当前位置: 仪器信息网 > 行业主题 > >

碳化硅晶体检测

仪器信息网碳化硅晶体检测专题为您提供2024年最新碳化硅晶体检测价格报价、厂家品牌的相关信息, 包括碳化硅晶体检测参数、型号等,不管是国产,还是进口品牌的碳化硅晶体检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳化硅晶体检测相关的耗材配件、试剂标物,还有碳化硅晶体检测相关的最新资讯、资料,以及碳化硅晶体检测相关的解决方案。

碳化硅晶体检测相关的资讯

  • 【综述】碳化硅中的缺陷检测技术
    摘要随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。性质Si3C-SiC4H-SiCGaAsGaN金刚石带隙能量(eV)1.12.23.261.433.455.45击穿场(106Vcm−1)0.31.33.20.43.05.7导热系数(Wcm−1K−1)1.54.94.90.461.322饱和电子速度(107cms−1)1.02.22.01.02.22.7电子迁移率(cm2V−1s−1)150010001140850012502200熔点(°C)142028302830124025004000表1电力电子用宽禁带半导体与传统半导体材料的物理特性(室温值)对比提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。图1SiC生长过程示意图及各步骤引起的各种缺陷各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。图2可用于碳化硅的缺陷检测技术表2检测技术和缺陷的首字母缩写见图SEM:扫描电子显微镜OM:光学显微镜BPD:基面位错DIC:微分干涉对比PL:光致发光TED:螺纹刃位错OCT:光学相干断层扫描CL:阴极发光TSD:螺纹位错XRT:X射线形貌术拉曼:拉曼光谱SF:堆垛层错碳化硅的缺陷碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。图3SiC晶圆中出现的各种缺陷。(a)碳化硅缺陷的横截面示意图和(b)TEDs和TSDs、(c)BPDs、(d)微管、(e)SFs、(f)胡萝卜缺陷、(g)多型夹杂物、(h)划痕的图像生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。晶体缺陷螺纹刃位错(TEDs)、螺纹位错(TSDs)SiC中的位错是电子设备劣化和失效的主要来源。螺纹刃位错(TSDs)和螺纹位错(TEDs)都沿生长轴运行,Burgers向量分别为0001和1/311–20。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。基面位错(BPDs)另一种类型的位错是基面位错(BPDs),它位于SiC晶体的平面上,Burgers矢量为1/311–20。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线形特征,如图3c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。微管在SiC中观察到的常见位错是所谓的微管,它是沿生长轴传播的空心螺纹位错,具有较大的Burgers矢量0001分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。堆垛层错(SFs)堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。点缺陷点缺陷是由单个晶格点或几个晶格点的空位或间隙形成的,它没有空间扩展。点缺陷可能发生在每个生产过程中,特别是在离子注入中。然而,它们很难被检测到,并且点缺陷与其他缺陷的转换之间的相互关系也是相当的复杂,这超出了本文综述的范围。其他晶体缺陷除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。表面缺陷胡萝卜缺陷通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。多型夹杂物多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。划痕划痕是在生产过程中形成的SiC晶片表面的机械损伤,如图3h所示。裸SiC衬底上的划痕可能会干扰外延层的生长,在外延层内产生一排高密度位错,称为划痕,或者划痕可能成为胡萝卜缺陷形成的基础。因此,正确抛光SiC晶圆至关重要,因为当这些划痕出现在器件的有源区时,会对器件性能产生重大影响。其他表面缺陷台阶聚束是SiC外延生长过程中形成的表面缺陷,在SiC外延层表面产生钝角三角形或梯形特征。还有许多其他的表面缺陷,如表面凹坑、凹凸和污点。这些缺陷通常是由未优化的生长工艺和不完全去除抛光损伤造成的,从而对器件性能造成重大不利影响。检测技术量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。非光学缺陷检测技术非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。透射电子显微镜(TEM)透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm−1峰的微拉曼强度图KOH蚀刻KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。KOH刻蚀的优点是可以一次性检测SiC样品表面下的所有缺陷,制备SiC样品容易,成本低。然而,KOH蚀刻是一个不可逆的过程,会对样品造成永久性损坏。在KOH蚀刻后,需要对样品进行进一步抛光以获得光滑的表面。镜面投影电子显微镜(MPJ)镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。原子力显微镜(AFM)原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。扫描电子显微镜(SEM)扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。阴极发光(CL)阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。基于光学的缺陷检测技术为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。光学显微镜(OM)光学显微镜(OM)最初是为使用光学和光学放大元件近距离观察样品而开发的,可用于检查表面缺陷。该技术能够在暗场模式、明场模式和相位模式下生成图像,每种模式都提供特定的缺陷信息,并且这些图像的组合提供了识别大多数表面缺陷的能力。当检测灯照射在SiC晶圆表面时,暗场模式通过表面缺陷捕获散射光,因此图像具有深色背景,排除了未散射的光以及指示缺陷位置的明亮物体。另一方面,明场模式捕获未散射的光,由于缺陷的散射,显示带有深色物体的白色背景图像。相位模式捕获相移图像,这些图像由SiC晶圆表面的污染积累,显示相差图像。OM的散射图像在横向分辨率上具有优势,而相差图像主要针对检查晶圆表面的光滑度。一些研究已经有效地利用光学显微镜来表征表面缺陷。PeiMa等人发现,非常薄的胡萝卜缺陷或微管缺陷太小,无法通过光学相干断层扫描(OCT)进行检查,但由于其在横向分辨率方面的优势,可以通过光学显微镜进行检查。Zhao等利用OM研究了多型夹杂物、表面凹坑和台阶聚束的成因。光学相干断层扫描(OCT)光学相干断层扫描(OCT)是一种光学检测技术,可以提供所研究样品的快速、无损和3D地下图像。由于OCT最初用于诊断许多疾病,因此其大部分应用都是解析生物和临床生物医学样本的图像。然而,由于可见光和红外波长的先进光学元件的发展,OCT的分辨率已提高到亚微米级,因此人们对应用OCT检测SiC晶圆缺陷的兴趣日益浓厚。OCT中使用的光源具有宽带光谱,由可见光和红外区域的宽范围频率组成,因此相干长度很小,这意味着轴向分辨率可以非常高,而横向分辨率取决于光学器件的功能。OCT的原理基于低相干干涉测量,这通常是迈克尔逊型设置。OCT的光源分为两个臂,一个参考臂和一个检查臂。照射到参考臂的光束被反射镜反射,而照射到检测臂的光束被碳化硅晶圆反射。通过在参考臂中移动反射镜,两束光束的组合会产生干涉,但前提是两束光束之间的光程差小于相干长度。因此,探测器获取的干涉信号包含SiC晶圆的横截面信息,通过横向组合这些横截面检测,可以实现OCT的3D图像。然而,OCT的检测速度和横向分辨率仍无法与其他二维检测技术相媲美,工作光谱范围内表面散射和吸收损耗的干扰是OCT成像的主要局限性。PeiMa等人使用OCT分析胡萝卜缺陷、多型夹杂物、晶界和六边形空隙。Duncan等人应用OCT研究了单晶SiC的内部结构。微分干涉对比(DIC)微分干涉对比(DIC)是一种将相差引入表面缺陷图像的显微镜技术。与OM相比,使用DIC的优点是DIC的分辨率远高于OM的相位模式,因为DIC中的图像形成不受孔径的限制,并且DIC可以通过采用共聚焦扫描系统产生三维缺陷图像。DIC的光源通过偏振片进行线偏振,然后通过沃拉斯顿棱镜分成两个正交偏振子光束,即参考光束和检查光束。参考光束撞击碳化硅晶圆的正常表面,而检测光束撞击有缺陷的碳化硅晶圆表面,产生与缺陷几何形状和光程长度改变相对应的相位延迟。由于两个子光束是正交偏振的,因此在检测过程中它们不会相互干扰,直到它们再次通过沃拉斯顿棱镜并进入分析仪以生成特定于缺陷的干涉图案。然后,处理器接收缺陷信号,形成二维微分干涉对比图像。为了生成三维图像,可以使用共聚焦扫描系统来关闭偏离系统焦点的两个子光束,以避免错误检测。因此,通过使共聚焦系统的焦点沿光轴方向移动,可以获得SiC晶圆表面的三维缺陷图像。Sako等人表明,使用CDIC在SiC外延层上观察到具有刮刀形表面轮廓的表面缺陷。Kitabatake等人建立了使用CDIC的综合评估平台,以检查SiC晶圆和外延薄膜上的表面缺陷。X射线衍射形貌(XRT)X射线衍射形貌(XRT)是一种强大的亚表面检测技术,可以帮助研究SiC晶片的晶体结构,因为X射线的波长与SiC晶体原子间平面之间的距离相当。它用于通过测量由于缺陷引起的应变场引起的衍射强度变化来评估SiC晶圆的结构特性。这意味着晶体缺陷会导致晶格间距的变化或晶格周围的旋转,从而形成应变场。XRT常用于高通量、足分辨率的生产线;然而,它需要一个大规模的X射线发射装置,其缺陷映射能力仍然需要改进。XRT的图像形成机理基于劳厄条件(动量守恒),当加热灯丝产生的电子束被准直并通过高电势加速以获得足够的能量时,会产生一束准直的X射线,然后将其引导到金属阳极。当X射线照射到SiC晶片上时,由于X射线从SiC的原子间平面以特定角度散射的相长干涉和相消干涉,形成具有几个狭窄而尖锐峰的独特衍射图,并由探测器进行检查。因此,晶体缺陷可以通过衍射峰展宽分析来表征,如果不存在缺陷,衍射光谱又窄又尖锐 否则,如果存在缺陷引起的应变场,则光谱会变宽或偏移。XRT的检测机理是基于X射线衍射而不是电子散射,因此XRT被归类为光学技术,而SEM是一种非光学技术。