4.这种飞灰颗粒物和在空气预热器换热表面形成的NHsub4/subHSOsub4/sub会导致空气预热器的压损急剧增大。/pp  5.逃逸的氨导致飞灰化学性质发生改变,使得飞灰不能作为建材原料而得到利用。/pp  所以,脱硝工艺喷氨量的控制,既要保障脱硝效率最高,又不能过量喷氨造成新的危害,需要对氨逃逸进行实时准确的在线分析。作为脱硝工艺中必不可少的关键监测设备,氨逃逸的准确稳定测量,对提高工业效率和安全生产有着重要的意义。/pp  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的现状/span/strong/pp  目前电力行业脱硝工艺基本上已经装配了氨逃逸在线分析系统,但在实际运行过程中这些氨逃逸在线分析系统往往存在着一些普遍性问题:/pp  1.氨逃逸数据为0或某个固定值,或只有仪表自身噪声信号,没有真正检测出逃逸氨,给性能验收和环保验收带来麻烦。/pp  2.增大或减少喷氨量,氨逃逸数据无变化,没有趋势相关性,无法为电厂控制喷氨流量提供科学的数据参考。为了NOx达标排放可能会喷氨过量,造成氨水浪费和形成大量铵盐对后面设备造成严重腐蚀。/pp  3.传统氨逃逸不能随时通标气进行验证,不能确保数据的准确性。/pp  通过对这些氨逃逸设备实地调研分析,发现这些设备主要采用原位测量方式,将设备的发射端和接收端分别安装在烟道上,采取对射的方式。这种测量方式会有以下几种影响:/pp  1.测量点位置粉尘量大,激光透射率不足,导致无法测量。/pp  2.为了解决透射率不足无法测量的问题,很多原位式分析仪采用斜角安装方式,即在烟道一角采取对射安装。这种方式测量的氨逃逸不具有代表性,不能反映烟道截面的真实状况,同时粉尘对测量仍然会造成影响。/pp  3.测量精度和测量下限与光程相关,光程越长,测量精度和测量下限越好。采用斜角安装方式测量光程短,测量下限和精度不够,无法满足氨逃逸精确测量的需求。/pp  4.现场振动和热膨胀因素,会造成激光对射不准,影响正常使用。/pp  5.无法通标气标定和验证。/pp  正是由于上述原因,原位式脱硝氨逃逸分析仪在实际使用中遇到了众多的困难,为了解决这些问题,国内一些企业将国外进口的分析仪进行改造,自己设计加工样气室,采用抽取式去除粉尘,抽取样气进入样气室测量,但是由于自身不掌握TDLAS核心技术,在改造过程中存在诸多技术问题及测量光程不够等因素,也没有取得良好的测量效果。/pp  strongspan style="color: rgb(0, 112, 192) "多通道近位抽取高精度测量技术应用/span/strong/pp  针对上述问题和现状,北京大方科技有限责任公司基于自身掌握的TDLAS核心技术,将多通道近位抽取及多次反射高精度测量技术应用于氨逃逸在线分析,成功解决上述问题,并得到了广泛应用。/pp  一、采用高精度多次反射长光程技术/pp  鉴于脱硝工程中氨逃逸对环境和设备的巨大危害,环保部对脱硝工艺中氨逃逸量有严格的规范。环保部2010年1月发布的环发[2010]10号《火电厂氮氧化物防治技术政策》以及2010年2月发布的标准HJ562-2010《火电厂烟气脱硝工程技术规范----选择性催化还原法》皆要求SCR氨逃逸控制在2.5mg/msup3/sup(干基,标准状态)以下。因此,脱硝工程中的氨逃逸量极低(ppm量级),这对氨逃逸分析仪的测量精度提出了极高的要求。/pp  目前测量氨逃逸通常采用可调谐二极管激光吸收光谱技术(TDLAS技术),其基本原理是朗伯-比尔定律(Beer-Lambert’s law),依据朗伯-比尔定律,当单色光穿过均匀气体介质时透射光强和入射光强的关系, 如方程(1)、(2)所示:/pp style="margin-left:13px text-indent:21px line-height:150% text-autospace:none"span style="font-size:21px line-height:150% font-family:仿宋" img src="http://img1.17img.cn/17img/images/201710/noimg/f1b1356f-e59a-4815-a181-8722c53bd3d8.jpg" title="公式.png"/ /span/pp  其中,P 为气体的压力;/pp  T 是样品气体的温度;/pp  Xabs 是被测气体在样品气体中的摩尔百分比;/pp  L 为光程长度;/pp  S 为吸收谱线的强度;/pp  fn为吸收谱线的线型函数。/pp  由公式可知光程长度越长,气体的吸收强度越强,所得到信号的信噪比越好,也就是说测量光程越长,测量精度越高。大方科技自主开发多次反射高温样气室,激光在样气室中多次反射,如图1为多次反射技术样气室中光路轨迹仿真图,光程可达30米,极大的提高了测量精度和检测下限。通过光程的提高,很大程度的解决了传统氨逃逸光程短、测量精度不足的问题。/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201710/noimg/5c6248b5-acb0-4782-b0e4-1b81f607f144.jpg" title="图1.png"/ /pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1.大方科技多次反射技术样气室中光路轨迹仿真图/span/pp  二、多通道近位抽取测量技术应用/pp  针对原位式氨逃逸在线分析系统受烟尘和烟道震动影响等因素,大多数氨逃逸在线分析系统已采用抽取式技术路线,将烟气抽出经过预处理后进行测量,很好的解决了上述问题。目前已有的抽取式氨逃逸在线监测系统多采用单点取样,将一根取样探杆沿烟道长边中心位置插入至烟道核心区域,虽然和传统的原位式氨逃逸分析仪安装在烟道角落位置相比,目前单点核心区域抽取更具代表性,但对于大型机组烟道尺寸很大(通常长边可达13米以上)的情况下,烟道内流场分布复杂,截面上氨逃逸浓度也不尽相同,为了更准确的代表烟道中氨逃逸的浓度,需要实现多点测量。如果单点测量是一台通用测量设备,那么多点测量则是一台高端设备,满足高质量、高要求用户的需求。/pp  大方科技在抽取式技术路线基础上,通过产品小型化、外置过滤装置、减震安装装置设计、近位恒温控制、流路控制等成功实现多通道近位测量技术。近位测量实现取样气体从取样探杆出来直接进入分析气室,不需要伴热管线,减少了系统的响应时间,降低氨气吸附的风险,降低伴热管线堵塞及损坏的可能,提高了系统的可靠性和耐用性。取样点的位置和取样探杆的长度可根据现场情况设计,既可实现同一烟道多点同时测量,也可以实现多烟道多通道测量,且每个取样点可独立反吹。通道数量可以1~6任意扩展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/noimg/9f23d8c0-cf6c-42b2-ac42-dc46822639d5.jpg" title="图片2.png"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 图2.大方科技近位抽取氨逃逸在线分析系统主机实物图/span/pp  大方科技率先开展氨逃逸的多点取样测量,成功实现了两点、三点、四点以及网格取样的应用,测量准确有代表性,得到了用户的高度评价。/pp  三、复杂烟气工况高温近位抽取预处理技术应用/pp  由于我国燃煤种类及燃烧工艺的复杂多样性,烟气具有高温、高湿、高腐蚀、高粉尘的特点,且每家的工况环境各异,这给氨逃逸的在线监测带来了不确定性。氨分子极易溶于水且具有极强的吸附性,因此要求整个系统中不能存在冷点,也不能降温除水,需要在高温下完成测量。由于烟气中存在大量的粉尘,要求预处理系统既能够将粉尘过滤掉,避免造成光学器件的污染,又不能堵塞,加大现场的维护量。烟气中含有SO3、NH3等腐蚀性气体,且湿度大,要求整个烟气流路需要做防腐处理。所以,开发适合我国烟气工况,且适应强的氨逃逸在线分析系统,其首要难点之一是烟气预处理系统的开发。/pp  针对上述复杂工况,大方科技结合自身在烟气预处理多年摸爬打滚的经验,成功开发了稳定可靠的近位抽取预处理系统。抽取气体直接进入气室,不需要经过伴热管线,烟气接触的流路全程高温伴热250℃以上无冷点,避免氨气吸附和损失,保证样气真实性。系统滤芯采用碳化硅过滤器,在高温下不会与SO2、NH3等腐蚀性气体发生化学反应,且滤芯采用后置安装,无需专业工具拆卸,更换和清理极其方便。每个通道皆具有自动反吹控制,反吹间隔和反吹时长根据工况设置,有效避免滤芯堵塞。/pp  对于氨逃逸监测而言,复杂的烟气工况环境是造成故障率攀升的主要原因。所以,预处理系统的稳定性和耐用性是氨逃逸监测设备的核心竞争力之一。大方科技近位抽取式预处理技术的应用,极大的提高了系统稳定性,结合多次反射长光程技术的应用,保障了测量结果的准确,为合理喷氨提供了科学的数据支撑。图3为大方科技氨逃逸在线分析系统现场趋势图,红色为喷氨量曲线,黄色为氨逃逸曲线,当系统的喷氨量发生变化时,氨逃逸数据曲线也相应地变化,从图上看喷氨量和氨逃逸曲线趋势一致,相关性高,为系统的安全、经济运行提供有价值的数据参考。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201710/noimg/f84c9423-8972-473b-83c6-2c3ca3349309.jpg" title="图3.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图3.大方科技氨逃逸在线分析系统现场趋势图/span/pp style="text-align: right "span style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "【供稿来源:北京大方科技有限责任公司】/spanbr//span/p
  • 西尔曼科技生物过程分析仪隆重上市
    为了得到品质优良、性能高效的产品,需要对其培养过程进行连续不间断的监测,并对在培养过程中出现的各种可能的问题加以控制和解决。而发酵过程是时变、非线性、强耦合的复杂生化过程,同时离线测量生化参数耗时长,难以及时控制发酵过程,这给实时检测培养过程中的重要生化参数带来巨大困难,因此生物传感器技术作为动物细胞培养过程关键生化参数检测不可或缺的手段,能有效克服这一不足。动发酵过程的控制优化是维系生产目标实现的关键手段,只有在线实时的对物理参数的变化、细胞代谢、营养产物的生成、目标产物浓度的变化进行监控和分析,才能有效地进培养过程的控制,达到产品优质、高效生产的目的。 一般的生物过程参数分为物理参数、物理化学参数、化学参数和生物学参数。化学参数有:底物浓度(葡萄糖、乳酸、谷氨酸、谷氨酰胺、氨、钠和钾等)、中间代谢产物浓度和产物浓度等,生物学参数有:活细胞浓度、氧吸收速率(oxygen uptake rate, our)、二氧化碳释放速率(carbon dioxide excretion rate, cer)、呼吸熵(respiratory quotient, rq)等。 目前检测培养基底物浓度的常见方法有高效液相色谱法、化学滴定、生化分析仪等方法。这些方法一般存在以下缺点,第一检测时间长,培养液成分复杂,用液相作为培养过程监控的手段耗材成本高,时间成本更高;第二,用化学滴定的方法存在特异性差,重复性差,耗费时间等缺点,第三传统的生化分析仪检测时间短,特异性强,但是对于生产和科研,培养基组分复杂,原料存在批次间不稳定等问题,背景色的干扰会导致检测结果呈非线性,重复性差、而且总体灵敏度和准确度较低,并且生化试剂寿命有次数和时间的限制,单次检测成本高昂。 西尔曼发酵过程分析仪 深圳西尔曼科技最新推出的发酵过程分析仪基于酶电极法—固定化酶膜技术,具有检测时间快(反应时间只需20秒)、昂贵的酶等生化试剂可以重复利用(酶膜寿命大于3000次)、操作简单、自动化程度高、重复性好(cv小于2%)、单次检测成本低等优势。可用于发酵过程精准控制、培养基浓度监控、培养基优化、补料策略优化、有毒有害代谢物监控等领域。m800系列仪器可选自动稀释模块,扩展了检测范围,显著降低了操作员人为造成的偏差。西尔曼科技发酵过程分析仪参数详解项目参数备注测试原理酶电极法不受样品背景色干扰电极结构铂金丝、银片杆状电极比卡片式电极耐用,抗氧化,高阻抗,寿命长耗材不做时间限制,可使用到自然失活进口仪器耗材做时间限制,到期强制停用,造成检测成本过高耗材成本固定化酶膜,可重复利用酶比色法试剂需求量大,一次性试用准确性系统误差小于1%可与液相色谱仪做相关分析,相关系数大于0.99样品重复检测支持,可设置重复检测次数设置后仪器自动重复检测检测范围0.05-100g/l需配合预稀释模块分辨率0.01g/l变异系数小于2%样品检测重复性优于酶比色法检测项目葡萄糖、乳酸、谷氨酸、赖氨酸、谷氨酰胺、乙醇、甲醇等可根据用户需求自由组合单个样品反应时间20秒单个项目检测时间45秒所有项目检测时间60秒反应池结构溢流式开放式反应池,比微流路易清洗,给酶膜提供长时间液体环境,不怕短暂停电管路材质泰克管复合材料,易清洗,易更换,不易堵塞硬件材料泵、阀、芯片、采样针等控制部件为国际大品牌样品预稀释功能可选自动进样盘标配15位自动进样盘进样方式高精度全自动进样自动标定是结果输出打印,u盘导出,数据查询通讯接口usb、rj45、rs232可与质检中心电脑相连接测样时技能要求任何人可操作,无难度测试速度高,无须预稀释样品,实际速度高达60样品/小时测量精度高,无人为误差显示屏8寸彩色触摸屏软件人机交互、类似iphone图标化设计产品设计标准医疗级设计标准样本量低至10ul人工成本检测时检测人员可从事其它工作,且无须增加岗位人员,效率很高;售后服务成本低,提供上门技术指导和安装维修,定期保养,7*24小时服务投资回报率可以优化目前人员结构,提高劳动效率,满足未来发展需要数据存储容量4000西尔曼发酵过程分析仪检测准确度验证1.m100与高效液相色谱仪的检测数据对比 本数据来源于某高校生物工程学院实验室 2.s10手动款仪器检测数据分析西尔曼发酵过程分析仪在发酵调控中的应用 将西尔曼发酵过程分析仪用于发酵调控,对比应用前后发酵液糖浓度。 未使用发酵过程分析仪之前,补料控制根据以前的经验和菲林滴定数据,糖浓度的控制呈现波浪状,忽高忽低,不稳定,发酵的环境不稳定,代谢途径自然也是在不断变化。使用发酵过程分析仪的检测数据作为发酵调控的依据,得到的糖浓度曲线非常平滑,基本可以做到恒化培养,找到最佳浓度,激活有利于效价提升的代谢途径,增产稳产就是这样简单。
