当前位置: 仪器信息网 > 行业主题 > >

显微镜成像原理

仪器信息网显微镜成像原理专题为您提供2024年最新显微镜成像原理价格报价、厂家品牌的相关信息, 包括显微镜成像原理参数、型号等,不管是国产,还是进口品牌的显微镜成像原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微镜成像原理相关的耗材配件、试剂标物,还有显微镜成像原理相关的最新资讯、资料,以及显微镜成像原理相关的解决方案。

显微镜成像原理相关的论坛

  • 生物显微镜的成像原理分析

    显微镜(microscope)简称光镜,是一种将肉眼无法看清楚的微生物体进行光学放大成像的常用仪器。在生命科学、材料科学、基础科学及众多的微观领域中都离不开显微镜。1590年.荷兰的Han,父子始创放大10倍显微镜。175.8年,Dollond制成消色差透镜,提高了显微镜放大倍数。1873年,德国科学家Abbe设计成近代显微镜。1953年.上海江南光学仪器厂国产显微镜诞生,并陆续生产了荧光、相衬、偏光等专用显微镜。生物及医用显微镜可分为光学放大及电子放大两大类。前者按用途可分为普通型、特种型、高级型显微镜和手术显微镜。普通型生物显微镜仅供一般用途使用,通常的农用与医用显微镜、倒税显微镜均属这一类。特种型生物显微镜可作某些专用的观察和研究。暗场生物显微镜、荧光显微镜、偏光显微镜、相衬和干涉相衬显微镜等均属于这一类。高级型生物显微镜系指大型多用途的生物显微镜.研究用生物显微镜和万能研究用生物显微镜等属于这一类。一、显微镜放大成像系统显微镜光学系统由物镜和目镜两部分组成。因为被观测的物体本身不发光,而要借助于外界照明,故显微镜需要有一个照明系统,这些部分都是由较复杂的透镜组成,尤其物镜更为复杂。下图是显微镜成像的光路原理图,图中的物镜和目镜均用薄透镜表示。http://www.yi7.com/file/upload/201201/07/14-00-33-93-1.jpg显微镜成像原理显微镜的物体AB处于物镜的2倍焦距之内一倍焦距之外,它首先通过物镜成一放大的倒立实像A'B',且使之位于目镜的物方焦平面上或焦平面以内很靠近的地方,然后目镜将这一实像再次成一个正立虚像A"B"于无限远或人眼明视距离之外,以供眼睛观察。显微镜对物体进行2次放大,因此与放大镜相比,具有更高的放大倍率,能观察到肉眼所不能直接观察的微小物体,分辨更细小的细节。在这里目镜相当于放大镜,只不过这时放大镜的物是物镜所成的像而已。由于物镜所成的像是实像.因而可在实像处(即目镜的物方焦平面处)安放各种用途分划板.供对准或测量用。二、显徽镜的放大率与分辨本领1.显微镜的分辨本领 分辨本领主要指接物镜分辨被检查物体细微结构的能力,也就是说在显微镜下判别的最小微粒的大小或两点之间最短距离及某物点最小直径的限度,便叫做显微镜的分辨本领.或称为鉴别率。通常用d表示:http://www.yi7.com/file/upload/201201/07/14-00-33-14-1.jpg式中.A表示波长;n sins (NA)表示数值孔径。 从式中可知,显微镜的分辨率主要取决于光的波长和数值孔径这两个因素。d值越小,分辨本领也就越强,越能看清物体的细微结构。鉴别率计算单位是Um. 显微镜的鉴别率的提高只有两个办法: (1)增大物镜的数值孔径(镜口率)。从图可以看出,影响数值孔径(n sina)的因素有两个:其一为物体上某点射人物镜光锥角(镜口角)的一半(sina);其二为检品与物镜间媒质的折射率n。即数值孔径为NA = n sine镜口角半数最大能到900,故si na的最大值为1.00,这时物镜的焦距最短而曲度也很大,制造上是极为困难的。即使能办到,在干燥系中的镜口率只有1 x sin90“(控气n二1)。若再增大镜口率便只有从媒质着手,所以便有水、甘油,石蜡油和香柏油等浸润均匀媒质的应用,确实改进了镜口率不少.它最高可到1.40。如果用澳萘液可达1.67左右,更接近盖片和透镜的折射率。http://www.yi7.com/file/upload/201201/07/14-00-33-51-1.jpghttp://www.yi7.com/file/upload/201201/07/14-00-33-44-1.jpg (2)缩短光源的波长:采用紫外线作光源,波长可到0.1Um,这样放大倍数比自然光放大的倍数大3-4倍,普通紫外线光波在0.2 Um左右,即使能产生出0.1 Um波长的紫外线.一般透镜也将把它吸收干净.无法利用。显微镜的最大数位孔径可达1.5 Um左右,在这种情形下: http://www.yi7.com/file/upload/201201/07/14-00-33-33-1.jpg即在这种显微镜里,仍可分辨的两点间最短距离差不多等于所用光波波长的1/30假定绿光的光波的波长http://www.yi7.com/file/upload/201201/07/14-00-33-23-1.jpg那么显微镜能分辨的最短距离为:http://www.yi7.com/file/upload/201201/07/14-00-33-89-1.jpg 则这台显微镜的最高分辨距离也超不过。.182 Um。肉眼在明视距离(250 mm)能分辨的两点之间最短距离为0.1 mm,约为上述d值的560倍.因此I台光学显徽镜的放大率有100()倍也就足够了。这是因为光的本性及光的绕射现象就限制了显徽镜的放大极限。凡是光波超过微粒直径的2倍时,光线就很方便地绕过微粒而继续前进,所以普通干燥系显微镜的最大鉴别率只能达到光源波长的1/2,直径小到0.2 5m的微粒就无法被光学显微镜发觉。虽然后来应用浸润系方法,如油镜,提高了折射率,其鉴别率也只不过能提高到光源波长的1/3而已。而且还要用最好的透镜才能达到。

