当前位置: 仪器信息网 > 行业主题 > >

电磁流速仪原理

仪器信息网电磁流速仪原理专题为您提供2024年最新电磁流速仪原理价格报价、厂家品牌的相关信息, 包括电磁流速仪原理参数、型号等,不管是国产,还是进口品牌的电磁流速仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电磁流速仪原理相关的耗材配件、试剂标物,还有电磁流速仪原理相关的最新资讯、资料,以及电磁流速仪原理相关的解决方案。

电磁流速仪原理相关的资讯

  • MF pro便携式电磁流量计应用于排污口
    MF pro便携式电磁流量计应用于排污口哈希公司 Today背景介绍面对日益严重的水污染,保护和治理迫在眉睫。在过去的十年中,国家颁布了许多与水资源保护相关的政策。同时,国家相关部门也加强了污染企业排污口的监测和监控,处罚也日趋严厉。入河排污口监测中有两项重要污染指标:污水入河量和污染物总量。污水流量乘以排放时间等于污水入河量,污水流量乘以污染物浓度等于污染物入河总量。污水流量是确定污水入河量和污染物入河总量的基础,污水流量实测的准确性直接影响污水入河量和污染物入河总量计算的准确性。此外,入河排污口监测资料也是水资源保护规划编制、水功能区管理的重要依据。因此,准确测量入河排污口量,做好入河排污口监测基础工作,是非常关键的。应用方案目前河道、管道中污水测流已经变的越来越重要,测流手段也越来越先进,由早期的旋桨机械式、发展到声学多普勒式,再到电磁式流量计。OTT MF pro便携式电磁流量计,采用电磁感应原理进行流速流量测量。传感器在水中发出电磁波,在环绕探头的周围水域形成一个磁场,通过磁场的水流流速与探头电压变化成一定比例关系,电压变化反映流速快慢,进而通过探头内部的微处理器得到流速值。OTT MF pro电磁流量计具备同时监测水位、流速和剖面流量的能力,搭配手操终端,具备如下特点:压力单元可直接测量水深及底床形状、浅水中也可使用低流阻的高效探头小巧轻便的手持终端,并带有键盘接口和图形显示界面可显示实时数据及流速分布曲线不受水质好坏或者水草丛生等恶劣环境的影响内置多种国际标准的流速测量方法及流量计算方法支持多种测量模式:实时测量和剖面测量;支持多种剖面类型:河流和管道;支持多种管道类型:圆形、矩形、梯形、2/3 蛋形、2/3 倒蛋形;支持多种河流流量计算方法:平均截面法和中间截面法;支持多种管道剖面计算方法:0.9 x Vmax、0.2/0.4/0.8、流速和水位积分器、2D;支持多种河流剖面计算方法:1、2、3、4、5 和 6 点(流速法 - 符合 USGS 和 ISO 标准),2 点 KREPS 法,1 点表面流速法,1 点和 2 点冰下测量法USB 数据导出接口,简单便捷手持终端彩色屏幕,易于查看,可充电电池组,连续使用超过 18 小时引导式自动向导软件可以很方便进行野外使用污水流量测量的先决条件是流速的测量,流速乘以过水断面截面积等于流量。OTT MF pro流量计即可以测量流速,也可以根据断面形态直接输出流量,操作非常方便。其中,河流流量测量支持:平均截面法(图一)和中间截面法。图一 平均截面法MF pro流量计手持操作终端内嵌多种测量模式,里面的剖面流量测量也是非常适用。根据终端提示,选择测量的类型和统计方法,逐步测量各点的流速,最终终端自行计算最终流量。设备操作十分简便,只需要将探头伸到水里,输入测量类型和测量面的形态,计算结果直接输出。图二 圆形管道——0.2/0.4/0.8测量法MF pro流量计使用简便,适用于各种类型的渠道/河流、管道(满管和半管均可)得到了很多专家和同行的认可。测杆可以拼接,长度随意调整,携带方便。