当前位置: 仪器信息网 > 行业主题 > >

油分浓度仪原理

仪器信息网油分浓度仪原理专题为您提供2024年最新油分浓度仪原理价格报价、厂家品牌的相关信息, 包括油分浓度仪原理参数、型号等,不管是国产,还是进口品牌的油分浓度仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油分浓度仪原理相关的耗材配件、试剂标物,还有油分浓度仪原理相关的最新资讯、资料,以及油分浓度仪原理相关的解决方案。

油分浓度仪原理相关的资讯

  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 上头电子烟就是毒品,SERS增强手持拉曼实现烟油中低浓度新精活物质快检
    14日,中新网记者从青海省烟草专卖局(公司)获悉,近日,西宁市烟草专卖局联合大通县公安局成功破获一起“上头电子烟”案件,抓获犯罪嫌疑人3名。该案是青海省首例“上头电子烟”案件,是烟草、公安紧密协作的一起典型案例。  电子烟的液体盒可更换,含有与丙二醇相混合的尼古丁,以及各种香料和调味剂。电子烟可以做成各种口味,吸引青少年等人群吸食。相较于二代传统毒品,三代毒品具有少剂量强效果特性,不法商贩为增加回头客,在烟油中添加了大麻等违禁成分的电子烟,“上头电子烟“外观虽与普通电子烟相似。但吸食后会在不知不觉中染上毒瘾,过量吸食则会出现昏迷、休克、窒息、猝死等情况,危害性极大,已被国家禁毒委员会办公室列为毒品施行管制。  拉曼光谱是分子结构研究的一种分析方法,每一种分子都有其特有的光谱,其光谱就称为“分子指纹光谱”,照此原理运用拉曼光谱技术进行电子烟油合成大麻素快速检测具有天然优势。  但拉曼光谱是是一种散射光谱,在混合物基质下,所有基质会生成同一条光谱,浓度高或者信号强的物质容易凸显,烟油主要基质以丙二醇为主,所以即使添加了合成大麻素,常规拉曼检测结果不显示。图1-常见烟油检测结果(丙二醇)那么厦门大学拉曼研究团队技术如何通过拉曼技术进行烟油中合成大麻素的检测?  普识纳米基于拉曼光谱技术研发了手持式拉曼光谱仪非接触式新型毒品检测仪器,配合源自厦门大学拉曼研究团队技术的增强拉曼方案,轻松检测烟油中毒品,特别适合现场快速安全鉴别。操作简单、检测快速,检出限可达到ng级(浓度0.01%),检测限已获得公安部报告,灵敏度高。不仅可以检测烟油,烟丝烟草也能检测,适用性高。图2-助力公安局准确检测三代毒品-新精活物质-合成大麻素  不仅能够检测合成大麻素,针对其他伪装毒品、掺杂毒品、强荧光干扰等毒品检测难题,普识纳米的技术也发挥同样优质检测能力。检测方法适用于固体、液体、黏稠胶状等各种检材,已实现300多种毒品(含三代毒品芬太尼类、合成大麻素)的高灵敏特异定性鉴别,检出限低至pg~ng级别。  该方法的强适用性在面对于层出不穷的新型毒品发挥了很好的拓展性,利用仪器自建库功能,可快速建立新型毒品项目数据库,迅速开展禁毒工作。  普识纳米也提醒大家,提高警惕,远离毒品,坚定意志力,不被各种伪装毒品诱惑。如有发现售卖、吸食“上头电子烟”行为,也请及时向当地公安机关等部门举报,为禁毒工作助一份力。
  • 阿基米德原理自动柴油密度仪操作步骤
    一、概 述 SH102C全自动石油密度测定仪是采用阿基米德原理进行自动测量石油产品的密度,适用于测定石油产品、化工溶液、现化能源、石油燃料、精细化工的密度,仪器符合ASTM D1298标准规范,自动显示密度值、API度。二、功能特点 山东盛泰仪器有限公司厂家直销 镀金陶瓷电容传感器;标准的RS232数据输出功能,可连接打印机自动打印。;全自动零点跟踪、蜂鸣器报警、超载报警功能蓝色背光液晶显示;测量时间 约10秒三、步骤 山东盛泰仪器有限公司厂家直销 1. 将挂钩悬挂在液体专用架的正中央, 按下’ZERO’扣除挂钩的重量2.使用挂钩将标准的玻璃砝码钩起来,数值稳定后按ENTER保存。3.取50-60ml要测量的液体样品到烧杯中,并放在黑色的支撑板上4.使用挂钩将标准玻璃砝码钩起,悬挂在装满待测量液体烧杯中,要确保测量液体有高于玻璃砝码,而且玻璃砝码不可以碰到烧杯。5.数值稳定后,按下ENTER 自动显示被测液体的密度值。按MODE切换波美度.浓度按print打印出测量数字,按SET返回测试下一个样品.
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 近红外法可测血液中甘油三酯浓度
    中性脂肪即甘油三酯,是高血压和心脏病的主要原因。日本产业技术综合研究所日前宣布,该所开发出一种新装置,只需用近红外光照射指尖几秒钟,就能检测出血液里中性脂肪的浓度。  研究人员注意到,波长介于可见光和红外线之间的近红外光具有不容易被人体吸收的性质,因此通过向手指尖端照射近红外光,然后分析透过手指的光,就能检测血液内中性脂肪的浓度。  现有的近红外光测试装置灵敏度很低,为确保透过身体组织的光的强度,需要长时间照射,既不方便又有安全问题。新的分光装置能在更广范围内收集很微弱的光,其灵敏度达到以前水平的1000倍,从而能进行快速准确的检测。  这种新装置只有约3公斤重,便于携带,将手指放在照射近红外光的光纤顶端,装置就会在显示器上显示出检测值。在利用试制的新装置对就餐前后血液中的中性脂肪进行检测时,研究人员发现就餐后人体血液中的中性脂肪开始升高,约4小时后达到峰值。研究人员通过将检测值分为5个阶段,来显示脂肪的摄取状况。  研究小组准备推动医疗机构明年开始采用这种新装置,并准备继续开发面向家庭的相关产品。
  • TOPAS发布曲轴箱窜气浓度测试系统 TOPAS新品
    一、仪器描述旁路测试台BBT143用于测量旁路气体中的油浓度。旁路测试台BBT143是一个可移动测量系统,测量曲轴箱出气(旁路)中油滴浓度。它由GMS141重量方法与光度计测量方法结合,能够有效且节约时间记录发动机的油耗量。对于压力补偿,一个风机可以补偿测量系统的压力损失。另外,光度计PAP612可以检测管道中的油膜,喷油等。二、仪器特点? 节约时间,在宽浓度范围内可重复检测旁路中油雾浓度。? 与发动机实验台集成? 最高达到旁路的全流量300l/min? 可以进行压力补偿? 腔体加热避免冷凝? 光度计两波段测量,精度高? 易于使用和快速调试三、仪器应用? 测量发动机实验台旁路(Blow-by)的油雾浓度? 评价油雾分离器? 在线监测油雾浓度创新点: 发动机曲轴箱中油雾废气主要以气溶胶形式存在,这些油雾废气不仅影响发动机的寿命,而且还污染了进气,从而增加了汽车污染物排放。 目前在国内测量曲轴箱通风系统中油雾浓度都基于计重法,这种重量法有如下几点不足。一、过滤器没有保温。因为油雾气溶胶中不可避免的的含杂有水蒸气和少量未燃尽的汽油,如遇冷,水蒸气和汽油会凝结,从而影响测量结果。二、没有旁路。发动机在达到稳定工况之前需要一段时间,没有旁路作为调节,过滤器上收集的就不全是稳定工况的油雾气溶胶。三、实验终止条件不确定。不同发动机,甚至同一发动机在不同负载和转速条件下油雾排放浓度差异很大,无法事先确定,进而无法确定实验终止时间。四、影响发动机工作。随着实验进行,机油加载,过滤器压力损失增加,会对发动机的运行造成影响。五、发动机油谱图完成需要一周甚至更长的时间。 Topas最新研制的曲轴箱窜气浓度测试系统,BBT-143采用重量法和光学测试原理相结合的原理研制而成;光学在线测量方法在测量曲轴箱油雾排放方面具有极大优势。在发动机试验台架上,光学方法测量发动机闭式曲轴箱通风系统油雾浓度排放谱图(机油消耗量),能够显著缩短试验时长。根据测试结果,可以进一步优化活塞、增压器,通过设置油雾分离器上下游测量点,可以分析油雾分离器的实际工作效率。曲轴箱窜气浓度测试系统 TOPAS
  • 绝缘油析气性测量仪的工作原理是什么?
