当前位置: 仪器信息网 > 行业主题 > >

森林罗盘仪原理

仪器信息网森林罗盘仪原理专题为您提供2024年最新森林罗盘仪原理价格报价、厂家品牌的相关信息, 包括森林罗盘仪原理参数、型号等,不管是国产,还是进口品牌的森林罗盘仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合森林罗盘仪原理相关的耗材配件、试剂标物,还有森林罗盘仪原理相关的最新资讯、资料,以及森林罗盘仪原理相关的解决方案。

森林罗盘仪原理相关的资讯

  • 辽宁枫林谷森林公园入选首批36个中国森林氧吧称号
    辽宁枫林谷森林公园负氧离子监测显示系统入选中国首批36个中国森林氧吧称号之一的辽宁桓仁枫林谷森林公园于近期安装完成负氧离子在线监测LED实时显示系统。景区气候凉爽宜人。每逢盛夏,大多地区酷暑难耐,但景区平均气温20℃左右,湿度65%左右,空气纯净,负氧离子含量每立方厘米数万个以上,置身其中,令人头脑清新,呼吸舒畅,心情愉悦。 2015年9月7日,首批“中国森林氧吧”名单在北京揭晓。评选委员会将全国36个获评名单向社会公示,接受监督。由中国绿色时报社《森林与人类》杂志发起的“寻找中国森林氧吧”活动,自2015年4月15日开展以来,得到全国符合申报条件的单位的积极响应和踊跃参与。“寻找中国森林氧吧”评选委员会从全国申报单位中评选出首批36个“中国森林氧吧”。[2015“中国森林氧吧”公示名单安徽琅琊山国家森林公园重庆缙云山国家级自然保护区重庆梁平县百里竹海风景名胜区重庆四面山自然保护区重庆山王坪喀斯特国家生态公园重庆仙女山国家森林公园甘肃莲花山国家森林公园甘肃小陇山国家森林公园桃花沟景区甘肃麦积国家森林公园植物园景区广西龙胜温泉国家森林公园贵州梵净山国家级自然保护区贵州贵阳阿哈湖国家湿地公园贵州毕节国家森林公园贵州樟江风景名胜区贵州尧人山国家森林公园河北雾灵山国家级自然保护区河南黄柏山国家森林公园河南济源南山省级森林公园河南南湾国家森林公园黑龙江呼中国家级自然保护区黑龙江南瓮河国家级自然保护区湖北大别山主峰风景区湖南炎陵县神农谷国家森林公园吉林兰家大峡谷国家森林公园辽宁本溪恒仁枫林谷森林公园内蒙古大兴安岭汗马国家级自然保护区内蒙古大兴安岭莫尔道嘎国家森林公园山东泰安市徂徕山国家森林公园山东泰山国家森林公园山东淄博市原山国家森林公园山西晋中市乌金山国家森林公园四川乐山市黑竹沟国家森林公园浙江大盘山国家级自然保护区浙江钱江源国家森林公园浙江雁荡山国家森林公园浙江玉环大鹿岛[1] 陕西汉中黎坪国家森林公园
  • 空天院首创超高分辨率光学森林三维遥感新方法
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室研究员倪文俭带领的森林遥感团队,在利用超高分辨率光学遥感立体观测数据提取森林三维结构研究方面取得重要进展。现有研究认为,光学多角度立体观测数据在林区不具备穿透能力,故在缺乏林下地形数据时,无法独立进行森林垂直结构参数的直接测量,特别是在浓密山地林区。本研究发现:分辨率优于0.2 米的光学立体观测数据能够对单株树木的冠顶结构进行精细刻画;受树木异速生长方程启发,创建了“生长关系约束的林下地形逼近算法”(AGAR),打破了传统的认知局限,实现了仅利用光学立体观测数据对森林垂直结构的直接测量。相关研究成果发表在Remote Sensing of Environment上。   森林作为重要的陆地生态系统碳库之一,准确估算其碳储量是遥感研究的主要方向,可服务于我国的“双碳”战略和地球系统碳循环过程研究。过去,国内外开展了基于遥感影像光谱或微波散射强度等“二维”特征的森林碳储量估算原理与方法研究,而“地形影响”“遥感信号饱和”仍是难以逾越的两大科学难题。因此,国际学界逐渐转向以卫星测距技术为基础的“三维”遥感,包括以激光测距为基础的激光雷达遥感、以微波测距为基础的合成孔径雷达干涉以及以视觉测距为基础的光学多角度立体观测。美国科学家致力于发展具备冠层穿透能力的星载激光雷达,包括早期搭载在航天飞机上的激光高度计SLA01和SLA02、2003年至2009年运行的ICESat/GLAS卫星、2018年发射的ICESat-2卫星以及2019年放置在国际空间站上的GEDI。欧洲科研人员则积极发展穿透能力较强的L波段Tandem-L和P波段BIOMASS合成孔径雷达干涉卫星,并计划2024年发射。相较于激光雷达和合成孔径雷达干涉,光学多角度立体遥感具有图像直观形象的显著优势但受穿透能力的限制,目前主要用于地表高程的测量,且需要依靠其他数据源提供的林下地形才能对森林垂直结构进行测量,应用价值和场景受限。   近年来,中国在光学多角度立体遥感方面快速发展,先后发射了资源三号、高分七号、天绘系列以及其他商业遥感卫星,同时影像空间分辨率逐步提高。能否利用不断提高的空间分辨率来突破其穿透能力弱的限制,进而最大程度地发挥超高分辨率光学多角度立体遥感数据的应用价值,既是国际前沿科学问题又是中国遥感科研人员亟需回答的问题。   森林遥感团队意识到超高分辨率光学多角度立体观测遥感数据的独特价值,自2014年对无人机立体观测数据在森林结构参数测量中的应用进行了持续研究,并于2018年开展了大兴安岭林区大范围无人机采样观测实验,揭示了观测角度与影像分辨率的耦合规律,证实了森林高度信息对叶面积指数估算的补充作用,研发了针对落叶林区森林高度提取的有叶季和无叶季影像协同解决方案,突破了光谱与三维几何特征协同的散发枯立木识别技术、单木识别与分割技术、以背景识别为基础的高精度森林覆盖度提取技术。在上述数据与技术积累的基础上,该团队创建了“生长关系约束的林下地形逼近算法”(AGAR),实现了复杂地形条件下森林高度的直接提取。该成果证实了无需额外林下地形数据的支持,AGAR算法仅利用超高分辨率光学多角度立体观测数据即可实现森林高度提取。   尽管AGAR算法使用无人机获取的立体观测影像开展研究,且算法的具体技术细节需要进一步测试完善,但随着0.1米卫星光学遥感数据时代的到来,该方法将开启超高分辨光学立体遥感影像森林三维遥感新时代。图1.生长关系约束的林下地形逼近算法(AGAR)的核心思路图2.典型地形条件下森林高度提取的效果。(a)-(c)为光学多角度立体观测数据获取的数字表面模型(DSM);(d)-(f)为光学多角度立体观测数据通过林窗插值提取的森林高度,由于浓密林区林窗较少,导致树高被严重低估或者地形特征去除不彻底;(g)-(i)为利用AGAR提取的森林高度。(a)区域覆盖山脊,(b)区域覆盖山谷;(c)区域覆盖从山脚到山顶的斜坡。
  • 森林与土壤生态国家重点实验室揭牌仪式举行
    12月16日上午,森林与土壤生态国家重点实验室揭牌仪式在中国科学院沈阳应用生态研究所辉山新园区举行。森林与土壤生态国家重点实验室学术委员会主任傅伯杰院士,以及国家科技部基础司,中国科学院计划财务局、资源环境科学技术局,辽宁省科技厅,沈阳市科技局等部门有关领导出席了揭牌仪式。实验室主任韩兴国研究员及学术委员会其他成员、实验室学术带头人及骨干、所机关各部门负责人参加了会议。揭牌仪式由沈阳生态所党委书记姬兰柱研究员主持。  实验室主任韩兴国研究员致欢迎词,并为实验室学委会成员颁发了聘书。科技部基础司卞松保副处长对实验室建设相关管理规定进行了介绍,希望实验室进一步凝练科学目标,明确研究方向,培养高水平研究人才,积极承担国家任务。沈阳市科技局局长宋锡坤祝贺实验室揭牌,并表示将大力支持重点实验室建设。中科院计划财务局副局长潘锋强调,揭牌仪式意味着实验室的发展进入了一个新的阶段,责任更重,要求也应更高,一定要加强管理,努力提高实验室学术水平。  随后,傅伯杰、卞松保、辽宁省科技厅副厅长闫灵均、宋锡坤、潘锋等共同为森林与土壤生态国家重点实验室揭牌。  实验室主任韩兴国研究员从实验室的定位与研究方向、队伍规模与结构、科研条件建设等方面向学术委员会成员作了详细汇报,并重点对实验室研究条件、人才培养计划、实验室激励机制、实验室开放与交流等方面工作提出了下一步工作设想。  下午,实验室第一次学术委员会会议召开,会议由傅伯杰院士主持。程维信等6位研究员分别就实验室的相关研究内容作了学术报告。学委会各成员就实验室学科定位与研究内容给出了具体的建议。  傅伯杰在总结发言中,从四个方面提出了实验室建设的要求:一是实验室必须紧密围绕国家重大战略需求,面向国际科技发展前沿,加强应用性、基础性研究,努力提升实验室科技创新水平和能力,为国家提供重要战略咨询。实验室应根据生态学研究的特点,进一步加强研究的系统性,以期形成具有显示度的科研成果 二是进一步完善实验室规章制度,积极创造优秀的实验室文化,按照计划建设任务书,尽早达到实验室建设的各项指标要求 三是加快人才队伍建设,尤其是35岁以下青年人才的培养,尽快将他们培养成为实验室骨干和国内外具有重要影响的学术带头人,并通过布置群体性项目,营造交叉研究和群体合作氛围,凝练一支高水平的创新型研究队伍 四是加大实验室开放和共享力度,加强国内外的学术交流与合作,引进国内外优秀科学家来实验室工作,使实验室成为在森林与土壤生态研究方面有国际影响力的实验室。
  • 江西成立森林案件检测鉴定中心 独立运作属全国首家
    5月25日,记者从江西省森林公安局获悉,为规范江西森林案件检测鉴定工作程序,提高案件检测鉴定效率,省森林公安局联合江西省林科院共同组建“江西省森林案件检测鉴定中心”,于5月19日正式挂牌运作。据悉,该中心将以独立法人形式运作,在全国属首家。  据了解,近年来,江西森林案件呈多元化与复杂化发展趋势,在案件侦破过程中对检测鉴定工作也提出了更高要求。“在以往,我省森林公安没有自己的鉴定机构,很多森林案件的检测鉴定工作,都是委托第三方或送到外省专业检测鉴定机构进行,特别是一些重大案件。而这样一来,就会存在鉴定成本高、工作效率低等情况,且不利于我省森林案件检测鉴定工作的规范化发展。”据江西省森林公安局技术处处长栾晋介绍。  为有效解决这一问题,改变江西森林案件检测鉴定工作目前的现状,江西省森林公安局积极探索,勇于创新,与江西省林科院联合组建成立“江西省森林案件检测鉴定中心”,中心成立后,将依托省林科院先进的技术条件与专业的技术人才优势,服务于全省森林案件,从而大大降低我省森林案件检测鉴定成本、提高工作效率。  据悉,该中心可提供野生动植物司法鉴定、林木(地)资源司法鉴定、林木种子苗木司法鉴定、林业有害生物司法鉴定、林业有害生物司法鉴定、林产品、森林食品司法鉴定、林业工程(质量)司法鉴定、森林火灾司法鉴定等七项检测鉴定服务。  “中心已在工商及司法部门注册备案,成立后,将以独立法人的模式运作,可向全省森林公安机关、社会团体及个人提供专业的案件检测鉴定服务,并可出具具有法律效力的检测鉴定报告,确保案件的监测鉴定结果公平、公正、公开。”栾晋介绍,目前在国内,像这样以独立法人形式模式运作的专业森林案件检测鉴定机构,这还是首家,该中心的成立,也标志着我省森林公安机关森林案件检测鉴定工作逐步步入正规化轨道。
  • ASD FieldSpec 4地物光谱仪在评估森林病虫害方面的应用
    “森林”这两个字一共由5个“木”字组成,正如同大自然中无数树木相互依存,彼此交织,形成了一个庞大而有机的生态系统。森林具有调节气候、保持水源、防止土壤侵蚀等重要功能,森林是地球上最宝贵的财富之一。然而,随着人类社会的发展和气候变化加剧,森林生态系统也在发生着变化。科研人员一直在努力了解并改善这些变化,随着遥感技术的发展,新的技术手段也带来了更多地研究可能。今天推荐大家了解的是北京林业大学和北京师范大学的研究团队所做的研究。森林生态系统是最基本的陆地生态系统组成部分之一,在调节气候变化、提供物种栖息地、维持生物多样性及减缓全球变暖等方面发挥着重要的作用。随着人类活动和气候变化的加剧,生物和非生物森林干扰事件频发。因此,有效监测影响森林健康的生物和非生物因素对于理解森林生态系统碳循环及监测全球变暖的影响至关重要。其中病虫害是生物干扰事件中最主要的干扰因素之一。检测早期病虫害位置对于识别高风险林分及预防其大规模爆发和蔓延至关重要。然而,不同病虫害在垂直结构的不同位置破坏树木。了解如何监测和评估垂直冠层结构上不同病虫害的异质胁迫对于提高森林质量至关重要。传统的田间调查方法费时费力,难以在区域尺度上监测森林。近几十年来,遥感技术的出现为森林病虫害监测提供了新的途径和技术手段。随着地基、机载、星载平台等多源遥感技术的快速发展,使得高效、动态地监测不同时空尺度的森林病虫害成为可能。基于此,来自北京林业大学和北京师范大学的研究团队在中国河北省怀来遥感站纯人工落叶阔叶林(40.35°N,115.78°E)进行了田间测量(结构信息、叶面积指数(LAI)、上中下垂直冠层高度5个不同位置收集叶片、树皮和土壤反射率)、受损叶片分类(健康、轻度、中度和重度受损)、光谱分析(植物反射率和透射率,ASD FieldSpec4 Hi-Res NG)、TLS激光扫描、3D森林场景重建、机载高光谱激光雷达和高光谱图像模拟、高光谱点云表征胁迫水平、随机森林(RF)模型构建及分类模型准确性评估(混淆矩阵和kappa系数)。主要目的是基于3D辐射传输模型(LESS)评估机载高光谱激光雷达(AHSL)在森林病虫害胁迫监测方面的潜力。具体来说,首先根据TLS数据和测量的受损叶片光谱重建虚拟3D森林场景,并在此基础上定义不同冠层受损位置和不同胁迫水平的不同病虫害干扰场景。然后,针对不同受损位置和胁迫水平的每种组合,使用LESS模拟AHSL点云和相应的高光谱图像(HI)。提取AHSL点云不同层的LiDAR点云并光栅化为3m空间分辨率的图像,结合高光谱图像,使用随机森林预测病虫害。研究区域位置,林地照片及受损叶片示例【结果】受胁迫叶片和树皮的光谱反射率基于高光谱LiDAR评估不同受损位置不同胁迫水平分类模型的准确度基于高光谱图像评估不同受损位置不同胁迫水平分类模型的准确度【结论】结果表明,AHLS在森林病虫害异质垂直胁迫监测方面具有巨大潜力。对整个冠层受损和冠层上部受损的监测能力最优,不同胁迫水平分类的总体精度和kappa系数分别为65.95%~89.45%和54.58%~85.92%。此外,在冠层中部(OA:77.56%,kappa:69.90%)和冠层下部(OA:65.95%,kappa:54.58%)也可以获得良好的分类准确度。作者还基于相同的胁迫场景模拟了HI数据,并与AHSL进行了比较。在整个冠层受损的情况下,HI具有最好的分类准确度(OA:57.02%,kappa:41.86%)。但上、中、下冠层受损的分类准确度差异较小。研究结果表明,AHSL提供了结构和光谱信息。与HI数据相比,AHSL能够避免土壤、阴影及其他林下混杂因素的影响。脉冲穿透可以监测森林中下部的病虫害胁迫,但也需要考虑树枝的影响。
  • 森林加剧大气持久性有机污染物的干湿沉降