  • 应用案例:HT8700大气氨激光开路分析仪测量养殖场多畜舍 NH3排放
    项目地点山西省晋中市榆次区北头村同时饲养猪、牛、羊的某养殖场项目背景随着社会的发展和养殖业规模的扩大,农业源 NH3 对环境空气质量的影响越来越大,它们在自然界中占有很大的比重,可促进二次气溶胶和灰霾的形成,甚至对大气中O3的产生也有间接影响。项目目标掌握畜舍NH3 排放和扩散规律,了解NH3 对二次气溶胶形成过程的影响,运用模型准确、全面地评价大气NH3 。分析方法该项目使用了开路式激光NH3分析仪(HT8700)用于养殖场NH3 浓度的在线测量。该分析仪采用车辆移动平台搭载形式(图2.3a),它包括Healthy Photon HT8700大气氨激光开路分析仪、 数据采集模块、GPS 模块、超声波三维风速仪模块和实时数据处理模块等(图2.3b)项目采用纳式试剂分光光度法(HJ533-2009)与开路式激光NH3 分析仪测量精度对比实验。结论通过国标法(纳式试剂分光光度法)与开路式激光NH3 分析仪(HT8700)对NH3测量结果进行对比发现HT8700测的结果高于国标法的NH3 浓度值,但在可接受范围内,并不影响对于测量养殖场NH3 的使用,HT8700为开路式,实时测量,方便灵活,便于捕捉养殖场NH3 短期内的波动。相关论文:山西大学李瑞金、耿红、付玉玲《养殖场多畜舍NH3排放测量及对二次气溶胶形成的影响研究》10.27284/d.cnki.gsxiu.2021.001027
  • 北京东西分析仪器有限公司推出乳制品中双氰胺测定解决方案
    近日,媒体爆出新西兰出产的部分牛奶和奶粉中检测出少量双氰胺化学残留物, 目前中国市场上进口的新西兰大包奶(包括脱脂奶粉、全脂奶粉)占到了中国总进口量的80%,而新西兰乳制品占到了中国全进口婴幼儿食品的40%左右。据了解,新西兰农民在牧场使用双氰胺主要用以防止硝酸盐等流入河流造成污染。然而, 双氰胺在食品中检出的相关国际和国家标准尚无,引发世界消费者的广泛关注和担忧! 东西分析多年来一直致力于为食品安全领域提供强有力的产品、技术解决方案,为应对此次突发事件,东西分析分析中心建立了婴幼儿奶粉中双氰胺高效液相色谱分析方法,方法简便、快速,定量准确,灵敏度高,为广大客户提供最佳的支持! 相关资料&mdash &mdash 《婴幼儿奶粉中双氰胺的测定》欢迎到资料中心下载。 北京东西分析仪器有限公司 2013.3.1
  • 程立谈在线水质分析仪器发展现状及未来展望
    仪器信息网讯 2014年11月25日-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2014)&rdquo 在国家会议中心举行。仪器信息网作为战略支持媒体参加了此次会议。  在本次会议的大会报告上,哈希公司程立做了《在线水质分析仪器发展现状及未来展望》的报告。哈希公司程立  发展现状  在市场研究公司Research and Markets 2013年发布的《2018年中国水质分析仪器市场展望与机遇》报告中,提到中国是全球最大的水质分析仪器市场之一,并已成为亚太地区的主导者。预计未来5年内,中国水质分析仪器市场增长速度惊人,2018年该市场将超过5.5亿美元。  如此巨大的市场一方面来自于严格的政策法规。我国目前已将发展在线监测作为政府控制水污染和保障水安全的重要技术路线,国控和地方控制的污染源排放口自动监测以及分布在各地的江河湖泊的水质自动监测站,提供了大量的水质分析仪器应用机会。  另一方面,中国作为一个制造大国,拥有全世界最为齐全的工业门类,工业的发展也促使着对于在线水质分析仪器的需求。目前无论是火电、石化、煤化工等传统的高耗水行业 还是在电子、医药等一些对于水质要求极为严格的新兴行业,都为在线水质分析仪器带来了普遍的应用机会。  程立表示根据应用目的的不同,在线水质分析仪器可以分为监测型和过程型两类。其中监测型主要用于单纯的水质监测,以判断水质是否达到法规的要求,以及环境水质和饮用水质的预警,不参与水处理工艺过程控制。它监测的水质参数主要是COD、氨氮、总磷、总氮和重金属等。而且对于数据的准确度要求更高,数据可以作为有关部门执法管理的衣服。  而过程型在线水质监测仪器主要用于水处理工艺或者用水过程中的水质监测,所测量的水质参数参与过程控制,以实现优化水处理工艺,提升水处理效率的目的。同时,在保证水质达标的前提下,实现水处理过程节能降耗的目的。同时根据不同的水处理工艺需要监测的水质参数各不相同,总计可以超过数十种水质参数。过程型在线水质监测仪对于仪器的可靠性和稳定性要求更高,它要求仪器能够可靠的反映水质变化趋势,为水处理过程控制提供依据。另外,对过程型分析仪器响应时间的要求也明显高于监测型仪器。  目前,在我国过程型在线水质分析仪在的典型应用有:石油化工行业,在线TOC分析仪已经成为凝结水回用所采用的标准配置 在自来水行业,采用氯及氯胺工艺的水厂采用在线消毒剂分析仪,如余氯、氯胺分析仪,从而实现节省水处理化学品,降低运行费用。制药工业,在线TOC分析仪的使用也成为了制药用水有机杂质监测和控制的重要手段 在市政污水处理行业及水产养殖行业,溶解氧的在线监测降低了能耗和运行费用,同时保证了水质的达标 目前营养盐在线分析仪器也逐步开始应用,以帮助污水处理厂实现除磷脱氯工艺的优化控制,提升污水排放标准 另外还有在线硬度、在线钠离子分析仪用于优化锅炉的进水处理工艺等。  程立表示,中国在线水质分析仪器市场发展迅速,政府的巨大投入使得监测型在线水质分析仪器得到了快速的发展。过程型在线水质分析仪器开始大量采用,为水工业的产业升级、水处理工艺优化控制、降低能耗提供技术支撑。但目前也存在不少问题,如:在线水质分析仪目前主要采用传统分析原理,新测量原理应用较少,监测型仪器所获得的数据是各自独立的,关联性不强 基础水质数据库的建立刚刚起步,数据的后处理和分析缺失,使得数据的价值没有得到充分体现,无法为水环境预测预警提供支持。单纯的依靠监测型分析技术,对数据造假缺乏更有效的手段,在线水质分析仪器的价值没有得到充分的体现。  未来展望  新测量原理、新材料、新算法等的出现也推动者水质分析仪器的发展。如新的测量原理:LIBS(激光诱导击穿光谱)、HMA(混合多光谱分析)、MWDXRF(单波长色散X射线荧光分析),生物技术等逐渐被在线水质分析仪器采用,因而将出现更多能够实现在线分析的水质参数。  石墨烯、纳米材料、生物芯片等新材料也为新测量原理在线水质分析仪器的应用提供了物质支撑。化学计量学将会在水质分析中得到越来越多的应用 各种新算法及水质模型的出现,也将提升各种新型在线水质分析仪器的功能及完善数据后处理,提供更多的有价值的水质信息和数据。  对于水质分析仪器未来的发展,程立表示主要有:智能化将成为在线水质分析仪控制器的主流,将具有网络功能,具有更多人机互动方式,如手势、语音控制 通过云计算可实现仪器间数据共享和数据再处理。  其传感器将主要朝小型化、低成本化发展,将可实现数据直接传输,更多的水质参数可以实现在线监测。软件方面,除了仪器本身的控制软件和数据分析软件,各种通讯、数据分析及处理的应用软件出现,水质识别软件将成为现实。  此外,在线水质分析仪器将具有自学习和自我管理、自适应功能,能够根据环境和操作者的变化,以及仪器自身状态做出主动调整或预警 仪器能够记录和提醒各种使用维护信息,引导仪器使用人员做好仪器主动维护、备品备件管理以及仪器使用寿命预测等工作,提高工作效率。  程立介绍说,不仅是仪器硬件和分析技术,软件和数据处理技术也将是在线水质分析仪器的重要组成部分。随着,大数据技术和云计算的出现,将改变以前分布在不同部门、不同个体的数据管理和信息的使用方式 来自于在线水质分析仪器的大量数据可以迅速得到处理和分析,建立区域或流域水质基线,建立目标地区的水质基础数据库 构建以水质预测以及安全预警为目的的算法和数学模型,指导政府水务管理和人们的用水行为。  未来,我们是否可以在目前基于数学模型算法的创新技术基础上,利用大数据云计算的方式,进行例如流域等大区域的水质综合预测预警,都是值得期待的。  此外,程立特别介绍了移动水质分析技术。移动水质分析设备包括便携式分析仪器和预制试剂。移动分析作为一种&ldquo 非连续实时分析技术&rdquo ,在未来将成为传统在线水质分析技术的补充和发展。  程立介绍说,在仪器小型化的基础上,移动水质分析设备还会增加无线通讯以及GPS等功能,各种数据处理分析及传输的APP会大量出现,为大数据处理中心提供更多的数据信息。现有的移动终端会增加水质分析功能,实现移动水质分析技术的民用化。  移动互联网的普及和云计算的出现,使得移动水质分析的数据共享成为现实 在适当的移动载体支持下,可以获得区域范围内大量的实时水质数据 移动分析可以比传统固定式在线分析提供成本更低、覆盖范围更广、信息量更大的数据。由于大数据和云计算的出现,能够由非专业分析人员提供非传统意义的水质相关数据,对水质综合评估会变得越来越有价值。  最后,程立表示:&ldquo 未来,包括移动分析在内的在线水质分析仪器具有广泛的应用前景,在智慧水务、智能水工厂、智慧农业以及个人水质检测、水安全管理等领域都会得到普遍的应用。&rdquo
  • 生态环境部征求六项标准意见 含在线VOCs分析仪等