Chikvaidze等人使用XRT来确认SiC样品中具有不同堆叠顺序的缺陷。Senzaki等人表明,扩展BPDs到TED的转变是在电流应力测试下使用XRT检测的三角形单个Shockley型堆垛层错(1SSF)的起源。当前的在线XRT通常用于识别缺陷结构,而没有来自其他检测技术(如PL和OM)的可识别检测信号。光致发光(PL)光致发光(PL)是用于检测晶体缺陷的最常用的亚表面检测技术之一。PL的高产量使其适用于在线批量生产。SiC是一种间接带隙半导体,在约380nm波长的近带边缘发射处显示PL。SiC晶片中在贯穿缺陷水平的重组可能是辐射性的。基于UV激发的PL技术已被开发用于识别SiC晶片内部存在的缺陷,如BPDs和SFs。然而,没有特征PL特征或相对于无缺陷SiC区域具有弱PL对比度的缺陷,如划痕和螺纹位错,应通过其他检查方法进行评估。由于发射能量根据缺陷的陷阱能级而变化,因此可以使用具有光谱分辨率的PL图像来区分每种类型的缺陷并对其进行映射。由于SF诱导的量子阱状能带结构,多型SF的PL光谱在350–550nm的波长范围内表现出多峰光谱。每种类型的SF都可以通过使用带通滤光片检查它们的发射光谱来区分,该滤光片滤除单个光谱,如图4c所示。Berwian等人构建了一种基于UV-PL的缺陷发光扫描仪,以清楚地检测BPDs、SFs和多型夹杂物。Tajima等人使用具有从深紫外到可见光和近红外等各种激发波长的PL来检测TEDs、TSDs、SFs,并检查PL与蚀刻凹坑图案之间的相关性。然而,一些缺陷的PL图像是相似的,如BPDs和胡萝卜缺陷,它们都表现出线状特征,使得PL难以区分它们,因此其他结构分析工具,如XRT或拉曼光谱,通常与PL并行使用,以准确区分这些缺陷。拉曼光谱拉曼光谱在生物学、化学和纳米技术中具有广泛的应用,用于识别分子、化学键和纳米结构的特征。拉曼光谱是一种无损的亚表面检测方法,可以验证SiC晶片中不同的晶体结构和晶体缺陷。通常,SiC晶圆由激光照射,激光与SiC中的分子振动或声子相互作用,使分子进入虚拟能量状态,导致被检测光子的波长向上或向下移动,分别称为斯托克斯拉曼散射或反斯托克斯拉曼散射。波长的偏移提供了有关SiC振动模式的信息,对应于不同的多型结构。研究表明,在实测的拉曼光谱中,200和780cm−1处的特征峰表示SiC的4H-多型,而160、700和780cm−1处的特征峰表示SiC的6H-多型。Chikvaidze等人使用拉曼光谱证实了2C-SiC样品中存在拉曼峰约为796和971cm−1的3H-SiC多型。Hundhausen等人利用拉曼光谱研究了高温退火过程中3C-SiC的多型转化。Feng等人发现了微管、TSDs和TEDs的峰值中心偏移和强度变化,如图4e所示。对于空间信息,拉曼映射的图像如图4f所示。通常,拉曼散射信号非常微弱,因此拉曼光谱需要很长时间才能收集到足够的信号。该技术可用于缺陷物理的详细分析,但由于信号微弱和电流技术的限制,它不适合在线检测。缺陷对设备的影响每种类型的缺陷都会对晶圆的质量产生不利影响,并使随后在其上制造的器件失效。缺陷和设备故障之间的劣化与杀伤率有关,杀伤率定义为估计导致设备故障的缺陷比例。每种缺陷类型的杀伤率因最终应用而异。具体而言,那些对器件造成重大影响的缺陷被称为杀手缺陷。先前的研究表明,缺陷与器件性能之间存在相关性。在本节中,我们将讨论不同缺陷对不同设备的影响。在MOSFET中,BPDs会增加导通电阻并降低栅极氧化层的可靠性。微管限制了运行电流并增加了泄漏电流,而SFs,胡萝卜和多型夹杂物等缺陷降低了阻断电压,表面上的划痕会导致可靠性问题。Isshiki等人发现,SiC衬底下存在潜在的划痕,包括复杂的堆垛层错和位错环,导致SiC-MOSFET中氧化膜的台阶聚束和介电强度下降。其他表面缺陷(如梯形特征)可能会对SiCMOSFET的沟道迁移率或氧化物击穿特性产生重大影响。在肖特基势垒二极管中,BPDs、TSDs和TEDs增加了反向漏电流,而微管和SFs降低了阻断电压。胡萝卜缺陷和多型夹杂物都会降低阻断电压并增加泄漏电流,而划痕会导致屏障高度不均匀。在p-n二极管中,BPD增加了导通电阻和漏电流,而TSDs和TEDs降低了阻断电压。微管限制了工作电流并增加了泄漏电流,而SF增加了正向电压。胡萝卜和多型夹杂物会降低阻断电压并增加漏电流,而表面上的划痕对p-n二极管没有直接影响。Skowronski等人表明,在二极管工作期间,SiC外延层内的BPDs转化为SFs,或者允许SFs通过导电沿着BPDs延伸,导致电流退化,从而增加SiCp-n二极管的电阻。研究还证明,SFs可能产生3C-SiC多型,导致SiCp-n二极管的少数载流子寿命缩短,因为3C-SiC多型的带隙低于4H-SiC多型,因此SFs充当量子阱,提高了复合率。此外,在PL表征下,单个Shockley型SFs膨胀,导致结电位发生变化,进而降低SiCp-n二极管的导通电阻。此外,TSDs会导致阻断电压下降,TEDs会降低SiCp-n二极管的少数载流子寿命。在双极器件中,BPD会降低栅极氧化层的可靠性,而TSD和TED会降低载流子寿命。微管限制了工作电流,而SF缩短了载流子寿命。胡萝卜和多型夹杂物会降低阻断电压,增加泄漏电流,并缩短载流子寿命。SiC中的点缺陷(空位)会缩短器件的载流子寿命,导致结漏电流并导致击穿电压降低。尽管点缺陷对电子设备有负面影响,但它们也有一些有用的应用,例如在量子计算中。Lukin等人发现,SiC中的点缺陷,如硅空位和碳空位,可以产生具有合适自旋轨道属性的稳定束缚态,作为量子计算的硬件平台选择。缺陷对不同器件的影响如图5所示。可以看出,缺陷会以多种方式恶化器件特性。虽然可以通过设计不同的设备结构来抵消缺陷的负面影响,但迫切需要建立一个快速准确的缺陷检测系统,以帮助人们观察缺陷并进一步优化过程以减少缺陷。请注意,分析SiC器件的特性以识别缺陷的类型和存在可能被用作缺陷检查方法(图6、7)。图5缺陷对不同设备的影响图6人工智能辅助的缺陷检测和设备性能评估图7利用激光减少制造过程中缺陷的方法高效的缺陷检测系统需要能够同时识别表面缺陷和晶体缺陷,将所有缺陷归入正确的类别,然后利用多通道机器学习算法显示整个晶圆的缺陷分布数据映射。Kawata等人设计了一种双折射图像中n型SiC晶圆位错对比度的自动检测算法,并以较高的精度和灵敏度成功检测了XRT图像位错对比度的位置。Leonard等人使用深度卷积神经网络(DCNN)机器学习进行自动缺陷检测和分类,方法是使用未蚀刻晶圆的PL图像和相应蚀刻晶圆的自动标记图像作为训练集。DCNN确定的缺陷位置和分类与随后刻蚀刻的特征密切相关。Monno等人提出了一种深度学习系统,该系统通过SEM检查SiC衬底上的缺陷,并以70%的准确率对其进行分类。该方法可以在不出现线性缺陷不一致的情况下组合多个瓦片,并能对126个缺陷进行检测和分类,具有很好的精度。除了检测缺陷外,降低缺陷密度也是提高SiC器件质量和良率的有用方法。通过使用无微管种子或基于溶液的生长,可以降低微管和TSD的密度。为了减少机械过程引起的表面缺陷,一些研究指出,飞秒激光可用于提高化学-机械平坦化的效率和切割质量。飞秒激光退火还可以提高Ni和SiC之间的欧姆接触质量,增加器件的导电性。除了飞秒激光的应用外,其他一些团队还发现,使用激光诱导液相掺杂(LILPD)可以有效减少过程中产生的损伤。结论在这篇综述文章中,我们描述了缺陷检测在碳化硅行业中的重要性,尤其是那些被称为杀手级缺陷的缺陷。本文全面综述了SiC晶圆生产过程中经常出现的晶体学和表面缺陷的细节,以及这些缺陷在不同器件中引起的劣化性质。表面缺陷对大多数器件都是有害的,而晶体缺陷则对缺陷转化和晶圆质量有风险。在了解了缺陷的影响之后,我们总结了常见的表面和亚表面检测技术的原理,这些技术在缺陷检测中的应用,以及每种方法的优缺点。破坏性检测技术可以提供可观察、可靠和定量的信息 然而,这些不能满足在线批量生产的要求,因为它们非常耗时,并且对样品的质量产生不利影响。另一方面,无损检测技术,尤其是基于光学的技术,在生产线上更适用、更高效。请注意,不同的检测技术是相辅相成的。检测技术的组合使用可能会在吞吐量、分辨率和设备复杂性之间取得平衡。未来,有望将具有高分辨率和快速扫描能力的无损检测方法集成到能够同时检测表面缺陷和晶体缺陷的完美缺陷检测系统中,然后使用多通道机器学习算法将所有缺陷分配到正确的类别,并将缺陷分布数据的映射图像显示到整个SiC晶圆上。原文链接:Defect Inspection Techniques in SiC | Discover Nano (springer.com)
  • CASA发布《碳化硅金属氧化物半导体场效应晶体管通用技术规范》团队标准【附标准全文】
    碳化硅(SiC)具有宽禁带、耐击穿的特点,其禁带宽度是Si的3倍,击穿电场为Si的10倍;且其耐腐蚀性极强,在常温下可以免疫目前已知的所有腐蚀剂。而金属氧化物半导体场效晶体管(简称:金氧半场效晶体管;英语:Metal-Oxide-Semiconductor Field-Effect Transistor,缩写:MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。2020年12月28日,北京第三代半导体产业技术创新战略联盟发布一项联盟标准T/CASA 006-2020《碳化硅金属氧化物半导体场效应晶体管通用技术规范》。该项标准由中国科学院微电子研究所牵头起草,按照CASAS标准制定程序(立项、征求意见稿、委员会草案、发布稿),反复斟酌、修改、编制而成。标准的制定得到了很多CASA标准化委员会正式成员的支持。标准于2021年1月1日施行。附件下载https://www.instrument.com.cn/download/shtml/976637.shtml【相关阅读】企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇第27批国家企业技术中心名单出炉,涉及这些仪器厂商探寻微弱电流的律动:超高精度皮安计模块亮相三家半导体设备商上榜“中国上市企业市值500强”862项标准获批,涉及半导体、化工检测和检测仪器等领域盘点各地十四五规划建议”芯“政策湖北省集成电路CMP用抛光垫三期项目拟购置43台仪器设备
  • 科友半导体碳化硅跻身8吋行列
    12月30日,记者从科友半导体获悉,公司试验线再传捷报,科友半导体通过自主设计制造的电阻长晶炉产出直径超过8吋的碳化硅单晶,晶体表面光滑无缺陷,最大直径超过204mm。这是科友半导体于今年10月在6吋碳化硅晶体厚度上实现40mm突破后,在碳化硅晶体生长尺寸上取得的又一重大突破。科友半导体从实现6吋碳化硅晶体稳定生长开始,就着手布局8吋碳化硅晶体研发,并得到了当地政府、科技等部门的关注和支持。在历经数年的研发实验、成功制备出8吋碳化硅电阻长晶炉后,着力解决了大尺寸长晶过程中温场分布不均匀以及气相原料碳硅比和输运效率等问题,同时专项攻关解决应力大导致的晶体开裂问题。在多年无数次的探索、模拟、实验、重复、改进后,借助科友半导体自主研发的热场稳定性高、工艺重复性好的电阻长晶炉,研发团队终于掌握了8吋碳化硅晶体生长室内温场分布和高温气相输运效率等关键技术,获得了品质优良的8吋碳化硅单晶,为实现下一步的8吋碳化硅晶体产业化量产打下坚实的基础。在碳化硅产业链成本中,衬底占比约为47%,是最“贵”的环节,同时也是整个产业链中技术壁垒最高的环节。国际上8吋碳化硅单晶衬底研制成功已有报道,但迄今尚未有产品投放市场。8吋碳化硅长晶工艺的突破,意味着科友半导体在单晶制备技术水平上达到了一个新的高度。资料显示,科友半导体全称哈尔滨科友半导体产业装备与技术研究院有限公司,于2018年5月成立,是一家国家级高新技术企业,专注于半导体装备研发、衬底制造、器件设计、技术转移和科研成果转化。公司以哈尔滨为总部,打造国家级第三代半导体装备与材料创新中心。