    持久性有机污染物(POPs)是一类具有半挥发性、环境持久性、高毒性和生物富集性的有机污染物。由于POPs能够在全球迁移并对生态环境和人类产生负面影响,世界各国于2001年签署了《关于持久性有机污染物的斯德哥尔摩公约》,以便逐步消除POPs的使用和排放。尽管最近二十年来各国政府为POPs做出了巨大的努力并取得了较好的效果,但自上世纪40年代以来就进入环境中的POPs则依然保存在地表环境介质中。尤其是森林植被和林下土壤富含有机碳,为POPs的提供了良好的条件。因此,森林对POPs全球循环的作用和机制已成为POPs研究的重要课题。中国科学院青藏高原研究所郭莉平等对全球森林POPs研究进行了归纳整理,发现森林吸收已经成为大气POPs向地表沉降的重要机制。其中,叶片吸收及POPs随叶片凋落的沉降是林下POPs干沉降最主要的途径;雨水(穿透雨)冲刷则缩短了POPs在叶片表面的滞留时间。这些过程像“泵”一样高效地将大气中的POPs携带到地表,使森林成为全球POPs的“汇”。这一效应也被研究者归纳为“森林过滤效应”。这些过程不仅使林区大气POPs浓度减少1/2—2/3,而且还有效阻止了POPs向极地及高山等生态脆弱地区的迁移。森林过滤效应的主要过程示意图。论文作者供图郭莉平介绍,通过近期的文献分析还显示在气候变化的作用下,全球森林正发生深刻的变化,即:森林的“汇”作用也因此减弱。POPs在叶片、土壤富集和食物链传递过程中均会发生流失和降解,同时,近年来频繁发生的森林火灾更使富集了大量POPs的森林成为POPs的“二次排放源”。鉴于此,郭莉平等提出应着眼于森林POPs高精度/在线观测技术的开发,以详细探究POPs在森林中迁移和沉降规律为基础,探讨气候变化对森林POPs迁移循环的影响;相关的研究将有助于拓展大气污染物干湿沉降研究的范围、丰富POPs全球循环研究的理论和方法。上述内容以《森林地区持久性有机污染物的沉降和释放》为题发表于《地球环境学报》第14卷第2期“大气污染物干湿沉降”专辑。硕士研究生郭莉平为第一作者,龚平研究员为通讯作者。该综述的撰写得到国家自然科学基金项目(41925032,41877490)和中国科学院青年创新促进会(CAS2017098)项目的共同资助。
  • 重大科研专项聚焦森林阻滞PM2.5
    应对日益猖獗的PM2.5,森林能发挥什么作用?我国林业科学家日前启动了一项绿色调控重大研究项目。  据悉,该项目名为“森林对PM2.5等颗粒物的调控功能与技术研究”,是今年最大的国家林业公益性行业科研专项。项目将北京、广州作为重点研究区域,力图通过把森林滞留PM2.5等颗粒物的能力定量化,筛选出不同典型区域有效治理PM2.5等颗粒物的适宜树种,找到森林阻滞不同来源PM2.5等颗粒物的优化配置的理论技术。  项目首席科学家、北京林业大学教授余新晓介绍说,项目主攻方向有三个:一是机理及生态机制,二是监测及评价,三是技术模式与集成。  北京林业大学校长宋维明表示,该项目瞄准国家重大需求,对于开展森林对PM2.5调控的基础研究和实际应用具有重要意义,将为提高森林生态服务功能和改善环境质量提供技术和理论依据。  据了解,项目由李文华、蒋有绪、曲久辉三位院士领衔,联合来自北京林业大学、中国林业科学研究院、中国科学院等单位的近百名专家协同攻关。
  • 大规模设备更新:中等职业学校现代林业技术专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校现代林业技术专业仪器设备装备规范:表 2 专业技能实训仪器设备装备要求实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范林木种苗培育实训室1.掌握林业 主要种实调 制技能2.掌握种子 品质检验技 能3.掌握各类 种子的贮藏 4.掌握种子 检验仪器和 贮藏设备的 使用方法1种子风选 净度仪1.功率:≤160 W 2.噪声:≤60 dB台48JB/T 20052 2电子自动 数粒仪1.计数精度: ±4 粒/1000 粒 2.计数速度: ≥500 粒/3 min 3.计数容量:1~9999 粒4.用于查数种子粒数台883电子天平1.检定分度值:0.01 g 2.最大称量:500 g3.用于称量种子质量台816GB/T 264971.检定分度值:0.0001 g 2.最大称量:200 g3.用于精确称量种子质量台8164台式电热恒温 鼓风干燥箱1.控温范围:10 ℃~220 ℃2.温度波动性: ± 1 ℃ 3.控温精度: ± 1 ℃4.定时范围:1 min ~9999 min 5.用于对种子进行烘干台48GB/T 304355林木种子培养 箱1.容积: ≥32 L2.控温范围:5℃~65 ℃ 3.温度波动性: ± 1 ℃台24LY/T 1152 6人工 气候箱1.控温范围:0 ℃~50 ℃ 2.控湿范围:50%~95% RH 3.加热功率:500 W4.提供种子发芽所需的环境台247水分测定仪1.含水率精度: ±0.1% 2.称量精度: ±5 mg3.称量量程: ≥50 g4.用于测定种子含水量台488种子储藏柜1.控温范围:0 ℃~10 ℃2.控温精度: ± 1 ℃3.控湿范围:≤60% RH 4.控湿精度: ±5% RH台21.控温范围:-15 ℃~15 ℃2.控温精度: ±0.5 ℃ 3.控湿范围:≤60% RH 4.控湿精度: ±5% RH台-49冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台22CAS 169 表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范林 木 种 苗 培 育 实 训 室5.掌握林 业主要树 种种苗培 育方法10电子数显卡尺1.量程:0 mm ~150 mm 2.分辨力: ≥0.01 mm3.测量种子大小把1640GB/T 2138911视频展示台1.元件像素: ≥500 万 2.变焦: ≥10 倍3.拍摄面积: ≥300 mm×250 mm4.分辨率: ≥2592 dpi × 1944 dpi台11JY/T 036312触摸式教学多媒体一体机1.LED 液晶屏,可触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台1113其他放大镜、直尺、解剖刀、解剖针、镊子、培养皿、烧杯、量筒、方盘等森 林 植 物 实 训 室1.了解显 微镜的结 构、保养方法2.掌握显 微镜的使 用方法3.能正确 地使用显 微镜观察 植物材料 4.会制作 植物标本1双目生物 显微镜放大倍数范围 40 ×~1600 ×台840GB/T 29852双目解剖镜1. 目镜倍数: ≥8 ×2.物镜倍数:多挡可选3.瞳距调节:50 mm~80 mm台8403植物标本快 速干燥箱1.控温范围:0 ℃~95 ℃ 2.功率:600 W ~1200 W台8164恒温鼓风 干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定时功能 3.恒温精度: ± 1 ℃台12GB/T 304355触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台-16植物标本不少于 100 种当地常见木本植物标本7其他载玻片、盖玻片、解剖针、培养皿、解剖刀、擦镜纸、吸水纸、镊子、枝剪、 放大镜、标本夹森 林 环 境 实 训 室1.了解相 关仪器的 结构、工 作原理、 操作与保 养方法1照度计1.测量范围:4 挡 量程(200 lx,2000 lx, 20000lx,200000 lx)2.最大误差:≤4﹪台8162风向风速表1.风速测量范围:0 m/s~30 m/s2.风向测量范围:0 °~360 ° , 16 个方位 3.用于测定风速、风向台8163干湿表1.湿度测量范围:10﹪ RH ~100﹪ RH 2.用于测定空气湿度台840JB/T 9456 4土壤比重计1.规格:甲种2.测量范围:0 °~60 ° 3.精度:≤1 °个840表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范森 林 环 境 实 训 室2.掌握光照 强度、风向 和风速、气 温和土温的 观测方法3.学会土壤 性状野外观 察及土壤样 品采集、处 理、保存的 基本方法4.掌握土壤 肥料主要理 化性质的分 析方法,并 能对土壤肥 力进行初步 评价5酸度计1.测量范围:pH:0 ~14.00, 0 mV ~±1999 mV2.能自动识别 4.00 pH、6.86 pH、9.18 pH三种标液3.用于测定土壤酸碱度台486分光光度计1.波长范围:320 nm~1000 nm 2.波长准确度: ±2 nm3.透射比准确度: ±0.5﹪4.用于测定土壤中矿物质成分与含量台28GB/T 268107罗盘仪放大倍率:16×以上台88JB/T 9321 8电子天平1.检定分度值:≤0.01 g2.最大称量量程:达到 210 g台48GB/T 264979温度表最高温度表、最低温度表、地面温度表、干 球温度表、湿球温度表、曲管地温表套81610负氧离子 测定仪1.检测空气正、负离子2.分辨率:10 个离子/cm3 3.检测精度:≤25 %4.用于测定空气中负氧离子含量台1811恒温鼓风 干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定时功能 3.恒温精度: ± 1 ℃台12GB/T 3043512环刀1.外型尺寸: φ61.8 mm×20 mm(H) 2.材质:不锈钢3.配切土刀4.用于土壤取样个1640GB/T 1540613原状取土钻1.钻筒:内衬容积 100 cm3 的土样杯2.钻杆:金属结构,带有刻度标 3.用于土壤取样台816GB/T 1540614土壤筛1.筛孔尺寸:1 mm、0.25 mm 2.筛框内径:200 mm3.高度:50 mm套28GB/T 1540615触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台1116土类及矿物 标本10~20 种当地主要的矿物标本 10~20 类当地主要的土壤类型表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序 号名 称规格、主要功能和技术参数单位数量执行标 准号备 注合格示范接 上 一 页17其他皮尺、测绳、围尺、花杆、森林群落描述表、烧杯、量筒、刻度移液管、洗 耳球、容量瓶、广口瓶、玻璃棒、漏斗、试管、试管架、试管夹、电池、滴 管、滴头、蒸馏水、酒精、药品、取土铝盒林业有害生物防治实训室1.能够识 别林业有 害昆虫和 真菌主要类群2.掌握有 害昆虫防 治技术3.掌握林 业有害真 菌防治技 术4.掌握农 药和药械 使用技术1显微投影 装置投影目镜放大率 8 倍~16 倍套11JB/T 7398.82生物显微镜放大倍数:40×~1600×台1640GB/T 29853双目解剖镜1. 目镜:10×大视场目镜 2.调焦范围:不小于 65 mm 3.最大试样高度:45 mm台16404电子天平1.检定分度值:0.01 g2.称量范围:0.01 g~300 g台4040GB/T 264975冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台12CAS 169 6试剂冷藏柜1.立式,不锈钢柜体,密闭性好 2.容量: ≥200 L台127恒温水浴锅1.四孔,智能控温 2.不锈钢材质台118压力蒸汽 灭菌器1.立式,容积不小于 30 L 2.额定电压:220 V3.工作温度:120 ℃~130 ℃台12YY 10079恒温鼓风干 燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定时功能 3.恒温精度: ± 1 ℃台12GB/T 3043510离心机1.80 孔~212 孔,不锈钢容器室2.转速: ≥5500 r/min3.温控范围:-5 ℃~40 ℃ 4.用于颗粒沉降和物质分离台12GB/T 30099 11超低容量喷 雾喷粉机1.容量:200 L2.射程:15 m~25 m 3.用于超低量喷雾喷粉台1112烟雾机1.药箱容积:≥6.5 L 2.线圈汽化、瞬时点火 3.功率:≥800 W4.用于喷雾防虫台2213打孔注药机1.配套动力: ≥0.81 kW 2.转速: ≥6000 r/min 3.药箱容积: ≥5 L4.每次注药量:1 mL~10 mL 5.用于树木打孔注药防虫台18表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标 准号备注合格示范林业有害生物防治实训室5.掌握林 业有害细 菌、植原 体、线虫 和螨类防 治技术6.掌握林 业有害植 物和鼠形 动物防治 技术14望远镜1.双筒,防水2.放大倍数:10×50 倍台816GB/T 17117 15除湿机1.除湿量:10 L/d,湿度可控范围 30 %~95 % RH 2.电源:220 V,260 W3.定时关机: 1 h~24 h 任意设定 4.用于空气除湿台11GB/T 1941116手持式充电 电钻1.空载转速: ≥450 r/min 2.转速可调台18GB/T 558017触摸式教学多媒体一体机1.LED 液晶屏,智能触摸, ≥1650 mm(65 in)2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台11181.标本采集用具:包括黑光灯、捕虫网、采集箱、采集袋、毒瓶、高枝剪子、剪枝剪、手 据等2.标本制作用具:包括标本夹、昆虫针、展翅板、三级台、玻璃器皿等3.标本鉴别用具:解剖针、解剖剪子、蜡盘、放大镜等 4.标本保存用具:标本盒、标本柜、药品等5.外业调查及防治用具:测绳、计数器、铁锹、喷雾器、药剂森林调查实训室1.掌握森 林调查规 划设计仪 器的使用 方法2.掌握森 林调查数 据的计算 方法1罗盘仪1.放大倍率: ≥12× 2.度盘格值:1台816JB/T 93212光电测距仪1.距离测量误差: ± 1 cm2.最大测量距离可达:3 km 3.用于快速测距台18GB/T 142673光学水准仪1.放大倍率: ≥40 ×2.每公里往返平均误差:≤1 mm 3.安平精度:≤±0.3 ″4.用于高差测量套18GB/T 10156 4电子水准仪1.每公里往返测高程精度:误差≤0.3 mm 2.测距误差≤测距×0.001 mm3.用于高差测量套18GB/T 10156 5手持 GPS1.操作系统:Windows Mobile 6.5 操作系统以上版本,处理器:不低 806MHz 2.支持北斗 COMPASS 系统3.单点定位精度:≤2.5 m,SBAS 精度:≤1 m4.用于导线和面积测量台816GB/T 183146测高器1.测量高度: ≥60 m 2.测量精度:≤1 % 3.用于测树高个16167自平曲线 杆式角规测量树木胸高断面积并能自动进行坡度修 正个1616表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标 准号备注合格示范森林调查实训室3.掌握森 林调查规 划设计数 据库的建 立方法4.掌握各 种数表的 统计方法 5、掌握林 业用图的 绘制方8生长锥1.取样芯直径: ≥3.5 mm 2.长度范围: ≥100 mm3.用于测定树木年轮个289油锯1.功率: ≥1200 W 2.导板: ≥53 cm台18GB/T 5392 10地形图及地形图图式含有某一地区 1/1000 、 1/10000 、 1/25000 、 1/50000 地形图各 1 份及地形图图式 1 份,配套 相应卫片,含电子地图套840CH/T 9009.311电子求积 仪1.最大测量范围:宽≥300 mm,长度不限的图 形2.相对误差: ±0.3%3.用于在地图上求算面积台81612服务器1.CPU 主频: ≥3.3 GHz,四核八线程2.内存: ≥16 GB 双通道;双千兆网卡 3.硬盘不少于 3 块,容量≥500 GB4.配置相关操作系统和森林调查与规划设计软 件套11GB/T 9813.313计算机1.i7 处理器以上配置 2.内存: ≥4 GB硬盘: ≥1 TB3.配套软件:操作系统、森林调查数据处理软 件、office、森林资源规划设计调查数据库 处理系统、地理信息系统软件台4040GB/T 9813.1 GB/T 9813.214激光 打印机1.最大打印幅面 A3 或以上2.