    电气绝缘油在高强度电场的作用下,部分烃分子会发生裂解而产生气体,这部分气体以微小的气泡从油中释放出来。如果小气泡量增多,它们会互相连接而形成大气泡。由于气体与油的电导率有很大的差异,在高压电场的作用下,油中会产生气隙放电现象,而有可能导致绝缘的破坏,这种现象在超高压输变电设备中显得尤为突出。为克服这种倾向,用于超高压设备的变压器应满足析气性指标要求。 绝缘油的吸气性又称为气稳定性,是指油在高电场强的作用下,烃分子发生物理/化学变化时,吸收气体或放出气体的特性,如果绝缘油易放出气体,那么就会形成气体穴存在油中,会发生局部放电或过热,严重的会导致油击穿。因此,希望绝缘油是吸气的,芳香烃是吸收气体的,为改变绝缘油的吸气性,一般采用往油中添加浓缩芳烃或人工合成的芳香烃化合物。
  • 科学家研发石墨烯材料传感器可检测分子级气体浓度变化
    英国南安普顿大学和日本先进科学技术研究所的科学家研发了一种以石墨烯为原材料的传感器,能检测出室内空气污染且精度极高。这一研究近日发表在《科学进展》期刊上。新研发的传感器可以感应到来自建筑、家具用品的二氧化碳分子以及挥发性有机化合物(VOC)气体分子。近年来,由个人居住环境中的空气污染引起的健康问题与日俱增。  这些有害化学气体的浓度水平一般在几十亿分之一(ppb),用现有的环境传感技术难以检测到,因为这些传感器只能检测到浓度为百万分之一(ppb)的此类气体。  该研究团队研发出的石墨烯传感器在通电后,可使单个的二氧化碳分子一个一个吸附到石墨烯材料上,并在分子水平上检测其浓度。其原理是:装置中的石墨烯材料采用单原子悬浮束式层状结构,石墨烯材料周边有弱电场分布。当单个二氧化碳分子或挥发性有机气体分子接触或离开石墨烯材料时,石墨烯的电阻率受影响发生改变,传感器能够检测到这种变化,由于能够检测到分子级的浓度变化,因此这种传感器拥有相当惊人的精度。在试验中,原型传感器可检测到一分钟内30ppb的二氧化碳浓度变化。而且传感器非常紧凑小巧,科学家相信其有望应用于制成便携廉价的空气污染监测装置。
  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm 波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 优普发布半自动测油仪新品
    红外光度测油仪UP-1001利用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。红外光度测油仪UP-1001利用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。应用领域:适用于工业废水、生活污水、油烟油雾、土壤中石油类以及动植物油类的测定。执行标准:《HJ637-2018水质 石油类和动植物油类的测定 红外分光光度法》《HJ1077-2019固定污染源废气 油烟和油雾的测定 红外分光光度法》《HJ1051-2019土壤 石油类的测定 红外分光光度法》半自动测油仪UP-1001技术参数:波数扫描范围3400 cm-1 ~2400cm-1 (2941nm~4167nm)波数准确度±1cm-1波数重复性±1cm-1仪器检出限≤0.02mg/L测量重复性2%测量准确度±2%吸光度线性范围0.0000~1.9999AU测量范围0.02~800mg/L低检出浓度0.002mg/L(水样浓度)基线漂移1%/4h不同配比测量误差5%通讯接口蓝牙显示10.1寸平板电脑外型尺寸540*246*160(mm)请根据实际外形尺寸修正重量13Kg电源220V±20V,50Hz±1Hz,40W湿度80%温度5~35℃半自动测油仪UP-1001仪器特点:稳定性好:采用一体化光学系统,光程短,能量大,稳定性好,信噪比高。漂移小:探测器既采集光源发光时的信号,又采集光源熄灭时的信号,实现零点实时自动调零。定位精确:采用余割原理进行波数精确定位扫描,使波数定位精度小于一个波数。不同配比测量误差小:模拟水中油成份,测定任意组分标油的误差小于百分之五,使仪器真正为实际水样服务。全光谱测量:全波数测量并实时显示图谱,既可定性分析,又可定量测量。测油专用软件:测油专用软件(已申请软著),集谱图扫描、分析、计算、存储于一体,使操作更轻松。具备自检及结果判定功能:能量不正常则提示,同时提示可能造成的原因,供故障排查参考,具备软件判断样品是否超标提示功能;远程操控:仪器选用10.1英寸Windows10平板电脑,嵌入主机仪器,平板电脑可灵活取下,实现远程操控, 主机预留外接电脑通讯控制接口。通讯方式:蓝牙、RS232通讯。创新点:用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。半自动测油仪
  • 【安装】中国航油西南战略储运基地 8套LDI ROW溢油监测仪投入运行
    大型储油罐日常操作造成的意外溢油可能会污染地下水和地表水,因此储油基地大多数建设及设施都需满足“水中无油”政策。当漏油发生时,需要对作业进行审查,并采取措施减轻和避免损害。泄漏检测的延迟会导致声誉、环境和当地基础设施受损,及早发现可以更容易地遏制大规模泄漏,并可以改进与当局的协调工作,以管理泄漏反应。中国航油西南战略储运基地建设项目对保障西南地区航油供应,完善西南地区航油体系发挥重要作用。为确保储油基地的安全运营,提升基地的应急响应能力及保护周边环境,该项目于2023年底购置了8套防爆型ROW 荧光法溢油监测仪,布设于储油罐区域排水渠,用于实时监测并准确排查任何可能的溢油事件。上周奕枫仪器工程师来到项目所在地重庆对ROW荧光法溢油监测仪进行了安装调试,并为基地安全工程师进行了现场培训。目前,8套溢油监测设备均已投入正常运行。 安装现场设备调试 操作培训产品介绍ROW系列荧光法溢油监测仪是一种自动非接触式传感器(远程光学观察器),可实时监测水中油品或化工品污染,高度准确且易于维护,它可以及时发现并提醒漏油或化工品污染以便在污染扩散失控之前做出反应。它使用石油/化工品的天然荧光检测任何从船用柴油到植物油到喷气燃料等油类,发现污染立即进行现场声光报警,并将数据远程传输到需要的服务器。无论是在污水排放口还是在进水口,它都可以提供24小时/7天的全天候工业和环境水监测。ROW 荧光法溢油监测仪有多种型号可选,可适配不同应用场景及轻油,中油,重油不同油类。如ROW防爆型整个系统通过了DNV的ATEX/IECEx认证,设计用于安装在易燃气体、蒸汽或雾气等可燃浓度经常存在的危险区域。工作原理为了能够从水面以上最高10m的位置检测厚度为1μm的浮油,ROW溢油监测仪采用365nm的紫外脉冲光束照射水面,激发目标区域的油分子产生荧光,检测器能够从其他物质中鉴别油分子的信号,并给操作者报警。LDI有20年相关监测经验,确保测量结果可靠。报警方式水表溢油监测报警系统具有多种溢油报警方式可选:可通过RS485通讯,LAN通讯,GPRS无线通讯,0~20mA模拟信号或0~10V输出信号,继电器连接声光报警器,Email或短信等方式报警。相关链接:ROW溢油监测及报警系统解决方案https://www.instrument.com.cn/netshow/SH102145/news_660880.htm ROW溢油监测系统全球应用案例https://www.instrument.com.cn/netshow/SH102145/news_624045.htm ROW溢油监测系统视频介绍https://www.instrument.com.cn/netshow/SH102145/video/6874.htm