电磁流量计的优势常见的接触式便携流速仪测量原理主要有:旋桨式、声学多普勒式和电磁式。电磁流量计是采用根据法拉第电磁感应定律进行流速流量测量。传感器在水中发出电磁波,在环绕探头的周围水域形成一个磁场,通过磁场的水流流速与探头电压变化成一定比例关系,电压变化反映流速快慢,进而通过探头内部的微处理器得到流速值。优点:不受被测介质温度、粘度、密度的影响;响应时间快;无机械转动部件,不存在泥沙堵塞或水草、杂物缠绕等问题;不受温度的影响;无需满管,半管也可测量。如需了解更多关于OTT产品的应用,码上关注END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • MF pro便携式电磁流量计在排污口的应用
    MF pro便携式电磁流量计在排污口的应用背 景 面对日益严重的水污染,保护和治理迫在眉睫。在过去的十年中,国家颁布了许多与水资源保护相关的政策。同时,国家相关部门也加强了污染企业排污口的监测和监控,处罚也日趋严厉。入河排污口监测中有两项重要污染指标:污水入河量和污染物总量。污水流量乘以排放时间等于污水入河量,污水流量乘以污染物浓度等于污染物入河总量。污水流量是确定污水入河量和污染物入河总量的基础,污水流量实测的准确性直接影响污水入河量和污染物入河总量计算的准确性。此外,入河排污口监测资料也是水资源保护规划编制、水功能区管理的重要依据。因此,准确测量入河排污口量,做好入河排污口监测基础工作,是非常关键的。 应用方案 目前河道、管道中污水测流已经变的越来越重要,测流手段也越来越先进,由早期的旋桨机械式、发展到声学多普勒式,再到电磁式流量计。OTT MF pro便携式电磁流量计,采用电磁感应原理进行流速流量测量。传感器在水中发出电磁波,在环绕探头的周围水域形成一个磁场,通过磁场的水流流速与探头电压变化成一定比例关系,电压变化反映流速快慢,进而通过探头内部的微处理器得到流速值。 OTT MF pro电磁流量计具备同时监测水位、流速和剖面流量的能力,搭配手操终端,具备如下特点:压力单元可直接测量水深及底床形状、浅水中也可使用低流阻的高效探头小巧轻便的手持终端,并带有键盘接口和图形显示界面可显示实时数据及流速分布曲线不受水质好坏或者水草丛生等恶劣环境的影响内置多种国际标准的流速测量方法及流量计算方法o 支持多种测量模式:实时测量和剖面测量;o 支持多种剖面类型:河流和管道;o 支持多种管道类型:圆形、矩形、梯形、2/3 蛋形、2/3 倒蛋形;o 支持多种河流流量计算方法:平均截面法和中间截面法;o 支持多种管道剖面计算方法:0.9 x Vmax、0.2/0.4/0.8、流速和水位积分器、2D;o 支持多种河流剖面计算方法:1、2、3、4、5 和 6 点(流速法 - 符合 USGS 和 ISO 标准),2 点 KREPS 法,1 点表面流速法,1 点和 2 点冰下测量法USB 数据导出接口,简单便捷手持终端彩色屏幕,易于查看,可充电电池组,连续使用超过 18 小时引导式自动向导软件可以很方便进行野外使用 污水流量测量的先决条件是流速的测量,流速乘以过水断面截面积等于流量。OTT MF pro流量计即可以测量流速,也可以根据断面形态直接输出流量,操作非常方便。平均截面法 MF pro流量计手持操作终端内嵌多种测量模式,里面的剖面流量测量也是非常适用。根据终端提示,选择测量的类型和统计方法,逐步测量各点的流速,最终终端自行计算最终流量。设备操作十分简便,只需要将探头伸到水里,输入测量类型和测量面的形态,计算结果直接输出。 圆形管道——0.2/0.4/0.8测量法 MF pro流量计使用简便,适用于各种类型的渠道/河流、管道(满管和半管均可)得到了很多专家和同行的认可。测杆可以拼接,长度随意调整,携带方便。 电磁流量计的优势 常见的接触式便携流速仪测量原理主要有:旋桨式、声学多普勒式和电磁式。电磁流量计是采用根据法拉第电磁感应定律进行流速流量测量。传感器在水中发出电磁波,在环绕探头的周围水域形成一个磁场,通过磁场的水流流速与探头电压变化成一定比例关系,电压变化反映流速快慢,进而通过探头内部的微处理器得到流速值。优点不受被测介质温度、粘度、密度的影响响应时间快无机械转动部件,不存在泥沙堵塞或水草、杂物缠绕等问题不受温度的影响无需满管,半管也可测量