最高分辨率: ≥600 dpi ×600 dpi台11GB/T 1754015触摸式 教学多媒 体一体机1.LED 液晶屏,可触摸, ≥165 cm(65in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台1116其他计算器、轮尺、钢尺、皮尺、测绳、围尺、直尺、三角尺、量角 器、镰刀、手锯林业信息技术实训室1.掌握全 球定位系 统知识与 绘图技能;1反光 立体镜1.最大象幅: ≥300 mm×300 mm 2.眼基距:54 mm~76 mm台-12手持 GPS1.操作系统:Windows Mobile 6.5 操作系统以 上版本,处理器:不低于 806MHz2.支持北斗 COMPASS 系统3.单点定位精度:2.5 m,SBAS:1 m套-8GB/T 183143图形 工作站1.CPU:Inter Xeon E5~2650 以上处理器,CPU 数量:22.内存:16 GB,可扩充至 128 G3.硬盘: ≥500 GB,最大支持 5 块硬盘,硬盘 类型 SAS4.显示芯片:nVIDIA Quadro 4000 及以上 5.用于快速处理图形数据套-1表 2 专业技能实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范森林防火实训室1.掌握森 林防火宣 传技术2.掌握森 林火险等 预报技术 3.掌握林 火监测技 术4.掌握森 林火灾扑 救技术5.掌握森 林火灾紧 急避险技 术6.掌握森 林火灾调 查技术1手持森林火险 监测仪具有观测当前风速、最大风速、平均风速、 风向、温度、湿度等参数的功能台82电子天平1.检定分度值:0.01 g 2.最大秤量: ≥500 g台8GB/T 26497 3台式电热恒温 鼓风干燥箱1.控温范围:10 ℃~220 ℃ 2.控温精度: ± 1 ℃3.定时范围:1 min~9999 min台-1GB/T 304354虹吸式雨量计1.具有测量降雨量与降雨强度的功能 2.承水口内径: ≥200 mm台-45双筒望远镜1.倍数: ≥50×2.视野范围:1000 m 处≥60 m台-16GB/T 171176防火通信设备1.固定台 1 台,功率: ≥10 W2.车载台 2 台,功率:5 W ~10 W 3.手持机 10 台,功率:5 W ~10 W 4.中继台 1 台,天线 1 个套-17点火器点火速度: ≥4 km/h个-28单兵装备包包括头盔、衣服、手套、鞋、毛巾、眼镜、 防毒面罩、水壶、饭盒等套-409组合工具包包括二号扑火工具、铁锹、耙子、手锯、 斧头、砍刀等套-1610三号灭火 工具1.钢管长度: ≥1.5 m 2.钢丝长度: ≥60 cm 3.钢丝数量: ≥25 根把-1611背负式灭火 水枪1.射程: ≥15 m2.装水量: ≥20 kg个-812高压细水雾 灭火机1.额定流量: ≥4.0 L/min2.平均射程:直流喷头≥10 m雾化喷头≥8m台-813风力灭火机出风口风量: ≥0.3 m3/s台-814风力喷水 灭火机1.出风口风量: ≥0.3 m3/s 2.喷水量:11 L/min台-815灭火炮最大射程: ≥150 m套-216油锯1.功率: ≥1000 W 2.排气量: ≥40 m33.转数: ≥4500 r/min台-8GB/T 5392 17割灌机1.发动机排量: ≥30 m32.发动机功率: ≥0.65 kW3.发动机转速: ≥7500 r/min台-8表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范森 林 防 火 实 训 室18手持 GPS1.具有点、线、面等 GIS 空间数据、属 性采集功能2.接收机:16 通道3.定位精度:单点定位 3 m~5 m(2D RMS)台-8GB/T 1831419触摸式教学多媒体一体机1.LED 液晶屏,可触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920dpi×1080dpi台1注:数量栏内的“ - ”表示不要求。表 3 专业综合实训仪器设备装备要求实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范苗木生产实训基地1.掌握批 量调制林 木种实的方法2.掌握播 种育苗、 容器育苗、扦插 育苗和嫁 接育苗、 大树移植 技术3.掌握大 型苗圃机 械的使用 方法1基地面积面积: ≥20000 m² 个1-面积: ≥50000 m² 个-12种实脱粒机1.生产率: ≥500 kg/h 2.总损失率:≤0.5%3.破碎率:≤0.1%台12DG/T 033 3种子干燥机工作温度: ≤70 ℃台244储种子藏柜1.控温范围:-15 ℃~15 ℃ 2.控湿范围:≤60% RH台225人工气候箱1.控温范围:0 ℃~50 ℃ 2.加热功率:500 W台246翻耕机械1.生产率: ≥300 ㎡/h 2.翻耕深度: ≥20 cm套111.生产率: ≥350 ㎡/h 2.翻耕深度: ≥40 cm套117穴盘播种机1.播种穴盘规格: ≥4×8 2.播种速度: ≥800 盘/h台118割灌机1.发动机排量: ≥40 ml 2.转速: ≥3000 r/min台469喷药机械1.配套动力: ≥4 kW 2.水平射程: ≥12 m 3.垂直射程: ≥10 m台4610自行式苗木 移植机1.生产率: ≥16 千株/h 2.开沟深度: ≥ 25 cm 3.配套动力: ≥45 kW台1111灌溉设施1.水源2.喷灌设施 3.滴灌设施套11GB/T 50085 12运输拖拉机1.动力: ≥16 kW2.载重量: ≥1.5 t辆1213全光照自动喷雾 扦插育苗设备面积: ≥100 ㎡个1114低温贮藏室面积: ≥50 ㎡个1115温室大棚面积: ≥500 ㎡个1-面积: ≥1000 ㎡个-116触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm (65in)2.亮度: ≥400 cd/㎡3.分辨率: ≥1920dpi×1080dpi台1117其他镐、铁锹、镰刀、耙子、剪枝剪、嫁接刀、手锯、钢卷尺、筛子表 3 专业综合实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范综合实验林场1.熟悉造 林地清理、整地 和造林工 具设备的 使用方法 和相关技 能2.熟悉并 掌握造林 地幼抚、 森林抚育 采伐、造 材集材工 具设备的 使用方法 和相关技 能3.熟悉并 掌握森林 病虫害预 测预报、 森林病虫 害防治和 森林防火 工具设备 的使用方 法和相关 技能1罗盘仪1.放大倍率: ≥12 × 2.度盘格值:1 °套-16JB/T 93212手持 GPS1.具有点、线、面等 GIS 空间数据、属 性采集功能2.接收机:16 通道3.定位精度:单点定位 3 m~5 m台16GB/T 183143全站仪1.测程: ≥5000 m2.测距精度:≤12 mm 3.测角精度:≤12 ″4.电源连续工作时间: ≥12 h 5.用于精确测角、测距台-8GB/T 276634测高器1.测量高度: ≥60 m2.测量精度:误差≤1 % 3.用于测定树高台-165自平曲线 杆式角规具有测量树木胸高断面积功能个-406对讲机1.频道数量:4×25 2.频率范围:136 MHz~174 MHz330 MHz~400 MHz403 MHz~470 MHz450 MHz~527 MHz对-167整地机械1.发动机排量:52 mL 2.耕深: ≥30 cm台-28树根粉碎机1.刀辊转速: ≥590 r/min 2.主电机功率: ≥55 kW台-19植树挖坑机1.发动机排量: ≥50.2 mL 2.发动机功率: ≥1.9 kW台110拖拉机挖坑机发动机功率: ≥18 kW台111油锯1.功率: ≥1200 W 2.导板: ≥53 cm台-16GB/T 5392 12高枝锯工具长度: ≥1.5 m锯口长度: ≥30 cm台4013高枝剪作业高度: ≥3 m台-4014割灌机1.发动机排量: ≥40 mL 2.转速: ≥3000 r/min 3.功率: ≥1 kW台-815打药机1.功率: ≥13.75 kW/3600 r/min 2.射程: ≥30 m台-8表 3 专业综合实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范综合实验林场4.熟悉并 掌握森林 资源监测 系统应用 及相关仪 器设备使 用的技能16作业车1.动力: ≥16 kW2.载重量: ≥1.5 t辆-117铝合金直马 梯1.铝合金材质2.载荷: ≥120 kg个818三号灭火 工具1.钢管长度: ≥1.5 m 2.钢丝长度: ≥60 cm 3.钢丝数量: ≥25 根把-1619风力灭火机出风口风量: ≥0.3 m3/s台-820风力喷水 灭火机1.出风口风量: ≥0.3 m3/s 2.喷水量:11 L/min台-821其他指南针、视距尺、钢卷尺、工具包、手锯、锄头、斧头、镰刀、围尺、皮 尺、测绳、计算器、记录夹注:数量栏内的“ - ”表示不要求。
  • 我司为四川省黑宝山森林公园建设大气负氧离子监测系统
    近日我司为四川省黑宝山森林公园大气负氧离子监测系统正式投入使用。 “灵气黑宝山,天然大氧吧,养生好去处,回归天地间。”据了解,黑宝山,连绵起伏,有森林、彩叶、清泉、险峰、奇石̷̷一年四季,美不胜收。春天,百花齐放,漫山杜鹃,争奇斗艳;夏天,凉风习习,龙池山泉,飞瀑婉转;秋天,层林尽染,珍稀红豆,绚丽多彩;冬天,银装素裹,万亩雾凇,冰雪奇观。黑宝山森林公园,幅员面积4万亩,森林覆盖率99%,负氧离子每立方米2万个,被誉为“天然氧吧”。目前,万源市正准备聚力打造系列森林康养产品,主要有森林宾馆、森林酒吧、森林草场、森林花园、森林沙滩、森林垂钓、森林露营、森林穿越等项目。
  • 氮沉降调控森林土壤碳排放的格局及机制获揭示
    中科院华南植物园副研究员郑棉海团队联合美国康奈尔大学教授骆亦其等科研人员,研究揭示长期氮沉降调控热带森林土壤碳排放的格局及机制。相关研究12月1日发表于《自然地球科学》(Nature Geosciences)。同月5日该期刊再次以研究简报(Research Briefing)的形式进行了报道。人类活动所导致的大气CO2增加已成为当前重要的科学话题并引起了广泛的政治和社会关注。土壤是陆地生态系统最大的碳库,至少有一半的土壤有机碳储存于森林中。热带和亚热带森林主导全球森林碳循环,它们占据全球森林78%总碳排放和55%总碳吸收。人类活动也导致大气氮沉降加剧。氮沉降通过影响植物生长和微生物活性改变森林土壤呼吸及碳排放,但目前学术界关于氮沉降如何影响森林土壤呼吸的认识主要源于短时间尺度的研究。由于氮沉降是个长期的生态环境过程,缺乏长期且连续的研究将无法准确认识氮沉降调控森林土壤碳排放的格局及机制。研究人员依托我国最早建立的模拟森林氮沉降研究平台——广东省鼎湖山国家级自然保护区,发现长期氮沉降对南亚热带森林土壤碳排放的影响呈现阶段性变化。研究平台包括3种典型森林类型:季风常绿阔叶林、针阔叶混交林和马尾松针叶林。9-13年长期氮添加处理后,森林土壤呼吸呈现“无显著变化-显著降低-无显著变化”的三阶段格局。相比低、中氮处理,高氮处理缩短了三阶段格局的时间。在整个实验过程,氮添加累计减少土壤CO2排放总量为6.53-9.06 Mg CO2 ha-1,氮添加减少土壤CO2排放的效率为5.80-13.13 Mg CO2 Mg N-1。研究人员还基于鼎湖山模拟氮沉降样地测定的849项有关土壤、植物和微生物碳氮循环数据,构建了氮沉降调控热带森林土壤碳排放的机理框架。这些结果表明过去许多短期氮添加实验无法准确反映森林土壤呼吸响应氮沉降的格局。该研究成果为氮沉降促进热带森林土壤碳固持现象提供了重要证据,也为全球气候变化的预测和生态系统碳中和目标的实现提供新的依据。上述研究得到国家自然科学基金重点项目、面上项目、中科院青促会项目和中国生态学会青年人才托举工程项目等资助。郑棉海副研究员为该论文第一作者,张炜副研究员和莫江明研究员为共同通讯作者。此外,鲁显楷研究员、黄娟副研究员、毛庆功助理研究员、王森浩博士,以及合作者骆亦其教授、叶清研究员和刘菊秀研究员、岭南师范大学张涛博士也参与该项工作。
  • 报告显示过量森林砍伐致巴西温室气体排放量不断攀升
    巴西环保组织“气候观测站”于当地时间3月23日发布了最新报告,报告汇编了从2010至2021年间巴西温室气体排放概况。报告显示,巴西温室气体排放量从2010年的约17亿吨(二氧化碳当量)增加到了2021年的约24亿吨,增幅约41%。报告指出,造成温室气体排放量上升的主要原因是“过量森林砍伐”。此次报告中统计了废弃物、工业、能源产业、农业、土地和森林利用等共5个主要排放源。2021年,土地和森林利用这一排放源的排放量占巴西温室气体排放总量的近一半(49%),达11.9亿吨,而亚马孙地区的森林砍伐在土地和森林利用这一门类中,温室气体排放所占比例达77%。巴西国家空间研究所(INPE)的数据显示,在2010至2021年间,巴西年度亚马孙森林砍伐量从2010年的约7000平方公里增加到2021年的超过1.3万平方公里,增幅约86%。报告认为,由于森林滥伐问题严重,巴西在温室气体减排方面经历了“失去的十年”。联合国政府间气候变化专门委员会(IPCC)于3月20日发布的最新报告指出,与工业化前水平相比较,当前全球气温已经上升了1.1摄氏度,而极端天气事件也因此变得更加频繁和强烈,为了将全球气温上升幅度控制在1.5摄氏度以内,温室气体排放必须“最迟在2025年之前”达到峰值,到2030年比峰值减少48%。2021年11月1日,巴西时任环境部长曾公开承诺,相比2005年,巴西将于2030年减少温室气体排放50%,2050年实现碳中和。对此,有业内专家表示,巴西若要顺利实现承诺目标则需要大幅降低森林砍伐量。
  • 高光谱遥感技术再立功!可建立森林土壤预测模型
    近日,中国科学院武汉植物园研究人员利用光谱技术建立了森林土壤光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。森林土壤预测模型  快速、廉价、准确地获取土壤中碳(C)、氮(N)含量信息是当前土壤质量评价和全球土壤碳库收支管理研究的基础和前提,而土壤空间异质性加大了人们对土壤属性动态监测的难度和成本。  森林土壤是调控陆地生态系统碳收支平衡的重要基础。利用近地高光谱遥感技术实现多层次森林土壤C、N含量信息的快速、高效、无损、低成本建模估测,有望为当前土壤C、N动态研究及制图开辟新的途径,必将有助于加深对土壤C、N空间异质性及影响因素的理解,对于森林土壤碳库管理和持续经营具有重要意义。然而,受土壤层次的影响,土壤属性的高光谱反演模型的预测能力降低,限制了模型的应用。  中国科学院武汉植物园助理研究员姜庆虎在研究员刘峰的指导下,以中亚热带(八大公山)森林不同层次土壤为例,利用光谱技术建立了该区表层和亚表层土壤有机碳(SOC)和全氮(TN)的光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。其中,光谱模型对SOC预测的R2为0.79-0.90,对TN预测的R2为0.66-0.86。在此基础上,针对模型难以实现层次间的传递性应用问题,利用spiking法并借助加权算法,成功解决了这一难题,使得预测模型的传递性得到大幅提升。该研究的开展,为快速获取高异质性土壤属性信息提供了潜在的可能。  该研究得到国家自然科学基金(31270515,31470526)和国家重点基础研究发展计划(2014CB954004)的资助,结果发表在Geoderma杂志上。
  • 年损失100多亿!森林病虫害监测多关键?高光谱技术打开新思路!