  • 得利特实验室检测仪器---台式酸浓度计,台式碱浓度计
    目前,便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。当下我国的环保形势良好,国家对环境监测仪器的需求大,在政策上也多有扶持,所以行业内要及时抓住机遇,依托政策,积极引进先进技术,聚集人才,研发属于我们自己的国之重器,让国产仪器真正走出国门。当然,我国的仪器行业还存在一个状况,就是两极分化严重,一大批企业徘徊在中低端产品线上,而能与世界水平比肩的却寥寥无几,如果不能解决这个问题,长此以往,对我国的仪器行业发展并没有任何好处,水质分析仪器也如是,可见国产仪器商们要走的路还很长。B1120台式酸浓度计在电力工业中广泛应用的电磁式酸碱浓度计的新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示: 4位0.8英寸LED显示测量介质:HCl、NaOH、NaCl、H2SO4(每台仪表只能测量一种介质,订货时指明测量介质)量  程: HCl 0~10% H2SO4 0~5%精 度:  2.0级 (常用点校准后误差可小于0.05%)    分 辩 率:  0.01%温度补偿范围:(5~55)℃仪表供电: AC 220V 50Hz 5W仪表外形尺寸: 270×200×90mm探头尺寸: 39×100mm,引线长度1m仪表重量: 1.25kgB1130台式碱浓度计在电力工业中广泛应用的电磁式酸碱浓度计的zui新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示:4位0.8英寸LED显示测量介质:NaOH、NaCl(每台仪表只能测量一种介质,订货时指明测量介质)量  程:NaOH 0~5% NaCl 0~5%(重量百分比)精 度: 2.0级 (常用点校准后误差可小 于0.05%)    分 辩 率: 0.01%温度补偿范围: (5~55)℃仪表供电:AC 220V 50Hz 5W仪表外形尺寸:270×200×90mm探头尺寸:39×100mm,引线长度1m仪表重量:1.25kg
  • 红外分光测油仪测定水中石油类技术探讨
    1红外分光测油仪与石油类简介   1.1红外分光测油仪   红外分光测油仪是一种借助红外技术对水体当中的油含量进行测定的专用仪器,该仪器的应用范围较广,能够对多种不同水体中的石油类进行测定,其测量原理是利用光谱能量的吸收与转换进行内部成分的定性分析与定量计算,借助红外分光光度法测量,对样品进行光谱扫描,从而显示出样品的光谱及吸收峰的波数位置,快速、准确地测出水体当中各种油份的浓度含量。红外分光测油仪属于一体化的光学系统,它的体积相对较小且重量较轻,便于携带,结构简单、操作方便,测量速度较快,测量一次样品通常只需要1min左右。   1.2石油类   我国现行的HJ637-2012标准中规定,在实验过程中,可以被CCl4萃取,并且在波数2930、2960、3030谱带处有特征吸收的物质,被称之为总油,它是由两个部分组成,其中一部分为石油类,另一部分为动植物油类。石油类是能够被CCl4萃取,但却并不会被MgSiO3所吸附的物质。   2红外分光光度法对水中石油类的测定   水体中石油类含量的测定是环境监测的重要项目之一,由于总体石油类的成分较为复杂,并且地区不同组成也不相同,烃类是其最主要的一种成分。HJ637-2012标准中给出了测定水中石油类的方法,即红外分光光度法。下面本文通过实验的方法,对红外分光光度法测定水中石油类技术进行分析。   2.1实验过程   2.1.1试剂与材料。本次实验中,所有试剂均选用的是与国家标准规定要求相符的分析纯化学试剂,实验过程中使用的水全部都是蒸馏水,具体有以下几种试剂:HCl、正十六烷、异辛烷、苯、CCl4、无水Na2SO4、MgSiO3、石油类标准贮备液、正十六烷标准贮备液、异辛烷标准贮备液、笨标准贮备液以及吸附柱等等。   2.1.2仪器设备。本次实验中的主要仪器设备包括红外分光光度计、旋转振荡器、分液漏斗、玻璃砂芯漏斗、锥形瓶、样品瓶、量筒、比色皿等等。   2.1.3试样制备。①采样。实验过程中使用的所有样品全部按照国家规范标准的规定要求进行采集,具体做法如下:使用容积为1000ml的样品瓶,对地表水及地下水进行采集,使用容积为500ml的样品瓶对生活污水及工业废水进行采集,随后向样品瓶中加入适量的HCl,对样品进行酸化处理,使其pH值≤2.0。②保存样品。经过酸化处理之后的样品若是不能在24h以内进行测定,则必须采取妥善的方式加以保存,最佳的存放条件为2-5℃左右冷藏,最长期限为3d。③制备。本次试验中,试样的制备分为两个部分,即地下水与地表水试样的制备和生活污水与工业废水试样的制备,具体过程严格按照HJ637-2012标准中给出的方法进行,以此来确保试样的整体质量。   2.1.4校准。量取正十六烷和异辛烷两种标准贮备液各2.0ml,同时量取苯标准贮备液10.0ml,分别装于容量瓶当中,然后用CCl4进行定容,至标线位置处,再以人为的方式摇匀,三种标准溶液分别为正十六烷20mg/L、异辛烷20mg/L、苯100mg/L;使用CCl4作为参比溶液,并用4cm比色皿对三种标准溶液在2930cm-1、2960cm-1、3030cm-1波数处的吸光度进行测量,三种标准溶液在上述三个波数处的吸光度符合式(1),可得到联立方程,求解后便可获得相应的校正系数。   (1)   上式当中, 表示CCl4中总油的含量(单位:mg/L);A2930,A2960,A3030表示对应波数下测得的吸光度;X、Y、Z表示与各种C-H键吸光度相对应的系数;F表示校正因子。   2.1.5总油及石油类浓度的测定。①总油。先将未经过MgSiO3吸附的萃取液移至4cm比色皿当中,然后用CCl4作为参比溶液,在三个波数处分别对其吸光度进行测定,以此来计算出总油的浓度。②石油类。石油类浓度的测定方法与总油相同,在此不进行累述。总油的浓度减去石油类的浓度便可获得试样中动植物油类的浓度含量。   2.2测定过程的注意事项   在测定过程中,应对如下事项加以注意:选用的CCl4吸光度应当低于0.12,并且在2800cm-1-3100cm-1之间扫描,不得出现锐锋;选用的红外分光光度计应当能够在3400cm-1-2400cm-1之间进行扫描。若是红外分光光度计在出厂时设定了校正系数,则可直接进行检验;每一批样品在进行分析之前,都必须做方法空白实验,并且空白值必须低于HJ637-2012标准中给出的检出限;实验完毕后,CCl4废液应当存放在密闭性较好的容器当中,进行妥善处理,不得随意丢弃,以免造成污染。   结论:   综上所述,本文以实验的方法,利用红外分光光度计对水中石油类的测定过程进行了简要分析,红外分光光度法是HJ637-2012标准中明确规定的测定水中石油类的方法,由于该方法在测定过程中需要使用CCl4,而该试剂本身的毒性较大,所以在实验过程中必须予以注意,以免引起安全事故。
  • 如何测量高浓度溶液的荧光光谱?