  • 晶盛机电:拟57亿定增加码碳化硅、半导体设备
    10月25日晚间,晶盛机电发布定增预案,拟向不超过35名(含)特定对象发行募集资金总额不超过57亿元(含本数),在扣除发行费用后拟全部用于以下项目:31.34亿元用于碳化硅衬底晶片生产基地项目,5.64亿元用于12英寸集成电路大硅片设备测试实验线项目,4.32亿元用于年产80台套半导体材料抛光及减薄设备生产制造项目,15.7亿元用于补充流动资金。据悉,本次晶盛机电向特定对象发行股票的发行数量不超过2.57亿股(含本数)。发行价格不低于定价基准日前20个交易日公司A股股票交易均价的80%。受惠于光伏和半导体热潮的影响,今年以来,晶盛机电股价持续走高,在9月初总市值一度触及千亿大关。截止到10月25日收盘,该股报价74.96元,上涨1.99%,总市值为963.66亿。半年报显示,晶盛机电为硅、碳化硅、蓝宝石三大主要半导体材料设备生产商。在硅材料领域,公司开发出了应用于光伏和集成电路领域两大产业的系列关键设备,包括全自动晶体生长设备(直拉单晶生长炉、区熔单晶炉)、晶体加工设备(单晶硅滚磨机、截断机、开方机、金刚线切片机等)、晶片加工设备(晶片研磨机、减薄机、抛光机)、CVD设备(外延设备、LPCVD设备等)、叠瓦组件设备等;在碳化硅领域,公司的产品主要有碳化硅长晶设备及外延设备;在蓝宝石领域,公司可提供满足LED照明衬底材料和窗口材料所需的蓝宝石晶锭、晶棒和晶片。公司产品主要应用于集成电路、太阳能光伏、LED、工业4.0等具有广阔发展前景的新兴产业。从近期公开的生产信息看,公司半导体等领域订单均处于产销两旺的状态,本次定增募资扩大产能也属于有的放矢。
  • 喜报 | 热烈庆祝创锐光谱首套碳化硅晶圆成像检测系统成功发运行业知名客户
    “南园春半踏青时,风和闻马嘶”。阳春三月,春风送暖。历经了150多个日夜不眠不休地组装调试,创锐光谱碳化硅(SiC)晶圆质量大面积成像系统SiC-MAPPING532(下简称S-532)达到持续稳定运行标准,正式下线发运行业知名客户。S-532为国际首台套基于瞬态光谱技术的第三代半导体缺陷检测设备,不仅实现了相关技术的全自主国产化替代,在各种技术指标上也全面超越进口同类产品。S-532的成功应用将助力国产SiC产业的高质量发展,加速推进解决关键材料的 “卡脖子”问题。同时,S-532设备的应用也标志着创锐光谱在工业检测领域实现重要突破,向工业检测蓝海市场迈出坚实的第一步。SiC晶圆质量检测系统正式下线交付,全体研发工程师合影吊装打包整装待发碳化硅(SiC)是第三代半导体材料,具有宽的禁带宽度、高击穿电场、高热传导率和高电子饱和速率等众多优异物理性能,可广泛应用于5G通信、航空航天、新能源汽车、智能电网等领域。由于生产工艺成熟度等问题,目前工业级碳化硅晶圆中的缺陷(如点缺陷、晶格缺陷、杂质等)浓度通常远高于硅晶半导体晶圆,因此对碳化硅晶圆的表面和体相缺陷检测对管控晶圆质量、优化工艺、提高晶圆和芯片良率至关重要!在相关体相缺陷检测中,传统的微波电导率点扫描检测由于其空间、时间分辨率和检测效率等关键参数上的不足,无法实现碳化硅晶圆的高精度、高效检测。碳化硅晶圆针对上述工业界应用的痛点问题,创锐光谱基于其在超快瞬态吸收光谱领域的深厚技术积累,于2022年8月成立了针对碳化硅晶圆大面积质量成像检测技术攻关项目组,依托自主研发的高能、高频、高稳定性激光技术,创新性地开发了大面积高速相机成像检测方法和相关软件、算法系统。通过对晶圆少子寿命长短和分布等物理性质的高速成像采集,实现了对SiC晶圆(4寸、6寸和8寸)的快速质量成像检测和分析。S-532技术指标可以达到100μm高精度空间分辨和15ns的超快时间分辨,可对晶圆体相中点缺陷浓度、缺陷分布进行快速、无损和非接触式检测。其整机自动化设备具备全面自动化晶圆转运、测试、数据处理和一键输出报告等优异功能。在超过100天的稳定性测试中,S-532可完全达到工业级应用要求,多项关键指标国际领先。凭着本土化技术,在客户使用便捷度、售后服务响应、后期维护成本上,S-532也将具备得天独厚的优势。SiC MAPPING-532碳化硅晶圆成像检测系统做一个领路人是艰难的,做一个没有火把的夜行领路人更是充满挑战。在研发过程中,创锐SIC项目组攻克了一个又一个的技术难题,实验室里的不眠不休、攻坚克难成为那段日子属于创锐光谱的专属时光印迹。正是凭着这种精神,创锐人砥砺前行,从一个想法,到一张蓝图,最终实现一台高端精密的检测设备,这其中凝聚着所有研发工程师的无数心血。“坚持做我们认为正确的事”,是创锐人磨不掉的坚定信念。研发工程师加班加点攻克技术难点创锐光谱将一如既往地坚持以科技创新为引领,加大研发投入和半导体检测新技术的开发,持续推动第三代半导体晶圆级检测、LED晶圆检测和新一代光伏面板检测等技术的工业应用,力争成为半导体光谱检测行业领军企业。点击观看发货纪实
  • 大突破!意法半导体成功制造出200mm碳化硅晶圆
    7月27日消息,“意法半导体中国”官方微信宣布,意法半导体(简称“ST”)瑞典北雪平工厂成功制造出首批200mm (8英寸)碳化硅(SiC)晶圆片,这些晶圆将用于生产下一代电力电子芯片的产品原型。资料显示,碳化硅一种宽禁带化合物半导体材料,相对于传统的硅材料来说,碳化硅属于第三代半导体材料的典型代表,其拥有禁带宽度宽、耐高温、耐高压、高频、大功率、抗辐射等特点,具有开关速度快、效率高的优势, 可大幅降低产品功耗、提高能量转换效率并减小产品体积。目前,碳化硅半导体器件主要应用于高压输变电、轨道交通、电动汽车、通讯基站等重要领域。需要指出的是,而碳化硅材料的生长也效率非常低,并不像硅材料那样,可以相对容易的制备出数米长的晶棒。目前碳化硅生长出来体积也相对比较小,所以大多数情况下都只能制备成直径100mm或150mm晶圆。而且,碳化硅属于硬度非常高(碳化硅单晶材料莫氏硬度分布在9.2~9.6之间,仅仅比金刚石的硬度低0.5左右)的脆性材料,因此,碳化硅晶圆的制备损耗非常高(通常损耗高达三分之二),良率也比较低。在第九届EEVIA年度中国电子ICT媒体论坛暨2021产业和技术展望研讨会上,英飞凌电源与传感系统事业部市场总监程文涛就表示:“碳化硅材料的加工门槛非常高,因此目前这个行业主要的碳化硅厂商,都是一些IDM厂商。目前在SiC晶圆这一块,排在第一位的Cree差不多占了60%的市场,其次是美国II-VI公司,市场份额约为16%。”此次,ST宣布成功制造出首批200mm (8英寸)碳化硅(SiC)晶圆片,确实令业界感到非常的震撼。200mm的碳化硅晶圆相比与150mm的碳化硅晶圆相比,可用于制造集成电路的可用面积几乎扩大1 倍,使得产量和生产效率可以得到极大的提升。此外,在良率方面,ST表示,依托于意法半导体碳化硅公司(前身是Norstel公司,2019年被ST收购)在SiC硅锭生长技术开发方面的深厚积累和沉淀,ST的首批200mm SiC晶圆片质量上乘,影响芯片良率和晶体位错的缺陷非常少。200nm碳化硅晶圆的合格芯片产量也达到了150mm碳化硅晶圆的1.8 - 1.9 倍。ST表示,SiC晶圆升级到200mm标志着ST面向汽车和工业客户的扩产计划取得重要的阶段性成功,巩固了ST在这一开创性技术领域的领导地位。这项颠覆性技术可实现更高效的电能转换,更小的更轻量化的设计,节省更多的系统设计总体成本,这些都是决定汽车和工业系统成功的关键参数和因素。不过,需要指出的是,目前SiC器件的生产线都还是150mm的产线,因此SiC晶圆升级到200mm,还需要对制造设备和整体支持生态系统进行升级更换。目前ST正在与供应链上下游技术厂商合作开发自己的制造设备和生产工艺。资料显示,ST在SiC领域的领先地位归功于25年的专注和研发投入,拥有 70 多项专利。目前ST量产碳化硅产品STPOWER SiC是在卡塔尼亚(意大利)和宏茂桥(新加坡)两家150mm晶圆厂完成前工序制造,后工序制造是在深圳(中国)和布斯库拉(摩洛哥)的两家封测厂进行的。SiC晶圆升级到200mm属于公司正在执行的SiC衬底建新厂和内部采购SiC衬底占比超40%的生产计划。
  • 天域半导体“碳化硅外延片的生长工艺”专利公布
    天眼查显示,广东天域半导体股份有限公司“碳化硅外延片的生长工艺”专利公布,申请公布日为2024年6月28日,申请公布号为CN118256991A。背景技术碳化硅半导体具有优良的稳定性、高热导率、高临界击穿场强、高饱和电子漂移速度等优良特性,是制作高温、高频、大功率和强辐射电力电子器件的理想半导体材料。与传统的硅器件相比,碳化硅器件能够在10倍于硅器件的电场强度下正常工作。用于制作碳化硅器件的碳化硅材料通常是在碳化硅衬底上生长碳化硅外延片。目前的碳化硅外延片,尤其是8英尺的碳化硅衬底,其晶体缺陷密度高,碳化硅衬底的长晶技术并不成熟,尤其是一些TSD、BPD、SF等缺陷会贯穿上来,所以需要有非常高的外延生长技术将其在外延层初期抑制住。而目前外延生长技术较为单一,主要为单一外延生长技术沉积,当前比较普遍的是采用化学气相沉积(CVD)生长外延片。现有化学气相沉积(CVD)外延生长是在碳化硅衬底上生长一层SiC外延层,以高纯H2作为输运和还原气体、TCS和C2H4为生长源(即为H2+SiH4+C2H4)、N2作为N型外延层的掺杂源、Ar作为保护气体。其工艺的主要生长环境要求1500℃以上高温,反应室内气压低于1×10-6mbar,并且水平式单片生长因其均匀性问题需要气悬浮基座旋转。于碳化硅衬底上直接采用化学气相沉积外延无法生长出高质量的、组分和杂质浓度更精确控制的单晶薄膜,并且会有残余气体对碳化硅薄膜有污染,导致衬底贯穿上来的晶体缺陷无法有效抑制,并且生长速率偏向快速,无法更精准的控制薄膜沉积。由上可知,目前的化学气相沉积外延层仍然存在各种缺陷,其会对碳化硅器件特性造成影响,所以针对碳化硅的外延生长工艺需要进行不断的优化。发明内容本发明提供了一种碳化硅外延片的生长工艺。此碳化硅外延片的生长工艺包括依次的如下步骤:(I)将碳化硅衬底进行前处理;(II)采用分子束外延设备于所述碳化硅衬底上形成第一碳化硅缓冲层;(III)置于化学气相沉积设备的外延炉中,先于1000~1400℃下进行热处理,再升高温度进行气相沉积以于所述第一碳化硅缓冲层上形成第二碳化硅缓冲层;(IV)于所述第二碳化硅缓冲层上外延生长出预定厚度的外延层。本发明的碳化硅外延片的生长工艺可消除反应产物污染,在衬底与外延层间做好贯穿晶体缺陷的转化,可完美的隔离外延缺陷。
  • 天科合达自筹第三代半导体材料碳化硅项目开工