    近几年来我国每年发生森林病虫害面积达一千多万亩,损失林木二千多万立方米,造成经济损失一百多亿元。森林病虫害是主要的森林灾害之一,破坏森林资源的同时,还造成了一定的经济损失,同时给生态环境也带来了严重的负面影响,被人们称之为“无烟的森林火灾”。林业生产的发展和生态环境的建设与森林病虫息息相关,森林病虫的发生严重制约着林业的可持续发展进程。因此,监测森林病虫害的发生发展对生态文明建设具有重要的意义。在高光谱遥感技术兴起之前,有许多不可识别的物质,但是自从高光谱遥感出现以来,除了定性检测之外,在某些领域还可以对物质进行定量检测。高光谱遥感技术具有多波段、高光谱分辨率、相邻波段间高相关性、高空间分辨率等突出优势。从技术上讲,高光谱遥感技术是光谱技术和成像技术的结合。高光谱遥感技术的出现,使得森林病虫害监测有了新的思路,对实现森林病虫害的早期防治具有重大的意义和价值。奥谱天成-无人机载高光谱随着科技的发展,无人机作为一种搭载传感器的遥感平台,为遥感领域开辟了新的思路。与其他遥感技术相比,它因成本低、操作简单、空间分辨率高、获取图像的时间和地理限制少而逐渐被应用到各行各业。高光谱遥感技术在森林病虫害监测中的研究应用植物在生长过程中与环境因素相互作用的综合光谱信息被称之为植物的光谱特征。基于病虫害光谱响应的生理机制和光谱数据监测病虫害。监测方法主要包括以下方面。基于病虫害光谱响应特征进行监测作物病虫害的光谱响应可以近似为病虫害引起的色素、水分、形态和结构变化的函数,因此它通常是多效性的,并且与每种病虫害的特征相关。基于植被指数进行监测通观察不同病虫害生长条件下的植被特征参数,建立多种监测森林病虫害的植被指数。建模反演:植被生理生化参数能很好地反映植被的长势,进行建模反演是监测森林病虫害的关键。上图:机载高光谱观测森林病虫害由于高光谱遥感图像具有连续光谱、多波段、实效性好和数据量大的特点,其在林业中的应用研究逐渐成为现代林业研究的重点。遥感技术在害虫监测中的应用已经逐渐从理论走向实践,但仍有许多问题需要进一步探索和研究。大规模害虫发生的实时动态监测和预警是未来的一个重要趋势。
  • 回顾澳大利亚丛林大火的惨痛经历,坚定森林防火的重要性!
    春季风大物燥是火灾多发期和防控关键期森林火险等级升高因此将每年的3月15日到6月15日定为春季森林防火期在此期间,一定要注意预防森林火灾!因为丛林大火的损失是十分惨重的!今天小菲给大家说一个FLIR支援澳大利亚救援丛林火灾的案例~在澳大利亚的夏季,丛林火灾是非常普遍的现象。通常,这些大火会烧毁许多英亩的珍贵土地,对野生动物造成毁灭性的影响。消防员经常冒着生命危险阻止火势蔓延。幸运的是,这些灾难还收获了全世界的声援和支持行动。作为给急救人员提供救生技术的企业,Teledyne FLIR公司向需要这项技术的志愿消防部门捐赠了100台FLIR K1态势感知型红外热像仪。森林火灾的严重损失澳大利亚的丛林火灾是一种普遍且经常发生的现象,它对塑造澳大利亚大陆的自然环境起到了重要作用。特别是澳大利亚东部是世界上最容易发生火灾的地区之一。自1851年以来,澳大利亚的丛林大火已经造成近800人死亡,数十亿动物死亡。图片源于网络,侵删具破坏性的火灾通常发生在极端高温、非常干燥和强风之前,这些因素共同为火灾的迅速蔓延创造了理想条件。这种现象最近发生的一次是2019年7月至2020年3月的丛林火灾。本次大火导致至少33人死亡,超过30亿只动物死亡,3000多所房屋被烧毁。此外,澳大利亚各地超过1100万公顷(11万平方公里)的灌木、森林和公园被烧毁。尽管澳大利亚丛林火灾经常发生,但2019-2020年的季节比往常更糟糕。免费为消防员提供救援设备丛林大火通常需要地方和国家消防部门大规模部署以控制火势的蔓延。不幸的是,并不是所有的消防队都能胜任这项工作。当2019年和2020年当地志愿消防部门被派往灭火时,很明显,他们的消防技术装备不足。为了满足他们最迫切的需求,Teledyne FLIR立即开始了这项任务,为需要技术的志愿消防部门捐赠100台FLIR K1态势感知型红外热像仪。整个澳大利亚大约有80个志愿者部门受益于FLIR K1热像仪。FLIR澳大利亚的销售经理Steve Blott说:“当我们了解到志愿者部门缺乏热技术时,FLIR认为我们有义务用设备支持前线救援人员,以更好地安全和有效地完成救援任务。”FLIR技术的好处是,消防员可以更快、更有效地搜索,保证社区安全,并确保救援人员安全回家。FLIR K1:让消防员多一双眼睛FLIR热成像仪(TICs)是消防队员在火灾袭击和检修期间的救星。它不仅可以帮助消防员在陌生的浓烟环境中找到出路,还可以帮助消防员确定火灾活动的中心,定位受害者和其他消防员,并发现肉眼看不到的潜在危险。至关重要的是,由于TICs可以显示出热能的微小差异,它们对于搜索和救援、危险品操作(HAZMAT Ops)以及其他超出标准火场的专业操作都至关重要。FLIR K1指挥员用热像仪FLIR K1是一款坚固耐用的口袋热像仪,可作为火灾现场一双额外的眼睛,使消防指挥员、官员和检查员能够在完全黑暗的条件下,透过烟雾快速完成360°全方位评估。FLIR K1采用明亮的一体式手电照亮现场,帮助用户更有效地指挥和管理消防队员。它还能显示160×120像素的红外图像,帮助用户增加肉眼无法实现的态势感知能力。未来让消防救援更安全、更高效科学家们早就警告说,更热、更干燥的气候会导致火灾变得更频繁、更强烈。澳大利亚的许多地区一直处于干旱状态,有些地区已经干旱了好几年,这使得火灾更容易蔓延。人类有时是引发火灾的罪魁祸首,但火灾也经常是由自然原因引发的,比如闪电击中干燥的植被。一旦发生火灾,其他地区就面临危险,风吹来的余烬会导致火灾蔓延到新的地区。面对如此普遍的风险和深远的后果,澳大利亚的消防和救援团队使用新的火灾探测技术至关重要。幸运的是,有了像FLIR K系列这样的红外热像仪,这项技术变得非常优惠 ,这样就更容易被消防队的广大用户所接受。通过在黑暗、烟雾弥漫的环境中提供更清晰的视角,更多的消防员将能够更有策略地行动,保持更好的方向感,更快地找到受害者。森林火灾造成的损失非常惨重消防员的丛林救援也十分危险为此我们要在源头处降低森林火灾发生的概率森林防火,人人有责!FLIR K1指挥员用热像仪在消防救援过程中尽可能地帮助消防员看清火场动态保障消防员和受害者们的安全
  • 上海秀中完成的丽水白云森林公园负氧离子监测系统
    上海秀中电子设备有限公司完成的浙江丽水白云森林公园负氧离子监测及实时发布系统。
  • 中科院微电子所在纳米森林柔性湿度传感器及其应用研究方面取得新进展
    近日,中科院微电子所健康电子中心毛海央研究员团队在纳米森林柔性湿度传感器及其非接触人机交互应用研究方面取得重要进展。近年来,人机交互技术因其在物联网中的重要应用而受到广泛关注。具有高灵敏度和快速响应能力的柔性智能传感器因其可将来自人体的各种信号“转换”为机器可以识别的信息并进行非接触传感,被认为在先进人机交互系统的新型控制方法研发中心发挥关键作用。研究团队成功研制出一种柔性透明的高性能湿度传感器。该传感器以纳米森林为湿敏材料,制备工艺简单便捷,具备晶圆级图形化、大批量制备能力。所制备的湿度传感器具有出色的灵敏度、快速响应能力、长期稳定性和良好的机械灵活性。基于湿度传感器的以上优异特性,研究团队进一步实现了该器件的非接触式智能开关应用。基于本研究成果的论文“Wafer-Level, High-Performance, Flexible Sensors based on Organic Nanoforests for Human-Machine Interaction”近期发表在国际著名期刊ACS Applied Materials & Interfaces上(DOI: 10.1021/acsami.3c04953),微电子所博士研究生赵越芳为该文章的第一作者,微电子所毛海央研究员、微电子所先导工艺研发中心周娜高级工程师和长春光机所李绍娟研究员为该文章的共同通讯作者。该项研究得到了国家自然科学基金、广东省重点领域研发计划和中国科学院青促会项目等的支持。除此之外,课题组也开展了纳米森林生化检测传感器ACS Sensors (2020), Sensors and Actuators B: Chemical (2020), Applied Surface Science(2022)、纳米森林热电堆传感器Advanced Functional Materials (2021)、纳米森林皮拉尼传感器IEEE Electron Device Letters(2021)和纳米森林湿度传感器IEEE Electron Device Letters (2021),Microsystems & Nanoengineering (2022) ,相关成果分别发表在传感器领域知名的国际期刊上。图1 纳米森林柔性湿度传感器工作机理及其用于人机交互的示意图图2 纳米森林柔性湿度传感器的非接触式人机界面控制能力。(a) 纳米森林柔性湿度传感器阵列的晶圆级制备。(b)使用纳米森林柔性湿度传感器阵列的运动跟踪示意图。(c-d)非接触式人机交互系统的手势识别与玩具小车控制。
  • 土壤呼吸 | 积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响
    在这银装素裹的世界里,下雪不仅带来了诗意的画卷,还为大地覆盖了一层白色的绒毯,守护着生命的源泉,对土地土壤的呼吸也产生着影响。在漫长的冬季里,积雪和大地度过了一个又一个宁静的时光。积雪不仅保护了土地的水分,还防止了土地温度的剧烈变化;当春回大地,雪慢慢融化,雪水还会滋润着大地。在这些过程中,积雪下土壤中的微生物是一场狂欢还是一片沉寂呢?接下来跟随一篇优秀的文章来了解一下这些过程~积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响永冻层和季节性积雪区域占全球陆地表面的60%左右,占全球土壤有机碳(C)储量的70%以上。积雪直接影响表土和大气之间的热交换,减少土壤温度波动的影响。在严寒条件下,较厚的积雪可防止土壤结霜,为地下微生物活动提供相对稳定的生活环境。然而,在全球气候变化背景下,北半球春季陆地积雪面积正逐年减少,预计本世纪末将减少25%。季节性积雪模式对全球气候变化具有复杂且多样的响应,可能会通过光、热、水和养分等资源再分配来影响森林生态系统的地上和地下过程。土壤呼吸作为土壤C循环的重要过程,占据森林生态系统呼吸的60%以上,气候变化导致的土壤呼吸的微小变化甚至会引起森林生态系统呼吸的重大变化。积雪和气温升高之间的相互作用影响土壤冻融循环,导致土壤性质和土壤CO2排放的变化。作者认为冬季积雪会影响不同季节土壤微生物呼吸及其δ13C值,且会随着林分和凋落物的存在而变化,然而,目前,关于该方向的研究十分有限。基于此,为尽可能降低其他环境因素的影响,研究者们在长白山森林生态系统国家野外科学观测研究站附近的温带森林林地(温带红松阔叶混交林(BKPF)和白桦林(WBF))采集带有凋落物的土柱带回实验室,一半去除凋落物,一半保留。人工雪(轻/重)覆盖,根据野外土壤温度和气温的全年变化,利用低温培养箱进行长期培养实验,合理设置不同季节的模拟温度水平变化。利用SF-3000+碳同位素分析仪测定土柱中的CO2排放量及土壤呼吸CO2的δ13C以研究人工积雪和凋落物的存在对中国东北长白山地区典型温带森林土壤异养呼吸及其δ13C值的影响。