  • 科威尔电磁流量计|进口电磁流量计月初大促销
    高准国际贸易(上海)有限公司作为德国(kewill)在中国的总代理商,现在为回馈广大客户,现月初进行电磁流量计的促销活动,欢迎广大用户来电咨询:021-54430662  科威尔(kewill)进口电磁流量计特点优势:  ●电磁流量计是一种测量体积流量的仪表,测量的结果与流速分布,流量压力,温度,密度,粘度等物理参数无关  ●测量管内无活动部件,便于维护管理,所以传感器的使用寿命长 无阻流部件,因为无压力损失  ●被测液体电导率最低可达5&mu S/cm,配合各种衬里材料,可适用于测量各种酸、碱、盐溶液及泥浆、矿浆、纸浆等介质的流量,精准度较高,通常为± 0.5% ± 0.2%  ●由于感应电压信号时在整个充满磁场的空间中形成的,是管道截面上的平均值,因此传感器所需要的直管段较短,一般为前5D后3D  5光敏键,可免开盖操作 中文菜单显示,更加方便国内用户的使用。  ●传感器部分只有内衬和电极与被测液体接触,只要合理选择电极和内衬材料,即可耐腐蚀和耐磨损,保证长期的使用  7测量可靠性高,重复性好,长期免维护。量程比高达1000:1  ●双向测量系统,可测量正向流量,反向流量  ●高清晰度背光LCD显示,汉英菜单操作,使用方便,操作简单,易学易懂  ●转换器性能可靠、精度高、功耗低、零点稳定、参数设定方便、LCD显示,可以显示累计流量、流速、流量百分比等参数  ●采用16位嵌入式微处理器,运算速度快,精度高,可编程频率低频矩形波励磁,提高了测量的稳定性,低功耗  ●全数字量的处理,抗干扰能力强,测量可靠,精度高,流量测量范围可达150:1  ●超低EMI开关电源,使用电源电压变化范围大,抗EMC好  ●具有RS485、RS232、HART和Modbus等数字通讯信号输出  科威尔(kewill)电磁流量计广泛应用于石化、钢铁、电力、冶金、纺织、制药等领域,德国原装进口,技术领先,市场占有率高。  促销热线:021-54430662 传真:021-54707123  更多流量计、电磁流量计信息:www.jkdcllj.com
  • 科威尔(kewill)低价出售过滤水流量计|电磁流量计
    【促销活动】科威尔(kewill)中国总代理高准国际贸易(上海)有限公司为回馈广大用户,迎合11月&ldquo 中国购物节(双十一)&rdquo 推出过滤水流量计特价优惠活动。欢迎广大新老客户来电咨询:021-54430662。  【简介】过滤水流量计由传感器和转换器两部分构成。它是基于法拉第电磁感应定律工作的,可用于测量强酸强碱等强腐蚀液体和泥浆、矿浆、纸浆等均匀的液固两相悬浮液体的体积流量。广泛应用于石油、化工、冶金、轻纺、造纸、环保、食品等工业部门及市政管理,水利建设、河流疏浚等领域的流量计量。  