  • 金相显微镜的成像特点

    金相显微镜是的成像原理则是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,利用凸透镜的成像原理进行成像,使用非常高的放大倍数对细微结构的物质进行成像。普通的金相显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。这点不同于望远镜的成像,望远镜成缩小倒立的实像。而不管是普通的金相显微镜,还是电子显微镜,都有一个重要的物件—透镜。金相显微镜当中有几个英文名词,大家可以了解一下,f 表示透镜焦距u 表示物体与透镜之间距离(简称物距)引用:www.bsdgx.com

  • 【求助】静电力显微镜中电场梯度成像的工作原理

    紧急求助静电力显微镜中电场梯度成像的工作原理, 组里最近买了一台omicron的真空AFM,除了向扫描表面之外,还想进行电场梯度成像。我的助教在导电的针尖上加了一个偏压(AC bias),想测量电场梯度。我是个新手,接触AFM 才2个月,所以想请教各位,在经过这个改变后,我们的AFM 是不是就可以测电场梯度了,另外,静电力显微镜中电场梯度成像的3个方法中,相检测 (phase detection)、频率调制 (frequency modulation)和振幅检测 (amplitude detection) 的工作原理是怎样的。哪个个方式更合适我们的AFM呢请多多指教咯^__^

  • 相差尼康显微镜的成像和结构之间的联系

    (一)阿贝成像原理 为了理解相差尼康显微镜的原理,不得不回顾普通显微镜的成像原理。德国光学家阿贝(E. Abbe)从1874年以后创立了成像原理.在现代波动光学的发展基础上兴起的变换光学中的空间信息滤波和信息处理概念,就是奠基于阿贝成像原理。 据阿贝的看法,尼康显微镜的透镜或透镜组不只是反映物平面和像平面的共扼关系,而且也反映透镜前后的无数个对应平面的共扼关系。当然,显微镜的成像光路中最为重要的共扼面还是物平面和像平面(图10-18,0--0').显微镜成像光路中同样具有重要的共扼面是发光平面((KY1000显微镜)和光源的像平面(L')。 但是如果在显徽镜结构中在聚光镜的前焦面上放置孔径光栏时,那么光源和光源像两平面的共辘关系,代之以聚光镜前焦面的光栏平面和物镜后焦面的L"平面的共扼关系。 阿贝认为发光平面的共扼面即L’平面,是显微镜的初级成像平面,而物平面是次级成像平面。若通俗一点来讲,L‘烛光是L烛光的像,而O‘空间是L'烛光的像。 如果我们在尼康显微镜的初级成像光路上在聚光镜和物镜之间,擂入一张不同光密度的标本O(图10-20上是光栅)时,立即破坏了初级成像光路.这是因为标本细节的光密结构(栅)和光疏结构(间隙)的折射率不同,而产生光的衍射。其结果如图10-20所示,L烛光在它的像平面上出现了数支烛光。与此同时,在像平面上出现标本0的干涉像.这些干涉纹是由次波源。,一1,+1发射的衍射光的重叠所造的。这样由于标本的干涉次级成像过程,已由CM100的共扼面改变成CM300FL的共扼面。也就是说像平面上不是L,的像,而是标本0的像了。 总之,相干成像过程的第一步是形成衍射斑,而第二步是相干干涉.当然未染色生物标本细节的折射率有很小的差异,在像平面上的对比度非常小。为了提高物像的对比度(反差),荷兰物理学家(F. Zernike(1935)设计了相差显微镜的基本部件如环状光栏和位相板。 从阿贝成像原理已经知道尼康显微镜的聚光镜前焦面上放置孔径光栏时,这个平面就成为物镜后焦面的共扼面。F. Zernike在这个平面上放置了环状光栏,按空间滤波概念,称带通滤波器。 环状光栏给物镜后焦面提供的是照射在环形甲像平面上的相干光束。照射在环形像平面上的相图10-20显徽镜的成像光路干光束,不同于线形窄缝所提供的相干光束.前者不能造成带有方向性衍射斑.在共扼面上的光分布强度也不像窄缝衍射那种零级强度。它所造成的衍射光是均匀的无方向性的. F. Zernike在相差尼康显微镜的物镜后焦面上放置了位相板。恰巧位相板的吸收环变成环状光栏的成像平面。其结果就像F. Zernike指出的,如果人工地改变照射到不吸光物体而形成初级成像光束的光波,以此来改变衍射光和直射光的位相和振幅,使之近似乎吸光物体的初级成像光束时,那么其结果就造成完全像吸光物体的次级成像,也就是加强了物体细节的反衬度。巧妙地使用位相板,就能够使物像平面上的光强度分布与物体细节的位相信息成为线性关系.也就是人工地用物体细节的位相分布调整像平面的光强分布。甚至巧妙地选配不同类型的位相板,使之适合于物体细节的折射率时,可以强使物像平面上的反衬度出现逆转,即由明反差改变为暗反差,或者反之。