    1. 前言荧光分析法可用于物质的定量和定性分析,而且灵敏度高,对于稀溶液来说,荧光强度和样品浓度成线性关系。那么如何准确测量高浓度的溶液样品呢?图1和图2分别是使用10mm矩形样品池+标准样品池支架和10mm矩形样品池+固体样品支架的测定示意图。图1 10mm矩形样品池+标准样品池支架图2 10mm矩形样品池+固体样品支架从图中可以看出,使用图1的方式测量高浓度样品时,激发光无法到达样品内部,并且在液体表面更容易产生荧光,这种现象被称为自吸收。由于样品本身对荧光的吸收,造成更短波长处的荧光消失。如果稀释样品不合适,则需要选用图2的方式测量高浓度样品,通过使用固体样品支架,捕捉样品表面的荧光。2. 应用实例-橄榄油的三维荧光光谱在此实验中,我们测量了市售橄榄油和初榨橄榄油的三维荧光光谱,并比较了荧光强度。样品:不同浓度的橄榄油测量附件:固体样品支架 测量结果:四种样品的三维荧光光谱图3 品牌A橄榄油的三维荧光光谱图4 品牌A初榨橄榄油的三维荧光光谱图5 品牌B橄榄油的三维荧光光谱图6 品牌B初榨橄榄油的三维荧光光谱使用日立荧光分光光度计F-7100以60000nm/min的扫描速度,获得了多个样品的高信噪比光谱。在所有测试的橄榄油三维荧光光谱中,在两个区域(i)、(ii)处观察到荧光,计算(ii)/(i)的荧光强度比,可以看出,两个品牌的初榨橄榄油与橄榄油相比,初榨橄榄油的强度比更高。3. 总结使用荧光分光光度计测量高浓度样品溶液时,注意样品自吸收对荧光光谱产生的影响。日立荧光分光光度计搭配固体样品支架,以高通量测量了高浓度橄榄油的三维荧光光谱,测量结果准确。
  • SPM系列丨润滑油固液界面特性表征
    润滑油是各种机械设备上用以减少摩擦,保护机械及加工件的液体或半固体润滑剂。润滑油如发动机机油,润滑原理是其中所含的添加剂成分会在金属表面形成吸附膜,从而减少摩擦作用,并通过防止金属与金属间的直接接触来阻止金属磨损。 但目前常用的测试方法并不能直接观察吸附膜,因此在实际的润滑油开发过程中,需要使用大型装置进行重复测试,例如采用真实车辆测试和发动机测试,以缩小改性剂候选范围和最佳浓度范围。此类开发方式需要大量的时间与物料成本,因此迫切需要一种新的方法。 原子力显微镜是一种通过检测纳米级针尖和样品间作用力获得信息的高分辨工具。但是传统原子力显微镜对力的检测分辨率不够高,因此需要使用调频模式的原子力显微镜。调频模式下探针可以检测到一个或几个分子对探针的扰动,非常适合对润滑油吸附膜这种单分子膜进行观测。 SPM-8100FM调频原子力显微镜仅需500μl润滑油样品,即能够以分子级分辨率观察润滑油-氧化铁界面。 使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析基油为PAO 4(聚α-烯烃),添加剂为C18AP(正磷酸油酸酯)。 图示为4组对照实验,分别是仅使用PAO(不添加C18AP)和添加了浓度为0.2 ppm、 2 ppm、20 ppm和200 ppm的C18AP的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向已被C18AP破坏,即C18AP在氧化铁基片上的形成了吸附膜。氧化铁基片在浓度为2ppm时部分覆盖,在20ppm和200ppm时完全覆盖。可以推断,随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。 在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。 SPM-8100FM界面图像表明,PAO中C18AP的浓度高于20ppm时,C18AP吸附层完全覆盖了氧化铁基片表面。 尽管对滑动条件和静态条件下实施表面分析的动态环境存在差异,但是这些实验结果表明,使用SPM-8100FM对润滑油-氧化铁界面实施分析进而评估滑动表面摩擦特性是可行的。该技术对于润滑油开发,可有效加快润滑油开发进度,在研发的初期阶段就可以在实验室中进行测试,完成开发初始阶段筛查。
  • 布鲁克红外测定不同浓度的粉尘中游离二氧化硅
    游离二氧化硅粉尘俗称矽尘,是工业界广泛存在的职业有害因素,长期接触矽尘引起的矽肺是最我国目前最为严重的职业病,据2006年卫生统计报告,我国累积矽肺患者约为尘肺的半数,大约30余万例。矽肺是尘肺中最严重、最多见、报告最早、研究最多、病理改变基本清楚的一种尘肺,而且也是我国乃至全球发病率和死亡率最高的一种尘肺病。矽尘的准确识别和检测是矽肺病预防与控制的重中之重。因此,分析粉尘中的游离二氧化硅含量成为疾病预防与职业卫生监测工作的重要工作内容之一。 根据中华人民共和国国家职业卫生标准GBZ/T 192.4 2007《工作场所空气中粉尘测定 第 4 部分:游离二氧化硅含量》,工作场所空气中粉尘游离二氧化硅含量的测定方法有三种,第一法是焦磷酸法,第二法是红外光谱法,第三法是X线衍射法。 焦磷酸法为手工称重操作,对实验人员的操作水平要求较高,且实验繁琐。而且据《中华职业医学》和国外有关文献中指出: 矽肺是长期吸入结晶型游离二氧化硅造成的。第二法是红外光谱法,其原理是利用 α-石英(结晶型)在红外光谱中于12.5μm (800 cm-1) 、12.8μm ( 780 cm-1 ) 及14.4μm (694 cm-1) 处出现特异性强的吸收带,在一定范围内,其吸光度值与α-石英质量成线性关系,通过测量其吸光度进行定量测定。当待测物是结晶型二氧化硅时(如石英粉尘),两种方法测定的结果是一致的,但是当待测粉尘不是或不完全是结晶型二氧化硅时,焦磷酸法测得的粉尘中二氧化硅结果就会高于红外光谱法。不同浓度的α-石英光谱图标准曲线的建立 布鲁克多款型号的红外光谱仪满足国标对游离二氧化硅的检测要求。布鲁克专利的永久准直的ROCKSOLIDTM干涉仪,采用镀金双立方角镜技术,保证了红外光谱仪具有业界最佳的光效能和灵敏度,从而确保光谱仪可以在各种环境条件下获得准确可靠的红外光谱数据。将游离二氧化硅含量分析简单到一键化操作,结果直接公式即得,大大缩短了分析时间和简化了实验流程。ALPHA II傅立叶变换红外光谱仪INVENIO傅立叶变换红外光谱仪如您对该应用技术感兴趣,欢迎拨打布鲁克光谱400热线。
  • 盛奥华发布【盛奥华】SH-21Z型(V10)紫外测油仪新品
    SH-21Z型紫外测油仪依据国家环境监测技术规范要求,结合我国环境污染状况及各及环境监测部门有需要而研发出的一种高效环保、准确快捷的测油仪器。本仪器用正己烷萃取剂替代红外法中已被禁用的四氯化碳萃取剂,完全符合新国标《HJ970-2018水质石油类的测定 紫外分光光度法》的要求。该产品操作简单,精密度好,灵敏度高,性能稳定,能满足客户的各种应用要求。SH-21Z型(V10)紫外测油仪可广泛应用于大专院校、科研院所、污水处理厂、环保监测站、石化、造纸、制药、印染、纺织、皮革、酿酒、乳业、电子、市政工程等行业 检测原理:在pH≤2的条件下,样品中的油类物质被正己烷萃取,萃取液经无水硫酸钠脱水,再经硅酸镁吸附除去动植物油类等极性物质,于紫外区测定吸光度,石油类含量与吸光度值符合朗伯-比尔定律,从而定量分析水中石油类含量。※完全符合新环保标准,采用紫外光进行检测,仪器自动测量吸光度,然后自动计算最终浓度,操作简单,结果准确※萃取剂采用正己烷,对人和环境的影响远低于红外测油仪所用的四氯化碳萃※采用10.1英寸高分辨率真彩触摸屏,人性化的简洁菜单设计使得操作更省时,单个界面即包含检测时间、检测项目、吸光度、透过率、浓度值、波长值、曲线等详尽信息※测量项目可选自动、半自动测量 ※仪器具有扫描功能,可评判空白纯度※内置多条预设标准曲线,并支持自定义曲线※大容量可存储500万组数据※内置热敏打印机,实现检测及数据打印一体化,可打印当前及历史数据※仪器具有自检功能,可对仪器系统校正※带USB接口,可实现数据传输功能 ●测定指标:石油类、动植物油类和总油●显示方式:10.1英寸触摸屏中文配合个性化图标操作界面●波长范围:200-400nm●检出下限:0.001mg/L●测定范围:0.001~1000mg/L●量程:多量程选择●萃取剂:正己烷●测定时间:20-30分钟●光度稳定性:≤0.001A/10min●重复性:±3%●测量误差:≤±5%●温度示值误差:±5%●温场均匀性:±0.5●环境温度:5~40℃●环境湿度:相对湿度85%(无冷凝)●萃取方式:手动萃取●曲线参数:内置标准曲线●打印方式:内置热敏打印●净重:10.3Kg●产品尺寸:220*120*90mm分液漏斗、层析柱、专用萃取架、专用比色皿、比色皿架、固体试剂 凡是我方提供的仪器,运输、包装等费用均由我方承担;一年之内免费保修,一年后进行有偿服务。凡是我方提供的仪器一年以后均按照供货范围表的报价进行有偿服务。创新点:采用10.1英寸高分辨率真彩触摸屏,人性化的简洁菜单设计使得操作更省时,单个界面即包含检测时间、检测项目、吸光度、透过率、浓度值、波长值、曲线等详尽信息;测量项目可选自动、半自动测量;符合新环保标准,采用紫外光进行检测,仪器自动测量吸光度,然后自动计算最终浓度,操作简单,结果准确【盛奥华】SH-21Z型(V10)紫外测油仪