【特点】  ●电磁流量计是一种测量体积流量的仪表,测量的结果与流速分布,流量压力,温度,密度,粘度等物理参数无关  ●测量管内无活动部件,便于维护管理,所以传感器的使用寿命长 无阻流部件,因为无压力损失  ●被测液体电导率最低可达5&mu S/cm,配合各种衬里材料,可适用于测量各种酸、碱、盐溶液及泥浆、矿浆、纸浆等介质的流量,精准度较高,通常为± 0.5% ± 0.2%  ●由于感应电压信号时在整个充满磁场的空间中形成的,是管道截面上的平均值,因此传感器所需要的直管段较短,一般为前5D后3D  ●传感器部分只有内衬和电极与被测液体接触,只要合理选择电极和内衬材料,即可耐腐蚀和耐磨损,保证长期的使用  ●双向测量系统,可测量正向流量,反向流量  ●高清晰度背光LCD显示,汉英菜单操作,使用方便,操作简单,易学易懂  ●转换器性能可靠、精度高、功耗低、零点稳定、参数设定方便、LCD显示,可以显示累计流量、流速、流量百分比等参数  ●采用16位嵌入式微处理器,运算速度快,精度高,可编程频率低频矩形波励磁,提高了测量的稳定性,低功耗  ●全数字量的处理,抗干扰能力强,测量可靠,精度高,流量测量范围可达150:1  ●超低EMI开关电源,使用电源电压变化范围大,抗EMC好  ●具有RS485、RS232、HART和Modbus等数字通讯信号输出  科威尔(kewill)过滤水电磁流量计,德国原装进口,技术领先,市场占有率高。  更多水流量计|过滤水电磁流量计促销信息:http://www.jkllj.com/
  • 南海海洋所举办海洋地球电磁探测研讨会
    为促进我国海洋电磁探测领域的发展,近日,中国科学院南海海洋研究所(以下简称南海海洋所)主办的“海洋地球电磁探测”研讨会在南海海洋所召开。受中国科学院边缘海与大洋地质重点实验室副主任孙珍邀请,应急管理部国家自然灾害防治研究院研究员陈小斌等多位国内地球电磁探测领域的专家学者到场交流探讨。研讨会现场。南海海洋所 供图  会上,专家们详细介绍了地球电磁深部探测的基本原理与应用、传感器原理、海陆空电磁测量装备研发以及地球磁场建模等方面的前沿发展和丰富知识。同时,与会中青年学者就海洋地球电磁的基础理论和应用开展了讨论。  与会专家一致认为,来自不同研究方向的广泛合作能够进一步解决我国乃至世界上地球电磁探测领域目前所面临的难题,加快该领域的发展。   会后,孙珍与各位与会专家还就未来长期合作的相关事宜进行了讨论。
  • 无损检测企业贵专电磁科技获种子轮融资
    近日,基于漏磁原理的非接触式检测传感器提供各种重要场景下钢丝绳的安全状态智能监测解决方案的贵专电磁科技完成种子轮融资,本轮融资由合肥市科创集团种子基金投资。百一资本担任财务顾问。钢丝绳与国民经济发展密切相关,在能源、交通、军工、农林、海洋、冶金、矿山、石油天然气钻采、机械化工、航空航天等领域成为必不可少的部件,全球每年消耗量在500万吨以上,我国占比50%左右。重要用途钢丝绳监管严格,标准要求每日检查,强制定期报废,目前国内外普遍采用人工目检的手段。主要原因是钢丝绳无损检测技术很不成熟,在线监测更是空白。对于底层技术逻辑,创始人陈松年介绍,钢丝绳因为由钢丝合成股再捻制成绳,其结构复杂一直是无损检测的难点。目前钢丝绳无损检测,国际上只有“漏磁”原理相对“准确”,但是因为此原理受电磁干扰和复杂工况的原因影响很难实现在线监测,技术门槛高是国家矿监局在16年提出的“卡脖子”技术。贵专磁科技成立于21年8月,是中科院大科学装置磁约束技术的成果转化,开发的“漏磁法原理的非接触式传感器” ,具备很高的准确率和很好的可靠性,达到国际领先水平。此项技术填补了钢丝绳在线智能监测的国际空白,使钢丝绳实现“安全、经济”成为可能。目前公司开发的“钢丝绳安全与可靠性智能监测平台”已经在矿山和港口多个集团有了成功应用。团队方面,聚集了包括电磁和微波学、电子学、人工智能和行业资深的科学家、专家,拥有丰富的研发、生产和销售经验。贵专电磁创始人陈松年,拥有17年钢丝绳应用行业经验,6年钢丝绳无损检测研究与应用,参与制定与起草相关技术的多项标准和十三五国家重大专项研究课题,联合创始人首席科学家季振山长期以来负责国家大科学核聚变装置硬件系统及电磁兼容研发工作,在安全连锁系统、信号调理、 以及复杂电磁环境下电磁兼容方面有丰富的经验。随着国家“智慧化矿山”、“智慧化港口”等智慧场景建设的推进,22年伊始,钢丝绳智能监测已经列为智慧化项目的强制验收标准,市场需求激增,前景广阔。本轮融资完成后,贵专电磁将加快研发脚步,保持公司技术的领先性,持续获得更多客户认可。