    p  近日,生态环境部再次发布六项标准的征求意见稿,主要集中在环境空气和固定污染源废气。其中涉及环境空气的有四项,包括臭氧 氨、甲胺、二甲胺和三甲胺 三甲胺 挥发性有机物气相色谱连续监测等的检测。涉及固定污染源废气的标准有两项,主要检测项为三甲胺、溴化氢等。这六项标准涉及的仪器包括臭氧监测仪、离子色谱、气相色谱和在线VOCs分析仪。/pp  strong全文如下:/strong/pp style="text-align: center "关于征求《环境空气臭氧监测一级校准技术规范》等六项国家环境保护标准意见的函/pp  各有关单位:/pp  为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,我部决定制定《环境空气臭氧监测一级校准技术规范》等六项国家环境保护标准。目前,标准编制单位已完成征求意见稿,现印送给你们,请于2018年10月20日前将书面意见反馈我部。逾期未反馈的,将按无意见处理。标准征求意见稿及其编制说明可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。/pp  联系人:生态环境部李江/pp  通信地址:北京市西城区西直门南小街115号/pp  邮政编码:100035/pp  电话:(010)66556826/pp  传真:(010)66556824/pp  电子邮箱:zhiguanchu@mee.gov.cn/pp  附件:1.征求意见单位名单/pp style="line-height: 16px "  2.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/8a2bf2e0-2fab-41b6-8143-99faf737ea8f.pdf" title="环境空气臭氧监测一级校准技术规范(征求意见稿).pdf"环境空气臭氧监测一级校准技术规范(征求意见稿).pdf/a/pp style="line-height: 16px "  3.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/c1640b1a-c739-421a-b125-5372f2dff5e2.pdf" title="《环境空气臭氧监测一级校准技术规范(征求意见稿)》编制说明.pdf"《环境空气臭氧监测一级校准技术规范(征求意见稿)》编制说明.pdf/a/pp style="line-height: 16px "  4.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/ff4978c0-3dbc-4632-bbcd-6ae044ec438e.pdf" title="环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法(征求意见稿).pdf"环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法(征求意见稿).pdf/a/pp style="line-height: 16px "  5.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/27a58ca3-8a37-465a-8190-7cfa4d935985.pdf" title="《环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法(征求意见稿)》编制说明.pdf"《环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法(征求意见稿)》编制说明.pdf/a/pp style="line-height: 16px "  6.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/d64e19ab-269b-4563-953c-5f5394cf84f5.pdf" title="环境空气和废气 三甲胺的测定 溶液吸收-顶空气相色谱法(征求意见稿).pdf"环境空气和废气 三甲胺的测定 溶液吸收-顶空气相色谱法(征求意见稿).pdf/a/pp style="line-height: 16px "  7.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/86fdc4b4-ab39-436a-8f2f-9a2b2a3b169e.pdf" title="《环境空气和废气 三甲胺的测定 溶液吸收-顶空气相色谱法(征求意见稿)》编制说明.pdf"《环境空气和废气 三甲胺的测定 溶液吸收-顶空气相色谱法(征求意见稿)》编制说明.pdf/a/pp style="line-height: 16px "  8.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/29651e6c-03f3-4094-bf11-37e62b92ea94.pdf" title="固定污染源废气 三甲胺的测定 离子色谱法(征求意见稿).pdf"固定污染源废气 三甲胺的测定 离子色谱法(征求意见稿).pdf/a/pp style="line-height: 16px "  9.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/d1c1b090-3898-4ae3-8684-3712d4c8df7b.pdf" title="《固定污染源废气 三甲胺的测定 离子色谱法(征求意见稿)》编制说明.pdf"《固定污染源废气 三甲胺的测定 离子色谱法(征求意见稿)》编制说明.pdf/a/pp style="line-height: 16px "  10.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/4bf72730-e75a-4a33-bd53-7a03ca46b066.pdf" title="固定污染源废气 溴化氢的测定 离子色谱法(征求意见稿).pdf"固定污染源废气 溴化氢的测定 离子色谱法(征求意见稿).pdf/a/pp style="line-height: 16px "  11.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/0ac8231d-7dbb-4acf-b237-ec173a20a818.pdf" title="《固定污染源废气 溴化氢的测定 离子色谱法(征求意见稿)》编制说明.pdf"《固定污染源废气 溴化氢的测定 离子色谱法(征求意见稿)》编制说明.pdf/a/pp style="line-height: 16px "  12.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/b2c8b5c0-6dd0-448e-9b0a-332b4da452e9.pdf" title="环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法(征求意见稿).pdf"环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法(征求意见稿).pdf/a/pp style="line-height: 16px "  13.img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201809/attachment/ba311ee5-c130-4881-b14e-2ec4020dc34a.pdf" title="《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法(征求意见稿)》编制说明.pdf"《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法(征求意见稿)》编制说明.pdf/a/ppbr//p
  • 通用仪器发布深圳通用血药浓度分析仪的功能参数与优势新品
    GI-3000XY血药浓度分析仪的功能参数与优势 一、产品简介GI-3000XY是基于二维高效液相色谱技术上研发的血药浓度分析仪。配备了丰富的临床治疗用药的血药浓度检测方法和专业色谱工作站软件,使其成为一套具有功能强大的在线前处理功能、药检方法丰富的全智能化操作的血药浓度监测专用设备。能够使血药浓度监测从原来的实验室研究可以走向临床用药监测和指导。填补了该项目空白,具有划时代意义,为国家对某些药物治疗必须要进行血药浓度监测强制性要求提供了必要设备和手段。 二、产品五大优势:(1)产品技术优势:采用第三代液相色谱仪技术, 恒流泵采用高精度伺服电机驱动精密滚珠丝杠的丝杠传动技术、100MPa超高耐压技术,自动进样器采用电脑全自动控制高压进样、流动相过针技术,检测器采用高频采样技术(频率80HZ)(2)产品方案优势:采用全自动二维液相色谱技术方案,是先进、具有发展前途的血药浓度检测仪技术方案,也是目前较适应临床监测的方法。其它传统方案均不适应临床监测。(3)药检方法多优势:配有丰富的临床药物检查方法,可满足医院各科临床药物检测。比如:精神病、癫痫病、免疫抑制、维生素、抗肿瘤、抗菌素、心脏药物等等。(4)专用仪器优势:产品针对血药浓度检测目的研发,检测系统整体统一设计、生产,系统整体性强,配合度高,重复检测精度高、系统稳定性、耐用性好。(5)厂家售后服务优势:厂家销售,厂家售后服务、后续软件免费升级、功能定制、产品维护服务都有保障。 三、主要功能与技术参数:1、检测系统综合功能参数(1)检测分析方法:采用高效液相色谱法★(2)仪器系统采用技术:二维液相色谱技术,具备二维系统直观引导、操作界面。(3)仪器软硬件各个部分都保持统一由一个原厂设计制造,确保仪器系统整体一致性好,稳定性强★(4)每例样品检测时长:5-10分钟★(5)加标回收率:必须在90%-110%范围(6)系统重复性RSD6(定性):≤0.05%(7)系统重复性RSD6(定量):≤0.2%★(8)机载配备临床治疗药物浓度检测方法30种以上。(9) 样品处理仅采用稀释去蛋白处理(10)工作曲线最少保持30个工作日内稳定 2、自动进样器:★(1)样品瓶位数量:不小于144个(2)样品残留:小于0.005%★(3)自动进样器,要采用高压进样,流动相过针技术,无需清洗进样针内壁,外壁自动清洗,可减少样品残留。 (4)采用高压计量泵量自动抽取,通过电脑随时改变进样量大小,无需更换定量环。 (5)进样前可自动清洗进样针外壁,减少样品交叉污染 (6)电源功率220v±10%,50hz 150w 3、四元超高耐压恒流泵:★(1)采用双步进电机,分别独立驱动二根精密滚珠丝杆的恒流泵输液系统,柱塞冲程20uL-140uL可调,可用电脑方便地设置调节。(2) 恒流泵耐压:80-100MPa(3)压力脉动:≤±0.02MPa。 (4)内置四元梯度比例阀,比例阀寿命 1000万次 ★(5) 具有5寸16:9的TFT高分辨率触控彩屏(800*480点阵)。并具有大屏幕直接操控与电脑软件反控二种功能(6)输液泵系统,不需要独立梯度混合器,梯度混合在泵内完成,以减小死体积,提高系统重复检测精度。 (7)内置在线脱气机,脱气机采用高效Teflon AF管,脱气机死体积300uL (8) 流量范围:0.001-9.999ml/min;设定步长:0.001mL/min(9) 流量精度:±1%; (10)精密滚珠丝杆驱动双柱塞往复泵,具有压力实时检测显示、高压限、低压限报警、随系统压力变化流速自动补偿 (11) 泵的压力可精确显示到0.01MPa,便于进一步观察掌握压力波动的细微变化。 4、综合分离分析单元: (1) 温度控制范围:5℃~80℃(室温<25℃);(2) 温度控制精度:≤±0.1℃;(3)高柱效分析柱 4.6*100(mm) 粒径3uL(4)在线SPE柱 4.6*10 (mm) (5) 综合单元的参数可由色谱数据处理工作站进行设定和控制 (6) 温度可双方向控温:可制冷和制热,智能温控。(7) 温度设定分辨率:0.1℃(8) 综合单元具有电脑软件反控功能 5、紫外检测器:(1) 波长范围:190nm-700nm;(2) 基线噪声:≤±1×10-5 AU(甲醇、1ml/min、254nm、20℃); (3) 基线漂移:≤±3×10-4 AU/h(甲醇、1ml/min、254nm、20℃);(4) 检测浓度:≤2×10-9g/ml(萘);(5) 光谱带宽:5nm;(6) 波长示值误差:≤±1nm;(7) 波长扫描:多波长时间编程(10波段);(8) 检测器具有电脑软件反控功能(9) 检测器采用双通道数据、高精度24位AD转换、信号采样频率高达80hz/s高速数据采集器,确保检测器的高速度、低噪声、低漂移、超高灵敏度检测。 (10) 采用新型H型流通池,双方向对流,保证基线的波动小(11) 池体积:8μL; 6、高压稀释泵:(1) 泵压力:0-45mpa(2) 流量范围:0.001-9.999ml/min;设定步长:0.001mL/min(3) 流量精度:±1%;(4)电脑控制,具有在线自动稀释功能。无论进样量大小,不需氮吹操作,全自动处理,免除人工干预麻烦。 7、色谱工作站:★(1)软件由原厂统一设计、具有独立的公有和私有的仪器方法,分析方法,报告方法的设置,修改私有方法时不改变公有方法,方便样品表方法的建立和管理。仪器方法、分析方法与报告方法的建立、修改、删除都具有权限管理和审计追踪功能,数据库更安全高效。(2)软件具有满足GMP要求的用户权限管理,审计追踪功能(3)软件带有有MySQL数据库管理功能,所有关键数据均存入数据库,具有数据的导入导出功能。(4)机载四十种临床药物检测方法,方便用户临床检测使用。软件方便用户进行药检方法开发并保存。 ★(5) 控制方式:具有电脑反控功能。(6)主界面可以可以完成大部分操作,不要多个界面中来回切换。(7)具有样品表批处理功能,即样品表建立后,可一键完成全部的样品测试。样品完成后可设置自动冲柱,智能关机,实现无人值守。 (8)软件要高度集成,数据设置、采集、分析和查看一个软件完成,操作方便。 数据分析以实际采集的数据为依据,确保数据真实性。 (9)软件采用纯面向对象的JAVA语言编写,软件具有高扩展性,和跨平台运行功能。(10) 软件能对系统进行全反控操作控制、自动数据采集、谱图处理等。 (11) 使用的方法文件能对色谱仪的分析参数、谱图数据、分析报告进行存储与统一管理; (12) 全中文操作菜单, 直观方便的人性化操作界面; (13) 工作站具有多形式的谱图比较功能,有利于色谱研究; (14) 工作方式:前后台实现数据采集、计算、整理、储存和打印 ★8、验收试验设备验收时,必须做加标回收率实验,加标回收率是判定仪器检测分析结果准确度的量化指标,加标回收率:必须在90%-110%范围, 四、仪器配置1、四元超高耐压恒流泵系统 (内置四元比例阀、在线脱气机、含在线柱塞杆清洗装置) 二套,2、四单元在线脱气机(内置) 二套,3、UV紫外检测器系统 一套,4、综合分离分析系统 一套,5、自动进样器系统 一套,6、高压稀释泵 一台7、色谱控制软件系统 一套,8、高柱效分析柱 一根9、SPE固相萃取柱 五、产品适用范围仪器检测药物种类多、品种广泛,并可不断开发新的药检方法。(1)精神科药物:氯氮平、奥氮平、文拉法辛、利培酮、西酞普兰、舒必利、阿立哌唑、米氮平、阿米替林、氯丙嗪、喹硫平、氯米帕明、齐拉西酮、帕利哌酮、三氟拉嗪、氟西汀等等。(2)抗癫痫药物:卡马西平、丙戊酸钠、苯巴比妥、苯妥英钠、奥卡西平、左乙拉西坦、拉莫三嗪等等。 (3)催眠镇静类:阿普唑仑、氯硝安定、硝基安定、咪达唑仑、安定、舒乐安定、劳拉西泮等等。 (4)抗肿瘤药物类:顺铂、卡铂、紫杉醇、甲氨蝶呤、5-氟尿嘧啶、阿糖胞苷、阿霉素、表阿霉素、足叶乙苷、卡莫司汀、呋喃氟尿嘧啶、环磷酰胺、异环磷酰胺 等等(5)维生素类:维生素A、D、E 等等。(6)免疫制剂类:霉酚酸、特异性环孢霉素、FK-506 等等。(7)其它类别:单胺类 、镇痛类药物、激素类药物、心血管类、抗结核类药物、 循环系统、 胃肠道药物 、其他药物等等。 创新点:采用丝杠传动技术,用二个伺服电机分别驱动主泵与辅泵的二根滚珠丝杠,进而驱动柱塞杆运动,二者独立控制,无齿轮传动联动,因此主辅二个泵的冲程独立任意可调,为液相色谱仪流动相的梯度混合、在泵内完成提供前提条件,从而可以去掉泵外的独立梯度混合器,减小死体积,提高仪器的重复检测精度。深圳通用血药浓度分析仪的功能参数与优势