  • 【转帖】影响显微镜成像的因素

    由于客观条件,任何光学系统都不能生成理论上理想的像,各种相差的存在影响了成像质量。下面分别简要介绍各种相差。 1、色差 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方一个点,在像方则可能形成一个色斑。 色差一般有位置色差,放大率色差。位置色差使像在任何位置观察,都带有色斑或晕环,使像模糊不清。而放大率色差使像带有彩色边缘。2、球差 球差是轴上点的单色相差,是由于透镜的球形表面造成的。球差造成的结果是,一个点成像后,不在是个亮点,而是一个中间亮、边缘逐渐模糊的亮斑。从而影响成像质量。 球差的矫正常利用透镜组合来消除,由于凸、凹透镜的球差是相反的,可选配不同材料的凸凹透镜胶合起来给予消除。旧型号显微镜,物镜的球差没有完全矫正,应与相应的补偿目镜配合,才能达到纠正效果。一般新型显微镜的球差完全由物镜消除。1、慧差慧差属轴外点的单色相差。轴外物点以大孔径光束成像时,发出的光束通过透镜后,不再相交一点,则一光点的像便会得到一逗点状,型如慧星,故称“慧差”。 2、像散像散也是影响清晰度的轴外点单色相差。当视场很大时,边缘上的物点离光轴远,光束倾斜大,经透镜后则引起像散。像散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。像散是通过复杂的透镜组合来消除。3、 场曲 场曲又称“像场弯曲”。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。这样在镜检时不能同时看清整个相面,给观察和照相造成困难。因此研究用显微镜的物镜一般都是平场物镜,这种物镜已经矫正了场曲。 4、 畸变 前面所说各种相差除场曲外,都影响像的清晰度。畸变是另一种性质的相差,光束的同心性不受到破坏。因此,不影响像的清晰度,但使像与原物体比,在形状上造成失真。 (1) 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像; (2) 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像; (3) 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像; (4) 当物体位于透镜物方焦点上时,则像方不能成像; (5) 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。 显微镜的成像原理就是利用上述(3)和(5)的规律把物体放大的。当物体处在物镜前F-2F(F为物方焦距)之间,则在物镜像方的二倍焦距以外形成放大的倒立实像。在显微镜的设计上,将此像落在目镜的一倍焦距F1之内,使物镜所放大的第一次像(中间像),又被目镜再一次放大,最终在目镜的物方(中间像的同侧)、人眼的明视距离(250mm)处形成放大的直立(相对中间像而言)虚像。因此,当我们在镜检时,通过目镜(不另加转换棱镜)看到的像与原物体的像,方向相反。 本文转自http://www.gzspecial.com/qyxw/19.html

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【资料】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。 武汉仪器仪表-吴欣民 027-62411040,027-82429843 E-mail:zpzgwd@126.com http://zpzgwd.blog.bokee.net

  • 【原创】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

  • 【转帖】光学显微镜原理应用及维修

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展做出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:蔡司、徕卡、奥林巴斯、尼康。国内厂家主要有:麦克奥迪、江南、重庆光电、奥特光电等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称”焦点”,通过交点并垂直光轴的平面,称”焦平面”。焦点有两个,在物方空间的焦点,称”物方焦点”,该处的焦平面,称”物方焦平面”;反之,在像方空间的焦点,称”像方焦点”,该处的焦平面,称”像方焦平面”。  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成像规律1. 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;2. 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;4. 当物体位于透镜物方焦点上时,则像方不能成像;5. 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。三、 光学显微镜的成像(几何成像)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率 ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’。放大镜的放大率Γ=250/f’式中250--明视距离,单位为mmf’—放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 。。。。。。。。。。。。。。 [URL=http://www.microscopeline.com/art.asp?id=252&did=56]...........[/URL]资料来源[URL=http://www.microscopeline.com]显微在线[/URL]

  • 【显微镜系列讲座】:6月22日 NT-MDT系列技术讲座3:原子力显微镜用于物质组分成像

    【网络讲座】:NT-MDT系列技术讲座3:原子力显微镜用于物质组分成像【讲座时间】:2016年06月22日 14:00【主讲人】:葛林 北京办公室应用工程师。清华大学电子工程系本科,德国马普研究院纳米技术博士,10年AFM应用经历。【会议简介】1. AFM应用于物质组分成像的原理及分类2. 基于基础配置的力学组分成像3. 基于HybirD控制箱的力学组分成像4. 电学组分成像5. 结合拉曼光谱的组分成像-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年06月22日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/19925、报名及参会咨询:QQ群—171692483,扫码入群“显微镜之家”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667767_2507958_3.gif