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 小学生500元自制粉尘浓度对比检测仪
    天气不好的时候,要不要开窗换气,许多人很纠结,西城区黄城根小学的郭宇华和回民小学杨易格,两位六年级的小学生却仅仅花费了500元自制出一台粉尘浓度对比检测仪,让大家不再纠结。  这台巴掌大小的仪器,比PM2.5小一半的微粒都能测出来,而且还能同时测室内外空气,实现同步比对,提醒何时最适宜开窗通风。这台仪器不仅博得了清华、北大、北师大、北理工等高校专家的青睐,还被评为第34届北京青少年科技创新大赛一等奖。  小学生发明的&ldquo 便携式粉尘浓度对比检测仪&rdquo 到底有什么神奇之处?  &ldquo 市场上的粉尘检测仪要么检测室内,要么检测室外,不能联网对比检测。我们做的检测仪不仅成本低、检测数据可信、可靠,而且能通过蓝牙传输装置,实现多个测试点检测数值间的无线传输、比较分析。&rdquo 郭宇华小大人儿般一本正经地为记者介绍:&ldquo 这对仪器分主机、副机,主机摆在室内,副机摆在室外,通过采集室内外的粉尘浓度,无线传输数据,进行实时对比,从而判断是否适宜通风换气。&rdquo   郭宇华和杨易格俩人经过对牛街等二环、三环周边的居民区数次采样分析,得出的结论是:生活在市区,尤其是交通主干道的居民,早晨晚间都不宜打开窗户通风,因为仪器数据显示,这时室内的粉尘量往往低于外界环境。  郭宇华从小爱天文,曾连续两届荣获市区级天文知识、天文摄影竞赛奖项 他还痴迷地铁,自幼热衷考察地铁系统,纷繁线路了熟于胸,自诩&ldquo 上知天文,下晓地铁&rdquo 。他的小发明刚刚入围第29届全国青少年科技创新大赛,暑假里他将代表北京队参加这项全国性赛事,所以六一也不能闲着。
  • 《穹顶之下--柴静雾霾调查》使用master手持折射仪,ATAGO(爱拓)为环保尽自己的一分力
    2015年2月28日《穹顶之下--柴静雾霾调查》在视频中 1小时19分钟33秒时,柴静与美国加州空气资源部官员一起使用ATAGO(爱拓)N-1a手持便携式浓度计检测柴油发动机的不达标情况,这个型号已经停产,但是能为美国加州空气资源部服役至少8年以上,我们倍感荣幸,现在替代型号master系列手持便携式浓度计将继续为环保尽自己的一份力!执行监测柴油发动机达标处理现场摘录图一ATAGO(爱拓)N-1a手持便携式浓度计使用折光原理方法比激光粒度颗粒计数更具有参考价值 汽车尿素的学名是柴油机尾气处理液。应用于柴油发动机中。其组成成分为32.5%的高纯尿素和67.5%的去离子水。 尿素含量直接影响NOx的催化效率和尿素溶液的凝固点。在SCR还原系统中,尿素溶液的浓度是关键因素之一,过高或过低的浓度不仅不能提高NOx的转化效率,反而会造成氨气的滑失(由于过高的NH3/NOx比造成的氨气漏失),形成二次污染物氨气。 早在2006年ATAGO(爱拓)就开发出多种型号的车用尿素浓度计,手持便携式浓度计,投放到欧洲和北美市场,测试DEF、AUS32和ADBLUE浓度。方便快速的协助相关单位去管理和控制车用尿素的浓度,比如尿素生产企业、车用尿素液运输渠道、加油站、柴油发送机的生产部门等单位 标准强制实施之后,每个加油站都需要常备车用尿素液,柴油汽车就是像日常加油一样,去加油站都得补充车用尿素液,车用尿素DEF浓度计, 车用尿素浓度测定仪将在这场变革中发挥出重要的作用。 最后,期望使用科学地方法来保护我们的祖国家园,为祖国的花朵建设蓝天白云的空气,为环保尽自己最大的一份力量。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV  分析原理:吸收紫外光能量,引起分子中电子能级的跃迁  谱图的表示方法:相对吸收光能量随吸收光波长的变化  提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息  荧光光谱法FS  分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光  谱图的表示方法:发射的荧光能量随光波长的变化  提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息  红外吸收光谱法IR  分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁  谱图的表示方法:相对透射光能量随透射光频率变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  拉曼光谱法Ram  分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射  谱图的表示方法:散射光能量随拉曼位移的变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  核磁共振波谱法NMR  分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁  谱图的表示方法:吸收光能量随化学位移的变化  提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息  电子顺磁共振波谱法ESR  分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁  谱图的表示方法:吸收光能量或微分能量随磁场强度变化  提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息  质谱分析法MS  分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离  谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化  提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息  气相色谱法GC  分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关  反气相色谱法IGC  分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力  谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线  提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数  裂解气相色谱法PGC  分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型  凝胶色谱法GPC  分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:高聚物的平均分子量及其分布  热重法TG  分析原理:在控温环境中,样品重量随温度或时间变化  谱图的表示方法:样品的重量分数随温度或时间的变化曲线  提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区  热差分析DTA  分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化  谱图的表示方法:温差随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  TG-DTA图  示差扫描量热分析DSC  分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化  谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  静态热―力分析TMA  分析原理:样品在恒力作用下产生的形变随温度或时间变化  谱图的表示方法:样品形变值随温度或时间变化曲线  提供的信息:热转变温度和力学状态  动态热―力分析DMA  分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化  谱图的表示方法:模量或tg&delta 随温度变化曲线  提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM  分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象  谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象  提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等  扫描电子显微术SEM  分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象  谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等  提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等  原子吸收AAS  原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。  (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP  原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。  X-raydiffraction,x射线衍射即XRD  X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。  满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。  高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)  CZE的基本原理  HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。  扫描隧道显微镜(STM)  扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。  原子力显微镜(AtomicForceMicroscopy,简称AFM)  原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。  俄歇电子能谱学(Augerelectronspectroscopy),简称AES  俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 气质联用仪的基本原理
    p style="line-height: 1.5em " 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。br//pp style="line-height: 1.5em "  strong基本应用/strong/pp style="line-height: 1.5em "  气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。/pp style="line-height: 1.5em " strong GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。/strong/pp style="line-height: 1.5em "  strong一、色谱部分/strong/pp style="line-height: 1.5em "  色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。/pp style="line-height: 1.5em " strong 二、气质接口/strong/pp style="line-height: 1.5em "  气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。/pp style="line-height: 1.5em "  strong三、质谱仪部分/strong/pp style="line-height: 1.5em "  质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。/pp style="line-height: 1.5em "  strong1.离子源/strong/pp style="line-height: 1.5em "  离子源的作用是接受样品产生离子,常用的离子化方式有:/pp style="line-height: 1.5em "  strong电子轰击离子化/strong(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。/pp style="line-height: 1.5em "  strongEI特点:/strong/pp style="line-height: 1.5em "  ⑴结构简单,操作方便。/pp style="line-height: 1.5em "  ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。/pp style="line-height: 1.5em "  ⑶所得分子离子峰不强,有时不能识别。/pp style="line-height: 1.5em "  本法不适合于高分子量和热不稳定的化合物。/pp style="line-height: 1.5em "  strong化学离子化/strong(chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。/pp style="line-height: 1.5em "  strongCI特点/strong/pp style="line-height: 1.5em "  ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。/pp style="line-height: 1.5em "  ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。/pp style="line-height: 1.5em "  strong场致离子化/strong(fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。/pp style="line-height: 1.5em "  strong场解吸离子化/strong( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。/pp style="line-height: 1.5em "  strong负离子化学离子化/strong(negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。/pp style="line-height: 1.5em "  strong2.质量分析/strong/pp style="line-height: 1.5em "  其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:/pp style="line-height: 1.5em "  strong四极杆质量分析器(quadrupoleanalyzer)/strong/pp style="line-height: 1.5em "  原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。/pp style="line-height: 1.5em "  strong扇形质量分析器/strong/pp style="line-height: 1.5em "  磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。/pp style="line-height: 1.5em "  特点:分辨率低,对质量同、能量不同的离子分辨较困难。/pp style="line-height: 1.5em "  strong双聚焦质量分析器/strong(double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。