  • 北京兴东达泰科公司推出701逃逸氨分析系统
    我公司推出701逃逸氨分析系统,701型逃逸氨分析系统采用了1314声光红外检测器,并配有101型加热样品稀释器.稀释前分析仪的动态测试范围0.07 to 20,000 ppm,适合1%水份情况的分析,甚至可以在样品相对湿度在40%时也可以工作.,特殊设计的采样系统可以保证不损失氨的采样过程. 采用1:5的稀释比例时,样品的检测限可以达到0.3 ppm.系统设计保证了在样品中含有高浓度的CO2,水分以及含有燃烧的其它产物存在时,测试仍然可以正常使用.系统可广泛用于多个领域的逃逸氨分析和监测.
  • 陆恒生物发布陆恒生物多参数水质分析仪LH-T725新品
    名称:多参数水质检测仪简介:多参数水质检测仪,是杭州陆恒生物科技有限公司研发的一款测定水中COD氨氮总磷总氮浓度的检测仪。原理:采用快送消解分光光度法,纳式试剂光度法与钼酸铵分光光度法,碱性过硫酸钾消解紫外分光光度法分别测定水样中的COD、氨氮、总氮、总磷浓度,消解管消解,消解比色一体,操作简单,方便,测量结果准确有效。一、概述多参数水质分析仪CNPN-4SⅢ(COD、氨氮、总磷、总氮、总铁、铜、六价铬、总铬、镍、锌、锰、溶解氧、PH、余氯、总氯、磷酸盐、亚硝酸盐、硫化物、二氧化氯、臭氧、尿素)是杭州盈傲仪器有限公司隆重推出的第三代水质快速分析仪器,仪器采用进口高亮度LED冷光源和德国先进的光学结构,光学性能和检测效果极佳;人性化的操作界面、简单的测量方法和大屏幕液晶屏显示,使得专业和非专业人事使用起来都得心应手,是科学研究、数据分析、水质检测的得力助手,广泛应用于科研院所、污水处理、环境监测、石化、造纸、制药、印染、纺织、皮革、酿酒、电子、市政、高校等行业并受到广大用户的一致好评。多参数水质分析仪是依据物质分子对可见光产生的特征吸收光谱及光吸收定律(朗伯-比尔定律)的原理,用未知浓度样品与已知浓度标准物质比较的方法进行定量分析的仪器。仪器由LED光源、比色池、光电传感器、微处理器和微型打印机构成,可直接在液晶屏幕上显示出被测样品中某些项目或某污染物的含量,并打印出分析结果。 二、仪器特点 1. 采用德国新型光路结构,具有卓越的光学性能,极高的测量精确度、稳定性,是国内目前较先进、较实用的分析仪器;2. 采用准平行冷光源,具有透射面积广、节能、环保、寿命长、响应速度快等优点;3. 采用全触摸7寸彩屏,屏幕清晰,界面人性化,中文显示,操作指导,读数直观;并有辅助按键操作,两种操作模式更智能、更实用。4. 多参数水质分析仪可检测项COD、氨氮、总磷、总氮、余氯、总氯、二氧化氯、臭氧、磷酸盐、亚硝酸盐、铬、硫化物、溶解氧、PH、尿素等参数,实用性极高;5. 采用消解比色一体管,COD消解与检测用同一根管子,无需移液,减少检测危险性;6. COD试剂配方升级,低可到5mg/l,高可到16000mg/l;消解时间从传统法两小时缩短到20分钟;7. 检测数据可实时存储,随时打印,随时调取,且可存入电脑永久保存,读取无需驱动软件;8. 仪器全塑机壳,流线型设计,外观优美,表面经过特殊处理,抗氧化、耐酸碱,核心部件密封防水;9. 大容量内存,可测量多个检测项目和储存多组检测数据,存储数量为10000条;三、测量原理COD测定原理(铬法):在强酸性溶液中和过量的重铬酸钾存在下,以硫酸银做催化剂,通过加热催化氧化水中的还原物质,通过六价铬或三价铬的吸光度值与水样COD 值建立的关系,来测定水样COD 值。氨氮测定原理(纳氏试剂法):以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,根据络合物的吸光度与氨氮含量成正比,来测定水样中的氨氮含量。总磷测定原理(钼酸铵法):样品经过消解后,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸,立即被抗坏血酸还原,生成蓝色的络合物。据络合物的吸光度来测定水样中的总磷含量。总氮测定原理(麝香草酚法):水样中加入碱性过硫酸钾溶液,在高温高压条件下,可使水样中含氮化合物的氮元素转化为硝酸盐,可使水样中含氮化合物的氮元素转化为硝酸盐,与麝香草酚在浓硫酸的溶液中形成硝基酚化合物,在碱性溶液中发生分子重排,生成黄色化合物。 四、技术参数4.1分光光度计技术参数 1. 吸光度检测范围:0-3.5Abs2. 光路稳定性:≤±0.002Abs/30min3. 吸光度分辨率:0.001Abs4. 操作重复性:≤±0.005Abs5. 光源寿命:10万小时6. 滤光片寿命:5年7. 电源:DC12V/5A8. 使用环境:温度0-50℃,相对湿度0-90%(无冷凝)9. 尺寸:412x253x164mm10. 重量:3.25kg 4.2测定仪技术参数1. 测量范围:COD:0-15000mg/L 氨氮:0-50mg/L 总磷:0-20mg/L 总氮:0-500mg/L 以下参数需定制: 总铁:0-10mg/l 余氯:0-3mg/l 铜:0-50mg/l 余氯:0-12mg/l 六价铬:0-10mg/l 总氯:0-12mg/l 总铬:0-10mg/l 磷酸盐:0-2mg/l 镍:0-5mg/l 硫化物:0-1mg/l锌:0-30mg/l 亚硝酸盐:0-0.3mg/l溶解氧:0-20mg/l PH:6.5-9 2. 测量精度:≤±5% 重复性:≤±3%3. 抗氯干扰:C(Cl-)<1500mg/L无影响4. 存储数据:10000条六、实验分析(一)项目选择及测量范围编 号项 目量程(mg/l)下限(mg/l)1COD LR-预0-15052COD MR-预100-15001003COD HR-预1000-1500010004氨氮LR0-50.055氨氮 HR5-500.56总磷 LR0-20.027总磷 HR2-200.28总氮LR0-500.59总氮HR50-500510COD LR-粉0-160511COD MR-粉100-160010012COD HR-粉1000-160001000以下参数需要定制13铁0-10.00mg/L0.01mg/L14铜0-50.00mg/L0.01mg/L15六价铬0-10.00mg/L0.01mg/L16总铬0-10.00mg/L0.01mg/L17镍0-5.00mg/L0.01mg/L18锌0-10.00mg/L0.01mg/L19锰0-10.00mg/L0.01mg/L20溶解氧0-20121PH6.5-9.0PH6.5PH22余氯LR0-30.0123余氯HR0-120.0524总氯0-30.0125磷酸盐(以磷计)0-20.0226亚硝酸盐0-0.30.00527硫化物0-10.004(二)实验试剂的配制% 部分试剂中含有汞盐和硫酸,操作时应按规定佩戴防护用具,避免接触皮肤和衣服。% 请使用蒸馏水和分析纯浓硫酸配制试剂,禁止使用工业级硫酸和长时间闲置的硫酸。% 为确保实验数据的准确性,请准确配制试剂,配制时应将粉包尽可能倾倒干净,必要时用溶液冲洗试剂瓶内部。% 废弃的试剂和检测后的残渣液,请勿随意丢弃,应做妥善的安全处理。1、COD LR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。2、COD HR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。3、COD 催化剂-粉 100样:将整瓶粉剂置于500ml烧杯,用玻璃杯将小块装粉末稍捣碎,加入300ml浓硫酸(半年内生产98%分析纯),放置于暗处溶解(溶解较慢),粉末完全溶解后,搅拌均匀,装入试剂瓶中常温避光保存备用。4、COD 预制管试剂LR(10-150mg/L):管装试剂(一次性),直接使用。5、COD 预制管试剂HR(100-2000mg/L):管装试剂(一次性),直接使用 ,MR、HR曲线通用。6、氨氮试剂A:滴瓶装试剂,直接使用。7、氨氮试剂B:滴瓶装试剂,直接使用。8、总磷试剂A:将整瓶粉剂置于250ml烧杯,加入100ml蒸馏水搅拌溶解,并装入试剂瓶中,2-8℃避光保存备用。9、总磷试剂B:将整瓶粉剂置于100ml烧杯,加入20ml蒸馏水搅拌溶解,并装入滴瓶中,2-8℃避光保存备用。10、总磷试剂C:滴瓶装试剂,直接使用,2-8℃避光保存备用。11、总氮试剂1:将1包试剂1(1)加入5ml试剂1(2)中完全溶解,即为试剂1,备用,可用10次(此试剂冬天可于25-40℃水浴加热溶解,2-8℃避光保存两周内可用)。12、总氮试剂2:直接使用,2-8℃避光保存备用。13、总氮试剂3:直接使用,2-8℃避光保存备用。14、总氮试剂4:直接使用,2-8℃避光保存备用。 (三)水样的采集、保存、吸取1、水样的采集 采集水样前,应先用水样洗涤采样塑料瓶或玻璃瓶及瓶盖2~3次。在采集水样时要注意将水灌满,并将瓶盖拧紧。若采集多个水样,要注意做好标记,以防混淆。 (1)地表和地下水样的采集 采集井水 让泵运转足够时间排净管道积水后,再汲取新鲜水样。 采集泉水 可在涌水口处直接采样。 采集自来水 应先放水数分钟,使积留在水管中的陈旧水排出,然后再采样。 采集地表水 尽量在水域中央采集样品,并采集水面下3~5cm的水样。如果使用有盖的容器,先将容器浸入液面下再取掉瓶盖。 (2)污水采集 中轻度污染废水 如行业处理后废水某些排放口处采样,同时要注意记录样品采集的过程包括时间、位置等,便于日后分析研究。 采集水域污水 当水深>1m时在表层1/4深度采样,水深≤1m时在水深1/2处采样。采样位置在采样断面中心,样品容器必须用水样冲洗三次后再行采样。采样时应注意除去水面的杂物、垃圾等漂浮物。2、水样的保存样品采集后,应尽可能快进行分析,以减少实验误差并减少工作量,本仪器项目宜立即进行分析测定。 3、水样的吸取传统方法一般是使用移液管,但有些化学具有腐蚀性,不太安全,且新手很难取准水样,因此本公司在销售仪器时会配送更安全、便精确、更方便的移液枪,使用方法可咨询销售人员。使用前先调好要吸取的量,吸时在移液枪卡点时停止,放液时按到底。不同的水样一定要更换吸头。4、水样的稀释一般水样干扰物多、检测浓度超量程情况下会采用水样稀释法。 例:稀释10倍:可取1ml原水,再加入9ml纯净水或蒸馏水混合均匀,即为稀释了10倍,测出来的结果值要乘以10才为正确值。(四)水样检测1、COD的检测(COD 预制管试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式打开主机电源,预热根据需要准备若干COD 预制管试剂置试剂管架?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样COD值,并按照对应量程选择适配LR或HR试剂?COD LR-预 需要单独做空白,COD MR-预和COD HR-预 可以共用空白;?