  • 小动物视网膜成像显微镜特点及应用

    [b][url=http://www.f-lab.cn/vivo-imaging/micron-iv.html]小动物视网膜成像显微镜Micron IV[/url]特点: [/b]可用于明场、血管结构和荧光(GFP,YFP,mCherry,CFP标记)成像。定制的最先进低噪音三芯片CCD:高灵敏度捕捉微弱的荧光。 近红外成像(可达700-900nm,最高到900nm)视网膜成像精度:小鼠4 μm,大鼠8 μm位滤光片轮,双回补灯及滤光片配置,更加灵活,包含荧光及近红外滤光片,提供亮场和荧光成像模式
 实验台:可三维翻转及旋转,便于调整大小鼠眼睛角度清晰成像。[img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/Micron-retinal-imaging.jpg[/img]小动物视网膜成像显微镜Micron IV可提供分辨率达4 μm的高清晰视网膜影像,且与荧光显微镜类似,可观察明视野和荧光(Ex. CFP, GFP, mCh erry等) 影像。方便的软件设计可直接从明场成像转换至荧光成像。[url=http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg][img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg[/img][/url][b]小动物视网膜成像显微镜Micron IV应用范围:[/b]荧光血管造影糖尿病视网膜病变视网膜母细胞瘤视网膜黄斑衰退症早产儿视网膜病变脉络膜新生血管小动物视网膜成像显微镜:[url]http://www.f-lab.cn/vivo-imaging/micron-iv.html[/url]

  • 【资料】相差显微镜原理、显微镜安装调试与使用

    【资料】相差显微镜原理、显微镜安装调试与使用

    相差显微镜  •1940年荷兰学者F.Zernik巧妙地应用光的衍射和干涉原理提高标本细节的折光率的差异,创造了相差显微镜(phase contrast microscope)。从此非常简便而有效地观察体外培养细胞的生长过程,记录细胞分裂周期中的染色体的移动。近年来细胞学家和生物学家所拍摄的生活细胞生长、分裂过程的非常出色的记录影片,都是利用相差显微镜的优秀性能完成的。因此相差显微镜、倒置相差显微镜已成为细胞学、细菌学、寄生虫学、免疫学和海洋生物学的实验室必备仪器。  •相差显微镜是用于观察组织培养中活细胞形态结构的。活细胞无色透明,一般显微镜下不易分辨细胞轮廓及其结构。  •相差显微镜的特点是将活细胞不同厚度及细胞内各种结构对光产生的不同折射作用,转换为光密度差异(明暗差),使镜下结构反差明显,影像清楚。  相差显微镜的优点http://ng1.17img.cn/bbsfiles/images/2011/02/201102161815_278026_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/02/201102161816_278027_2961690_3.jpg  相差显微镜成像光路http://ng1.17img.cn/bbsfiles/images/2011/02/201102161817_278028_2961690_3.jpg  相差显微镜的部件  •相差显微镜的关键性部件为位相板(phase plate)、环状光阑(anular diaphragm)和中心调节望远目镜(centring telescope)。  环状光阑  •环状光阑是在玻璃片上喷涂金属薄膜借以挡光,只留下环形透光窄缝的光阑。它能使来自反光镜的直射光只能从环状部分通过,形成一个空心圆筒状的光柱,经聚光器并照射到标本以后,就产生两部分光,一部分是直射光,另一部分是经过标本后产生的衍射光,这两部分光经物镜内相板的作用而改变了光的相位和振幅。  •在相差聚光器下面装有一个转盘,盘上镶有宽狭不同的环状光阑,在不同光阑边上刻有10×、 20×,40×等字样,这表示当用不同放大倍数的物镜时,必须配合相应的环状光阑。http://ng1.17img.cn/bbsfiles/images/2011/02/201102161819_278029_2961690_3.jpg  相板  •相板安装在物镜的后焦平面上,带有相板的物镜称为相差物镜(蔡司厂用红色“PH”表示)。  •相板上有一灰色的环状圈,称为共轭面。面上涂有吸光物质,直射光从这部分通过,并吸收了约80%的直射光,以降低它的透光度。在共轭面的内,外侧部分称为补偿面,面上涂有减速速物质,使衍射光的相们发生改变,因此这两者相结合就能分别改变直射光和衍射光的振幅和相位。  相板分类  •A型位相板 凡是共轭面即环形相板上涂有吸收层的相板均为A型。A型相板又分为二型:  •(1)A十型位相板:这是在共扼面上既涂吸收层又涂有电解质的相板。这种相板能吸收其共轭面的60一90%直射光,而透过其20一40%。市场出售的位相板型号分类时,都以数字表示其透射率和推迟位相的数据(图10-12,表10—1)。  •(2)A一型位相板是共扼面上涂有吸收层。同时在补偿面上涂有电解质。  •B型位相板凡是在补偿面上涂有吸收层而在共轭面上有电解质的位相板,均属此类。  •(1)B十型位相板是在补偿面上涂有吸收层共轭面上有电解质的相板。  •(2)B一型位相板是在补偿面上涂有吸收层加电解质的相板。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281441_279896_2961690_3.jpg  对焦望远目镜  对焦望远目镜(centring telescope)又叫合轴望远镜或校正望远目镜。这是一种场透镜和接目透镜之间的距离可变的目镜。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281443_279897_2961690_3.jpg  相差显微镜的成像原理  •从波动光学的角度可把物体细节即生物标本的细节,看成是成像光束的障碍物。它可以改变相干光束的振幅、位相和光强分布。  •从变换光学的频谱转换角度,可把物体细节看成是不同空间信息的集合物。它可改变光信息的空间频谱。  •在显微镜下标本细节的光密物质、光疏物质和无结构的介质的折射率不同,因此相干光束通过光密物质(t)时,必然产生衍射,使光程延长,推迟位相(图10—21P)。这时衍射光(P)和直射光(S)之间的位相出现d/λ差异。但是标本的吸收程度近似,所以振幅未变即光强末变。这种直射光和衍射光到达像平面重叠成像时,其合成波的振幅与通过无结构介质的直射光的振幅几乎近似,即其光强相似。这就是未染标本在普通显微镜下反差很小的基本原因(图10—22)。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281447_279898_2961690_3.jpg  暗相差  •在被检物的折射率大于介质的情况下,透过共轭面的直射光被吸收80%后亮度变暗,衍射光在通过被检物后其相位己推迟1/4波长,再在位相板的补偿面的电解质又推迟了1/4波长。由于这两束光的相位不同(差1/2波长),其合成波的振幅为两者之差,所以光线就更加暗。  •与此同时,通过无结构介质的衍射光的光程只被补偿面的电介质推迟l/4波长。这就造成通过光密物质的光强远比通过无结构介质(背景)的光强减衰得多。相差显微镜下标本细节的反差加大丁。光密结构比背景暗得多了。这种反差叫暗反差也叫正反差。  明相差  •如果相板的共轭面上涂的是减速物质,推迟直射光1/4波长,而补偿面涂的是吸光物质,结果就是直射光与衍射光的相位相同(衍射光通过物体时相位推迟了1/4波长),其合成波的振幅为两者之和,结果物体是明亮的而背景是暗的,这称为明相差或负相差。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281450_279899_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/02/201102281450_279900_2961690_3.jpg  相差显微镜实验方法和步骤  •安放相差装置取下原有聚光器和物镜,分别安上相差聚光器和相差物镜,并将转盘转到“0”标记的位置。用10×相差物镜调光。  •调节光源。  •合轴调节取下原有目镜,换上合轴调整望远镜。上下移动望远镜筒,至能看清物镜中的相板环为止。  •放回目镜取下合轴调整望远镜,放回目镜即可进行观察。更换不同放大倍数的相差物镜时,每次都要按上述方法重新调节。