/pp style="line-height: 1.5em "  strong离子阱检测器(iontrap detector)/strong/pp style="line-height: 1.5em "  原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。/pp style="line-height: 1.5em "  检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。/pp style="line-height: 1.5em "  strong真空系统/strong/pp style="line-height: 1.5em "  由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵/pp style="line-height: 1.5em " strong 主要性能指标/strong/pp style="line-height: 1.5em "  气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。/pp style="line-height: 1.5em "  质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。/pp style="line-height: 1.5em "  分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。/pp style="line-height: 1.5em "  灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。/pp style="line-height: 1.5em "  质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。/pp style="line-height: 1.5em "  扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。/pp style="line-height: 1.5em "  质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。/pp style="line-height: 1.5em "  动态范围决定了气质联用仪的检测浓度范围。/pp style="line-height: 1.5em "  strong测定方法/strong/pp style="line-height: 1.5em "  strong总离子流色谱法(totalionization chromatography,TIC)/strong--类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。/pp style="line-height: 1.5em "  strong选择性离子监测(selectedion monitoring,SIM)/strong--对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。/pp style="line-height: 1.5em "  strong质谱图/strong--为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。/ppbr//p
  • 自动酸值测定仪|润滑油的酸值定义和测试方法
    润滑油在使用过程中,由于其具有良好的润滑减摩、冷却降温、密封、清净分散、防锈防腐、减震缓冲等作用,润滑油不仅可以保证机械设备在高负荷或高速条件下运转,更可以延长设备使用的寿命。对在用油的理化指标进行有针对性的分析,如粘度、酸值、水分、磨粒分析、颗粒污染、漆膜倾向等,可以通过在用油的性能变化,掌握设备的的运行状态,为设备润滑制定合理的配套解决方案。润滑油酸值酸值的定义: 中和1g油液试样中全部酸性组分所需的碱量,以mgKOH/g表示。酸值分为强酸值和弱酸值两种,两者合并即为总酸值。通常所说的酸值是指总酸值。国内常用酸值,国外常用总酸值。酸值主要的测试方法:◆ GB/T264-1983(2004)石油产品酸值测定法◆ GB/T258-2016轻质石油产品酸度测定法◆ GB/T4945-2002(2004)石油产品酸值和碱值测定法(颜色指示剂法)◆ GB/T7304-2014石油产品酸值测定法电位滴定法◆ GB/T12574-1990(2004)喷气燃料总酸值测定法◆ ASTMD974-2014e2采用颜色指示剂法测定酸碱值的标准试验方法◆ ASTMD664-2018e2用电位滴定法测定石油产品酸值的试验方法酸值的意义:针对新油来说,酸值可以反应基础油的精制程度;其次,针对含酸性添加剂的润滑油,酸值在一定程度上能反应酸性添加剂的添加量;除此之外,酸值是成品油的质量控制指标。对于不含酸性添加剂的在用油来说,酸值表示油品氧化变质的程度。油品在使用过程中与空气中的氧发生反应,生成一定量的有机酸,会对机械部件造成一定的腐蚀。对于含酸性添加剂的在用油来说,在润滑油的使用初期,酸值会有所下降(添加剂消耗),随着使用时间的增加,酸值会逐步升高(油品氧化变质),对于在用油的监测来说,根据酸值变化结合其他指标,可综合分析油品性能变化情况。常见油品使用过程中的酸值换油标准:◆ 齿轮油增加值>1.0(L-CKD)◆ 液压油增加值>0.3◆ 压缩机油增加值>0.2◆ 汽轮机油增加值>0.3◆ 变压器油运行前≤0.03,运行中≤0.10(增加值的基准值均是以新油为基准)相关仪器ENDA1040全自动酸值测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1、液晶大屏幕、中文菜单、无标识按键。2、自动换杯、自动检测、打印检测结果,(可选配有自动定时加热功能,适用于粘度偏大的润滑油)。3、该仪器可对六个油样进行检测。4、采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟。5、用特制试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数• 工作电源:AC220V±10% 50Hz• 耗电功率:﹤100W• 测定范围:0.0001~0.9999mgKOH/g • 最小分辨率:0.0001 mgKOH/g• 测量准确度: 酸值<0.1时 ±0.02 mgKOH/g 酸值≥0.1时 ±0.05 mgKOH/g• 重 复 性:0.004 mgKOH/g• 环境温度:5℃~40℃• 相对湿度:≤85%• 尺 寸:长450 宽280 高230 • 重 量:12.1kgENDA1041油品酸值测定仪符合标准:GB/T264、GB7599-87、GB/T7304-2000、GB/T 18609-2001、D664—01、ASTM D664-2011。酸值测定器采用电位滴定法原理。通过对滴定过程中的电极电位及滴定体积进行记录,找出等当点及对应的标准滴定溶液的体积,从而求出样品中酸碱值。该仪器可准确检测变压器油、汽轮机油、抗燃油、柴油、汽油等石油产品的酸值;广泛应用在化工、电力、石油等行业,是当前石油产品酸值测定仪的理想换代产品。仪器特点:1、Windows操作平台,人机直接对话,操作便捷,具有工作站功能。2、滴定曲线实时显示,滴定曲线及结果与数据存贮和打印。3、采用**滴定单元,仪器测量精度高,稳定性好。4、自动清洗、自动定值加液。5、自动判别终点,自动滤除假终点,同时可以人工选择判断终点。技术参数• 测量范围:大于0.01mgKOH/g• 精 确 度:相对误差≤5%• 电位测量范围:0~±1999.5mv• 基本误差:0.1%FS ±0.5mv• 滴定管体积:10ml• 滴定管最小体积:0.01ml• 滴定管精度:±0.1%FS• 仪器成套性:主机、滴定单元、计算机(含操作软件)、打印机等• 尺 寸:长30*宽29*高42mm• 重 量:12KGENDA1042自动酸值测定仪可准确检测变压器油酸值的全自动仪器。该仪器在提高工作效率和测试精度的同时,减少操作人员接触试样和试剂,保障其人身安全。适应标准:GB/T28552-2012仪器特点:1、超大彩色触摸液晶屏通过触控式液晶显示屏轻松操作。2、无需人工称量,只需将试样放置在试样杯内,仪器便自动进行进样、加热回流、测定、排出废液、显示打印结果等操作。3、测定中仪器自动扣除乙醇本底值和指示剂本底值,结果更准确。一次启动可测定1个试样,使用方便,效率高。4、仪器备有标定仪器用标准酸和标定程序,用户可随时对仪器和中和液进行标定,克服了中和液使用中浓度发生变化的缺陷,提高了测试结果的可靠性。技术参数:• 适用于GB/T28552-2012变压器油、汽机油酸值测定法(BTB法)标准。• 测试范围:0.001~2mg KOH/g• 精度:酸值在 • 0.1 mg KOH/g之间,≤±0.003 mg KOH/g 酸值在 0.1-0.3 mg KOH/g之间,≤±0.005 mg KOH/g 酸值在 0.3 - 1 mg KOH/g之间,≤±0.01 mg KOH/g 酸值在1.000-2.000 mg KOH/g之间,≤±0.02 mg KOH/g• 分辨率:0.001mg KOH/g• 适用温度:10℃~45℃• 适用湿度:≤85%RH• 工作电源:AC220V±10%,50Hz• 功 率:500W• • • • 外形尺寸:300mm×280mm×310mm