较清洁水样可直接测量,水样应做相应处理;?COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1500mg/L;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-150mg/L时用(COD LR-预曲线)为100-1500mg/L时用(COD MR-预曲线)为1000-15000mg/L时用(COD HR-预曲线)3量取2ml蒸馏水加到1支COD 预制管试剂LR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml水样置于另1支COD 预制管试剂LR中量取2ml水样置于另1支COD 预制管试剂HR中量取0.2ml水样和1.8ml蒸馏水于另1支COD 预制管试剂HR中4加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)?有沉淀属正常现象;将COD 预制管插入消解孔中消解,并盖上防护罩。?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;5消解完成后,将COD 预制管置于试剂管架冷却2min,颠倒摇匀COD 预制管,待冷却至25℃室温。(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。?消解完请空冷2min后再水冷,以免COD预制管急剧热胀冷缩发生危险;?冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-预曲线测量选择COD MR-预曲线测量选择COD HR-预曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。2、COD的检测(COD粉剂试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式,打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干使用;2预估水样COD值,并按照对应量程选择LR或HR量程试剂?COD LR-粉 需要单独做空白,COD MR-粉和COD HR-粉可以共用空白;?较清洁水样可直接测量,水样应做相应处理;?COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1000mg/L;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-160mg/L时用(COD LR-粉曲线)为100-1600mg/L时用(COD MR-粉曲线)为1000-16000mg/L时用(COD HR-粉曲线)3量取2ml蒸馏水加到1支 试剂管空管 中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml水样置于另1支试剂管空管量取2ml水样置于另1支试剂管空管量取0.2ml水样和1.8ml蒸馏水于另1支试剂管空管4向各个试剂管中加入1ml COD LR试剂向各个试剂管中加入1ml COD HR试剂?空白样也需要加入试剂;?有沉淀属正常现象;?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;依次缓慢加入COD催化剂3ml,加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)。将试剂管插入消解孔中消解,并盖上防护罩。5消解完成后,将试剂管置于试剂管架冷却2min,颠倒摇匀消解管,将试剂管冷却至25℃室温(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;?冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-粉曲线测量选择COD MR-粉曲线测量选择COD HR-粉曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值。7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。3、氨氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样氨氮值,并按照对应量程进行取水样及加入试剂?氨氮LR和氨氮HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-5mg/L时用(氨氮LR曲线)为5-50mg/L时用(氨氮HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管(空白样)取水样5ml于另1支试剂管空管取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中4依次向各个试剂管中加入加入3滴氨氮试剂(A)摇匀?空白样也需要加入试剂,并且与水样加入的试剂相同;?滴加试剂时应尽量保证每滴试剂的均匀性;依次加入3滴氨氮试剂(B)。附:(水样中若含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时,对比色测定有干扰,需预处理或稀释后测定;(预处理请参照HJ535-2009))5加盖摇匀后静置显色10min?如含有氨氮,溶液应呈现为黄棕色,且浓度越大,颜色越深;6选择氨氮LR曲线测量选择氨氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样氨氮值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。4、总磷的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(120℃.30min),打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总磷值,并按照对应量程进行取水样及加入试剂?总磷LR和总磷HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理,参照GB11893-89;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-2mg/L时用(总磷LR曲线)为2-20mg/L时(总磷HR曲线)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)取水样5ml于另1支试剂管空管中准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中。3依次向各个试剂管中加入1ml总磷试剂(A),将试剂管盖拧紧并摇匀。?空白样也需要加入试剂;将试剂管插入消解孔中消解,并盖上防护罩。?消解前请确保试剂管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;4消解完成后,将试剂管置于试剂管架冷却至25℃室温。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;5依次加入4滴总磷试剂(B),加盖摇匀后静置30S,依次加入6滴总磷试剂(C),加盖摇匀后,静置显色15min。?试样中如含有磷,显色应为蓝色,且浓度越大,蓝色越深;6选择总磷LR曲线测量选择总磷HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;7选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总磷值8浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。5、总氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(125℃.30min)并开始加热,准备3个洁净干燥的“试剂管空管”于试管架,分别标明A、B、C。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总氮值,并按照对应量程进行取水样及加入试剂?取一包试剂1(1)粉包,溶于5ml试剂1(2)中,完全溶解后即为试剂1(10次用量)。若未完全溶解,可25-40℃水浴加热溶解,2-8℃冷藏保存一周使用。?移取样品或试剂的移液管不可交叉使用;为0-50mg/L时(总氮LR曲线)为50-500mg/L时(总氮HR曲线)向试剂管空管A中加入1ml待测水样,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。向试剂管空管A中加入0.1ml待测水样,再加0.9ml蒸馏水,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。3将试剂管A插入消解孔中消解,并盖上防护罩消解30min。?消解前请确保试剂管盖拧紧,以免消解液溢出;4消解时间结束后带上手套,趁热将试剂管A快速摇晃10秒,后置于试管架冷却至25℃室温或放入15-20℃自来水中水冷5min。?水面需高于试剂管A内液面;5从冷却后的试剂管A中取0.25ml消解液加入到试剂管C中,向试剂管C中加入2滴试剂2(这步从试管中央加入、过程中避免沾附管壁),然后沿壁加入0.6ml试剂3,盖上盖子左右摇匀10下,计时5min。?这里一定要用0.1-1ml的移液枪配长吸头取液;6然后再向试剂管C中缓慢加入(防止溅出)5ml试剂4,加盖上下颠倒摇匀5下后置15-30℃自来水中水浴冷却5min。?尽量不要出现试管中液体蒸发,从而影响结果值;7空白样管的制作:向消解管B中加入5ml蒸馏水即成。?无蒸馏水用纯净水;8选择总氮LR曲线测量选择总氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;9选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总氮值。10浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。11注意事项:每一种试剂取完液后请立即盖上盖子密封。12干扰:氯离子含量在2000ppm以内均不产生干扰,但氯离子含量达到600ppm以上时,终产物颜色会变成绿色,不影响测定结果。6、总铁的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管.?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总铁值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-1mg/L时用(总铁LR曲线)为1-10mg时用(总铁HR曲线)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中3分别向两粗型比色管加入1mL总铁试剂(Ⅰ),左右摆动摇匀。?空白样也需要加入试剂;?还原剂:氰化物、亚硝酸盐等,可通过加酸煮沸除去。?汞、镉、银等。可与邻菲罗林生成沉淀,浓度低时,可加过量邻菲罗林来消除,浓度高时,应将沉淀过滤去除。再分别向两管中加入1包总铁试剂(Ⅱ),左右摆动摇匀溶解完全。4静置反应5分钟5选择总铁LR曲线测量选择总铁HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样总铁值7浓度显示及其数据选择“保存”或“打印”?样品测量结果应在曲线范围内,如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;7、铜的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管.?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含铜值,并按照量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;?液体本身带有的颜色会有干扰,可用活性炭脱色。为0-5mg/L时用(铜LR曲线)为5-50mg时用(铜HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中4分别向两粗型比色管加入1mL铜试剂,盖上盖子左右摆动摇匀。?空白样也需要加入试剂;静置反应2分钟?水中共存的AL3+、Fe3+、Ag+、CN-等离子会干扰测定?水样PH值应调至4-75选择铜LR曲线测量选择铜HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样总铁值7浓度显示及其数据选择“保存”或“打印”?