  • 【资料】显微镜基础知识和原理(一)

    第一章: 显微镜简史随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。第二章 显微镜的基本光学原理一. 折射和折射率光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。二. 透镜的性能透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 三. 影响成像的关键因素—像差由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。下面分别简要介绍各种像差。1. 色差(Chromatic aberration)色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方一个点,在像方则可能形成一个色斑。光学系统最主要的功能就是消色差。色差一般有位置色差,放大率色差。位置色差使像在任何位置观察都带有色斑或晕环,使像模糊不清。而放大率色差使像带有彩色边缘。2. 球差(Spherical aberration)球差是轴上点的单色相差,是由于透镜的球形表面造成的。球差造成的结果是,一个点成像后,不在是个亮点,而是一个中间亮边缘逐渐模糊的亮斑,从而影响成像质量。球差的矫正常利用透镜组合来消除,由于凸、凹透镜的球差是相反的,可选配不同材料的凸凹透镜胶合起来给予消除。旧型号显微镜,物镜的球差没有完全矫正,应与相应的补偿目镜配合,才能达到纠正效果。一般新型显微镜的球差完全由物镜消除。3. 慧差(Coma)慧差属轴外点的单色像差。轴外物点以大孔径光束成像时,发出的光束通过透镜后,不再相交一点,则一光点的像便会得到一逗点状,型如慧星,故称“慧差”。4. 像散(Astigmatism)像散也是影响清晰度的轴外点单色像差。当视场很大时,边缘上的物点离光轴远,光束倾斜大,经透镜后则引起像散。像散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。像散是通过复杂的透镜组合来消除。5. 场曲(Curvature of field)场曲又称“像场弯曲”。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。这样在镜检时不能同时看清整个像面,给观察和照相造成困难。因此研究用显微镜的物镜一般都是平场物镜,这种物镜已经矫正了场曲。6. 畸变(Distortion)前面所说各种像差除场曲外,都影响像的清晰度。畸变是另一种性质的像差,光束的同心性不受到破坏。因此,不影响像的清晰度,但使像与原物体比,在形状上造成失真。四. 显微镜的成像(几何成像)原理显微镜之所以能将被检物体进行放大,是通过透镜来实现的。单透镜成像具有像差,严重影响成像质量。因此显微镜的主要光学部件都由透镜组合而成。从透镜的性能可知,只有凸透镜才能起放大作用,而凹透镜不行。显微镜的物镜与目镜虽都由透镜组合而成,但相当于一个凸透镜。为便于了解显微镜的放大原理,简要说明一下凸透镜的5种成像规律:(1) 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;(2) 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;(3) 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;(4) 当物体位于透镜物方焦点上时,则像方不能成像;(5) 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。显微镜的成像原理就是利用上述(3)和(5)的规律把物体放大的。当物体处在物镜前F-2F(F为物方焦距)之间,则在物镜像方的二倍焦距以外形成放大的倒立实像。在显微镜的设计上,将此像落在目镜的一倍焦距F1之内,使物镜所放大的第一次像(中间像),又被目镜再一次放大,最终在目镜的物方(中间像的同侧)、人眼的明视距离(250mm)处形成放大的直立(相对中间像而言)虚像。因此,当我们在镜检时,通过目镜(不另加转换棱镜)看到的像于原物体的像,方向相反。五.显微镜光学系统简介显微镜光学系统的设计有三种光学系统。1 . 长筒光学系统2 . 万能无限远校正光学系统:是较先进的光路设计,它体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结像透镜处折射或完成无像差的中间像。物镜与观察筒内结像透镜之间可添加光学附件,而不影响总放大倍数。另外这种光学系统不需要安装附加校正透镜,都能得到最佳的显微图像。3. 万能无限远双重色差校正光学系统:是目前最先进的光路设计,不但能矫正位置色差,同时还能矫正倍率色差可提高水平分辨率12%,提供最高反差、最高衬度、最高分辨率的最锐利图象。-----------------------[color=#00008B][size=4]资料不错,已经按照2个帖子的形式发表,这样集中些[/size][/color]