  • 关于节能灯电磁辐射研究性试验分析报告
    2012年3月19日下午,在位于北五环外的森馥科技公司的屏蔽室里,清华大学工程物理系电磁兼容实验室主任倪建平,森馥科技公司总经理朱琨及几位感兴趣的记者和公众,共同见证了对于节能灯的电磁辐射测试过程。目前电磁辐射的安全方面我国当前的通行标准是《电磁辐射防护规定》(GB8702-88),专门针对节能灯的电磁辐射检测尚没有标准,如果按照国外标准,则针对灯具的电磁辐射检主要是参照《照明设备涉及人体暴露于电磁场的评估》EN62493:2010(IEC62493:2010),由于不同的标准需要不同的测量仪器和检测方法,因此,针对节能灯的电磁辐射检测,我们将分成两个阶段进行,第一阶段(本次测量),按照中国现行《电磁辐射防护规定》(GB8702-88)进行,采用目前与此标准相适应的德国Narda公司生产的NBM550电磁辐射分析仪和EHP200A选频电磁分析仪,第二阶段,初步定在4月中旬,采用与EN62493:2010(IEC62493:2010)标准相应的意大利PMM公司生产的VDH-01灯具电磁辐射检测专用仪。我们将会进一步跟进我们的工作,为大家提供进一步的检测结果信息。 本次检测仪器一:NBM550电磁辐射分析仪,频率范围是100KHz-3GHz仪器二:EHP200电磁辐射选频分析仪,频率范围是9KHz-30MHz仪器生产商:德国Narda公司测试地点:北京森馥科技有限公司屏蔽室测试灯具:1)节能灯4款,功率分别为9W,13w,18W,36W,2)白炽灯,功率60W3)LED灯,功率2W。4)备好的另外一盏卤素灯则因为接口不同而无法进行测试,略有遗憾。 在5厘米和20厘米的距离下不同灯具的电场强度,测试结果表明白炽灯和LED灯的电场强度低于节能灯。而不同品牌不同功率的节能灯,随着距离的变化,其测试结果呈现显著差别,并且两台测试仪器因为其测试频宽、工作原理等区别及距离的微小差异,测试结果在某些时候也呈现显著差别。在这一阶段的测试中,测得最大值来自NBM550,在测试36W节能灯,距离为5厘米时出现,其最高值为109.04v/m,而相应的EHP200A的测量数据为46.00v/m,造成这种测量差别的原因在于NBM550仪器的高阻线与信号发生偶合而带来测量的不准确,因此,在此情况下,EHP200A的测量结果更为准确。由于在实际使用中,人体与灯具的距离通常都会大于20cm,所以,在此次测量中,我们以20cm的测量结果作为主要参考数据,从整个测量的结果来看,在20cm处的测量,没有超标的情况发生,可以放心使用。但另一方面,我们需要提醒的是,根据测量的结果表明,节能灯功率越大,距离越近,其电磁辐射强度越高,因而,功率较大的节能灯,在作为台灯使用时请保持良好的使用距离。此外,为摸清节能灯的电磁发射规律,我们还对功率分别为13W和36W的两盏节能灯进行了20K-1MHz的选频测量,结果如附表二,测得电场强度最高值分别出现在41KHz和35KHz,与节能灯电子镇流器变换频率20KHz&mdash 100KHz的范围相吻合。《电磁辐射防护规定》(GB8702-88)标准中,40v/m的限值仅适用于100KHz-3MHz频段,而产生节能灯电磁辐射的主要频率则在20KHz-100KHz之间,不在此标准的约束范围之内。