不同阶段加雪量及加雪时间研究结果不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的CO2排放量不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱的平均CO2排放量箱线图不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C值的动态变化不同培养阶段有/无凋落物的积雪覆盖的大型森林土柱释放CO2 的δ13C平均值箱线图有/无凋落物下土柱CO2排放量与其相应δ13C值之间的关系研究结论该分析系统可用于研究实验室条件下未受干扰的大型土柱的异养呼吸变化及其相应的δ13C值。根据全年四个不同季节的室内模拟实验,人工积雪对森林土壤异养呼吸及其δ13C值的影响可能因季节、凋落物的存在和森林类型而异。在秋季冻融模拟中,与轻雪覆盖相比,重雪覆盖时的CO2排放量相对较大,土壤呼吸CO2的δ13C值也较小,这表明冬季结冰前积雪增加可能会增加温带森林地下土壤有机碳的分解。随着模拟春季冻融的进行,所有处理中土壤呼吸CO2的δ13C平均值变得不那么小,这与秋季冻融模拟期间观察到的δ13C值的变化相反。模拟春季冻融期间,重雪覆盖时土壤呼吸CO2的δ13C值比轻雪覆盖时更负,这与模拟秋季冻融期间和生长季观测到的δ13C值的变化相反。无论积雪以及凋落物是否存在,在模拟生长季节与非生长季节,所有大型土柱上均观察到土壤异养呼吸13C富集变化(平均约4.2‰),这可归因于土壤水分、释放到土壤中的有机碳化合物的数量和质量以及实验条件下的土壤微生物特性。通常,陆地生态系统土壤异养和自养呼吸的δ13C值的季节变化在一定程度上可以反映SOM分解对环境条件的响应。本研究结果强调了冬季积雪和凋落物的存在对温带森林全年土壤呼吸及其δ13C值的影响,需要未来在野外条件下进一步研究,通过适度考虑土壤理化和微生物特性以及细根生物量引起的激发效应对土壤呼吸δ13C和土壤碳动态的调节作用,探索关键的内在影响机制。
  • Resonon | Pika L高光谱成像在亚热带阔叶森林单木分割和树种分类上的应用
    了解亚热带森林树种的准确信息对于森林可持续管理、生态系统服务评估、生物多样性监测以及生态环境保护至关重要。因此,亟待快速有效的方法对单个树种进行分类。传统的树种地面调查费事、费力、成本高,难以大面积实施。而遥感可以获取较大区域的特征信息。许多遥感数据,如超高分辨率RGB、机载高光谱和雷达数据,已广泛应用于单木分割和树种分类。然而以往都是利用其中一种或两种类型的数据进行研究,综合这三种遥感数据进行树种分类的研究十分有限。基于此,为填补研究空白, 研究者们于2019年8月在中国南方深圳的亚热带阔叶林聚龙山公园(114°23′28′′E,22°43′50′′N)基于UAV LiDAR,高光谱(Resonon Pika L高光谱成像仪)、超高分辨率RGB数据以及地面数据进行单个树种的分类。作者首次开发了watershed-spectral-textural-controlled normalized cut(WST-Ncut)算法进行单木分割。然后整合UAV LiDAR(提取结构特征),高光谱(提取光谱特征)和超高分辨率RGB数据(提取纹理特征)进行分类。最后通过总体精度(OA)和kappa系数(k)评估分类精度。主要研究目标为:(1)评估所提出的WST-Ncut算法在亚热带阔叶森林进行单木分割的准确性;(2)与单独使用这些数据相比,评估UAV LiDAR,高光谱和超高分辨率RGB数据相融合进行亚热带阔叶树种分类的有效性和改进以及(3)探索单木分割的准确性和树种数量对树种分类精度的影响。研究区位置【结果】18个树种在383-1020 nm波长下的反射率平均值和±标准差。18个树种在383-1020 nm波长下的平均光谱反射率。七种特征组合得到的树种分布图使用所有特征时获得的总体分类精度与树种数量之间的关系。【结论】在本研究中,作者利用UAV LiDAR,高光谱和超高分辨率RGB数据在亚热带阔叶森林树木尺度上进行18个树种的分类。作者首次提出了watershed-spectral-textural-controlled normalized cut(WST-Ncut)算法来描述单木。结果表明,WST-Ncut算法适合描述亚热带阔叶森林单木(Recall=0.95,Precision=0.86,F-score=0.90),可以减少过度分割。LiDAR获取的垂直结构特征,高光谱获取的光谱特征以及超高分辨率RGB数据获取的纹理特征在树种分类上相互补充。分类结果表明这三个数据集相结合可以有效区分18个树种,获得最高的分类精度(总体精度=91.8%,Kappa=0.910),比单独利用光谱特征,结构特征和纹理特征分别高10.2%,13.6%和19.0%。此外,结果表明,单木分割越好,树种分类越准确,树种数量增加将会导致分类精度下降。
  • 2906万!内蒙古自治区森林消防总队自然灾害应急能力提升工程装备建设仪器类采购项目
    一、项目基本情况项目编号:MGSLXFZD-2024-0104-A06项目名称:内蒙古自治区森林消防总队自然灾害应急能力提升工程装备建设项目仪器类第二项预算金额:2906.369400 万元(人民币)最高限价(如有):2906.369400 万元(人民币)采购需求:包号采购标的数量技术规格、参数要求预算单价(万元)预算金额(万元)NMGSLXFZD-2024-0104-A06/1雷达型生命探测系统40套详见采购需求502000NMGSLXFZD-2024-0104-A06/2河床扫描仪8台详见采购需求15120声纳生命探测仪8台详见采购需求19.8158.4NMGSLXFZD-2024-0104-A06/3红外望远镜8套详见采购需求23.04184.32热成像夜视仪30套详见采购需求1.9558.5NMGSLXFZD-2024-0104-A06/4普通望远镜112套详见采购需求0.18620.832有毒气体检测仪18套详见采购需求0.397.02NMGSLXFZD-2024-0104-A06/5卫星定位仪866套详见采购需求0.335290.11单兵终端27套详见采购需求0.369.72NMGSLXFZD-2024-0104-A06/6便携式气象监测仪60套详见采购需求0.5533NMGSLXFZD-2024-0104-A06/7电子地图指挥仪27套详见采购需求0.906224.4674合计2906.3694 合同履行期限:详见招标文件要求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年06月19日 至 2024年06月25日,每天上午9:00至11:00,下午13:30至16:30。(北京时间,法定节假日除外)地点:邮箱获取方式:邮箱获取售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:内蒙古自治区森林消防总队     地址:呼和浩特市赛罕区展览馆东路33号        联系方式:韩助理0471-4162339      2.采购代理机构信息名 称:佳诺建设工程项目管理有限公司            地 址:呼和浩特市赛罕区东影南路巨华开心果5层            联系方式:刘艳14747885719            3.项目联系方式项目联系人:刘艳电 话:  14747885719
  • 天曌山国家森林公园安装负氧离子及PM2.5含量监测发布系统
    p style="TEXT-ALIGN: center"天曌山国家森林公园安装负氧离子及PM2.5含量监测发布系统/pp 新年伊始,天曌山国家森林公园安装并运行了负氧离子及PM2.5含量实时监测发布系统。天曌山国家森林公园山高林密、植被茂盛、生态优良、空气清新。该系统让游客在欣赏美景的同时也通过直观的监测数据,真实地体会到了景区优良的空气质量。景区也因此具备了专业的空气质量监测系统,提升了景区形象、充实了景区内涵。/ppimg style="WIDTH: 617px HEIGHT: 560px" title="天曌山LED1.jpg" src="http://img1.17img.cn/17img/images/201602/uepic/2e1bf0ef-17f9-4de2-82b9-a9366b136fc2.jpg" width="699" height="685"//ppimg style="WIDTH: 619px HEIGHT: 827px" title="IMG_4240.JPG" src="http://img1.17img.cn/17img/images/201602/uepic/c6fea5cd-98fe-4a68-a33d-f40342832c17.jpg" width="699" height="933"//ppimg style="WIDTH: 617px HEIGHT: 547px" title="天曌山LED2.jpg" src="http://img1.17img.cn/17img/images/201602/uepic/e7071bad-8cd2-4d1d-8786-fc71cb815580.jpg" width="699" height="620"//p
  • 应用案例 | 宁波海尔欣参与欧洲ICOS集成碳观测系统森林站点项目
    项目背景:欧洲综合碳观测系统(ICOS)新站点:38米高的塔楼,6米高的集装箱(图1)。来自荷兰的多位研究人员已经安装了各种传感器来测量气象和空气质量组分。Photo 1: The new tower, 38m tall, rising up far above the 22m trees.最大的挑战之一是获得ICOS生态系统站点(第2类)的认证。为此需要安装一些组件,并自动将数据传输到ICOS碳门户网站。其中包括埃迪协方差测量(u、v、w、T、CO2、H2O在塔顶上,以测量动量通量、感热通量和潜热通量以及净CO2通量,见图2)Photo 2: The eddy covariance system for fluxes of momentum, sensible and latent heat and CO2 and VOC fluxes.宁波海尔欣光电科技有限公司为此项目提供了HT8700大气氨激光开路分析仪,用以测量高塔附近的森林冠层氨排放和沉降通量。(图3)由于HT8700的开放光路低功耗设计,使之成为世界上为数不多的具备森林冠层氨通量测量能力的仪器,也是少有的入选欧洲集成碳观测网络的中国设备。关于ICOS欧洲综合碳观测系统(Integrated Carbon Observation System, ICOS)是一个用于量化和掌握欧洲温室气体(GHG)平衡的泛欧科研基础设施,旨在汇集和评估不同的测量方法、收集高质量的观测数据并促进数据利用,如模拟GHG通量或支持排放数据验证等,将帮助城市开发用以执行气候行动计划。通过对欧洲碳汇的区域和逐年变化的分析,凸显了进一步减少碳排放以实现碳中和目标的必要性。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.27.Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.