  • 电子显微镜和数码显微镜的区别

    ①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。   ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。   ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。   ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。   电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。   光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。   所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。

  • 【分享】显微镜技术原理

    技术原理:微生物个体微小,用肉眼直接观察不到,必须借助显微镜才能观察到他的个体形态和细胞结构。在蛋白质结构等所需对物质的微观结构进行观察的研究中也都会用到各种显微镜。现有的各种显微镜基本上都是由物镜和目镜组成,目镜的焦距很短,目镜的焦距很长,目镜的作用是得到物体放大的实像,目镜的作用是将物镜放大的实像作为物体,进一步放大成虚像。显微镜将物体放大的总倍数是物镜放大倍数乘以目镜放大的倍数。这样虽然目镜和物镜放大的倍数有限,但是显微镜总放大倍数 就非常可观。 仪器结构和分类:普通光学显微镜是一种精密的光学仪器。早期的显微物镜仅由少数几块透镜组成,难于消除物像的像差和色差。近代的显微物镜已由一套精密磨制的透镜组成,已能较好地消除像差和色差,并能将物体放大1500~2000倍。普通光学显微镜的构造可分为两大部分:即机械装置和光学系统。这两部分很好地配合,才能充分发挥显微镜的作用。1.显微镜的机械装置 显微镜的机械装置包括镜座、镜筒、物镜转换器、载物台、推动器、粗动螺旋和微动螺旋等部件。(1)镜座:镜座是显微镜的基本支架,由底座和镜臂两部分组成。在其上部连接有载物台和镜筒,是用于安装光学放大系统部件的基础。 (2)镜筒:镜筒上接接目镜,下接转换器。形成接目镜与接物镜(装在转换器下)间的暗室。从镜筒的上缘到物镜转换器螺旋口之间的距离称为机械筒长。因为物镜的放大率是 对一定的镜筒长度而言的。镜筒长度的变化,不仅放大倍率随之变化,而且成像质量也受到影响。因此,使用显微镜时,不能任意改变镜筒长度。国际上将显微镜的 标准筒长定为160mm,此数字标在物镜的外壳上。(3)物镜转换器:物镜转换器上可安装3~4个物镜,一般是3个物镜(低倍、高倍、油镜),Nikon显微镜装有4个物镜。转动转换器,可以按需要 将其中的任何一个接物镜和镜筒接通,与镜筒上面的目镜构成一个放大系统。 (4)载物台:载物台中央有一孔,为光线通路。在台上装有弹簧标本夹和推动器。 (5)推动器:是移动标本的机械装置,由一横一纵两个推进齿轴和齿条构成。研究显微镜的纵横架杆上刻有刻度标尺,构成精密的平面坐标系。如需要重复观察已检查标本的某一 物像时,可在第一次检查时记下纵横标尺的数值,下次按数值移动推动器,就可以找到原来标本的位置。 (6)粗调螺旋:粗调螺旋用于粗放调节物镜和标本的距离,老式显微镜粗调螺旋向前扭,镜头下降接近标本。新近出产的显微镜(如Nikon显微镜)镜检时,右手向前扭动使载 物台上升,让标本接近物镜,反之则下降,标本远离物镜。(7)微调螺旋:用粗调螺旋只能粗放地调节焦距,难于观察到清晰的物像,因而需要用微调螺旋做进一步调节。微调螺旋每转一圈镜筒仅移动0.1 mm(100μm)。新近出产的研究显微镜的粗调螺旋和微调螺旋是共轴的。2.显微镜的光学系统显微镜的光学系统由反光镜,聚光器,物镜,目镜等组成,光学系统使标本物像放大,形成倒立的放大物像。