鉴于我国尚未发布低于100KHz电磁场的国家标准,我们在这里仅公布此次检测的数据结果。至于是否超过标准,关心这一问题的朋友,我们将在第二阶段(初步定在4月中旬),采用与EN62493:2010(IEC62493:2010)标准相应的VDH-01灯具电磁辐射检测专用仪进行检测,为大家提供进一步的检测结果信息。 赫晓霞达尔问自然求知社 附一:测试记录表编号灯具类型及功率测试距离cmNBM550(100K-3GHz)EHP200A(100K-1MHz)背景值 0.401节能灯9W523.0021.20207.020.822白炽灯60W51.452.28200.350.393节能灯18W575.1018.422010.120.844LED2W51.201.88200.310.56 5节能灯36W5109.0446.002021.117.30测试:倪建平 朱琨 记录:赫晓霞附二、考虑100KHz以下的情况编号灯具类型及功率测试距离cmEHP200A(20K-1MHz)6节能灯13W1016.58206.14 7节能灯36W1044.3820 测试谱图:1、13W节能灯,距离10CM
  • 科威尔电磁流量计“双12”销售额再创新高
    12月12日,科威尔推出“双12”特价促销活动后,销售额再创新高,据科威尔中国代表处市场部统计数据显示,12日这一天共计销售FE20系列电磁流量计53台, FE-I系列插入式电磁流量计27台,FV系列涡街流量计14台。  为了避免功能选购或发货有误,以下科威尔以FE20系列电磁流量计为例发布产品具体信息,请您确认。  FE20系列电磁流量计原理:  智能电磁流量计是一种电磁感应式流量仪表,它由传感器和智能信号转换器组成。它能测量各类导电液体的体积流量,所测量的介质包括酸、碱、盐等强腐蚀性液体,原水,冷却水等导电液体及固液两相液体。  FE20系列电磁流量计主要特点:  ●流量传感器的测量管道内无阻流件,没有压力损失  ●在测量导电液体介质时,只要合理选择内衬和电极材料,就能正常计量,并不受流体的密度、粘度、温度、压力和电导率变化的影响,故测量准确度高  ●具有累计重量清零功能  ●可测量正向/反向流量  ●自动调零功能,空管状态无流量显示  ●可选配“定量控制”可对流量批量控制  ●可插拔EPROM存储配置参数以及检测数据  FE20系列电磁流量计应用:  应用于石化、钢铁、电力、冶金、纺织、食品、制药、造纸等行业及市政环保、水利等领域。  文章来源:Kewill 科威尔 更多仪表信息http://www.jkdcllj.com/
  • 北京信测和上海计量院共同举办电磁兼容测量不确定度技术研讨会(上海)
    电磁兼容测量不确定度技术研讨会 随着电磁兼容测试技术的不断发展,测量不确定度逐渐成为判断受试设备是否符合相关标准的关键性指标,它反映了电磁兼容测试的可信度。 CISPR 现要求在所有的电磁兼容测试报告中体现测量不确定度,我国也推出了相对应的标准。上海市计量协会 EMC 专业委员会经过研究,决定举办一期电磁兼容测量不确定度技术研讨会,针对电磁兼容&ldquo 降低 EMI 测试的不确定度&rdquo 进行详细的理论及实际举例分析。例如:数字技术的大量应用对降低测试不确定度的贡献,新技术如光纤等在测试中降低不确定度的分析等。 兹定于 2010 年 6 月 23 日(星期三)下午 1:00-5:00 在上海科学会堂一号楼二楼 1202 室召开电磁兼容测量不确定度技术研讨会,会上将邀请意大利电磁兼容专家 Mario Monti (世界首台全数字式测量接收机 PMM9010 的设计者、负责 Narda 的 EMI 接收机、电磁场测试设备以及数字通讯测试设备等多项设计制造者)作有关专题讲解。