    p 近日,北京天科合达半导体股份有限公司(以下简称“天科合达”)第三代半导体碳化硅衬底产业化基地建设项目开工仪式举行。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img.dramx.com/website/dramx/20200819094128_2.png"//pp style="text-align: center "Source:天科合达/pp 资料显示,第三代半导体碳化硅衬底产业化基地建设项目是天科合达自筹资金建设的用于碳化硅晶体衬底研发及生产的项目,总投资约9.5亿元人民币,总建筑面积5.5万平方米,新建一条400台/套碳化硅单晶生长炉及其配套切、磨、抛加工设备的碳化硅衬底生产线,项目计划于 2022年年初完工投产,建成后可年产碳化硅衬底12万片。/pp 北京天科合达半导体股份有限公司总经理杨建表示,目前第三代半导体行业正处于蓬勃发展的阶段,近两年国家对第三代半导体产业高度重视,天科合达公司作为国内领先的碳化硅晶片生产企业和全球主要碳化硅晶片生产企业之一,该项目在大兴区黄村镇顺利开工建设,标志着北京市SiC衬底材料和器件的产业进程将进一步加速发展,对于促进我国碳化硅半导体产业延伸,引领第三代半导体产业发展具有重要的示范意义。/ph4科创板IPO申请已获上交所问询/h4p 资料显示,天科合达于2006年9月由新疆天富集团、中国科学院物理研究所共同设立,目前注册资本为18384万元,是一家专业从事第三代半导体碳化硅(SiC)晶片研发、生产和销售的高新技术企业,是全球SiC晶片的主要生产商之一,拥有一个研发中心和一个集晶体生长-晶体加工-晶片加工-清洗检测的全套碳化硅晶片生产基地;全资子公司—新疆天科合达蓝光半导体有限公司位于新疆石河子市,主要进行碳化硅晶体生长。/pp 目前,天科合达正在闯关科创板,7月14日,上交所正式受理该公司的科创板申请,目前其审核状态为“已问询”。根据招股说明书(申报稿)显示,天科合达此次拟募集资金5亿元,拟用于第三代半导体碳化硅衬底产业化基地建设项目。/pp 申报稿显示,天科合达第三代半导体碳化硅衬底产业化基地建设项目计划投资总额为9.6亿元,其中以募集资金投入金额为5亿元,将主要建设一个包括晶体生长、晶片加工和清洗检测等全生产环节的生产基地。项目投产后年产12万片6英寸碳化硅晶片,其中6英寸导电型碳化硅晶片约为8.2万片,6英寸半绝缘型碳化硅晶片约为3.8万片。/pp 根据国家发改委发布的《战略型新兴产业重点产品和服务指导目录(2016年版)》,碳化硅等电子功能材料列入战略型新兴产业重点产品目录。根据工信部、国家发改委、科技部与财政部联合发布的《新材料产业发展指南》,宽禁带半导体材料属于鼓励发展的“关键战略材料”,大尺寸碳化硅单晶属于“突破重点应用领域急需的新材料”。/pp 根据2017年科技部发布的《“十三五”先进制造技术领域科技创新专项规划》,针对碳化硅(SiC)、氮化镓(GaN)等为代表的宽禁带半导体技术对关键制造装备的需求,开展大尺寸(6英寸)宽禁带半导体材料制备、器件制造、性能检测等关键装备与工艺研究已经列为我国“十三五”期间先进制造领域的重点任务。/pp 作为宽禁带半导体器件制造的关键原材料,碳化硅衬底材料制造的技术门槛较高,国内能够向企业用户稳定供应4英寸及6英寸碳化硅衬底的生产厂商相对有限。受中美贸易环境等经济局势影响,近年来我国碳化硅器件厂商的原材料供应受到较大程度的制约,下游市场出现了供不应求的局面。提高碳化硅衬底材料的国产化率、实现进口替代是我国宽禁带半导体行业亟需突破的产业瓶颈。/pp 天科合达表示,公司拟投资建设的第三代半导体碳化硅衬底产业化基地建设项目在扩大现有产能的基础上,通过进一步优化工艺技术,能够实现对下游客户的稳定批量供应,缓解下游市场对碳化硅衬底材料的迫切需求。同时能够进一步提升核心产品的竞争力,提高公司在国内和国际的市场地位,增强在宽禁带半导体材料领域的影响力。/p
  • 年产10万片碳化硅单晶衬底项目在涞源投产
    9月5日上午,河北同光科技发展有限公司年产10万片直径4-6英寸碳化硅单晶衬底项目,在保定市涞源县经济开发区投产,成为保定第三代半导体产业从研发到规模量产的一次成功跨越。碳化硅单晶作为第三代半导体材料的核心代表,处在碳化硅产业链的最前端,是高端芯片产业发展的基础和关键。河北同光晶体有限公司是全省首家能够量产第三代半导体材料碳化硅单晶的战略新兴企业。2020年3月,涞源县人民政府与该公司签署协议,政企共建年产10万片直径4-6英寸碳化硅单晶衬底项目,总投资约9.5亿元、规划占地112.9亩。项目采用国际先进的碳化硅单晶衬底生产技术,布局单晶生长炉600台,购置多线切割机、研磨机等加工设备200余台,建成具有国际先进水平的碳化硅单晶衬底生产线。该公司董事长郑清超介绍,项目从动工到投产用时17个月,满产运行后能够将产能提升3倍,产品将面向5G通讯、智能汽车、智慧电网等领域,满足其芯片需求,预计年销售收入5-10亿元。下一步,同光正谋划建设2000台碳化硅晶体生长炉生长基地和年产60万片碳化硅单晶衬底加工基地,拟总投资40亿元。到2025年末实现满产运营后,预计新增产值40-50亿元,成为全球重要的碳化硅单晶衬底供应商。保定市副市长王建峰表示,保定不仅具有支撑科技成果转化落地的产业优势,还拥有17所驻保高校、354家科技创新平台、23万名专业技术人才等雄厚人才支撑的科技创新优势,是全国创新驱动发展示范市和“科创中国”试点城市。未来将在数字经济、生物经济、绿色经济领域全面发力,重点围绕“医车电数游”、被动式超低能耗建筑和都市型农业等七大重点产业,大力实施“产业强市倍增计划”和“双千工程”,积极推动“北京研发保定转化、雄安创新保定先行”,着力建设创新驱动之城,加快构建京雄保一体化发展新格局,聚力打造京津冀城市群中的现代化品质生活之城。
  • 关于碳化硅,你不知道的事......
    碳和硅的原子序数分别为6和14,在元素周期表中处于碳族元素的第二和第三周期,即上下相邻的位置。这种位置关系,表明它们在某些方面具有类似的性质。碳元素在我们的生活中无处不在,含碳化合物是生命的物质基础。硅也在地壳中的含量巨大,尤其是它在半导体和现代通讯业中的应用,推动了人类文明的发展。在化学的世界里,碳和硅是同一族的亲兄弟;在我们生活的地球上,他们共存了数十亿年,却没有结成生死与共的牢固友谊,自然界中的碳化硅矿石十分罕见。1824年,瑞典科学家Jons Jakob Berzelius在合成金刚石时观察到碳化硅(SiC)的存在,就此拉开了人类对于碳化硅材料研究的序幕。直到1891年,美国人E.G. Acheson在做电熔金刚石实验时,偶然得到了碳化硅。当时误认为是金刚石的混合体,故取名金刚砂。1893年,Acheson研究出来了工业冶炼碳化硅的方法,也就是大家常说的艾奇逊炉,并一直沿用至今。这种方法是同以碳质材料为炉芯体的电阻炉,通电加热石英SiO2和碳的混合物生成碳化硅。C和Si同族两兄弟强强联手,使得碳化硅这种材料拥有许多优异的化学和物理特性:优越的化学惰性、高硬度、高强度、较低的热膨胀系数以及高导热率,同时它还是一种半导体。纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的 α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。中国碳化硅与世界先进水平的差距主要集中在四个方面:一是在生产过程中很少使用大型机械设备,很多工序依靠人力完成,人均碳化硅产量较低;二是在碳化硅深加工产品上,对粒度砂和微粉产品的质量管理不够精细,产品质量的稳定性不够;三是某些尖端产品的性能指标与发达国家同类产品相比有一定差距;四是冶炼过程中一氧化碳直接排放。碳化硅的制品之一的碳化硅陶瓷具有的高硬度、高耐腐蚀性以及较高的高温强度等特点,这使得碳化硅陶瓷得到了广泛的应用。如今,碳化硅的应用已从最早期的磨料,发展到轴承、半导体、航空航天和化学等多个领域。微反应器由于化学品和微通道内壁超高的接触表面积,对内壁材质的要求非常严苛。微通道反应器也成为了碳化硅的一个重要应用。究竟什么样的碳化硅适用于制造微通道反应器吗?从表1的数据可以看出,在40%浓度氢氟酸的腐蚀下,康宁UniGrain™ 碳化硅的抗腐蚀性比市场上供应的碳化硅好300倍。在30%浓度氢氧化钠的条件下,康宁碳化硅的抗腐蚀性也明显优与市场上供应的碳化硅。哈氏合金是一种被大家所熟知、具有良好抗腐蚀性和热稳定性的材料。那我们的Unigrain™ 碳化硅与这种超抗腐蚀材料相比,是否能更胜一筹呢?通过表2中数据可以看出,Unigrain™ 碳化硅在40%HF、220℃条件下的年腐蚀量远远小于哈氏合金HC-2000,HC-22, HC-276,Inconel 625在20%HF、52℃条件下的年腐蚀量。二、高纯度 - 材料的均匀性微反应器通道尺寸小,如何保证通道无死区,物料无残留呢?一方面与微反应器通道的设计有关,另一方面与反应器材质有关。用扫描电镜SEM对 Corning UniGrain™ 碳化硅进行了材料微结构分析。结果显示,UniGrain™ 碳化硅烧结粒度很小,在 5 ~ 20 μm之间,并且结构致密且均匀。因此反应通道表面平滑,确保了反应的稳定性。通过下列电镜对比图,很容易发现,市场上的碳化硅烧结粒度和微结构均匀度与UniGrain™ 碳化硅有明显的差异。三、耐冷热冲击为了适应化学反应中不断出现的高温或低温条件,微通道反应器材料还需要具有高度耐冷热冲击的性能。康宁UniGrain™ 碳化硅拥有超4x10-6/oC的低热膨胀系数, 确保了反应器能抵抗反应带来的大量冷热冲击。做好反应器,材料是根本!碳化硅有70多种晶型,康宁UniGrain™ 碳化硅和普通碳化硅不一样;就像康宁锅和其它玻璃锅不一样;康宁大猩猩盖板玻璃和其它玻璃不一样。除了上诉的三点以外,UniGrain™ 碳化硅还拥有110~180 W/m.K(常温)超高导热性,15MPa超高模块暴裂压力。并且它没有周期性疲劳,使用寿命长达20年以上。 四、康宁专利结构设计康宁微通道反应器采用模块化结构:独特“三明治”多层结构设计 集“混合/反应”和“换热”于一体,精准控制流体流动分布,极大地提升了单位物料的反应换热面积 (1000倍)。专利的“心型”通道结构设计,高度强化非均相混合系列,提高混合/传质效率 (100 倍)。康宁以客户需求为导向,提供从入门教学 、工艺研发 –到工业化生产全周期解决方案。康宁反应器技术知识产权声明康宁致力于向客户提供业内领先的产品和服务,并持续投入反应器技术的研发。康宁拥有一系列覆盖全球的反应器技术专利,截止至2019年3月5日,康宁在全球范围内共申请相关专利224项,已授权157项,其中中国授权专利34项。制造或销售康宁专利所覆盖的产品或使用康宁专利所保护的工艺需获得康宁授权。未经授权擅自使用康宁专利即构成侵权。康宁对侵犯知识产权的行为零容忍,将采取一切必要的手段保护其知识产权。 五、全周期解决方案• 康宁碳化硅反应器能处理所有化学体系包括氢氟酸和高温强碱体系,超高的混合,反应,换热性能;• 可针对研发平台的需求,调整模块数量,灵活拆分组合来实现不同工艺路线;• 可根据项目需要,与G1玻璃反应器组合使用,使得装置好用而且“看得见”;• 适用于工艺快速筛选、工艺优化和小吨位批量合成生产;• 国内已有相当多企业建立了数百套多功能平台和数十套工业化装置。每一台康宁微通道反应器,都凝聚着康宁科学家160多年对材料科学和工艺制造的专业知识和宝贵经验!