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • 双光子显微镜——THG成像

    [b]摘要[/b]在神经科学和神经外科中对活体大脑组织中神经元的成像能力是一项基本要求。尤其是需求一种具有测微计尺分辨率的大脑形态学的非侵入探针的开发,因为它可以在临床诊断上提供一种非侵入式光学活体组织检查的手段。在这一领域,双光子激光扫描显微镜(2PLSM)是一个强大工具,并已成为活体生物样品最小侵入性损害的高分辨率成像的标准方法。但是,(2PLSM)基于光学方法提供足够分辨率的同时,对荧光染料的需求妨碍了图像对比度的提高。本文中,我们提供了一种活体大脑组织以细胞分辨率的高对比度成像方法,无需荧光探针,使用光学三次谐波发生进行成像。我们利用细胞水平的特殊几何学和大脑组织的液体内容物来获取THG的部分相匹配,提供了一种荧光对比度机制的替代方法。我们发现THG大脑图像允许快速、无侵入性标记的神经元、白质结构、血管同时成像。而且,我们利用THG成像来引导微吸管指向活体组织中指定的神经元。这个工作是一个无标记活体大脑成像的主要步骤,并开启了活体大脑中激光引导的微注射技术发展的可能性。[b]材料与方法[/b]THG成像对于THG成像实验,我们使用了一台商业化双光子激光扫描显微镜([color=#ff0000]TrimScope, Lavision BioTec[/color])。光源是一个光学参量震荡器(Mira-OPO,APE),810nm泵浦光来自一个Ti:Sa锁模激光器(Coherent Chameleon Ultra II)。使用一个20X,0.95N.A水浸物镜(Olympus XLUMPFL-IR)将光聚焦到样品上。使用epidetection几何学描述THG实验。使用分光镜(Chroma T800lpxrxt)将背景散射THG光子从入射激光束中分离出来,用一个THG波段的带通滤波器(Chroma HQ390-70X)过滤。检测器是GaAsP高灵敏度光电倍增管(Hamamatsu H7422-40),400nm处量子效率为25%。最高分辨率成像(1024×1024像素)的典型获取时间为1.6s,我们用于目标定向实验的512 X 512像素成像时间为0.6s。 为与前向端口比较,使用了一个定制的投射端口。这个端口使用了一个1.4N.A油浸物镜,一个长波分光镜(UQG optics)和一个400nm的相干窄带滤波器。对于THG与SR-101联合实验我们用1200nm的OPO来同时产生两种信号。使用一个594nm带通和561nm隔断的分光镜将SR-101荧光从THG信号中分离。SR-101信号使用一个PMT检测(Hamamatsu H6780-20)。Nile Red和THG成像也是由1200nm的OPO同步激发。在这个案例中THG信号由投射端口测量,Nile Red荧光通过一个593∕40 nm的带宽滤波器检测。对于THG和GFP联合成像,用来泵浦OPO的Ti:Sa激光被调谐到970nm并耦合到显微镜中。组织块的GFP和THG信号使用同一个检测器连续测量。但使用一个不同的(561∕40 nm)带通滤波器检测GFP。使用显微镜软件(Imspector Pro)获取图像并以16bit 的tiff格式存储,图像分析使用Image J(MacBioPhotonics)进行。[b]主要结果[/b] [img=,575,768]http://qd-china.com/uploads/bio-product/21.jpg[/img]Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞体内的聚焦激光束。由于不好的结构相匹配状态,没有THG信号产生。(D) 小鼠大脑组织的活神经元成像。体细胞以暗影存在。 [img=,466,500]http://qd-china.com/uploads/bio-product/22.jpg[/img]Fig. 2.活体大脑组织的THG成像(A)小鼠皮质的THG图像 (B) 与A同位置的Nile Red染色的双光子荧光图像 (C) 大鼠凹陷的脑回THG图像(水平切面) (D)小鼠脑胼胝体THG图像,轴突纤维束被清晰得分辨。Movie S1是这个结构的一个3D投影 (E)小鼠大脑纹状体的THG图像(冠状面)。白质和神经元细胞清晰可见。明亮的粒状结构是垂直穿行图像平面的轴突纤维。Movie S2是这个区域的3D投影。(F)麻醉活小鼠的脑皮质上层的血管THG图像(z栈平均投影密度是50um) [img=,510,767]http://qd-china.com/uploads/bio-product/23.jpg[/img]Fig. 3. THG与双光子成像的叠加 (A)小鼠额前叶脑皮质的THG图像 (B)SR-101标记的星细胞双光子图像 (C) A、B的叠加提供了神经网络中星细胞的分布信息 (D) 小鼠额前叶皮质的THG图像 (E) GFP标记的生长抑素神经元的双光子荧光图像 (F)D、E的叠加显示了生长抑素神经元在脑前叶皮质结构中的分布 [img=,461,768]http://qd-china.com/uploads/bio-product/24.jpg[/img]Fig. 4.THG成像深度与自动化细胞检测 (A-C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的神经元 (E)红色标记:来自A-C的图像栈的细胞可见性对比。黑色标记:作为一个深度功能的平均检测到的THG密度。 [img=,531,768]http://qd-china.com/uploads/bio-product/25.jpg[/img]Fig. 5. 无标记目标定向和细胞活性(A)小鼠新大脑皮层的THG图像 (B) 在对一个神经元进行THG引导膜片钳之后同一位置的THG图像 (C)一个200um深处钳住神经元的大视野THG图像(5幅深度间隔2um的图像平均) (D)记录以100pA电流脉冲刺激B中被钳住的神经元的动力势训练 (E) 测量在THG扫描期间静止膜电位的改变。即使以最高的能量,也只观察到4%的电压变化,保持了完全的可逆性。0.8秒的周期相应于图像扫描时间。(F)最大观察到的静止膜电位Vs扫描时的激光能量。没有非线性效应出现。