  • 亚热带森林培育重点实验室揭牌
    6月6日,在浙江林学院正式更名浙江农林大学庆典仪式上,省部共建亚热带森林培育国家重点实验室正式落户该校,浙江农林大学由此成为我国亚热带森林培育研究中心。  该实验室是今年浙江省高校唯一被批准为省部共同建设实施的国家重点实验室,将极大地加强浙江乃至我国林业行业的自主创新能力。  实验室以浙江农林大学现代技术省级重点实验室为主体,整合浙江农林大学森林生态系统碳循环与固碳减排省级实验室、省竹产业科技创新服务平台等相关优势资源,围绕林业产业体系和生态体系建设,搭建以森林培育理论研究为核心的多学科交叉共享的科研平台,开展亚热带地区特色与优势树(竹)种的林木遗传基础与种质创新等4个研究方向的森林培育理论与技术研究工作。
  • 河南农业大学采购236套仪器设备
    河南正大招标服务有限公司受河南农业大学委托,就河南农业大学2013年度(中地共建)设备采购项目进行招标采购,现欢迎符合相关条件的供应商参加投标。  一、 招标项目名称及编号:河南农业大学2013年度(中地共建)设备采购项目  豫财招标采购-2013-341  二、 招标项目简要说明:包号序号采购项目名称数量是否可投进口需要授权及售后服务承诺书A1高效液相色谱仪1是-2动态信号分析仪1是-3恒温箱8否-4燃烧效率测定仪1否-5温度智能巡检仪2否-6溶解氧测定仪1否-7总辐射表2否-8GPS数据采集系统1否-9恒温箱1否-10红外测水仪1否-B1空压机1否-2轮胎平衡机拆胎机1否-3硫化机(内外胎)1否-4快速检修举升机1否-5气动抽油机1否-6抛光打蜡机1否-7燃油免拆清洗机1否-8润滑油道免拆清洗机1否-9吸水吸尘机1否-10自动变速箱清洗机1否-11发动机检测实验台1否-12共轨柴油发动机检测实验台1否-13电控汽油机拆装试验台1否-14高压共轨电控柴油机拆装试验台1否-15自动变速箱实物解剖演示试验台1否-C1光合作用测定仪1是是2根系分析系统1是是3PCR仪2是是4电泳仪2否-D1傅立叶变换红外光谱仪1是是2原子荧光光度计1否-3超纯水系统1否-4全自动土壤样品处理机1否-E1PCR仪3是是2冷冻离心机2是是3激光/超声测高测距仪1是4植物根系分析仪系统1是是5植物光合测定仪3否-6电导率仪4否-7叶面计测定仪3否-8电子天平2否-9电子天平2否-10冰箱3否-11微波炉3否-12紫外可见分光光度计2否-13全自动灭菌锅1否-14水浴锅3否-15多通道生理系统1否-16酶标仪1否-17森林罗盘仪4否-18一体机7否19台式电脑1否-20超声波细胞破碎机1否-21投影仪1否-22光照培养箱1否-F1生物显微镜70是-2三目显微镜2是-3三目显微镜2是-G1高速冷冻离心机1是是2梯度PCR仪1是是3凝胶成像系统1是是4移液器11是-5天平1是-6紫外可见分光光度计1是是7微电极放大器1是是8数模转换器1是是9记录和分析软件1是是10精密手动显微操作器3是是11体式显微镜2是是12微电极拉制仪1是是13恒温卵母细胞记录槽1是是14防震台和静电屏蔽网2是是15显微注射系统1是是16实体解剖镜讨论镜1否是17镜头1否-18膜片钳实验室恒温保持1否-19空调1否-20电泳仪1否-21核酸电泳槽1否-22迷你蛋白电泳槽1否-23半干转印槽1否-24水浴锅1否-25生化培养箱1否-26灭菌锅1否-27超净工作台1否-28可降温摇床1否-29磁力搅拌器1否-30冰箱1否-31水平脱色摇床1否-32电脑(膜片钳配套)3否-33枪头1否-34枪架2否-35掌中宝离心机1否-36涡旋混匀器1否-37烘箱1否-38冰箱(样品保存)2否-39工具包和仪器柜1否-H1真空灌肠机1是是2水分活度测定仪1是是3微波杀菌设备1是是4沃-布剪切仪1是-5环境气体分析仪1是-6紫外分光光度计1是是7智能温度记录控制系统1否-8温湿度记录仪(带打印机)1否-9恒温光照培养摇床1否-10电热鼓风干燥箱2否-  三、 投标人资格要求:  1. 注册于中华人民共和国境内,具有独立承担民事责任能力的法人或其他组织。  2. 具有良好的商业信誉和健全的财务会计制度。  3. 具有履行合同所必需的设备和专业技术能力。  4. 有依法缴纳税收和社会保障资金的良好记录。  5. 参加政府采购活动前三年内,在经营活动中没有重大违法记录。  6. 遵守国家法律、法规和河南省财政厅及招标代理机构有关招标的规定。  7. 与采购人就本次招标的货物委托的咨询机构、招标代理机构、以及上述机构的附属机构没有行政或经济关联。  8. 注册资金不低于100万元人民币。  9. 法律、行政法规规定的其他条件。  四、 招标文件发售信息:  招标文件发售时间:2013年5月10日至2013年5月30日(法定节假日除外)  每天上午8:30-12:00 下午3:00-5:30  招标文件售价:300元(售后不退)  五、 投标文件接收及开标有关信息:  投标截止时间及开标时间:2013年5月31日上午9:30  投标文件接收及开标地点:黄河水利工程交易中心4楼大会议室  六、 本次招标联系事项:  联系人:冯文明、王墨  电话:0371-66028587 66619760 传真:66028583  联系地址:河南省郑州市金水路109号黄河勘测规划设计研究院院内西楼  黄河水利工程交易中心3楼302室  邮政编码:450003  开户行:中国建设银行郑州行政区支行  户名:河南正大招标服务有限公司  帐号: 41001531010050203901  七、 其他应说明事项:  购买招标文件时必须携带单位法人营业执照副本、授权委托书、代理人身份证等相关资质文件。(以上资料均要求出示原件,留存加盖单位公章的复印件)  河南正大招标服务有限公司  2013年5月10日
  • “全球变化下的典型森林生态系统观测与预警”青年科学家项目启动
    5月31日,由中国科学院植物研究所牵头的国家重点研发计划“地球系统与全球变化”重点专项“全球变化下的典型森林生态系统观测与预警”青年科学家项目启动会在北京召开。   该项目是国家重点研发计划“地球系统与全球变化”重点专项2022年度资助项目。项目依托植物所,联合南京农业大学、厦门大学,汇集国内从事森林结构及功能性状与森林生态系统碳循环过程研究的优势力量,聚焦我国典型森林生态系统,通过样方调查、联网观测、多源遥感观测、模型模拟等多种手段,阐明森林生态系统关键结构与功能性状的耦合机制、空间格局及其对气候变化的响应,模拟未来气候变化下我国典型森林生态系统固碳能力的变化趋势。   会上,植物所、科学技术部高技术研究发展中心基础研究项目二处、中国科学院科技促进发展局地球与资源处相关负责人分别致辞。   项目负责人介绍了项目的整体情况,重点汇报了项目的实施方案及已经取得的进展。项目专家组组长、中国科学院院士于贵瑞建议应加强各任务间的联系与协作,更好地为国家“碳中和”战略提供支撑。专家组成员在肯定项目实施方案与前期工作成果的基础上,从结合目前森林台站网络的观测体系优化实验方案、聚焦具体的森林生态系统功能、深入挖掘观测与模型间的联系等方面提出了意见和建议。   中国科学院植物研究所前身为1928年创建的静生生物调查所和1929年成立的北平研究院植物研究所,1950年合并为中国科学院植物分类研究所,1953年改为中国科学院植物研究所。   研究所以整合植物生物学为学科定位,以植物对环境适应的生物学基础为主要研究方向,以绿色高效农业和生态环境的国家需求为重要研究领域,重点在植物系统发育重建和进化、陆地植被/生态系统与全球变化、资源植物分子与发育生物学、植物信号转导与代谢组学、生物多样性保育与可持续利用等方面开展系统的研究。
  • 5万亿设备更新:高等职业学校林业技术专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。在教育领域,明确“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。”其中强调,“严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。”在高等职业学校现代农业技术专业仪器实训教学设备要求中,提到需要植物与植物生理实训室、植物生产环境实训室、植物遗传育种实训室、植物病虫害防治实训室、作物(种子) 生产实训室、农业信息技术实训室、现代农业装备实训室、农产品质量安全与检测实训室、现代农业校外实训基地等实训室。以下为仪器信息网整理高等职业学校现代农业技术专业仪器设备装备规范:专业技能实训仪器设备装备要求实验实训场所实训教学 目标仪 器 设 备序 号名 称规格、主要功能和技术参数单位数量执行标准 号备 注合格示范林木良种选育实训室1.掌握主要 林业种实调 制技能2.掌握种子 品质检验技 能1种子风选净度仪1.功率:≤160 W2.噪音:≤60 dB3.用于提高种子净度台48JB/T 20052 2电动筛选器1.筛理量: ≥500 g2.功率:≤80 W3.回转速度: ≥120 r/min4.用于种子分级和提高种子净度台483电子自动数粒仪1.计数精度: ±4/1000 粒2.计数速度: ≥500 粒/3 min 3.计数容量:1 粒~9999 粒 4.用于查数种子粒数台884电子天平1.检定分度值:0.01 g2.最大称量:≤500 g3.用于称量种子质量台816GB/T 26497 1.检定分度值:0.0001 g2.最大称量:≤200 g3.用于称量种子质量台8165恒温鼓风干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度, 定时功能3.恒温精度: ±1 ℃台48GB/T 304356水分测定仪1.含水率精度: ±0.1 %2.称量精度: ±5 mg3.称重量程: ≥50 g4.用于测定种子含水量台487人工气候箱1.控温范围:0 ℃~50 ℃2.控湿范围:50%~95% RH3.加热功率:500 W4.提供种子发芽所需的环境台248林木种子X 光机1.射线锥角: ≥40 °2.焦点尺寸: ≥0.8 mm×0.8 mm 3.暴光时间:0 min~5 min4.穿透力:钢板≥8 mm铝板≥12 mm台-19除湿机1.除湿量: ≥8 kg/d2.风量:2000 m³/h3.降低空气湿度台 2GB/T 19411 实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范林木良种选育实训室3.掌握各类种子的贮藏4.掌握种子检验仪器和贮藏设备的使用方法10种子储藏柜1.温度范围:0 ℃~10 ℃2.控温精度: ±1 ℃3.湿度范围:≤60% RH4.控湿精度: ±5% RH台2 1.温度范围:-15 ℃~15 ℃2.控温精度: ±0.5 ℃3.湿度范围:≤60% RH4.控湿精度: ±5% RH台 411冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台22CAS 169 12电子数显卡 尺1.量程:0 mm ~150 mm2.分辨率: ≥0.01 mm3.测量种子大小把1640GB/T 2138913视频展示台1.元件像素: ≥500 万2.变焦: ≥10 倍3.拍摄面积: ≥300 mm×250 mm 4.分辨率: ≥2592×1944台11JY/T 036314林木种子培 养箱1.容积: ≥32 L2.控温范围:5 ℃~65 ℃3.温度波动性: ±1 ℃台24LY/T 1152 15触摸式教学多媒体一体机1.LED 液晶屏,智能触摸≥1650 mm(65in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台1116其他放大镜、电子卡尺、直尺、解剖刀、解剖针、镊子、 培养皿、烧杯、量筒、方盘植物组织培养实训室1.掌握组织培养育苗技术1超净工作台1.照明: ≥300 lx2.最大功耗:≤800 W3.提供无菌操作环境台 82纯水机1.产水量≥10 L/h2.电导率:≤0.6 μs/cm3.出水优于实验室二级用水4.功率: ≥48 W5.制作纯净水台-13电子天平1.检定分度值:≤0.0001 g 2.最大称量: ≥200 g台-8GB/T 26497实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范植物组织培养实训室2.掌握组培 育苗和容器 育苗仪器设 备的使用方 法4高压蒸汽 灭菌器1.工作温度: ≥135 ℃2.最高工作压力: ≥0.22 MPa 3.容积: ≥75 L4.用于高压灭菌台 2YY 1007 5组培洗瓶机1.洗瓶速度: ≥2000 瓶/h2.瓶子直径:60 mm~120 mm 3.洗瓶深度: ≥180 mm4.功率: ≥1 kW台 26人工气候箱1.控温范围:0 ℃~50 ℃2.控湿范围:50% RH~95% RH 3.加热功率: ≥500 W4.用于接种后的培养台-27冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台 2CAS 1698超声波清洗 器1.容量: ≥20 L2.工作频率: ≥40000 Hz3.超声功率: ≥400 W4.用于清洗容器和工具台-29酸度计1.可测参数:pH 值、mV 值2.分辨率:≤0.01 pH,≤1 mV 3.误差: ±0.01 pH, ±0.1 mV台 810双目解剖镜1. 目镜倍数: ≥8 倍2.瞳距调节:50 mm~80 mm台-1611培养架1.层数: ≥5 层2.光照强度:5000 lx、9000 lx、 13000 lx个-412除湿机1.除湿量: ≥8 kg/d2.风量: ≥2000 m³/h3.湿度控制范围:20% RH~90% RH台 2GB/T 1941113生化培养箱1.工作室容积: ≥150 L2.温度范围:5 ℃~55 ℃3.温度均匀度: ±1 ℃4.温度波动度: ±1 ℃台 2GB/T 28851 14数显恒温水浴振荡器1.液晶显示屏2.控温范围:0 ℃~99.9 ℃3.旋转频率:0 r/min~300 r/min台 2实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范接 上 一 页同前15触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台1116其他剪枝剪、嫁接刀、土铲、喷壶、接种手术刀柄及刀片、 接种镊、接种剪刀、方盘、药品森 林 植 物 实 训 室1.了解显微 镜的结构、 保养方法2.掌握显微 镜的使用方 法3.能正确地 使用显微镜 观察植物材 料4.会制作植 物标本1双目生物显微镜放大倍数范围 40 ×~1600 ×台840GB/T 29852双目解剖镜1. 目镜倍数: ≥8 ×2.物镜倍数:多档可选3.瞳距调节:50 mm~80 mm台8163植物标本快速干燥箱1.控温范围:0 ℃~95 ℃2.功率 600 W ~1200 W台8164植物切片机1.自动2.切片厚度 0.01 mm~0.7 mm台015恒温鼓风干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定时 功能3.恒温精度: ±1 ℃台12GB/T 304356生物数码显微互动教学系统1.数码显微镜2.图像采集系统软件3.互动实验室系统软件套 417触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台118植物标本至少 100 种当地常见木本植物标本9其他载玻片、盖玻片、解剖针、培养皿、解剖刀、擦镜纸、 吸水纸、镊子、枝剪、放大镜、标本夹森 林 环 境 实 训 室1.了解移动 式自动气象 站、可见光 分光光度计 与智能土壤 养分综合测 试 仪 的 结 构、工作原 理、操作与 保养方法1移动式自动 气象站具备测量风速、风向、降水量、太阳 辐射、 日照时数、光合有效辐射、光 照度功能台18QX/T 612照度计1.测量范围:4 档量程(200 lx,2000 lx,20000 lx,200000 lx)2.最大误差:≤±4%台8163风向风速表1.风速测量范围:0 m/s~30 m/s2.风向测量范围:16 个方位,0 °~ 360 °3.用于测定风速、风向台816实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合 格示 范森 林 环 境 实 训 室2.掌握光照 强度、风向 和风速、气 温和土温的 观测方法3.掌握土壤 性状野外观 察及土壤样 品采集、处 理和保存的 基本方法4干湿表1.湿度测量范围: 10﹪RH~100﹪RH2.用于测定空气湿度台840JB/T 9456 5土壤比重计1.规格:甲种2.测量范围:0 °~60 °3.精度:≤1 °个8166酸度计1.