  • 露笑科技拟在合肥投建第三代功率半导体(碳化硅)产业园
    p 上证报中国证券网讯 露笑科技8月9日晚间公告称,公司8月8日与合肥市长丰县人民政府签署了共同投资建设第三代功率半导体(碳化硅)产业园的战略合作框架协议,双方将在合肥市长丰县共同投资建设第三代功率半导体(碳化硅)产业园,包括但不限于碳化硅等第三代半导体的研发及产业化项目,包括碳化硅晶体生长、衬底制作、外延生长等的研发生产,项目投资总规模预计100亿元。/pp  合肥市长丰县人民政府将为该项目提供优惠政策、资金(包括但不限于股权、债权投资)支持;为该项目提供土地、基础设施配备、用工等保障,对该项目的投资建设及运营提供必要的支持与协助等。/pp  露笑科技主要从事漆包线、机电、蓝宝石和新能源汽车业务的生产、销售。公司是国内领先的电磁线生产龙头企业,2019年完成不良资产剥离和顺宇洁能优质发电业务的资产并表,形成“新能源+制造业”双轮驱动的产业布局。/pp  目前,公司正在进行非公开发行,公司拟定增募资投资碳化硅项目,并与中科钢研、国宇中宏达成战略合作。新建碳化硅衬底片产业化项目完成后,公司将形成长晶炉制造与衬底片生产的完整产业链,初步完成在碳化硅产业的布局,碳化硅衬底片有望成为公司新的业绩增长点。/ppbr//p
  • 《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案(线上)讨论会顺利召开
    2021年5月26日下午,联盟团体标准T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案线上讨论会顺利召开。本次会议共计15位专家代表参与标准研讨。会议由联盟标委会高伟博士主持,联盟秘书长于坤山提到团体标准作为国行标的补充,具有十分重要的意义,目前第三代半导体特别是碳化硅相关的应用发展迅速,国内外都非常的关注,但是缺乏相关的标准,该项标准的制定有助于促进相关平台的建设,推动企业研发工作的同时促进上下游之间的交流。本次会议主要针对T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案的范围、术语与定义、试验方法等内容进行充分讨论,并提出了诸多修改意见。SiC MOSFET的热阻在热管理设计中具有重要作用,热阻能够为器件运行时的结温评估与结构评价提供信息,为器件设计与优化改进提供参考,衡量器件散热性能的关键指标之一。准确的热阻测试对于SiC MOSFET的鉴定、评价具有重要意义。
  • 住友矿山将量产新一代碳化硅功率半导体晶圆
    近日,住友矿山表示,计划量产新一代功率半导体晶圆,而且会使用自主研发的最新技术将价格降低10%到20%。住友矿山希望凭借这种新型碳化硅晶圆抢占美国科锐等领先企业的市场,使全球份额占比达到10%,预计2025年实现月产1万片。住友矿山是全球最大的车载电池正极材料厂商,拥有物质结晶技术,现将利用其他业务所培育出的技术实力进入半导体材料领域。据了解,住友矿山所开发的技术是在因结晶不规则而导致价格较低的残次品“多晶碳化硅”上贴一层可以降低发电损耗的“单晶碳化硅”可将价格降低10%~20%。纯电动汽车的逆变器在采用这款新型晶圆所制成的碳化硅功率半导体时,能将电力损耗降低10%左右。通过提高功率半导体的性能,减小整个单个装置的尺寸,有利于延长纯电动汽车的续航里程。从技术的角度来说,与硅基功率器件制作工艺不同,碳化硅器件不能直接制作在碳化硅单晶材料上,需要在导通型单晶衬底上额外生长高质量的外延材料,最后在外延层上制造各类器件。传统的碳化硅外延基于单晶衬底,以实现晶格匹配和降低缺陷密度(微管、位错、层错等),但是单晶碳化衬底制备的成本较高。“住友矿山可实现从多晶碳化硅衬底上外延单晶硅层材料,在技术与成本上具有明显的优势。”赛迪顾问集成电路中心高级咨询顾问池宪念表示。而成本方面,相对于硅基材料功率半导体,碳化硅功率半导体能够降低电力功耗,会是功率半导体产品领域未来具有发展潜力的竞品。此外,消费终端的生产对于价格十分敏感,住友矿山碳化硅新晶圆的成本能够降低1~2成,价格优势将会成为住友矿山有效的竞争力之一。随着电动车对碳化硅功率半导体的需求日渐增长,这条新赛道上的竞争也越来越激烈。目前除了美国科锐外,美国II-VI公司及罗姆旗下的德国SiCrystal等也在涉足碳化硅半导体晶圆业务。对于这项新技术是否可以帮助住友矿山抢占科锐市场的问题,池宪念认为,美国科锐公司是全球6/8英寸碳化硅单晶衬底材料可实现产业化的龙头公司,在市场和技术上具有领先优势。如果住友矿山的新一代碳化硅半导体晶圆材料能够通过下游厂商的验证,并实现量产,则其将成为美国科锐公司的有力竞争者。
  • 住友矿山将量产新一代碳化硅功率半导体晶圆
    近日,住友矿山表示,计划量产新一代功率半导体晶圆,而且会使用自主研发的最新技术将价格降低10%到20%。住友矿山希望凭借这种新型碳化硅晶圆抢占美国科锐等领先企业的市场,使全球份额占比达到10%,预计2025年实现月产1万片。住友矿山是全球最大的车载电池正极材料厂商,拥有物质结晶技术,现将利用其他业务所培育出的技术实力进入半导体材料领域。据了解,住友矿山所开发的技术是在因结晶不规则而导致价格较低的残次品“多晶碳化硅”上贴一层可以降低发电损耗的“单晶碳化硅”可将价格降低10%~20%。纯电动汽车的逆变器在采用这款新型晶圆所制成的碳化硅功率半导体时,能将电力损耗降低10%左右。通过提高功率半导体的性能,减小整个单个装置的尺寸,有利于延长纯电动汽车的续航里程。从技术的角度来说,与硅基功率器件制作工艺不同,碳化硅器件不能直接制作在碳化硅单晶材料上,需要在导通型单晶衬底上额外生长高质量的外延材料,最后在外延层上制造各类器件。传统的碳化硅外延基于单晶衬底,以实现晶格匹配和降低缺陷密度(微管、位错、层错等),但是单晶碳化衬底制备的成本较高。“住友矿山可实现从多晶碳化硅衬底上外延单晶硅层材料,在技术与成本上具有明显的优势。”赛迪顾问集成电路中心高级咨询顾问池宪念向《中国电子报》记者表示。而成本方面,相对于硅基材料功率半导体,碳化硅功率半导体能够降低电力功耗,会是功率半导体产品领域未来具有发展潜力的竞品。此外,消费终端的生产对于价格十分敏感,住友矿山碳化硅新晶圆的成本能够降低1~2成,价格优势将会成为住友矿山有效的竞争力之一。随着电动车对碳化硅功率半导体的需求日渐增长,这条新赛道上的竞争也越来越激烈。目前除了美国科锐外,美国II-VI公司及罗姆旗下的德国SiCrystal等也在涉足碳化硅半导体晶圆业务。对于这项新技术是否可以帮助住友矿山抢占科锐市场的问题,池宪念认为,美国科锐公司是全球6/8英寸碳化硅单晶衬底材料可实现产业化的龙头公司,在市场和技术上具有领先优势。如果住友矿山的新一代碳化硅半导体晶圆材料能够通过下游厂商的验证,并实现量产,则其将成为美国科锐公司的有力竞争者。
  • 浙大成功生长出50mm厚6英寸碳化硅单晶
    据浙江大学杭州国际科创中心发布,近日浙江大学杭州国际科创中心先进半导体研究院-乾晶半导体联合实验室和浙江大学硅材料国家重点实验室在浙江省“尖兵计划”等研发项目的资助下,成功生长出厚度达到 50 mm 的 6 英寸碳化硅单晶。该重要进展意味着,碳化硅衬底成本有望大幅降低,半导体碳化硅产业发展或将迎来发展新契机。据介绍,碳化硅(SiC)单晶作为宽禁带半导体材料,对高压、高频、高温及高功率等半导体器件的发展至关重要。目前,国内碳化硅单晶的直径已经普遍能达到 6 英寸,但其厚度通常在~20-30 mm 之间,导致一个碳化硅晶锭切片所获得的碳化硅衬底片的数量相当有限。科研人员表示,增加碳化硅单晶厚度主要挑战在于其生长时厚度的增加及源粉的消耗对生长室内部热场的改变。针对挑战,浙江大学通过设计碳化硅单晶生长设备的新型热场、发展碳化硅源粉的新技术、开发碳化硅单晶生长的新工艺,显著提升了碳化硅单晶的生长速率,成功生长出了厚度达到 50 mm 的 6 英寸碳化硅单晶。而且碳化硅单晶的晶体质量达到了业界水平。
  • 哈尔滨科友半导体“8英寸碳化硅长晶设备及工艺”通过中国电子学会科技成果鉴定
    据科友半导体消息, 在14日举办的宽禁带半导体材料技术成果鉴定会上,哈尔滨科友半导体产业装备与技术研究院有限公司(以下简称“科友半导体”)“8英寸碳化硅长晶设备及工艺”通过中国电子学会科技成果鉴定。资料显示,科友半导体是一家专注于第三代半导体装备研发、衬底制作、器件设计、科研成果转化的国家高新技术企业,研发覆盖半导体装备研制、长晶工艺、衬底加工等多个领域,已形成自主知识产权,实现先进技术自主可控。2022年底,科友半导体通过自主设计制造的电阻长晶炉产出直径超过8英寸的碳化硅单晶,晶体表面光滑无缺陷,最大直径超过204mm。这是科友半导体继去年10月在6英寸碳化硅晶体厚度上实现40mm突破后,在碳化硅晶体生长尺寸和衬底尺寸上取得的又一次极具历史意义的重大突破。哈尔滨科友半导体产业装备与技术研究院有限公司董事长赵丽丽表示,未来科友半导体将继续加大技术投入,快速推进二期工程。
  • 《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》等多项标准工作会成功召开
    2021年6月3日下午,《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》、《碳化硅衬底基平面弯曲的测定 高分辨X射线衍射法》两项标准工作会成功召开。与会人员围绕标准草案的范围、术语与定义、试验方法等内容进行充分讨论,并提出了诸多修改意见。来自广州南砂晶圆半导体技术有限公司、山东大学、深圳第三代半导体研究院、芜湖启迪半导体有限公司、浙江博蓝特半导体科技股份有限公司、国宏中宇科技发展有限公司等单位的多位专家参加了会议。对位错缺陷进行有效的表征与分析对单晶工艺及外延工艺改进优化进而提高器件性能至关重要。位错具有随机分布且密度量级大的特征,随着单晶尺寸的增大,人工统计位错密度的困难增加,过少的统计区域则又无法代表整个晶片的位错密度,《碳化硅晶片位错密度检测方法 KOH腐蚀结合图像识别法》规定了用化学择优腐蚀结合图像识别法检测碳化硅晶片中位错密度,适用于4H及6H-SiC晶片材料中位错检测及其密度统计。对于碳化硅材料只有掌握了基平面弯曲的特性,才能够深入了解基平面弯曲产生的原因,提供单晶生长条件优化的方向,进而提升单晶质量。《碳化硅衬底基平面弯曲的测定 高分辨X射线衍射法》适用于正向及偏向的6H和4H-SiC单晶衬底中基平面弯曲的检测,填补我国以高分辨X射线衍射法表征SiC单晶片的晶面弯曲特性领域的空白。
  • 乾晶半导体首批碳化硅衬底正式进行工艺验证
    杭州乾晶半导体有限公司碳化硅衬底晶片通过公司内部品质检验,达到同行业产品质量标准。首批样品于2021年11月3日正式提供客户端进行工艺验证。公司目前已经与中国及日本公司达成战略合作意向,可为国内外客户提供4、6寸碳化硅晶棒及晶片。杭州乾晶半导体有限公司,2020 年 7 月成立于浙江大学杭州国际科创中心,专注于第三代半导体材料领域,是一家集半导体碳化硅(SiC)单晶生长、晶片加工和设备开发为一体的高新技术企业。公司的核心团队来自于浙江大学硅材料国家重点实验室,与浙大科创中心先进半导体研究院成立联合实验室共同承担 SiC材料的产业化任务,力争三到五年成为国际知名的第三代半导体材料品牌和标杆企业,为第三代半导体产业提供有力支撑。
  • 芯聚能“碳化硅MOSFET器件及其制备方法”专利公布