  • 电位滴定仪的原理
    电位滴定仪(Potentiometric Titrator)是一种常用的滴定仪器,其原理基于电位测量的方法。它通过测量反应溶液中电位的变化来确定滴定过程中滴定剂的添加量,从而确定待测溶液中所含物质的浓度。以下是电位滴定仪的原理:1.电位测量: 电位滴定仪通过电极对反应溶液的电位进行测量。通常使用的电极包括指示电极(如玻璃电极)和参比电极(如银/银氯化钾电极)。指示电极感应到溶液中所含物质的变化,而参比电极提供一个稳定的参考电位。2.滴定过程: 在滴定过程中,待测溶液(被滴定物)与滴定剂(滴定液)发生化学反应,导致溶液中所含物质浓度的变化。滴定过程中滴定剂逐渐添加到待测溶液中,直至达到滴定终点。3.终点检测: 滴定终点通常是指滴定反应完全完成时的状态。在电位滴定中,终点的检测基于电位的变化。在滴定过程中,当滴定剂与待测溶液中的物质完全反应时,反应溶液的电位会发生明显的变化。这个变化被用来指示滴定终点。4.记录数据: 电位滴定仪会记录滴定过程中电位的变化,并将数据转换为体积-电位曲线或体积-导电度曲线。通过分析曲线,可以确定滴定终点的位置,从而计算出被滴定物的浓度。5.自动化控制: 现代电位滴定仪通常配备了自动化控制系统,可以自动控制滴定剂的添加速率,并在检测到电位变化时停止滴定,从而提高滴定的准确性和可重复性。综上所述,电位滴定仪利用电位测量的原理来确定滴定过程中滴定剂的添加量,并通过分析电位的变化来检测滴定终点,从而实现对待测溶液中所含物质浓度的测量。
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 试剂显色或成为地沟油检测新方法
    到饭店吃饭,很多人都担心是否吃的是地沟油。9月25日,记者从中国农业大学食品科学与营养工程学院获悉,被卫生部今年5月份认可的3种有效快检“地沟油”方法之一的“地沟油多参数综合快速筛查方法”——“检测试剂盒”小包装,即将生产和销售。这种试剂盒能在半小时内快速测出“地沟油”。对此研发方表示,“检测试剂盒”只是初次筛选检验,准确率为80%,如果需要进一步确认是否是地沟油,还需要精密仪器检测。  原理:让地沟油成分露出马脚  据了解,国家卫生部关于地沟油的检测方法相关研究在经过广泛征求意见和反复的专家论证之后,目前已初步确定了4个仪器法和3个可现场使用的快速法,可用于“地沟油”的初筛,但目前这7种方法还在进一步验证和完善中。  昨天,“检测试剂盒”的研发方,中国农业大学食品与营养工程学院食品安全快速检测中心、北京智云达科技有限公司的负责人告诉记者,这个检测原理是根据极性组分的指标,“地沟油”与食用油相比,其经过反复煎炸或高温加热等会产生一些物质,即便精炼也难以被取出,被称为“极性标志物”。通过检测“极性标志物”的多少,可以作为判定是否为“地沟油”的重要指标。极性标志物可与极性检测试剂反应显红色,极性标志物含量越高则红色越深。操作:有些复杂,半小时出结果。  虽然说是“快速筛查”,但记者了解到,实验方法还是有些复杂。据介绍,这种试剂盒包含4个指标检测试剂,共需4个实验,分别得出结果后综合判断是否为地沟油。第一个实验用吸管取油样6滴置于试管中,向试管中加入1毫升检测液,摇动30秒钟,再将试管放入沸水中加热5分钟,取出后与标准管对比,呈现的红颜色深于标准颜色的,则被判定为阳性,即80%的可能性为“地沟油”。整个实验过程需要半小时。  此外,还有3个实验分别对动物油脂、酸价腐败指标、水等只有“地沟油”可能含有的物质进行检测,通过4个实验的结果综合比对,确认是否为“地沟油”。  市民吴女士在得知地沟油快速筛查方法出台后,不由心动,打算也买一个,以后到饭店吃饭,一测就知道是否是地沟油了。可是仔细研究完这个方法后,她放弃了这个念头。“太复杂了,还要放在沸水中加热,并不太适合老百姓使用。”  效果:只能作为初筛,正确率80%  今年5月,卫生部公布了7种有效的“地沟油”检测方法,其中3种为快速检测法,当时卫生部新闻办的工作人员表示,检测“地沟油”的方法是否有效,要通过“盲样测试”实验来进行考核。即将食用油和不同浓度的“地沟油”样品标号,给提供方法的科研机构检测,通过甄别出其中含“地沟油”的样品正确率,来确认其方法是否有效。研发方负责人反复向记者强调,“检测试剂盒”的准确率并不是100%,只能作为初筛,如果需要进一步确认是否是地沟油,还需要精密仪器检测。在卫生部“盲检”的40个样品中,快检试剂的正确率80%,算是一种较有效的检测方法。  价格:“试剂盒”小包装约200元  据了解,这种被卫生部认可的“地沟油多参数综合快速筛查方法”已完成实验室准备阶段,将正式投入生产和销售。据研发方透露,小包装试剂盒将在淘宝等网上渠道销售,销售价格是200元。  反应:监管人员检测将更方便  南京市食品药品监督管理局餐饮安全监管处处长陈滨告诉记者,对于基层监管人员来说,确定了地沟油检测方法之后,在日常的执法过程中将更加方便和便捷。快速检测方法虽然不能作为执法依据,但能够对餐馆的所用油品进行一个初步筛选,确定油品有问题之后,进一步送到实验室进行分析。在目前,南京药监部门的工作人员只能从源头进行监管,追溯餐馆购买食用油的渠道是否正规。  链接:地沟油检测难度有多大  地沟油的检测是个老大难问题,卫生部征集检测方法至今才有了初步结果。与此同时,网上也曾经一度流传一些辨别地沟油不靠谱的技巧。  地沟油检测为什么这么难?据了解,当前我们所说的地沟油,实际上已不单单是字面意义上,从下水道打捞上来的油脂,而是作为废弃食用油的统称,包括地沟油、潲水/泔水油、煎炸老油、劣质动物油等。  江南大学的油脂专家介绍,虽然质监部门和科研机构一直致力于找出各类废弃食用油脂的共通点,但是,由于废弃食用油的来源各不相同,经过各种加工和勾兑,结果,不仅包含的物质五花八门,含量也不尽相同。这给检测也带来了一定的困难。  目前地沟油也分为“三六九等”,加工工艺好的地沟油拿到实验室里各项指标都很“漂亮”,大部分符合国家标准。  专家告诉记者,地沟油和食用油都是以甘油酸脂为主要基本成分,但其他的油脂机体复杂,干扰因素多,而且目前造假者已经到了相当高的水平。
  • FerroCheck便携式铁量仪 ——只需不到2ml油样,30秒判定设备磨损程度
    FerroCheck 2000系列便携式铁量仪,可精确检测润滑油和润滑脂中铁磁性颗粒浓度。检测时间快,大约30秒。所需样品少,润滑油仅需1.5ml油样,润滑脂仅需0.75ml油样。FerroCheck测量的铁磁颗粒既包括来自正常设备磨损的小颗粒,也包括来自异常磨损的大颗粒。检测原理FerroCheck 2000便携式铁量仪的核心是产生磁场的精确缠绕的磁感线圈。当少量的在用油插入到一个线圈中时,铁、镍、钴等铁磁性颗粒会与磁场发生相互作用,并引起线圈的阻抗变化。阻抗的改变量与油液中铁磁颗粒的浓度成正比,阻抗的改变量越大表明铁磁颗粒浓度越高。润滑油或润滑脂的样品管设计是为了使样品在测量线圈中处于最佳位置。在测量样之前,消除了外界温度变化对测量的影响,线圈中的电流是保持自动平衡的。如果不考虑操作人员自身和环境温度的影响,测试结果也是稳定的和可重复检验的,这对现场进行润滑油和润滑脂分析而言是至关重要的。主要特点可检测油样中铁磁颗粒的总量可检测设备正常磨损的所有铁磁颗粒浓度和异常磨损的大铁磁性颗粒浓度。检测结果准确,可重复精度高检出限低重复精度高:<3ppm检测范围宽含校准标油简单易用无需样品预处理,无需溶剂只需不到2ml的油样30秒之内出检测结果锂电池供电设计,方便携带重量轻,配有专用运输箱,方便携带,锂电池可续航4小时,也可插电使用。数据传输功能自动存储检测结果,可以用CSV格式文件或者用AMS Oilview将检测结果输出ASTM标准满足ASTM D8120 "铁磁颗粒浓度检测的标准方法"满足工业现场及油液监测实验室的使用需求检测结果准确、可重复精度高、检测结果稳定,检测范围广电池可充电
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制