样品测量结果应在曲线范围内,如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;8、六价铬的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样六价铬值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-1.0mg/L时用(六价铬LR曲线)为1-10mg/L时用(六价铬HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中4分别向两粗型透明比色管加入1包铬(VI)试剂,盖上盖子摇匀溶解.?次氯酸根、亚铁离子、亚硫酸根、硫代硫酸根离子存在会干扰测定 ?空白样也需要加入试剂;静置反应10分钟5选择六价铬LR曲线测量选择六价铬HR曲线测量测定温度为10℃-30℃选好曲线后,竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样六价铬值.从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。9、总铬的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(125℃.30min),打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总铬值,并按照对应量程进行取水样及加入试剂?总铬LR和总铬HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;0-1mg/L时(总铬LR曲线)1-10mg/L时(总铬HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)取水样5ml于另1支试剂管空管中准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中4依次向各个试剂管中加入2ml总铬试剂(一),并将试剂管盖拧紧并摇匀。?空白样也需要加入试剂;将试剂管插入消解孔中消解,并盖上防护罩。?消解前请确保试剂管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;消解完成后,将试剂管置于试剂管架冷却至25℃室温。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;5将各个试剂管中依次加入5滴总铬试剂(二),加盖摇匀,静置显色15min。?试样中如含有铬,显色应为紫红色,且浓度越大,颜色越深;6选择总铬LR曲线测量选择总铬HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总铬值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。10、镍的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含镍值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-0.5mg/L时用(镍LR曲线)为0.5-5mg时用(镍HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中。(空白样)准确量取15mL蒸馏水加到1支粗型比色管中。(空白样)准确量取15mL水样置于另1支粗型比色管中。准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中。4分别向两粗型比色管加入1mL镍试剂(Ⅰ),缓慢摆动摇匀。?空白样也需要加入试剂;?待测水样pH值应为4-7,温度为20℃-30℃。?水中共存5倍以上的Cu2+ 、Co2+,20倍以上的Zn2+、Pb2+ 、Al2+、Fe3+、Mn2+会干扰测定。?加入镍(Ⅱ)试剂和镍(Ⅲ)试剂后不能上下振摇,以免产生泡沫影响比色。再分别向两管中加入1ml镍试剂(Ⅱ),缓慢左右摇匀溶解完全。5静置反应15分钟后分别加入一包镍试剂(Ⅲ),缓慢左右摇匀溶解。6选择镍LR曲线测量选择镍HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量7竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样含镍值。8浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;11、锌的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。较清洁水样可直接采样测定,测总锌及含悬浮物和有机物较多的水样,需对水样做以下处理:移取50ml水样于150ml烧杯中,加入5ml浓硝酸,加热蒸发至10ml左右,稍冷再加入5ml浓硝酸和1ml高氯酸,继续加热蒸发至近干,加水40ml,加热煮沸3min,冷却,用(1+1)氨水将试液调节pH至中性,转移至50ml容量瓶用水稀释至标线。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含锌值,并按照对应量程进行取水样及加入试剂?锌LR和锌HR可共用空白;?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-3mg/L时(锌LR曲线)水样锌值为3-30mg/L时锌HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管(空白样)取水样5ml于另1支试剂管空管准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中。41、依次向各个试剂管中加入加入4滴锌试剂(一)、4滴锌试剂(二),加盖摇匀。2、依次加入2ml锌试剂(三)、1ml锌试剂(四),加盖摇匀。?空白样也需要加入试剂,并且与水样加入的试剂相同;?滴加试剂时应尽量保证每滴试剂的均匀性;5加盖摇匀后静置显色5min?如含有锌,溶液应呈现为深橙红色,且浓度越大,颜色越深;6选择锌LR曲线测量选择锌HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样锌值。7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。12、锰的检测步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2准确量取15mL蒸馏水加到1支粗型比色管中(空白样)?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;准确量取15mL水样置于另1支粗型比色管中。3分别向两粗型比色管加入1包锰试剂(Ⅰ),摇匀溶解。?空白样也需要加入试剂;?待测水样pH值应为5-10;?氧化剂或还原剂干扰测定,可预先加硝酸或硫酸加热消解后再进行测定。再分别向两管中加入1包锰试剂(Ⅱ),摇匀溶解。4选择(锰)曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样含锰值。5浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;13、溶解氧的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(溶解氧)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加满待测水样(水样凹液面距离瓶口约1mm),放入“样品比色槽”,按“标零”键调零、取出调零比色管。水样取样时需注意采样瓶中不能有气泡残存。3加入4滴试剂1和4滴试剂2,迅速盖上盖子,上下颠倒3次(玻璃瓶中不可有气泡)。由于实际操作过程中比色瓶内溶液较难达到无气泡,因此需要保证当比色瓶倒置时气泡直径小于1cm,才能使测定结果无较大误差。4静置3分钟后,再加入4滴试剂3,迅速盖上盖子,上下颠倒数次,直至沉淀完全溶解(玻璃瓶中不可有气泡)。加入试剂3摇晃,静置后若浑浊物不溶解,再多加入1滴试剂3。5竖直放入样品管,盖上遮光罩,按“读数”读取水样溶解氧值。?浓度显示及其数据选择“保存”或“打印”6测完后用纯净水清洗比色瓶,否则反应后的产物易吸附瓶子,且难以去除。7干扰因素:1. 极端PH的样品,会产生干扰,应调节PH在2-10之间。2.亚硝酸盐在1.6mg/l以下,余氯在3mg/l以下不会干扰测定。14.PH的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(PH)曲线从“样品检测”界面里的“项目”列表中选择取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。PH最佳检测温度在30℃以下水样浑浊时需过滤处理2精确移取0.5ml PH试剂加入比色瓶中,摇晃均匀。pH试剂对人体有刺激作用,如不慎接触,用水冲洗,必要时请就医。3竖直放入样品管,盖上遮光罩,按“读数”读取水样PH值。?浓度显示及其数据选择“保存”或“打印”4测完后用纯净水清洗比色瓶。15.余氯的检测步骤操作说明1余氯值范围为0-3mg/l时选择 (余氯LR )曲线余氯值范围为0-12mg/l时选择 (余氯HR) 曲线?从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。?实验中使用的器具应是洁净干燥的;测完后用纯净水清洗。3加入1包余氯试剂0-3mg/l 加入1包余氯试剂0-12mg/l 试剂包装袋属于易撕袋,任何面皆可撕开。4摇晃均匀,反应1分钟内,放入仪器按“读数”键读取水样余氯值。少量试剂不溶解不影响检测5浓度显示及其数据选择“保存”或“打印”当样品余氯浓度超高时,所显深红色会很快褪尽,是因为余氯的漂白结果。6干扰因素:1.氧化剂:溴、碘、溴胺、碘胺、过氧化氢、铬酸盐、氧化锰、臭氧等。2.还原剂:亚硝酸盐等。3.若水的碱度超过250mg/l或酸度超过150mg/l,测定值会不稳定,可加入稀盐酸或氢氧化纳溶液进行调节。16.总氯的检测步骤操作说明1选择(总氯)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。实验中使用的器具应是洁净干燥的;测完后用纯净水清洗。采样后应立即测试氯值,氯易挥发。3加入1包总氯试剂0-3mg/l试剂包装袋属于易撕袋,任何面皆可撕开。4上下摇匀,反应3分钟后,放入仪器按“读数”键读取水样总氯值。少量试剂不溶解不影响检测5浓度显示及其数据选择“保存”或“打印”当样品总氯浓度超高时,所显深红色会很快褪尽,是因为总氯的漂白结果。6干扰因素:1.氧化剂:溴、碘、溴胺、碘胺、过氧化氢、铬酸盐、氧化锰、臭氧等。2.还原剂:亚硝酸盐等。3.若水的碱度超过250mg/l或酸度超过150mg/l,测定值会不稳定,可加入稀盐酸或氢氧化纳溶液进行调节。17.磷酸盐的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(磷酸盐)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。3加入1包磷酸盐试剂,摇晃均匀,使试剂完全溶解。试剂一定要完全溶解4再移取0.7ml磷酸盐激活剂P加入比色管中,摇晃摇匀。必须在10分钟内完成检测5反应1分钟后,放入仪器按“读数”键读取水样磷酸盐值。浓度显示及其数据选择“保存”或“打印”6每次测完后需用纯净水清洗比色瓶,若内壁脏污,可用稀硝酸浸泡片刻,以除去吸附的钼蓝有色物。7干扰因素:1.砷及砷酸盐、重金属对其有干扰作用。 2.具有高度缓冲能力或极端PH值样品有干扰。18.硫化物的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(硫化物)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。样品采集时使用清洁的棕色玻璃瓶或塑料瓶并装满盖紧,避免过多摇晃,采样后最好立即测试。3精确移取0.5ml硫化物试剂1加入比色管中,再加入4滴硫化物试剂2,摇晃均匀。水样若含余氯,需将掩蔽剂(已赠送)用10ml纯净水溶解后,加入黑色滴瓶中(已赠送)。在10ml水样中加入4滴掩蔽剂,静置2分钟后,再进行加入试剂1和试剂2 等检测步骤。4反应5分钟后,放入仪器按“读数”键读取水样硫化物值。浓度显示及其数据选择“保存”或“打印”5每次测完后需用纯净水清洗比色瓶。6干扰因素:1.水样中的硫代硫酸盐,亚硫酸盐等与碘能反应的还原性物质会产生正干扰。 2.悬浮物,色度也会干扰测定。19.