    天眼查显示,广东芯聚能半导体有限公司“碳化硅MOSFET器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263326A。背景技术半导体是导电性介于良导电体与绝缘体之间的一种材料,半导体器件是利用半导体材料的特殊电特性来完成特定功能的电子器件,例如碳化硅MOSFET(Metal-Oxide-Semiconductor Field-EffectTransistor,金氧半场效晶体管)器件,可用来产生、接收、变换和放大信号,以及进行能量转换。相关技术中,由于碳化硅MOSFET器件自身结构特点,碳化硅MOSFET器件必然存在寄生电容,例如寄生的栅漏电容Cgd,该电容会导致米勒平台的产生,米勒平台会使碳化硅MOSFET器件在开通和关断的过程中损耗增大,导致碳化硅MOSFET器件在工作过程中不能快速地实现开关,影响碳化硅MOSFET器件性能。发明内容本申请涉及一种碳化硅MOSFET器件及其制备方法,碳化硅MOSFET器件包括衬底、第一掺杂区、栅极沟槽、控制栅结构和分裂栅结构,第一掺杂区设置于衬底内;栅极沟槽设置于第一掺杂区内,且从衬底的正面开口并沿衬底的厚度方向延伸,栅极沟槽包括第一子沟槽和第二子沟槽,第二子沟槽位于第一子沟槽背离衬底的正面的一侧;控制栅结构设置于第一子沟槽内,控制栅结构包括控制栅导电层和控制栅介质层,控制栅介质层位于控制栅导电层与第一子沟槽的槽壁之间;分裂栅结构设置于第二子沟槽内,分裂栅结构包括分裂栅导电层和分裂栅介质层,分裂栅介质层包覆分裂栅导电层;控制栅介质层的介电常数和分裂栅介质层的介电常数不同。
  • 国内碳化硅半导体领域科研专家盘点
    第三代半导体材料又被称之为宽禁带半导体材料。主要包括碳化硅(SiC)、氮化嫁(GaN)、金刚石等。目前其主要在半导体照明、激光器和探测器、电力电子器件等领域应用。相比于第一、二代半导体材料,第三代半导体材料的物理特性方面优势十分明显,比如禁带宽度大、较高的热导率、较高的击穿电场以及更高的抗辐射能力等等,正是因为上述这些优势,第三代半导体材料是制作高频、高温、抗辐射及大功率器件的优异材料。而碳化硅作为第三代半导体家族的重要一员,其具有高热导率、高击穿场、高饱和电子迁移率、抗辐射和化学性质稳定等突出优点。而碳化硅器件具有开关频率高、功率密度高、损耗低、尺寸小等优点,可以在高功率、高频以及极端特殊环境下应用,例如在清洁能源汽车、车载充电器、城市轨道交通、城市输电等领域己经得到应用,并显示出优异的性能。同时碳化硅与氮化镓具有相近的晶格常数与热膨胀系数,是GaN薄膜异质外延生长的理想衬底材料,可以在半绝缘的SiC衬底上外延GaN薄膜制备一系列的微波射频器件,其研发生产将会推动5G技术的快速发展与应用。由于碳化硅广阔的市场前景,各国自上世纪八十年代以来便制订了一系列相关的科研计划并不断加大相关领域的研发投入。我国虽然碳化硅领域的相关研究起步较晚,但经过我国科研工作者二十多年的研究,相关工作也己取得突破性的进展。一系列重大项目的快速推进,如科技部863计划2002年启动的“碳化硅单晶衬底制备”项目、2006年启动的“2英寸以上半绝缘碳化硅材料与功率电子器件”项目、2011年启动的“高压大容量碳化硅功率器件的研发”项目等,使得国内碳化硅行业快速发展,在我国军事、航天、通讯等各领域得到应用。针对于此,仪器信息网分析和统计了2018-2020年,三年来的碳化硅相关的学位论文,共计232篇。碳化硅不仅可用于第三代半导体领域,盘点论文已剔除非半导体领域的研究,论文的研究方向覆盖了碳化硅材料制备、工艺开发、器件研究、应用分析等方面。学位论文数量排行图中给出的是学位论文三年间发表数量前九名,可以看出,电子科技大学在碳化硅领域多有建树。具体论文内容来看,电子科技大学的研究主要集中于MOSFET驱动电路、器件设计等方面。哈尔滨工业大学的研究方向主要是碳化硅的具体应用和抛光工艺。从近三年可以看出,2020年明显论文数量下降,而2019年还有所上升。这一结果并不能表明碳化硅半导体材料的研究热度变化,这可能是由于2020年发表的部分论文签署了论文保密协议,存在论文披露的滞后性。进一步,我们统计盘点了各高校的论文指导教师名单,需要注意的是,部分论文存在校外指导。(以下排名不分先后)学校论文指导教师安徽工业大学周郁明北方工业大学曹淑琴、韩军北京交通大学郑琼林、杨中平、林飞、李艳、郭希铮大连理工大学夏晓川、梁红伟、张建伟、杜国同、王德君、唐大伟、电子科技大学赵建明、何金泽、荣丽梅、张小川、周泽坤、邓小川、张有润、张金平、罗小蓉、杜江锋、徐红兵、钟其水、王雷、毕闯、李辉、东南大学孙立涛、徐涛、顾伟、孙伟锋、陆生礼、陈健、王继刚、广东工业大学阎秋生广西大学万玲玉贵州大学高廷红桂林电子科技大学李琦哈尔滨工程大学王颖哈尔滨工业大学周密愉、董尚利、杨剑群、翟文杰、杨明、郭亮、贲洪奇、高强、王晨曦、徐永向、张东来、李春、张国强、王高林杭州电子科技大学王颖、刘广海、合肥工业大学徐卫兵河北工业大学张保国、李尔平、湖北工业大学潘健湖南大学王俊、熊劼、陈鼎、高凤梅、姜燕、雷雄、沈征、帅智康华北电力大学崔翔、赵志斌、温家良、赵志斌、魏晓光、韩民晓、蒋栋、欧阳晓平华南理工大学姚小虎、Timothy C. Germann、耿魁伟、陈义强、华侨大学于怡青、胡中伟、段念、黄辉、郭新华、陈一逢、华中科技大学傅华华、梁琳、林磊、康勇、彭力、淮北师范大学刘忠良吉林大学吴文征、邢飞、赵宏伟、陈巍、呼咏、吉野辰萌、张文璋、赵继、李志来江南大学倪自丰江苏大学乔冠军昆明理工大学彭劲松、陈贵升、兰州大学张利民兰州交通大学汪再兴、杜丽霞、白云兰州理工大学卢学峰南方科技大学邓辉南京大学陆海、吴兴龙南京航空航天大学魏佳丹、秦海鸿、邢岩南京理工大学董健年青岛科技大学于飞三峡大学孙宜华、姜礼华、厦门大学孙道恒、王凌云山东大学马瑾、葛培琪、徐现刚、彭燕、李康、高峰、陈延湖、白云、王军上海电机学院赵朝会、杨馄、上海师范大学陈之战深圳大学彭建春沈阳工业大学何艳、关艳霞、苏州大学陶雪慧、太原理工大学杨毅彪天津大学徐宗伟、李连钢、天津工业大学宁平凡、孙连根、于莉媛、高志刚、张牧、高圣伟、黄刚、牛萍娟天津理工大学王桂莲武汉工程大学满卫东武汉科技大学柯昌明武汉理工大学涂溶、章嵩西安电子科技大学贾仁需、乐立鹏、王悦湖、汤晓燕、张玉明、戴显英、倪炜江、张艺蒙、宗艳民、张金平、郭辉、黄维、段宝兴、西安工程大学朱长军、李连碧、杨楞、张红卫、西安理工大学蒲红斌西华大学阳小明、吴小涛西南交通大学张湘湘潭大学李建成冶金自动化研究设计院王东文、陈雪松、云南大学陈秀华长安大学张林长春理工大学魏志鹏长沙理工大学谢海情、吴丽娟浙江大学祝长生、盛况、吴新科、郭清、邱建琪、何湘宁、吴建德、赵荣祥、李武华、徐德鸿郑州大学张锐郑州航空工业管理学院张锐、刘永奇中北大学梁庭中国科学技术大学刘长松、李辉、张军、李震宇、李传锋、许金时中国科学院大学陈小龙、施尔畏、黄维、夏晓彬、高大庆中国空间技术研究院于庆奎中国矿业大学伍小杰、戴鹏中国运载火箭技术研究院朱大宾重庆大学胡盛东、周林、周建林
  • 意法半导体与Soitec达成碳化硅晶圆制造技术合作
    近日,意法半导体和Soitec宣布就SiC晶圆制造技术合作达成协议。意法半导体表示,通过此次合作,意法半导体未来200mm晶圆生产将采用Soitec的SmartSiC技术,旨在通过中期量产增加器件和模块产量,认证工作将在未来18个月内开展。  Soitec拥有专利技术SmartSiC,可以剥离出高质量的碳化硅供体晶圆薄层,并将其键合到低电阻率的多晶硅晶圆上,助力改进器件的性能和生产良率。此外,优质的碳化硅晶圆可被多次重复利用,进而大幅降低生产的总能耗。  Soitec首席运营官安世鹏表示:“电动汽车正在颠覆汽车行业的发展。通过将我们专利的SmartCut工艺与碳化硅半导体相结合,SmartSiC技术将加速碳化硅在电动车市场的应用。Soitec的SmartSiC优化衬底与意法半导体行业领先的碳化硅技术、专业知识相结合,将推动汽车芯片制造领域的重大变革,并树立新的行业标准。”  扩产方面,记者从意法半导体方面了解到,意法半导体将于意大利兴建一座整合式碳化硅衬底制造厂,以满足意法半导体客户对汽车及工业碳化硅组件与日俱增的需求。根据官方信息,该新厂预计2023年开始投产,以实现碳化硅衬底的供应在对内采购及行业供货间达到平衡。  产品方面,12月14日,意法半导体发布了新的碳化硅功率模块,可提高电动汽车性能和续航里程。现在该功率模块已用于现代汽车公司的E-GMP电动汽车平台,以及共享该平台的起亚EV6等多款车型。
  • CMRS2018:未来,碳化硅宽禁带半导体发展将呈爆发态势!
    p  strong仪器信息网讯/strong 2018年7月14日,2018中国材料大会(CMRS)各分会场会议交流继续进行。本次大会共设35个分会场,仪器信息网编辑走入D11.半导体材料与器件分会场,为读者带来有关半导体行业发展的一场报告。该报告是由中关村天合宽禁带半导体技术创新联盟秘书长陆敏带来的《碳化硅半导体技术与产业发展态势》。报告详述了碳化硅宽禁带半导体材料在国内外不同领域的应用情况和发展趋势,以及介绍了中关村天合宽禁带半导体技术创新联盟在碳化硅半导体产业中有关标准制定的一些工作,提出了我国在该领域所面临的机遇和挑战,引发了广大半导体从业者的讨论和深思。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c0e149e9-9695-4f24-9631-8c00c0fdb7c9.jpg" title="中关村天合宽禁带半导体技术创新联盟秘书长 陆敏.jpg" width="400" height="267" border="0" hspace="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中关村天合宽禁带半导体技术创新联盟秘书长 陆敏/strong/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong碳化硅宽禁带半导体材料在军用、民用领域的核心应用/strong/span/pp  碳化硅宽禁带半导体材料的应用主要分布在,电力电子器件,新能源汽车,光伏,机车牵引,以及微波通讯器件等领域。/pp  在微电子领域,碳化硅半导体的优势在于可与氮化镓半导体互补,氮化镓半导体材料的市场应用领域偏向中低电压范围,集中在1000V以下,而1000V以上的中高电压范围,则是碳化硅的天下。1200V以上的碳化硅应用领域有新能源汽车,光伏,机车牵引,智能电网等,高铁机车的牵引电压在6500V以上,地铁则一般在3300V左右。/pp  我国新能源汽车产业正不断蓬勃发展,去年的销量约在80万辆,今年预计会超过100万辆。推广新能源汽车最主要的目的是降低COsub2/sub的排放。迄今为止,日本丰田公司推出的油电混合动力汽车已销售超过1100万辆,共计约减少7700万吨CO2的排放。目前,主流发达国家都在推广这类新能源汽车。国家发展和改革委员会也制定了新能源汽车的发展计划,每五年的销量应有成倍的上升。未来,在包括车用,辅助设施,充电桩等的整个新能源汽车产业,均会成为支撑碳化硅在中高电压领域高端应用的重要组成部分。新能源汽车目前存在的核心困难是充电速率过慢,主流的研究热点集中在快速充电技术,而快充技术的实现就需要用到高压碳化硅半导体器件。电动汽车主要有三大部件:一是电池,二是电机控制部分,三是电机。从电池到电机的驱动,中间很重要的衔接环节就是电机控制部分,它需要专门器件碳化硅MOSFET(金属-氧化物半导体场效应晶体管)去转换。丰田的凯美瑞车型就使用了碳化硅半导体模块,核心器件均为碳化硅半导体材料制备。特斯拉的Model 3型汽车车,也全部使用了碳化硅半导体模块,每辆车会用到24个碳化硅模组,现今在道路上行驶的Model 3车辆中该碳化硅模块的数量约为100万。/pp  碳化硅半导体在军事、航天上也有许多应用,不管是电力电子,还是微波设备,在军工领域均有大量应用。微波器件领域是整个碳化硅器件应用的一个细分市场。微波通讯在军用领域的一个典型应用是相阵控雷达,像美国的F/A-18战斗机,已经装备了碳化硅衬底外延氮化镓HEMT(高电子迁移率晶体管) 还有地基导弹系统,像萨德系统中的核心器件就是碳化硅衬底外延氮化镓的HEMT,美军已基本全面装备使用,而我国仍未完全立项,不过相信出于战略上的考虑也会加快推进实行。军事应用是由于战略的需求,但该领域市场规模应该不会太大。射频微波领域对应于民用就是通讯领域,也是整个碳化硅半导体产业应用增长的关键领域。2018年6月,首个完整版全球统一5G标准正式出炉,相信5G通讯的应用,也会大大推动碳化硅半导体产业化的进程。/pp  光伏领域是目前碳化硅器件最大的应用市场,之后是新能源汽车领域,应会逐渐超过光伏领域。/pp  其他的应用方向像LED产品已实现产业化,是非常大的一个应用领域,专利主要是被美国的科锐公司所控制。