测量范围:pH:0 pH ~14.00 pHmV:0 mV ~±1999 mV2.能自动识别 4.00 pH、6.86 pH、 9.18 pH 三种标液功能3.用于测定土壤酸碱度台8167分光光度计1.波长范围:320 nm~1000 nm 2.波长准确度: ±2 nm3.透射比准确度: ±0.5% T4.用于测定土壤中矿物质成分与含 量台28GB/T 268108罗盘仪放大倍率:16×以上台816JB/T 9321 9电子天平1.检定分度值:≤0.01 g2.最大称量: ≥210 g3.误差: ±0.03 g台816GB/T 2649710温度表最高温度表、最低温度表、地面温 度表、干球温度表、湿球温度表、 曲管地温表套8811土壤养分 综合测试仪1.线性误差:<3.0%2.灵敏度:红光≥4.5×10-5 L蓝光≥3.17×10-3 L3.波长范围:红光 620 nm±8 nm蓝光 440 nm±8 nm4.用于测定土壤成分:N、P、K、土 壤有机质、中微量元素、pH 等台2412负氧离子测定仪1.检测空气正、负离子2.分辨率:10 个离子/cm33.检测精度:≤25%4.用于测定空气中负氧离子含量台4813恒温鼓风干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定 时功能3.恒温精度: ±1 ℃台12GB/T 30435实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准号备注合格示范森 林 环 境 实 训 室4.掌握土壤 肥料主要理 化性质的分 析方法,并 能对土壤肥 力进行初步 评价14数显恒温 水浴振荡器1.液晶显示屏2.控温范围:0 ℃~99.9 ℃3.旋转频率:0 r/min~300 r/min台 215环刀1.外型尺寸: Φ61.8 mm×20 mm2.材质:不锈钢3.配套切土刀4.用于土壤取样个1640GB/T 1540616原状取土钻1.钻筒:内衬容积 100 cm3 的土样杯 2.钻杆:金属结构,带有刻度标3.用于土壤取样台816GB/T 1540617土壤筛1.筛孔尺寸:1 mm、0.25 mm2.筛框内径:200 mm3.高度:50 mm套816GB/T 1540618触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm (65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台1119土类及矿物 标本10~20 种当地主要的矿物标本10~20 类当地主要的土壤类型20其他皮尺、测绳、围尺、花杆、森林群落描述表、烧杯、 量筒、刻度移液管、洗耳球、容量瓶、广口瓶、玻璃 棒、漏斗、试管、试管架、试管夹、电池、滴管、滴 头、蒸馏水、酒精、试剂、取土铝盒林 业 有 害 生 物 防 治 实 训 室1.能够识别 林业有害昆 虫和真菌主 要类群;2.掌握有害 昆虫防治技 术1显微投影装置投影目镜放大率 8 ×~16 ×套11JB/T 7398.82生物显微镜放大倍数:40 ×~1600 ×台1640GB/T 29853双目解剖镜1. 目镜:10 ×大视场目镜2.调焦范围: ≥65 mm3.最大试样高度:45 mm台16404电子天平1.检定分度值:≤0.01 g2.称量范围:0.01 g~300 g台4040GB/T 264975冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台12CAS 1696试剂冷藏柜立式,不锈钢柜体,密闭性好,容量 ≥200 L台127恒温水浴锅1.四孔,自动控温2.不锈钢材质台11实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准号备 注合格示范林业有害生物防治实训室3.掌握林业 有害真菌防 治技术4.掌握农药 和药械使用 技术5.掌握林业 有害细菌、 植原体、线 虫和螨类防 治技术6.掌握林业有害物和鼠 形动物防治 技术8压力蒸汽灭菌器1.立式,容积不小于 30 L2.额定电压 220 V3.工作温度 120 ℃~130 ℃台12YY 10079恒温鼓风干 燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定 时功能3.恒温精度: ±1 ℃台12GB/T 3043510离心机1.80 孔~212 孔,不锈钢容器室2.转速: ≥5500 r/min3.温控范围:-5 ℃~40 ℃4.用于颗粒沉降和物质分离台12GB/T 30099 11超低容量喷 雾喷粉机1.容量:200 L2.射程:15 m~25 m3.用于超低量喷雾喷粉台1112烟雾机1.药箱容积:≥6.5 L2.线圈汽化、瞬时点火3.功率:≥800 W4.用于喷雾防虫。台2213打孔注药机1.配套动力: ≥0.81 kW2.转速: ≥6000 r/min3.药箱容积: ≥5 L4.每次注药量:1 mL~10 mL 5.用于树木打孔注药防虫台1814望远镜1.双筒,防水2.放大倍数:10 倍×50 倍台88GB/T 17117 15除湿机1.除湿量:10 L/d,湿度可控范围:30% RH~95% RH 2.电源:220 V,功率:260 W3.定时关机,1 h~24 h 任意设定 4.用于空气除湿台11GB/T 1941116昆虫培养箱1.控温范围:0 ℃~50 ℃2.控湿范围:50% RH ~95% RH 3.加热功率: ≥500 W4.规格: ≥600 mm×600 mm×1735 mm台 117手持式充电 电钻1.空载转速≥450 r/min2.转速可调台18GB/T 558018触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台11实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范接 上 一 页同前191.标本采集用具:包括黑光灯、捕虫网、采集箱、采集袋、毒瓶、高 枝剪子、剪枝剪、手锯等2.标本制作用具:包括标本夹、昆虫针、展翅板、三级台、玻璃器皿 等3.标本鉴别用具:解剖针、解剖剪子、蜡盘、放大镜等4.标本保存用具:标本盒、标本柜、药品等5.外业调查及防治用具:测绳、计数器、铁锹、喷雾器、药剂森林调查规划设计实训室1.掌握森林 调查规划设 计仪器的使 用方法2.掌握森林 调查数据的 计算方法1罗盘仪1.放大倍率: ≥12 倍2.度盘格值:1 °套816JB/T 93212光电测距仪1.距离测量误差: ±1 cm2.最大测量距离可达:3 km 3.用于快速测距台816GB/T 142673全站仪1.测距精度:≤2 mm2.测角精度:≤2 ″3.电源工作时间: ≥12 h3.用于精密测角、测距套18GB/T 276634光学水准仪1.放大倍率≥40×2.每千米往返平均误差≤1 mm 3.安平精度:≤±0.3 ″4.用于高差测量套816GB/T 10156 5电子水准仪1.每千米往返测高程精度:误差 ≤0.3 mm2.测距误差≤测距×0.001 mm 3. 用于高差测量套816GB/T 10156 6手持 GPS1.操作系统:Windows Mobile 6.5 以上版本 操作系统,处理器:不低 806 MHz2.支持北斗 COMPASS 系统 3.单点定位精度:≤2.5 m,SBAS 精度:≤1 m4.用于导线和面积测量台840GB/T 183147电子测树仪1.测量树木断面积、胸径、树高 2.测量直径范围:5 cm~240 cm 3.倾角范围: ±90 °误差: ≤±0.1 °台8208数据采集器1.处理器主频: ≥1 GHz2.定位精度:≤5 m3.内置森林调查软件4.用于采集森林调查台820实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范森林调查规划设计实训室3.掌握森林 调查规划设 计数据库的 建立方法4.掌握各种 数表的统计 方法5、掌握林业 用图的绘制 方法9航测无人机1.飞行速度: ≥36 km/h2.偏航距离:≤5m航高差:≤±6 m航迹向差:≤±5 °最大像移:≤0.6 像素3.配置航测摄影机4.续航能力: ≥1 h5.用于航拍与数据处理套 1CH/Z 3002 10测高器1.测量高度: ≥60 m2.测量精度:≤1 %3.用于测树高个404011自平曲线杆式角规用于测量树木胸高断面积,并能自 动进行坡度修正个404012生长锥1.取样芯直径: ≥3.5 mm2.长度范围: ≥100 mm3.用于测定树木年轮个81613油锯1.功率: ≥1200 W2.导板: ≥53 cm台816GB/T 5392 14地形图及地 形图图式含有某一地区比例尺为 1/1000 、 1/10000、1/25000、1/50000 地形图 各 1 份及地形图图式各 1 份,配套 相应卫片,含电子地图套1010CH/T 9009.315电子求积仪1.最大测量范围:宽≥300 mm,长度不限2.相对误差:≤±0.3 %3.用于在地图上求算面积台81616服务器1.CPU 主频: ≥3.3 GHz四核八线程2.内存: ≥16 G,双通道3.网卡:双千兆网卡4.硬盘不少于 3 块,容量: ≥500 G 5.配置相关操作系统和森林调查与 规划设计软件套11GB/T 9813.317计算机1.i7 处理器以上配置2.内存: ≥4 G,硬盘容量≥1 T3.配套软件:操作系统、森林调查 数据处理软件、森林资源规划设 计调查数据库处理系统软件、地 理信息系统软件台4040GB/T 9813.1 GB/T 9813.218激光打印机1.激光打印机2.最大打印幅面 A3 或以上3.最高分辨率:≥600 dpi×600 dpi台11GB/T 17540实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范接 上 一 页同前19触摸式教学多媒体一体机1.LED 液晶屏,智能触摸, ≥1650 mm(65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台1120其他计算器、轮尺、钢尺、皮尺、测绳、围尺、直尺、 三角尺、量角器、镰刀、手锯林业信息技术实训室1.掌握全球 定位系统知 识与绘图技 能1反光立体镜1.最大像幅: ≥300 mm×300 mm 2.眼基距:54 mm~76 mm台 82全站仪1.测程: ≥5000 m2.测距精度:≤2 mm3.测角精度:≤2 ″4.电源连续工作时间: ≥12 h 5.用于精确测角、测距台 8GB/T 276633手持 GPS1.操作系统:Windows Mobile 6.5 以上版本,处理器: ≥806 MHz2.支持北斗 COMPASS 系统3.单点定位精度:≤2.5 m,SBAS 精度:≤1 m套840GB/T 183144图形工作站1.CPU: Inter Xeon E5~2650 以 上处理器,CPU 数量:2 个2.内存: ≥16 G,可扩充至 128 G3.硬盘: ≥500 G,最大支持 5 块 硬盘,硬盘类型:SAS4.显示芯片:nVIDIA Quadro 4000 及以上5.网卡:Intel 82579 千兆网卡及 以上6.显卡:显存≥2 G7.用于快速处理图形数据套-15数字化仪1.幅面: ≥1219 mm2.精度: ≥±0.127 mm3.分辨率: ≥2540 dpi4.定标器:16 键鼠标定位器 5.数据传输速率:10 对/秒~20 对/秒6.用于采集和处理野外调查数据套186手持地物光谱仪1.接收波长范围:300 nm~1000 nm2.分辨率≥3 nm~700 nm,8 nm~ 1400/2100 nm3.用于测量地物光线反射率台18实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范林业信息技术实训室2.掌握图 像处理与 判读等遥 感技术3.掌握地 理信息数 据输入、 管理与分 析等技能7打印机1.最大打印幅面 A3 或以上2.最高分辨率:≥600 dpi×600 dpi 3.彩色激光打印机台18GB/T 175408计算机1.CPU:不低于 3.0 GHz/L3 6 M 2.内存:不低于 8 GB DDR3 RAM 3.硬盘: ≥1000 GB4.显卡:独立显卡,显存容量≥2 GB 5.安装网络教学软件套 41GB/T 9813.1 GB/T 9813.29扫描仪1.大幅面:A2 以上2.24 位 RGB 真彩或索引色3.分辨率: ≥1200 dpi×1200 dpi台1810交换机1.千兆以太网交换机2.应用层级:三层3.背板带宽: ≥256 Gbp s4.端口:24 个5.VLAN:支持 802.1 Q VLAN、Port Based VLAN、MTU VLAN套 111触摸式教学多媒体一体机1.LED 液晶屏,可触摸, ≥1650 mm (65 in)2.亮度: ≥400 cd/㎡3.分辨率: ≥1920×1080台1112遥感图像 处理软件1.具有遥感影像数据预处理、图像 增强、图像分类、矢量化功能2.具有高光谱图像处理、雷达图像 处理、空间分析、光谱分析、空 间建模及批处理、立体分析功能套-113计算机辅助制图软件1.具有图形绘制、编辑与输出功能 2.具有定位定形功能3.具有三维造型功能4.允许用户进行二次开发套 114地理信息 系统软件1.支持常见矢量数据和栅格数据2.支持地图浏览、图层管理、空间 和属性查询、空间分析、地图符 号化、制图输出功能3.支持多种专题图制作功能套 1实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合 格示 范林 产 品 检 测 实 训 室1.了解高速管式离心机、高压 蒸汽灭菌器、可见光 分光光度计和农药 残留速测 仪的结构、 工作原理、 工艺范围、 操作与保 养方法1高速管式 分离机1.分离筒转速: ≥16000 r/min 2.最大离心力: ≥15050g3.通水能力: ≥1200L/h台 4JB/T 90982电子台秤1.最大称量:150 kg2.检定分度值:0.02 kg台-2GB/T 77223粗颗粒粉碎 机1.出料颗粒:0.5 mm~20 mm 2.出料粒度:≤300 mm台-2JB/T 201654电热恒温 干燥箱微电脑控制,控温范围:+5 ℃~ 65 ℃台 2GB/T 304355恒温鼓风干燥箱1.室温:10 ℃~300 ℃采用微型计算机智能控制,数显 温度,定时功能2.双层钢化玻璃观察窗,低噪声风 机,热风循环送风,具有超温保 护台 2GB/T 304356粉碎机1.产量:1 kg/h~5 kg/h2.功率: ≥2 kW3.进料粒度:≤20 mm4.出料粒度:≤0.2 mm台-1JB/T 201657小型压力蒸汽灭菌器1.全不锈钢内胆,全自动控制 2.功率:2 kW3.容积:18 L4.额定工作温度:126 ℃5.温度选择范围:105 ℃~126 ℃台 2YY 06468电子天平1.最大称量:≤100 g2.检定分度值:≤0.0001 g台 8GB/T 264979电子天平1.称量范围:30 g ~500 g2.检定分度值:≤0.01 g台 8GB/T 2649710架盘天平1.最大称量:1000 g2.检定分度值:≤0.1 g台 8QB/T 208711数显手持 糖度计1.测量范围:Brix 0.0~53.0 %2.最小标度:Brix 0.1 %3.测量精度:Brix ±0.2 %4.用于测量含糖量台 40实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范林 产 品 检 测 实 训 室2.掌握常 用量具的 使用、测 量方法与 尺寸公差 知识3.掌握常 用检测设 备种类、 结构、及 使用方法12快速水分测定仪1.称量范围:10g;分度值:5 mg, 读数精度: ±0.2 %2.温度范围:80 ℃~160 ℃ 3.定时时间:0 min~30 min,时间间隔:1 min4.恒温精度: ±2 ℃5.用于快速测量水分台 16GB/T 2924913生物显微镜1. 目镜:5×、10×、16×2.物镜:4× 、10×、40× 、100 ×台-16GB/T 298514冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台 2CAS 16915便携式农药 残留速测仪测量通道数:10 个,能够同时测 定 10 个样品台-816台式高速离心机1.转速: ≥16000 r/min2.相对离心力: ≥17800 xg 3.容量: ≥6×50 mL4.转速精度: ±30 r/min台 2GB/T 30099 17可见分光光度计1.