亚硝酸盐的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(亚硝酸盐)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。样品采集时使用清洁的棕色玻璃瓶或塑料瓶并装满盖紧,避免过多摇晃,采样后最好立即测试。3加入1包亚硝酸盐试剂,摇晃约30秒,使试剂尽量完全溶解。检测时最佳温度为15℃-25℃4反应15分钟后,放入仪器按“读数”键读取水样亚硝酸盐值。浓度显示及其数据选择“保存”或“打印”5每次测完后需用纯净水清洗比色瓶。6干扰因素:氯胺、氯、硫代硫酸盐、聚磷酸钠和高铁离子有明显干扰作用。(五)实验器具的洗涤、保养(1)器具洗涤新的采样容器、比色管等器具,在使用前,需经10%硝酸浸泡洗净备用。每次实验结束后,请尽快将实验中涉及的采样容器、比色管等器具进行清洗。倒空溶液,用自来水清洗几次,然后用(1+9)HNO3溶液(HNO3与水的体积比是1:9)浸泡过夜,用自来水洗涤2-3次,再用蒸馏水清洗1-2次,最后用去离子水冲洗1次,空气中晾干,有条件的话可用烘箱低温吹干。比色管等的洁净程度对于实验结果尤为重要,请务必按此步骤操作,以免污物残留带来严重的结果误差。(2)保养实验器具不用时请收到配件箱或柜子、抽屉存放好。比色管使用时要小心,尽量避免表面有划痕,从而影响实验光路照射测定,实验后请尽快清洗,避免有色溶液长时间停留在比色管中。不使用时,请存放于盒子里以防止刮擦和破损。比色管长期使用表面划痕较多,此时应尽快更换新的替代。(六)可能遇到的问题及排除现象序号原因排除措施测量结果为未检出1样品浓度低于项目曲线的检测限(空白样和待测样显色后颜色差异小)选用低量程测量2样品浓度过高或样品含有大量的悬浮物(空白样和待测样显色后颜色差异大)稀释后测量或做预处理3未准确调零(空白样管壁未擦拭干净或比色池内有异物)擦拭干净比色管、检查比色池,若仍未解决,请重新做空白样4调零后测量空白样正常现象5空白样和待测样品放反了使用正确的空白样调零COD测量数据不稳定1消解比色管内有悬浮物或外壁有水渍、异物待悬浮物沉淀后测量或擦拭干净比色管(有划痕请更换比色管)COD测量数据不准1COD粉末试剂法所使用的试剂未准确配制(粉末未完全溶解或倾倒干净,使用的硫酸不合格)准确的配制试剂2水样中含有大量的氯离子稀释后测量或取样前加入硫酸汞/硝酸银掩蔽3测量时样品未冷却至室温(25℃)冷却至室温(25℃)后测量氨氮总磷总氮测量数据不稳定1水样中很有大量的干扰物质或悬浮物(显色后溶液应为澄清透明样,且显色基调应和对应项目一致-氨氮总氮显色为黄色、总磷显色为蓝色)稀释测量或做预处理(氨氮预处理参照HJ535-2009、总磷预处理参照GB11893-89)六、装箱清单序号 名 称 数 量 序号 名 称 数 量 1 主机 1台 2 电源线 1根 3 数据线 1根 4 试剂 多套 5 试管架 2个 6 防爆检测试剂管25支 7 操作流程示意图多张 8 试剂瓶 1个 9 擦拭布 2块 10 防腐手套 2双 11 使用说明书 1份 12 合格证/保修卡(说明书内)1份创新点:1.上代仪器为按键式的,新产品升级为触摸屏2.上代产品检测参数是固定的,新产品检测参数可以定制,客户也可自建曲线3.上代产品的检测误差是± 5%,新产品检测误差是± 3%4.上代产品检测试剂为粉剂,新产品检测试剂是水剂,检测方便5.上代产品是外购芯,新产品是自产芯陆恒生物多参数水质分析仪LH-T725
  • AFM: 国产便携式开路氨分析仪助力氮循环研究
    氨是大气中最主要的碱性气体,在二次气溶胶颗粒物生成中扮演着重要角色,是引发重霾污染和过量氮沉降的重要活性氮,在农业生产中,氨挥发也是农田氮养分损失的主要途径。因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高精度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。中科院大气物理研究所王凯和郑循华所在的碳氮循环团队和宁波海尔欣光电科技有限公司深入合作,研发了一款便携式、高精度、快响应的开路多通池激光氨分析仪(图1)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。研究团队基于实验室和野外观测试验,对这款仪器的稳定性、测量精度、准确度等指标进行评价,并以它为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统(图2),这是目前测量地气氨交换通量的理想方法。图1 HT8700型开路氨分析仪及其结构图图2 大气氨通量涡动相关法观测系统野外测试结果显示,这款开路氨分析仪可在-15至40度的环境温度下稳定运行,10 Hz采样频率的测量精度(1σ)达0.302 nmol mol-1(即ppbv),半小时氨通量检测限为7.1 ± 1.1 μg N m-2 h-1。凭借这一灵敏度,该通量观测系统能准确有效地测量农田、养殖场等强排放源的氨排放通量,也可有效测量大多数区域的大气氨沉降速率。这款国产仪器的问世,为大气氨浓度和地表与大气间的氨交换通量测量提供了一种先进工具,也将助力国内大气环境学、生态学、农学等领域的氮循环研究。图3 亚热带稻田施肥期间观测的大气氨浓度和地面氨排放通量上述研究工作由国家自然科学基金委面上项目(41975169)和中国科学院从0到1原始创新项目(DBS-LY-DQC007)资助,相关成果发表于国际学术期刊Agricultural and Forest Meteorology。 文章引用:Wang K.*, Kang P., Lu Y., Zheng X.H., Liu M.M., Lin T.J., Butterbach-Bahl K., Wang Y.*, 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.文章链接:https://doi.org/10.1016/j.agrformet.2021.108570原文转自中国科学院大气物理研究所
  • 第三届在线分析仪器发展论坛:在线水质分析仪、在线气体监测仪的研发与应用现状
    仪器信息网讯 2010年11月1日,由中国仪器仪表学会分析仪器分会与北京雄鹰国际展览有限公司联合主办的“第三届中国在线分析仪器应用及发展国际论坛暨展览会”在北京国际会议中心隆重召开。来自中石油、中石化、中海油、煤化工、中化集团等下属企业及市政环保等用户及厂商代表400余人参加了本次论坛。仪器信息网作为特约媒体应邀参加了本次会议。  除大会报告外,会议同期举办了在线分析仪器展览会等活动,并设立A、B两个分会场对在线分析仪器技术分别进行探讨。其中,B分会场由中国化工装备仪表公司乐嘉谦高工、上海舜宇恒平科学仪器有限公司黄晓晶女士联合主持,多位在线分析领域的专家学者、厂商代表就“在线水质分析仪”、“在线气体监测仪”、“在线分析技术的工业应用”等方面作了精彩的报告。在线水质分析仪:  近年来,面对日益严重的水资源短缺、水环境污染等问题,以及全球对节能降耗、环境保护的日益重视,在线水质分析仪及其应用技术得到了飞速发展,尤其是针对目标对象的快速、灵敏、稳定、低成本、少(免)维护,以及多参数在线检测技术等新方法逐渐成为研究热点与发展重点。美国哈希公司程立先生  程立先生在题为《在线水质分析仪器应用技术的发展》谈到:监测型和过程型在线水质分析仪器具有不同的技术特点和应用要求,对应的应用技术也有着不同发展方向。同时,具有自学习功能和专家型的在线水质分析仪器系统及应用技术开始得到市场的重视。另外,程立先生还重点分析了美国哈希“蓝色卫士”多维矢量水质监测与预警系统、WTOSTM污水厂运行优化系统两款产品的优点。上海海争电子科技有限公司贾福禄先生  贾福禄先生在题为《多参数在线水质分析仪的设计》概述了多参数在线水质检测仪的测量原理,新器件的使用。贾福禄先生说到:多参数在线水质分析仪选用成品的变送器作为检测部分,采用原装进口的传感器,可测四个参数:余氯、二氧化氯、臭氧和次氯酸,结果显示此仪器性能稳定,零点漂移很小,斜率变化也不大,适合需要长期稳定工作的环境。广州市怡文环境科技股份有限公司王珂征先生  王珂征先生在题为《电化学生物传感器在水质安全监测中的应用》表示:电化学生物传感器对饮用水安全监测上有深远的意义和应用价值。近十年来,对于电化学生物传感器的性能和检测方法的优化研究也越来越多,电化学生物传感器的性能和种类也得到了很大的发展。另外,王珂征先生还主要介绍电化学生物传感器的原理、类型及在水质监测领域的应用。天津大学精密仪器与光电子工程赵友权先生  赵友权先生在题为《基于光谱法的紫外吸收COD的监测系统》说到:目前化学需氧量(COD)的监测方法存在需要化学试剂,测定时间长,操作复杂等问题。而基于紫外可见光谱测定COD的检测系统可以通过计算水样紫外吸光度从而测定水中的COD浓度。仪器具备无线数据通讯功能,无需工作人员值守,无需任何试剂,自动清洗,可满足实时在线原位的绿色检测与监测的要求。  在线气体监测仪:  进入21世纪以来,随着工业技术的不断发展、人口膨胀以及机动车数量的急剧增长,大气环境污染日益严重。其中,大气细颗粒物是形成大气污染的重要污染物之一,在许多城市已成为首要的污染物。同时,工业废气的污染也越来越引起环保人士的重视,烟气排放监测技术随之迅速发展。戴安中国有限公司刘肖先生  刘肖先生在题为《大气/气溶胶中阴阳离子在线监测技术》首先介绍到:URG公司是一家专门制作大气采样装置的专业性公司,其与美国EPA大气监测机构具有非常好的合作关系。美国戴安公司将该仪器结合离子色谱技术,使之成功应用于大气环境监测。URG公司与美国戴安公司的合作达10年之久。随后,刘肖先生从URG-9000D整套设备的技术细节上为大家进行了详细介绍。  在线分析技术的工业应用: 中国石油化工股份有限公司广州分公司符青灵先生报告题目:在线分析仪表在国产催化重整装置的应用  符青灵先生在报告中主要介绍了广州石化100 万吨/年催化重整联合装置是首套采用国产超低压连续重整工艺成套技术的装置,配置了色谱分析仪、氢烃分析仪等14 套在线分析仪表。催化重整装置是炼油企业非常重要的二次加工装置, 对首套使用国产技术的装置使用的在线分析仪表配置与应用情况进行总结很有意义。聚光科技(杭州)股份有限公司王森先生报告题目:合成氨、甲醇装置在线分析仪器配置和应用技术  王森先生首先陈述了自己在新建大型合成氨、甲醇装置采用的在线分析技术研发应用的感想与建议,随后,针对近期新建大型合成氨、甲醇装置采用的在线分析技术,王森先生详细讨论了这些装置工艺操作和控制对在线分析的要求,在线分析仪器的配置方案和选型要点,取样、样品处理系统的设计及在线分析应用技术。
  • 捷报|赛莱默分析仪器首批国产Trescon UNO A111氨氮分析仪下线交付使用
    奔跑是一种态度创新是一种DNA进化是一种能力专注是一种格局在变革的时代里,为产品赋能,为用户提供更好、更便利的工具,以此为核心建立企业的生态圈, 并在不断的发展中迭代、放大势能,是迎接新时代挑战,更好的服务用户的一种重要举措。作为水质分析仪器的行业领导者,“本地化“一直是赛莱默分析仪器在中国的支柱性战略之一,这一举措昭显了赛莱默分析仪器深耕中国市场的诚意。从2011年在北京设立集成中心,经过近7年的发展,集成中心的面积扩展到了800平米,而集成中心可以组装和生产的产品也从开始的水质浮标站、简易水质监测站,到超级绿箱子、超级浮标站,以及专门针对中国客户需求打造的在线COD分析仪和在线氨氮分析仪。继2018年新年伊始,赛莱默分析仪器北京系统集成中心旗下TresCon UNO A111(TCU/A111)氨氮全自动分析仪顺利通过CMC工厂考核,取得制造计量器具许可证书后,近日赛莱默分析仪器北京工厂再传捷报,首批10套氨氮分析仪大订单下线,这标志着赛莱默分析仪器在执行本地化战略的道路上再上一个台阶。该批量产品的下线,可以使中国本土客户享受到德国设计、中国生产的氨氮分析仪的种种利好,包括更短的货期、更高质量的保证以及更快捷的服务等,这是赛莱默分析仪器自身不断进化的态度和创新能力的一种完美结合。氨氮全自动在线分析仪TresCon UNO A111(TCU/A111)氨氮全自动在线分析仪是继TresCon COD-3250后在北京工厂落地的第二款德国WTW TresCon系列水质在线分析仪,该仪器在国内外都有非常广泛的应用。 取得EPA环保认证证书 独特的氨气敏电极原理 不受色度及浊度干扰 实时自动连续监测多种水体 超强稳定性 超长寿命 超低耗材 绿色环保无二次污染持续的创新能力是企业发展的原动力,坚定的执行力是企业各种战略落地的实践保障。赛莱默分析仪器将持续推进本地化生产战略,不断将优质的产品落地本地化工厂,进一步提升和扩大本地化生产的能力。赛莱默分析仪器将植根中国市场,以优质的产品、专业的服务,始终如一的“匠心”态度更好的服务中国客户!