/pp  在对2017年国内碳化硅第三代半导体产业产值的统计中,衬底约有1.65亿元,外延、器件、装置的总产值依次升高,分别达2.76亿元、6.92亿元、28.98亿元。总体来看,微波射频应用的产值相较电子电力应用占多数,其产量高,产值大的原因是军事上应用的微波器件。由于军方应用额度毕竟有限,而民间应用市场将会更大,因在2018年产值统计的结果和态势会有明显变化。相信2018年电力电子领域会出现更多的应用和更大的拓展。/pp  根据美国YOLE公司的统计,2015年电子电力器件用导电型碳化硅衬底约有12万片,预计到2021年,会达到约40万片。美国科锐公司是全球最大的碳化硅衬底企业,拥有1000多台半导体晶体炉,一台的产能约为每年500~1000片,全年可生产约100万片,考虑成品率,一年的成品约为几十万片,可由此推算出市场的大致规模。国内所有的半导体晶体炉约二三百台,在世界范围所占比例较低。/pp style="text-align: center "strongspan style="color: rgb(31, 73, 125) "国内外第三代半导体产业发展政策情况/span/strong/pp  我国的“中国制造2025”计划中明确提出要大力发展第三代半导体产业。特别设立的国家新材料产业发展领导小组有两位第三代半导体领域的专家,由此可见国家对第三代半导体产业的发展相当重视。北京也有对于第三代半导体产业发展的相关政策,北京目前定位为全国科技创新中心,该职能的实现需要通过一些产业的支撑,北京现正在大力扶持高精尖产业,第三代半导体产业也是其中很重要的一项。希望未来能见到其他各省市都会出台类似政策,来推动第三代半导体产业的研究和发展。/pp  国际上也有类似政策,美国总统奥巴马主导成立第三代半导体产业联盟,欧洲的Smart PM(Smart Powe Management)组织,日本的“首相战略”等,均瞄准并投入巨资推动第三代半导体产业的研究与发展。大力发展第三代半导体产业已在国内外达成共识,不仅停留在产业研究的初期,更呈现产业的一个爆发态势。/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong面临的机遇和挑战/strong/span/pp  一个产业的发展与两个方面有关:一个是技术层面,另一个重要问题就是产业的生态环境。为建立这样一个产业环境,中关村天合宽禁带半导体技术创新联盟应运而生。标准是彼此之间沟通的平台,产业环境问题的核心是搭建一个成熟的标准体系,产业标准、技术标准等均是支撑产业份额扩大不可或缺的要素。/pp  世界有两大类标准体系:一类是政府类的标准,例如世界三大标准化组织,ISO、IEC、ITU,这些是美国推行的标准体系 还有一类是以市场为主体,来源于实体的一些标准,例如企业标准和团体标准。国际上常见的IEEE,semi,Bluetooth,中关村标准等,均是团体标准,但它同样担当着国际标准的作用。这类标准在国际上更有生命力和市场,因为它是产业一线从业者制定的标准。/pp  《中国人民共和国标准化法》不久前通过了修订,在我国的标准体系中,原先只有国家标准,地方标准,行业标准和企业标准,新的标准化法特别提出了团队标准。团队标准需要产业联盟,社会团体等一些非营利性团体来制定。中关村天合宽禁带半导体技术创新联盟目前也是国家标准化管理委员会认定的团队标准制定单位,目前也在做一些工作来帮助这个产业的发展,以使半导体产业在标准制定方面有更多的机会。/pp  迄今为止, 在碳化硅半导体领域,国际标准、国家标准、行业标准经过统计共有16项,远远滞后于该行业的发展,这对整个市场的秩序及行业的发展是很不利的,因此标准化制定这项工作大有可为。这16项标准基本均发布于近几年,所以近年来碳化硅半导体产业陆续发展了起来。硅材料,是一个比较成熟的材料体系,与硅材料相关的标准约有二百余项,国家标准、行业标准,制定的时间跨度长达三四十年。因此碳化硅与硅材料领域相比,标准体系对产业的支撑是远远不够的,这对以联盟为依托的行业及企业而言,是一个难得的机遇。/pp  制定标准相当于是制定市场规则,制定市场规则相当于在市场上会拥有更好的话语权和引导力。通过这一机遇,可以依托产业联盟、或其他社会团体,来健全第三代半导体产业的团队标准体系,以更好地支持这个行业的健康发展,提升国家在该领域的市场竞争力。我国是全球最大的市场,但问题的核心在于市场上出售谁家的产品,因此拥有更大的话语权是十分重要的,制定标准就是制定话语权。/pp  仪器信息网将对2018中国材料大会现场跟踪报道(详见专题报道:a href="http://www.instrument.com.cn/zt/2018C-MRS" target="_blank" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "2018中国材料大会/span/a),欢迎关注CMRS后续精彩内容。/p
  • 碳化硅色心自旋操控研究获重要进展 为基于碳化硅的量子器件提供发展新方向
    中国科大郭光灿院士团队在碳化硅色心自旋操控研究中取得重要进展。该团队李传锋、许金时等人与匈牙利魏格纳物理研究中心Adam Gali教授合作,在国际上首次实现了单个碳化硅双空位色心电子自旋在室温环境下的高对比度读出和相干操控。这是继金刚石氮空位(NV)色心后第二种在室温下同时具有高自旋读出对比度和高单光子发光亮度的固态色心,该成果对发展基于碳化硅这种成熟半导体材料的量子信息技术具有重要意义。该成果于2021年7月5日在线发表于《国家科学评论》(National Science Review)杂志上。固态自旋色心是量子信息处理的重要研究平台,金刚石NV色心是其突出的代表。自从1997年德国研究团队报道了室温下单个金刚石NV色心的探测以来,金刚石NV色心在量子计算、量子网络和量子传感等方面都取得了重要进展。近年来,为了利用更加成熟的材料加工技术和器件集成工艺,人们开始关注其他半导体材料中的相似色心。其中碳化硅中的自旋色心,包括硅空位色心(缺失一个硅原子)和双空位色心(缺失一个硅原子和一个近邻碳原子),因其优异的光学和自旋性质引起了人们广泛的兴趣。其中室温下单个硅空位色心的相干操控虽然已经实现,但其自旋读出对比度只有2%,而且天然块状碳化硅材料中单个硅空位色心的单光子发光亮度每秒仅有10 k个计数,如此低的自旋读出对比度和单光子发光亮度极大的限制了其在室温下的实际应用。而室温下单个双空位色心的相干操控还未见报道。李传锋、许金时研究组利用之前所发展的离子注入制备碳化硅缺陷色心的技术[ACS Photonics 6, 1736-1743 (2019) PRL 124, 223601(2020)]制备了双空位色心阵列。进一步利用光探测磁共振技术在室温下实现单个双空位色心的自旋相干操控,并发现其中一类双空位色心(称为PL6)的自旋读出对比度为30%,而且单光子发光亮度每秒可达150k个计数。这两项重要指标相比碳化硅中硅空位色心均提升了一个数量级,第一次展现了碳化硅自旋色心在室温下具有与金刚石NV色心相媲美的优良性质,并且单色心电子自旋在室温下的相干时间长达23微秒。研究团队还实现了碳化硅色心中单个电子自旋与近邻核自旋的耦合与探测,为下一步构建基于碳化硅自旋色心体系的室温固态量子存储与可扩展的固态量子网络奠定基础。实验结果图:室温下单个PL6色心的光学与自旋性质。(A)单色心阵列荧光成像图,橙色圈内为单个PL6色心;(B)单光子发光特性;(C)荧光饱和行为;(D)光探测磁共振(ODMR)谱;(E)Rabi振荡;(F)自旋相干时间。由于高读出对比度和高单光子发光亮度在量子信息的许多应用中至关重要,该成果为基于碳化硅的量子器件开辟了一个新的发展方向。审稿人高度评价该工作:“该论文的发现解决了碳化硅色心量子技术应用中的一个关键问题,该发现将会立即促进许多工作的发展(The discovery reported in this paper addresses a key issue in the quantum technology applications of color centers in SiC. The discovery will stimulate many works immediately)”;“其中一些结果,例如对一些色心30%的读出对比度是相当了不起的(Some of these results such as the 30% readout contrast from some of the centers are quite remarkable)”。中科院量子信息重点实验室博士后李强、王俊峰副研究员为论文的共同第一作者。该工作得到了科技部、国家基金委、中国科学院、安徽省和中国科学技术大学的资助。李强得到博士后创新人才支持计划的资助。论文链接:https://doi.org/10.1093/nsr/nwab122
  • 中国科大等实现基于碳化硅中硅空位色心的高压原位磁探测
    中国科学技术大学郭光灿院士团队在碳化硅色心高压量子精密测量研究中取得重要进展。该团队李传锋、许金时、王俊峰等与中科院合肥物质科学研究院固体物理研究所高压团队研究员刘晓迪等合作,在国际上首次实现了基于碳化硅中硅空位色心的高压原位磁探测。该技术在高压量子精密测量领域具有重要意义。3月23日,相关研究成果以Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide为题,在线发表在《自然材料》上。高压技术广泛应用于物理学、材料科学、地球物理和化学等领域。特别是压力下高临界温度超导体的实现,引起了学术界的关注。然而,原位高分辨率的磁测量是高压科学研究的难题,制约高压超导抗磁行为和磁性相变行为的研究。传统的高压磁测量手段如超导量子干涉仪难以实现金刚石对顶砧中微米级样品的弱磁信号的高分辨率原位探测。为了解决这一关键难题,金刚石NV色心的光探测磁共振技术已被用于原位压力诱导磁性相变检测。而由于NV色心具有四个轴向,且其电子自旋的零场分裂是温度依赖的,不利于分析和解释测量得到的光探测磁共振谱。针对高压磁探测的难题,研究组加工了碳化硅对顶砧(又称莫桑石对顶砧),然后在碳化硅台面上利用离子注入产生浅层硅空位色心,并利用浅层色心实现高压下的原位磁性探测。碳化硅中的硅空位色心只有单个轴向,且因电子结构的特殊对称性,该色心电子自旋的零场分裂是温度不敏感的,可较好地避免金刚石NV色心在高压传感应用中遇到的问题。研究组刻画了硅空位色心在高压下的光学和自旋性质,发现其光谱会蓝移,且其自旋零场分裂值随压力变化较小(0.31 MHz/GPa),远小于金刚石NV色心的变化斜率14.6 MHz/GPa。这将利于测量和分析高压下的光探测磁共振谱。以此为基础,研究组基于硅空位色心光探测磁共振技术观测到钕铁硼磁体在7GPa左右的压致磁相变,并测量得到钇钡铜氧超导体的临界温度-压力相图。实验装置和实验结果如图所示。该实验发展了基于固态色心自旋的高压原位磁探测技术。碳化硅材料加工工艺成熟,可大尺寸制备,且相对金刚石具有较大的价格优势。该工作为磁性材料特别是室温超导体高压性质的刻画提供了优异的量子研究平台。该成果得到审稿人的高度评价:“总的来说,我发现这项工作非常有趣,通过展示碳化硅中室温自旋缺陷作为原位高压传感器的使用。我认为这项工作可以为使用碳化硅对顶砧的量子材料的新研究打开大门。”研究工作得到科技部、国家自然科学基金、中科院、安徽省、中国科大和四川大学的支持。实验结果和示意图。a、碳化硅对顶砧和浅层硅空位色心探测磁性样品示意图;b、硅空位色心零场劈裂随压力的变化关系;c、钕铁硼材料的磁性相变探测;d、钇钡铜氧超导材料的Tc-P相图;e、基于碳化硅中硅色心实现高压原位磁探测的示意图。
  • 总投资25亿元,上海天岳碳化硅半导体材料项目开工