波长范围:320 nm~1100 nm 2.光谱带宽:2 nm,波长准确度: ±0.5 nm台-2GB/T 2681018阿贝折光仪1.测量范围:折射指数 (nD):1.3000~ 1.70002.糖度(Brix): 0.0 %~95.0 %3.用于测定固体折射率、平均色 散、糖含量台 1619色度计1.仪器分辨率:白度/三刺激值± 0.01,x/y ±0.00012.测量准确度:白度≤1.03.仪器稳定性:零点漂移≤0.1, 示值漂移≤0.14.测量重复性:白度≤0.1台 220组织捣碎匀浆机1.定时范围:0 min~60 min 2.输出功率:120 W3.处理量:50 mL~1000 mL4.转速调节 :0 r/min~ 12000 r/min台 4JB/T 11007实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范林 产 品 检 测 实 训 室4.能合理 选择设备 和仪器进 行林产品 检测,具 备检测能 力21马弗炉1.功率: ≥4 kW2.最高温度: ≥1000 ℃3.容积: ≥5 L4.精度:控温精度:≤1 ℃炉膛均匀度:≤1 ℃5.电压:220 V台 122水质理化 快检箱1.可检测以下理化指标:温度、色、 臭、味、浑浊度、肉眼可见物、 pH 值、氨氮、亚硝酸盐氮、总硬 度、总铁、氯化物、硫酸盐2.可检测以下常见毒物指标: 氟 化物、六价铬、酚类、砷、氰化 物、汞、镉、铅、钡、硼3.精度:0.1台-423蛋白质测定 仪1.测定范围(氮):0.1 mg~200 mg 2.重现性:相对误差≤1%3.回收率: ≥99.0%台 124脂肪测定仪1.测定范围:含油量在 0.5%~60% 范围内的粮食、饲料、油料及各 种脂肪制品2.测定样品: ≥6 个/次3.抽提时间可调4.控温范围:室温~100 ℃5.精度:相对差≤3%平行差≤0.3%台-125粗纤维测定 仪1.测定对象:各种饲料、粮食、谷 物、食品及其他需测定粗纤维 含 量的农副产品,用于测定粗纤维 含量2.测试样品数: ≥6 个/次3.重复性误差:粗纤维 含量在 10%以下,绝对值 误差:≤0.4粗纤维 含量在 10%以上,相对误 差:≤4%台 126触摸式教学多媒体一体机1.LED 液晶屏,可触摸, ≥1650mm (65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台1127其他烧杯、试管、移液管、滴管、试纸、脱脂棉、称量瓶、 干燥器、温度计实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范森林防火实训室1.掌握森林 防火宣传方 法2.掌握森林 火险等预报 技术3.掌握林火 监测技术1手持森林火 险监测仪具有观测风速、最大风速、平均风 速、风向、温度、湿度等参数的功 能1.测量范围a)气温:-40 ℃~+50 ℃b)气压:600 hPa~1060 hPa c)湿度:10% RH~100% RHd)风向:八方位角度e)风速:1 m/s~30 m/s2.测量分辨率a)气温:0.1 ℃b)气压:0.1 hPa(0.1mm)c)湿度:1% RHd)风向:方位e)风速:0.1 m/s3.测量误差a)气温: ±0.3 ℃b)气压: ±1 hPac)湿度: ±5% RH(≥5 ℃) ±8%RH(<5 ℃)d)风向:1/8 方位;起动风速 1.0 m/se)风速: ±(0.5+0.03×实际 风速)m/s;起动风速 1.0 m/s台 82电子天平1.检定分度值:≤0.01 g;2.最大秤量: ≥500 g台-8GB/T 264973台式电热恒温鼓风干燥箱1.控温范围:10 ℃~220 ℃ 2.控温精度: ±1 ℃3.定时范围:1 min~9999 min台-1GB/T 304354虹吸式雨量 计1.测量降雨量与降雨强度2.承水口内径: ≥200 mm台-45森林防火监 控系统1.网络摄像头:2 台像素: ≥130 万分辨率: ≥1280×720功耗:≤6 W2.计算机:1 台CPU:3.0 GHz/L3 6 M内存:8 G DDR3 RAM硬盘: ≥1T显卡:独立显卡,显存容量≥2 G 3.LED 显示屏:1 个规格:屏幕尺寸≥53.34 cm分辨率: ≥1920×10804.摄像头控制及监控软件 1 套套-1实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范森林防火实训室4.掌握森 林火灾扑 救技术5.掌握森 林火灾紧 急避险技 术6.掌握林 火灾后调 查技术6瞭望塔定位 仪20 倍以上变焦的单筒望远镜 1 台、 指针 1 枚、方位盘 1 个、三脚架 1 副套 4LY/T 17657双筒望远镜1.放大倍数: ≥50 倍2.视野范围:1000 m 处≥60 m台 16GB/T 17117 8防火通讯设 备1.固定台 1 台,功率: ≥10 W2.车载台 2 台,功率:5 W ~10 W 3.手持机 10 台,功率:5 W ~10 W 4.中继台 1 台,天线 1 个套 19点火器点火速度: ≥4 km/h个-210单兵装备包包括头盔、衣服、手套、鞋、毛巾、 眼镜、防毒面罩、水壶、饭盒等套 4011组合工具包包括二号扑火工具、铁锹、耙子、 手锯、斧头、砍刀等套 1612三号灭火工具1.钢管长度: ≥1.5 m2.钢丝长度: ≥60 cm3.钢丝数量: ≥25 根把 1613背负式灭火 水枪1.射程: ≥15 m2.装水量: ≥20 kg3.功率: ≥ 2 kW个 1614高压细水雾 灭火机1.额定流量: ≥4.0 L/min2.平均射程:直流喷头≥10.0 m 雾化喷头≥8.0 m台 815风力灭火机1.出风口风量: ≥0.3 m3/s2.功率: ≥3 kW台-816风力喷水灭火机1.出风口风量: ≥0.3 m3/s2.喷水量:11 L/min3.功率: ≥3 kW台-817灭火炮最大射程: ≥150 m套 218油锯1.功率: ≥1000 W2.排气量: ≥40 mL3.转数: ≥4500 r/min台-2GB/T 5392 实验实训场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行标准 号备注合格示范森林防火实训室同前19割灌机1.发动机排量: ≥30 mL2.发动机功率: ≥0.65 kW3.发动机转速: ≥7500 r/min台-220手持 GPS1.具有点、线、面等 GIS 空间数据、 属性采集功能2.接收机:16 通道3.定位精度:单点定位 3 m~5 m (2D RMS)台 8GB/T 1831421触摸式教学多媒体一体机1.LED 液晶屏,智能触摸, ≥1650 mm(65 in)2.亮度: ≥400 cd/m23.分辨率: ≥1920×1080台11注:数量一栏中,“ - ”表示不要求
  • 原生态“PRI-ECO & CFERN森林生态连清监测技术野外培训大篷车”走进长白山
    如何量化的评价林业生态建设的成果,是推进长白山森林生态系统建设及保护的首要问题。目前,森林生态连清,已成为我国森林生态系统服务、退耕还林工程生态效益、绿色国民经济核算等森林生态状况观测与清查的关键技术。在吉林长白山举办“森林生态连清监测技术野外培训班”,其重要意义显得尤为突出。由中国森林生态系统定位观测研究网络及PRI-ECO生态监测技术中美联合实验室主办,露水河林业局与长白森经局协办,2016年7月11日到15日,“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进长白山。 来自中国林科院、中国林科院院省科技合作办公室、吉林长白山森林生态系统国家定位观测研究站、吉林长白山西坡森林生态系统国家定位观测研究站、吉林松江源森林生态系统国家定位观测研究站、露水河林业局、长白森经局、北京普瑞亿科科技有限公司、上海市林业局、上海市林业总站、贵州梵净山自然保护区管理局、山西省林业科学研究院、广西林业科学研究院、呼伦贝尔市林业科学研究所、赤峰市旺业甸实验林场、赤峰市林业局、赤峰市林业科学研究院、河南省淅川县林业局、宁波市林业局、宁波市林特科技推广中心、甘肃省林业科学研究院、甘肃省林业厅生态办、黑河市林业科学院、江西农业大学、贵州省林业厅、贵州省林科院等26个单位的五十多位科技人员参加了大篷车走进长白山培训活动,现场反响热烈。 吉林长白山森林生态站任军研究员,做了题为“吉林省森林生态系统服务功能标准化评估”的报告。森林生态服务功能是指森林生态系统与生态过程所形成及维持的人类赖以生存的自然环境条件与效用。任军研究员介绍了森林生态服务功能的定义,进行生态评估的背景,国内外进展和现状及评估方法。依据《森林生态系统定位观测指标体系》(LY/T 1606-2003)和《森林生态系统长期定位观测方法》(LY-T 1952-2011)等获得的数据,将吉林省森林生态服务功能各项概念化的指标转化为数字化指标,以价值量的方式评估森林生态效益。 上海市林业局戴咏梅处长,做了题为“上海城市森林特点及生态监测布局与功能”的报告,重点阐述了如何根据上海自然、社会经济和城市林业特点,基于ArcGIS空间分析方法,以上海市地势地貌指标、土壤指标、植被指标、生态功能区指标为基础分类依据,通过图层叠置分析,采取“典型抽样”的方法,提出了上海森林生态系统定位观测研究网络的布局及其功能。 山西省林业科学研究院孙拖焕副院长,做了题为“山西省森林生态监测的特点与布局”的报告,介绍了山西省森林生态定位研究网络发展进程、布局方法以及划分依据。 吉林长白山西坡森林生态系统国家定位观测研究站杨慧主任,介绍了生态站的研究方向与定位,强调要加强研究平台建设,加快基础研究步伐,注重开放合作与交流。 吉林松江源森林生态系统国家定位观测研究站管清成副站长,介绍了森林资源调查的方法,长白山地区森林调查进展,同时对完善森林保护体系的措施与可持续经营对策和与会科技工作者交换了意见。 生态环境监测技术中美联合实验室主任张光辉博士,做了题为“森林生态站标准化建设与硬件配置技术”的报告,报告以森林生态系统长期定位观测的水、土、气、生四大板块的内容为主线,分类介绍了森林生态站建设所需的各种观测仪器设备,着重就目前国内外主流观测仪器设备的技术更新、设备更替和生态监测未来所需的设备功能和性能,提出了自己的观点和看法。 会议期间,大篷车参会人员考察了长白山西坡站,参观了露水河林业局国家红松良种基地、红松科技馆,科技馆工作人员为大家介绍了红松的起源、培育发展过程,以及露水河林业局30多年来的红松科研成果。 露水河林业局座落于长白山西北麓,素有“红松之乡”的美誉。2013年,露水河林业局建成我国首个森林生态连清技术示范地,露水河林业局森林生态连清与价值评估,是国内首次将森林连清技术应用到林业工作管理实践中,也是国内第一次紧密结合林业局尺度森林资源二类调查结果,并与林业局二类调查成果同时发布的生态连清与价值评估。这为开展森林资源核算和绿色经济评价服务,推动森林资源清查工作从侧重森林面积、林木蓄积量的监测,向兼顾林木资源与生态状况、公众效益监测并重转变起到了重要作用,使森林资源清查工作更好地满足建设生态文明制度的需要。 “PRI-ECO & CFERN森林生态连清监测技术野外培训大篷车”,作为公益性的培训活动,通过现场面对面的传帮带方式,与多种级别和形式的生态站进行高效互动,提升生态站野外监测技术人员的工作效率,继而提升森林生态连清标准化观测能力,使CFERN作为全球范围内国家尺度最大的生态观测网络,真正发挥出应有的作用和贡献。
  • “PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进南阳
    2016年10月17-20日,由中国森林生态系统定位观测研究网络、PRI-ECO生态监测技术中美联合实验室、南阳市林业局主办,淅川县林业局、桐柏县林业局承办,“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”走进南阳。来自河南省林业厅、河南省林科院、湖北红安县、河南省森林生态站、南阳市林业局、南阳市直林业系统、南阳县区林业局、北京普瑞亿科科技有限公司等单位100余人参与了此次活动。10月18日,大篷车首先开进淅川县,举办了森林生态连清关键技术培训,现场反应热烈。我国森林生态效益监测与评估首席科学家,森林生态连清体系的提出者和设计师王兵研究员主持了开班仪式,并做了题为“森林氧吧功能监测与人类福祉”的报告,就林业生态系统功能与服务、森林氧吧-空气维生素的供给者、森林的治污减霾功能进行了系统的讲解,阐述了提高森林生态服务功能的有效途径。PRI-ECO生态监测技术中美联合实验室主任张光辉做了题为“森林生态系统定位研究站建设规范——森林生态站建设监测技术硬件发展”的报告,报告以森林生态系统长期定位观测的水、土、气、生四大板块的内容为主线,分类介绍了森林生态站建设所需的各种观测仪器设备,着重就目前国内外主流观测仪器设备的技术更新、设备更替和生态监测未来所需的设备功能和性能。河南省省级生态建成网络负责人、河南省林科院李良厚研究员做了题为“河南省森林生态定位观测研究网络的建设现状及进展”的报告,指出目前已初步形成了覆盖全省主要自然类型区的森林生态观测研究站网,取得全省主要自然类型区森林生态环境的大数据,推进了全省林业生态效益评估工作。作为大篷车的主题活动,10月19-20日,王兵研究员主持进行了森林氧吧探测活动。分别对淅川县毛堂乡龙山生态站、丹江大观园、丹江库区、南水北调中线工程渠首和桐柏县淮河源进行了负氧离子探测。其中毛堂乡龙山生态站负氧离子监测瞬时值为2700个/cm3,丹江大观园龟寿瀑旁负氧离子监测瞬时值达20100个/cm3,丹江库区行船上负氧离子监测瞬时值达9050个/cm3,渠首闸门处负氧离子监测瞬时值峰值达8500个/cm3,桐柏县淮河源森林生态效益监测点负氧离子含量为5500个/cm3。此外,王兵研究员等专家对河南省淮河源森林生态效益监测站建设进行现场指导,就生态效益监测站的建设规范、软硬件配置、数据传输等进行详细讲解,并表示将给予全方位的技术支持,争取早日建成,为淮河源生态建设提供科学依据。“PRI-ECO&CFERN森林生态连清监测技术野外培训大篷车”,作为公益性的培训活动,通过现场面对面的传帮带方式,与多种级别和形式的生态站进行高效互动,提升生态站野外监测技术人员的工作效率,继而提升森林生态连清标准化观测能力,使CFERN作为全球范围内国家尺度单一生态系统类型数量最多的生态观测网络,真正发挥出应有的作用和贡献。 关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 亚热带森林培育国家重点实验室落户浙江
    日前,依托浙江林学院建立的“浙江省亚热带森林培育实验室”,正式被科技部批准为省部共建国家重点实验室培育基地(简称省部共建实验室)。该实验室的成立,实现了我国林业系统国家级重点实验室零的突破,标志着浙江省亚热带森林培育研究已经达到国内领先水平。  根据规划,省部共建亚热带森林培育国家重点实验室,将结合浙江的优势与特点,围绕林业产业体系和生态体系建设,搭建以森林培育理论研究为核心的多学科交叉共享的科研平台,集聚人才和优势资源,开展亚热带地区特色与优势树(竹)种的林木遗传基础与种质创新、竹子发育与栽培生理、经济林木发育与栽培生理、森林生态功能与区域生态安全四个研究方向的森林培育理论与技术研究工作。
  • 北京某单位新建实验室,批量采购仪器设备
    北京某检测机构新建实验室,采购以下仪器设备,进口、国产不限,需要报价对比,能做的厂商请查看联系:仪器设备名称仪器设备名称PCR仪望远镜/GPS(或DGPS)定位仪/罗盘仪/pH计/温度计/透明度盘/电子天平/采泥器/照相机/冷藏箱/流速仪/风速风向仪/水下照度计/空盒气压表高速冷冻离心机回声测探仪显微镜鱼探仪检尺记数器采样船分光光度计点频度框架马弗炉及烘箱弶网/圆锥网/底层网激光粒度仪浮游生物网GPS定位仪/指南针/抄网/麻醉瓶/望远镜/采样器/照相机踢网/索伯网/D型抄网/带网夹泥器捕虫网/人工巢管/风力计/彩色诱集盘/放大镜/观察盒多普勒剖面仪海拔仪电鱼器传导率测定仪GPS(或DGPS)定位仪/望远镜/罗盘仪/指南针/水下照相机/潜水设备/盐度折射计罗盘仪便携式地物光谱仪测角器钻具/钻头/PVC管便携式激光测距仪台站系统或自容式验潮仪胸径尺/生长锥/激光测高仪水文气象浮标或遥测波浪浮标冠层分析仪悬浮物沉降设备GPS定位仪/铁铲/圆状取土钻/螺旋取土钻/罗盘仪/照相机/冷藏箱柱状采样器航拍无人机/越野车胸径尺/生长锥/激光测高仪钻具/钻头/抽筒/钢丝绳/扩孔器自动图像设备胸径尺/生长锥/激光测高仪光量子仪冠层分析仪回声测探仪联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制