  • 使用罗氏Cedex Bio生物过程分析仪对生物技术生产过程进行监控
    使用罗氏Cedex Bio生物过程分析仪对生物技术生产过程进行监控D. Druhmann、S.Reinhard、F. Schwarz、C. Schaaf、K. Greisl、TL Nö tzel 在开发和控制工业化生产重组蛋白的生物过程中,一项基本要素是要提供快速、准确且可靠的过程数据。对动物和细菌细胞培养物中的基质(营养物质)和代谢物进行准确的监控,是避免在发酵过程中营养不足,或有毒代谢终产物积聚的关键。不受控制的代谢物可对细胞生长及存活以及蛋白的质量和产量产生不良影响。因此,精确跟踪发酵过程能确保可重现性,且是优化过程开发和验证的关键。 测试的典型参数包括葡萄糖、乳酸、谷氨酸、谷氨酰胺、氨、钠和钾。目前,检测基质和代谢物的多参数分析仪系统采用酶膜的生物传感器和离子选择性电极。这些仪器的主要缺点是酶膜随着时间的推移准确度会下降,材料成本高昂,检测结果呈非线性,而且总体灵敏度和准确度较低。罗氏Cedex Bio生物过程分析仪检测 Cedex Bio生物过程分析仪,和最近推出的Cedex Bio HT生物过程分析仪可应用于提升在发酵过程中的过程监控。Cedex Bio HT生物过程分析仪专为过程开发的高通量检测而设计,每小时最高测试数达320。Cedex Bio HT生物过程分析仪结果与Cedex Bio生物过程分析仪得到的结果完全一致。这项技术采用了罗氏成熟的仪器平台,相比目前使用的其他仪器,在其扩展检测范围内,显著提高了其灵敏度和可重现性(见表)。 Table. Comparison of measurement ranges Cedex Bio生物过程分析仪配备了自动稀释功能,从而扩展了检测范围,显著降低了操作员人为造成的偏差。在Cedex Bio生物过程分析仪上,样本在上机之前无需人工稀释。各项光度测定(如LDH [乳酸脱氢酶]、IgG [免疫球蛋白])和离子选择性电极(钠,钾)结合于同一台仪器,可对单个样本进行灵活的检测组合。Figure 1. Accuracy and linearity comparisons for glucose, accuracy and linearity comparisons for lactate, and accuracy and linearity comparisons for glutamineCedex Bio生物过程分析仪卓越的数据质量 利用相同的参考标准(参见图1中的血糖、乳酸和谷氨酰胺),将Cedex Bio生物过程分析仪与采用酶膜技术的成熟仪器进行了对比。日间平行对照实验结果表明,Cedex Bio生物过程分析仪具备更佳的准确性和线性。 此外,Cedex Bio生物过程分析仪的高灵敏度使得营养有限的发酵过程成为可能。而且,可检测到发酵过程中代谢物的细微变化。根据该领域内的相关性研究得到的结果 酶膜分析仪需要进行繁琐的维护、校准和频繁的质控。对于批量饲养哺乳动物细胞的发酵过程而言,Cedex Bio生物过程分析仪相关性研究的数据质量更高(参见图2中的血糖和乳酸),而且表明了Cedex Bio生物过程分析仪能方便地取代酶膜分析仪而不会产生任何负面影响。Cedex Bio生物过程分析仪能够分析样本的产品质量参数,如LDH(代表释放量[即胞浆蛋白酶])和IgG(滴度),这是一个不可忽视的优势。 Figure 2A. Results of correlative studies&mdash Glucose总结 Cedex Bio生物过程分析仪在同一个平台上集成了三台设备的功能,可在数分钟内对同一个样本进行多参数测试。自动化稀释功能可减少需依靠操作人员的步骤和减少偏差。方便易用且稳定的光度计测定、离子选择测定和浊度测定既可靠又具备可重现性,且不同地点的多台仪器之间可做直接比较。由此得到的灵敏、精密且准确的分析数据能确保对发酵过程进行高水准的控制。 Figure 2B. Results of correlative studies&mdash Lactate
  • 国内外水质分析仪器技术水平分析对比
    水质分析是确定饮水安全的主要途径,目前市场上有多种水质分析仪器助力监管人员确保饮水安全。随着环保领域市场的发酵,各类环境监测仪器迎来了爆发式增长,水质分析仪器也不例外,目前市场上有多家仪器公司在水质分析仪器生产上有其独到之处,竞争激烈。  为了让大家更好地对比目前国内外水质分析仪器的发展状况,今天我们来对比一下美国哈希和我国聚光科技最新的水质分析仪器,了解一下目前国内外在水质分析仪器生产上存在什么差距,国产仪器要崛起应该怎样弥补这些差距?  哈希多参数水质分析仪  哈希作为专业提供水质分析仪器的公司,其专业性和口碑不需赘言,悠久的历史、完善的产品链、专业的解决方案让哈希无愧于“世界水质守护者”的使命。  哈希全新的SL1000便携式多参数分析仪(PPA)采用ChemkeysTM专利技术,最多能同时测量六个参数且耗时仅为传统方式的1/4,让用户在短时间内就能够得到高精确度的测量结果,并能有效地避免误差的产生。  它利用创新专利Chemkey测量卡,大大减少废液产生 集比色及电化学功能于一体,免去携带多台设备的困扰 全中文菜单,符合中国用户使用习惯,因此在2016中国科学仪器发展年会(ACCSI 2016)之“仪器风云榜颁奖盛典”上获“2015科学仪器行业优秀新产品”奖。  当然,纵观以往产品,我们可以看到哈希的多参数水质分析仪可检测参数总数多,监测参数包括溶解氧、pH、ORP(氧化还原电位)、电导率(盐度、总溶解固体、电阻)、温度、深度、浊度、叶绿素a、蓝绿藻、若丹明WT、铵/氨离子、硝酸根离子、氯离子、环境光、总溶解气等等,并且紧跟用户需求,哈希也推出了手持终端,这为现场水质的测量提供了更多的便利。  哈希的多参数水质分析设备多参数水质监测仪是专为现场水质测量的可靠性和耐用性而设计的仪器,可同时实现多个参数数据的实时读取、存储和分析。与数据采集装置、计算机和通讯传输设备相连可实现数据的长期在线监测和远程传输,是环境监测、检察、科研、自动监测系统、地面和地下水资源水体监测的理想帮手。  聚光科技水质自动监测系统  聚光科技作为国产仪器商的代表,在环境监测领域有其独到之处,近年来其水质分析仪器在多项政府项目中大展身手,吸引了业内不少注意。  聚光科技的Buoy-3000型浮标式水质自动监测系统综合先进监测传感器、自动化控制、无线通讯传输、智能信息化等技术,对现场水域水环境进行实时在线监测,真实、系统地反映水域水质、气象等状况及其变化趋势,对水域水体污染情况进行准确、及时预警,为湖泊、水库和河口等水体环境保护和污染应急处置提供科学依据。  Buoy-3000型浮标式水质自动监测系统采用太阳能供电,集成探头式化学法氨氮、总磷、总氮分析仪,电化学法多参数水质分析仪,光学法COD分析仪,以及气象多参数监测仪,监测指标涵盖氨氮、总磷、总氮、COD(UV)、pH、溶解氧、浊度、温度、叶绿素A、蓝绿藻、水中油等参数,并可根据现场应用灵活配置。  该系统结合聚光科技的多种先进技术,在灵敏度、稳定性和测量结果等方面都有了大幅度的提高,而且太阳能电池的设计更符合环保要求。  我国水质分析仪器应朝多功能化和便携化方向发展  两相比较,我们不难看出,哈希的水质分析仪器在分析速度上有了很大层次的提升,而我国的产品在这方面还需要继续努力 在测量结果上的准确性上,双方难分高下 在实用性耐用性方面,双方平分秋色 而在仪器的便携性和多功能化方面,显然哈希的水质分析仪器更胜一筹。  目前,便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。  当下我国的环保形势良好,国家对环境监测仪器的需求大,在政策上也多有扶持,所以行业内要及时抓住机遇,依托政策,积极引进先进技术,聚集优秀人才,研发属于我们自己的国之重器,让国产仪器真正走出国门。  当然,我国的仪器行业还存在一个状况,就是两极分化严重,一大批企业徘徊在中低端产品线上,而能与世界水平比肩的却寥寥无几,如果不能解决这个问题,长此以往,对我国的仪器行业发展并没有任何好处,水质分析仪器也如是,可见国产仪器商们要走的路还很长。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制