  • 电子显微镜的原理和应用

    [color=blue][b]电子显微镜的原理和应用[/b][/color](刘维) 〔摘要〕简单地介绍了电子显微镜产生和发展的历史。介绍了电子的波长,原子对电子的散射和晶体对电子的散射等几个基本问题。电子显微镜的三种成象机制和电子显微镜电子光学部分的组成。最后介绍了电于显微镜的应用,通过这些介绍,使读者能更好的了解和使用电子显微镜这一大型分析仪器。电子显微镜(以下简称电镜)是迄今为止,在物质结构的研究中能给出的信息最多,分辨本领最高的大型分析仪器。电镜已经在物理学,材料科学和生命科学等领域得到了广泛的应用。为了更好的了解电镜,本文将对电镜原理及应用等有关的 基本知识,做一些简单的介绍。 1. 电镜的产生和发展历史电镜的产生要追溯到19世纪末的一系列科学发现。当时Abbe建立了显微镜分辨率的理论,即认为用显微镜看不到比显微镜的光源波长还小的物体。从这个理论出发,人们意识到用光学显微镜看不到原子。不过从另一方面看,Abbe的理论也指出了,如果能找到一个比光波波长还短的光源,就能提高显微镜的分辨率。1924年是近代科学史上的新纪元。德布罗意提出了波检二重性的假说.并很快的为电子衍射的发现所证实。初国的布什又开创了电磁透镜的理论。具备了上述两个条件,使人们产生了制作一个新型显微镜的想法,即用具有波动性的电子做光源,再用电磁透镜来放大。1932年德国的KnoU和RMsLa制成了第一台电镜。1934年他们又把电镜的分辨串提高到500人,这是近代电镜的先导。Ruska也因此得到了1986年度诺贝尔物理奖的一半。1939年初国的西门子公司创造出第一台商品电镜。现在,一般的电镜的分辨串已达到原子分辨率的水平(2A)。已经便道尔顿和阿伏加德罗提出的原子和分子的理论得到了直接的证实。今后的电镜.作为大型分析设备,除了提高分辨本领之外,还要向操作自动化,多功能化方向发展,成为功能齐全,使用操作简单,给出的数据可靠的大型仪器。图l给出了各种显微镜的分辨本领的示意图。我们可以看到,在众多种类的显微镜家族中.透射电镜(TEM)是最佳的一种。

  • 【分享】有需要显微镜数码成像的可以进

    [em0703] 供应显微镜专业成像设备 产品介绍产品特点:显微镜专用数码相机,适用接口RCA(连接TV机)USB(连接PC机),支持单目、双目、三目成像系统,可实时数码观察目标,实时数码录象,单张拍照,主机具有记忆功能。可以适配金相、生物、体视等各种类型显微镜!操作安装步骤简单,功能齐全。与不同性能的显微镜配套适用于高等教育、医疗卫生、科学研究、农林环保等领域。其价格远远低于市场同类产品。我公司产品直接和目镜相连,所以可以实现一机多用,根据具体情况提供不同象素的机子,目前我公司产品已在福建省科研、工厂、学校等单位采用,而且新推出工厂质检系统,学校多媒体系统,大家选购!真金不怕火炼!欢迎到公司来洽谈业务!如果业务量合适我们可以派专人为您做演示指导工作,本公司现在全国招聘代理商,共创辉煌!效果图见慧聪企业博客http://blog.hc360.com/portal/personShowArticle.do?articleId=170399福州泉通电子有限公司福州市则徐大道368弄仓山工业区8号楼 (350007) 电话: 0591-83471089,传真: 86-591-83448434联系人: 梁建新所在区域: 福建.福州邮件地址: quantong@fjqt.com klop-116@163.com公司网站: http://www.fjqt.com

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 【原创】蔡康显微镜极品

    【原创】蔡康显微镜极品

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

  • 荧光显微镜原理及应用

    荧光显微镜的原理 :荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源 、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长 ,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种[url=http://www.gengxu.cn]滤光片[/url]必须选择配合使用。荧光显微镜就其光路来分有两种:1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。荧光显微镜使用方法.1.打开灯源,超高压汞灯要预热几分钟才能达到最亮点。2.透射式荧光显微镜需在灯源与聚光器之间装上所要求的激发滤片,在物镜的后面装上相应的阻断滤片。落射式荧光显微镜需在光路的插槽中插入所要求的激发滤片/双色束分离器/阻断滤片的插块。3.用低倍镜观察,根据不同型号荧光显微镜的调节装置,调整光源中心,使其位于整个照明光斑的中央。4.放置标本片,调焦后即可观察。 使用中应注意:末装滤光片不要用眼直接观察,以免引起眼的损伤;用油镜观察标本时,必须用无荧光的特殊油镜;高压汞灯关闭后不能立即重新打开,需经5分钟后才能再启动,否则会不稳定,影响汞灯寿命。荧光显微镜的观察在示教台上的荧光显微镜下用蓝紫光滤光片,可见经o.01%的丫啶橙荧光染料染色的细胞,细胞核和细胞质被激发产生两种不同颜色的荧光(暗绿色和橙红色)。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制