    8月18日,2021年临港新片区第三季度建设项目集中开工仪式举行,本次集中开工24个项目,总投资496.9亿元,其中就包括上海天岳碳化硅半导体材料项目。“浦东发布”指出,上海天岳承接了母公司山东天岳的生产技术和人才资源,在临港重装备产业区新征用土地100亩,建设“碳化硅半导体材料项目” 总建筑面积9.5万平方米,总投资25亿元,在达产年,形成年产导电型碳化硅晶锭2.6万块,对应衬底产品30万片的生产能力。宽禁带半导体衬底材料在5G通信、新能源、国防军工等市场具有明确且可观的市场前景,是半导体产业重要的发展方向。资料显示,上海天岳半导体材料有限公司成立于2020年6月,注册资本6000万元,是山东天岳先进科技股份有限公司的全资子公司。山东天岳成立于2010年,注册资本3.87亿元,是一家国内领先的宽禁带半导体衬底材料生产商,主要从事碳化硅衬底的研发、生产和销售,产品可广泛应用于电力电子、微波电子、光电子等领域。目前,山东天岳正在向科创板发起冲击。据披露,山东天岳此次拟募集资金20亿元,拟全部投入“碳化硅半导体材料项目”,该项目的实施主体正是上海天岳半导体材料有限公司。项目建设期为6年,自2020年10月开始前期准备进行工厂研究、设计,计划于2022年试生产,预计2026年100%达产。目前,该项目已被上海市发改委列入《2021年上海市重大建设项目清单》。7月底,山东天岳在其披露的首轮问询中回复称,公司于2015年实现了4英寸半绝缘型碳化硅衬底的量产能力。并于2017年开始向下游行业主要的领先客户客户A小批量发货并验证,2018年1月通过其验证并开始批量下单。此后公司通过获得下游行业主要客户客户B的认证并获取其大批量订单。山东天岳还透露,6英寸半绝缘型衬底的生产计划将根据下游行业和客户的需求情况制定,预计在2023年形成量产。
  • 第三代半导体专利分析——碳化硅篇
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。专利一般是由政府机关或者代表若干国家的区域性组织根据申请而颁发的一种文件,这种文件记载了发明创造的内容,并且在一定时期内产生这样一种法律状态,即获得专利的发明创造在一般情况下他人只有经专利权人许可才能予以实施。在我国,专利分为发明、实用新型和外观设计三种类型。专利文献作为技术信息最有效的载体,囊括了全球90%以上的最新技术情报,相比一般技术刊物所提供的信息早5~6年,而且70%~80%发明创造只通过专利文献公开,并不见诸于其他科技文献,相对于其他文献形式,专利更具有新颖、实用的特征。可见,专利文献是世界上最大的技术信息源,另据实证统计分析,专利文献包含了世界科技技术信息的90%~95%。如此巨大的信息资源远未被人们充分地加以利用。事实上,对企业组织而言,专利是企业的竞争者之间惟一不得不向公众透露而在其他地方都不会透露的某些关键信息的地方。因此,通过对专利信息细致、严密、综合、相关的分析,可以从其中得到大量有用信息。基于此,仪器信息网特统计分析了第三代半导体中碳化硅材料的专利信息,以期为从业者提供参考。(本文搜集信息源自网络,不完全统计分析仅供读者参考,时间以专利申请日为准)专利申请趋势分析(1985-2021)专利申请趋势分析(2010-2020)本次统计,以碳化硅为关键词进行检索,共涉及专利总数量为66318条(含世界知识产权组织940条专利),其中发明专利53498条、实用新型专利11780条和外观专利100条。从专利申请趋势分析(1985-2021)可以看出,2018年前相关专利呈现出不断增长的趋势,尤其是2018年之前十年的增长速度很快,2018年专利申请数量达到巅峰8081件,但此后专利申请量开始减少。这表明在18年前十年是碳化硅材料的研究高峰期,此后研发强度逐渐降低,一般而言这也意味着相关产业的前期研发已完成,步入了产业化阶段,市场生命周期进入成长期(行业生命周期分为四个阶段形成期、成长期、成熟期和衰退期)。由于数据采集时未到2021年底,2021年数据趋势不具有代表性。申请人数量趋势分析(2010-2020)发明人数量趋势分析(2010-2020)进一步分析2010-2020年之间的专利申请人数量趋势可以发现,申请相关专利的自然人也在18年之后略有下降。这表明在相关领域持续投入研发的企事业单位和科研院所也在逐渐减少,市场竞争机制加剧,企业的生命力越来越短,市场呈现出竞争对手减少的态势,未来市场将逐渐淘汰一些研发不足的企业。从发明人数量趋势变化可以发现,相关发明人在2019年达到顶点,但2018-2020年之间逐渐比较平稳,这表明相关研发工作也不在大规模招聘研发人员,未来从业者数量将趋于平稳。(专利申请人就是有资格就发明创造提出专利申请的自然人、法人或者其他组织,本调研中大部分为企事业单位和科研院所;专利法所称发明人或者设计人,是指对发明创造的实质性特点作出创造性贡献的人)TOP10申请人专利量排行及专利类型分布TOP10发明人专利量(排除不公告姓名)那么从事相关研发工作的主要有哪些单位呢?从申请人专利量排行可以看出,中芯国际在碳化硅领域的布局较多,其北京和上海的公司都要大量专利布局。具体来看,中芯国际的专利主要分布于半导体器件中的碳化硅层的生长、掺杂、刻蚀等工艺方面;三菱电机的专利主要集中于外延晶片的制造和相关半导体装置等方面。中芯国际和三菱不仅在中国发明专利量方面领先,同时发明授权专利数量也较多。碳化硅相关专利申请区域统计通过对区域专利申请量进行统计能够了解到目前专利技术的布局范围以及技术创新的活跃度,进而分析各区域的竞争激烈程度。从专利申请区域可以看出,碳化硅专利申请人主要集中于江苏省、广东省等,这些地区都是半导体产业发达的地区,其在第三代半导体方面的布局也快人一步。需要注意的是,本次统计以碳化硅为关键词检索,部分检索专利非半导体领域,相关结仅供参考。
  • 第三代半导体全球竞争加剧,韩国30家半导体企业成立碳化硅产业联盟
    近日,有报道称,为了发展新一代功率半导体,韩国30家本土半导体企业以及大学和研究所组建碳化硅产业联盟,以应对急速增长的碳化硅(SiC)、氮化镓(GaN)、氧化镓(Ga2O3)等宽禁带半导体所引领的新型功率半导体市场,从而形成韩国本土碳化硅生态圈。据悉,联盟内的30家韩国功率半导体企业将共同参与材料、零部件、设备的开发,培育与碳化硅半导体相关的材料、零部件和设备企业的发展。其中,LX Semicon将负责研发碳化硅半导体,SK siltron则负责碳化硅衬底,Hana Materials和STI将研发碳化硅半导体零件和设备技术。嘉泉大学、光云大学和国民大学将支持碳化硅半导体研发基础设施,国立纳米材料研究所和韩国陶瓷工程技术研究所将提供技术支持。宽禁带半导体就是第三代半导体,主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。基于第三代半导体的优良特性,其在通信、汽车、高铁、卫星通信、航空航天等应用场景中颇具优势。其中,碳化硅、氮化镓的研究和发展较为成熟。以SiC为核心的功率半导体,是新能源汽车充电桩、轨道交通系统等公共交通领域的基础性控件;射频半导体以GaN为原材料,是支撑5G基站建设的核心;第三代半导体在消费电子、工业新能源以及人工智能为代表的未来新领域,发挥着重要的基础作用。近年来,随着新能源汽车的兴起,碳化硅IGBT器件逐渐被应用于超级快充,展现出了强大的市场潜力,第三代半导体发展进入快车道。第三代半导体器件的生产离不开检测,以碳化硅功率器件的生产为例,只有通过对各个生产环节的检测才能不断提高良率和工艺水平。碳化硅的检测主要包括衬底检测、外延片检测、器件工艺、点穴参数、可靠性分析和失效分析。除了以上这些检测项目对应的仪器外,第三代半导体制造也离不开半导体设备,碳化硅产业链更是如此,其涉及的设备种类繁多。碳化硅的很多工艺段设备可以与硅基半导体工艺兼容,但由于宽禁带半导体材料熔点较高、硬度较大、热导率较高、键能较强的特殊性质,使得部分工艺段需要使用专用设备、部分需要在硅设备基础上加以改进。相关工艺及半导体制造设备如下,
  • 1200V碳化硅功率模块封装与应用
    半导体封装是半导体产业链的重要组成部分。半导体制造工艺的进步也在推动封装企业不断追求技术革新,持续加大研发投资。在半导体产业强势发展下,半导体行业对半导体封装设备的质量、技术参数、稳定性等有严苛的要求,因此其中涉及的检测技术至关重要。基于此,仪器信息网于2022年4月28日举办了”半导体封装检测技术与应用“主题网络研讨会。本次会议上,田鸿昌老师做了题为《1200V碳化硅功率模块封装与应用》的报告。报告人:陕西半导体先导技术中心有限公司副总经理 田鸿昌报告题目:1200V碳化硅功率模块封装与应用视频回放链接:1200V碳化硅功率模块封装与应用_3i讲堂-仪器信息网 (instrument.com.cn)碳化硅器件在新能源发电、新能源汽车、轨道交通、充换电设施及工业电源等领域已逐步应用,基于碳化硅芯片封装形成的功率模块提高了电源装置系统的集成度与可靠性,可广泛应用于更复杂的场景。报告介绍了碳化硅电力电子产业发展情况、基于自主化碳化硅MOSFET和SBD芯片的功率模块封装与性能测试、碳化硅功率模块驱动与保护开发等。
  • 温州市场出现“合成碳化硅”钻石仿冒品
    一种新型钻石仿冒品在温州出现。12日13日,温州市质检院发出消费提醒,近3个月来,该院宝玉石检验站在日常检测中,检出5件合成碳化硅仿钻石戒指。这种合成碳化硅和钻石相似度很高,建议市民或珠宝商家到专业机构检测。  “合成碳化硅的市场价大约1克拉1万元,是正宗钻石的三分之一左右。”市质检院宝玉石检验站检验员说,合成碳化硅是种最新的仿钻石材料,其各项宝石学性质与天然钻石十分相近。  在辨别方面,市质检院宝玉石检验站检验员称,当前珠宝加工店基本上是用传统热导仪来区分是不是钻石,而这种合成碳化硅在传统热导仪下的反应跟钻石是一样的,应该改用一种新型热导仪。  温州市质检院宝玉石检验站检验员称,对于市民而言,如果懂得一些基本鉴别技能,可使用10倍放大镜来区别,这种放大镜在市场上可以买到,要点如下:  1、一般合成碳化硅内部常出现定向排列的针状包体,少数合成碳化硅可能针状包体不明显。  2、合成碳化硅可见明显的亭部刻面棱双影现象,钻石则没有。
  • SiC市场迎来爆发期,全球最大碳化硅晶圆厂2022年初投产
    近日,第三代半导体龙头厂商科锐(Cree)公布了其最新财报,截至6月27日的2021财年第四季度财报,科锐营收略高于预期,达1.458亿美元,同比增长35%,环比增长6%。展望下一季度,科锐目标收入在1.44亿美元到1.54亿美元之间。同时,Cree首席执行官Gregg Lowe也再次确认,其位于纽约州马西镇的碳化硅(SiC)晶圆厂有望在2022年初投产,该厂于2019年开始建设,为“世界上最大”的碳化硅晶圆厂,将聚焦车规级产品,是科锐10亿美元扩大碳化硅产能计划的一部分,也是该公司有史以来最大手笔的投资。同日,科锐宣布与意法半导体(ST)扩大现有的多年长期碳化硅(SiC)晶圆供应协议。根据新的供应协议,科锐在未来几年将向意法半导体提供150毫米碳化硅裸片和外延片。△Source:科锐官网在工业市场,碳化硅解决方案可实现更小、更轻和更具成本效益的设计,更有效地转换能源以开启新的清洁能源应用。Gregg Lowe表示,我们与设备制造商的长期晶圆供应协议现在总额超过13亿美元,有助于支持我们推动行业从硅向碳化硅转型。市场迎来爆发期,厂商加速扩产碳化硅衬底材料是新的一代半导体材料,属于半导体产业的新兴和前沿发展方向之一,主要应用于以5G通信、国防军工、航空航天为代表的射频领域和以新能源汽车、“新基建”为代表的电力电子领域。全球市场上,6英寸SiC衬底已实现商业化,主流大厂也陆续推出8英寸样品。根据公开信息,科锐能够批量供应4英寸至6英寸导电型和半绝缘型碳化硅衬底,且已成功研发并开始建设8英寸产品生产线。此外,今年7月27日,意法半导体就宣布,制造出首批8英寸SiC晶圆片。当前,全球碳化硅半导体产业市场快速发展并已迎来爆发期,国际大厂纷纷加大投入实施扩产计划,如碳化硅国际标杆企业美国科锐公司于2019年宣布投资10亿美元扩产30倍之外,而美国贰陆公司、日本罗姆公司等也陆续公布了相应扩产计划。此外,国内宽禁带半导体产业的政策落地和行业的快速发展吸引了诸多国内企业进入,如露笑科技、三安光电、天通股份等上市公司均已公告进入碳化硅领域;斯达半导3月宣布加码车规级SIC模组产线;而比亚迪半导体、闻泰科技、华润微等也有从事SiC器件,此外,天科合达、山东天岳等国内厂商也都走在扩产路上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制