请有关单位派员参加。附一:电磁兼容 测量不确定度 技术研讨会会议议程附二:上海科学会堂 交通示 意图上海市计量协会电磁兼容专业委员会2010 年 5 月 24 日附一:电磁兼容测量不确定度技术研讨会议议程会议时间:2010年6月23日(星期三)下午1:00&mdash 5:00会议地点:上海科学会堂(上海市南昌路47号)一号楼二楼1205室议程 内容 报告人 会议主持一 领导讲话 待定 龚增二 CISPR标准介绍 EMC试验不确定度介绍 Mario Monti (意大利EMC专家)三 茶歇 /四 数字化原理在降低测试不确定度中应用介绍 Mario Monti (意大利EMC专家)五 光纤替代同轴线缆,在EMI测试中应用介绍 Mario Monti (意大利EMC专家)六 会议总结
  • 森馥科技助力陕西省辐射站“科技之春”电磁科普宣传活动
    陕西省辐射站与市环保局3月27日在渭南共同举办了“科技之春”电磁科普宣传活动。通过专业讲座、交流、实地体验等方式,不断拓展电磁辐射知识的宣传力度,希望让越来越多的社会公众认识电磁辐射,走近电磁辐射,形成共同支持通讯及电力基础设施建设的良好氛围。省辐射站站长龚国明,省环保厅辐射处副处长汪源,市环保局副局长罗文虎出席了宣传活动。此次电磁辐射科普活动邀请了渭南市20余名对电磁辐射环境质量关注或心存疑虑的市民代表在市环保局听取了我省电磁辐射专家的专题科普讲座。讲座围绕群众关注的电磁辐射常见问题展开,比如“电磁辐射对人体有没有危害?为什么手机基站要建在住宅小区里面?居民区的基站越多辐射就越大吗?”等,内容通俗易懂,道理深入浅出。市民代表参观了渭南市两个固定式电磁环境质量自动监测站,听取了技术人员对我省电磁环境质量自动监测站项目、仪器设备运行原理、周边电磁环境状况及数据反映的环境质量的讲解,市民代表对电磁环境自动监测站非常感兴趣,互动问答频繁,现场气氛热烈。技术人员选取了一处建设有多个通信基站的点位,现场利用电磁辐射移动监测设备及移动大屏,实时显示电磁辐射监测数据,大屏同步播放电磁科普视频,引来不少市民围观,省辐射站技术人员通过科学的监测数据向市民解释周边的电磁环境安全。同时,技术人员用电磁辐射便携式监测仪器,对市民的手机辐射进行监测,并发放电磁辐射科普读本,告知公众要正确使用手机及其他家用电器,避免不必要的电磁辐射。此次电磁辐射科普活动以讲科学、听科学、信科学为主旨,将专业知识融入日常生活,以公众易于理解、接受和参与的方式开展,活动以点带面,让更多的人了解电磁辐射常识,受到了群众的欢迎。电磁辐射科普讲座省辐射站站长龚国明讲话市环保局副局长罗文虎主持讲座森馥科技技术人员讲解国家电网毕家110kV变电站电磁环境自动监测设备森馥科技技术人员在秦代文化遗址公园讲解通讯基站电磁辐射监测数据
  • 张承青电镜实验室环境约稿[5]:几种改善电磁环境方法比较
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之五,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之五 几种改善电磁环境方法比较被动式低频电磁屏蔽根据屏蔽材料不同主要分为两种:一种是使用高导磁材料(如钢、硅钢、玻莫合金等),另一种是使用高导电材料(如铜、铝等材料),虽然两种方法的工作机理截然不同,但是均可达到较好的减弱环境磁场干扰效果。A.使用高导磁材料(以下简称磁路分流法)的理论依据是:使用高导磁材料将一个有限空间A全维度包裹起来,在环境磁场强度为Ho时,由于高导磁材料的磁阻远远小于空气(普通Q195钢板磁导为4000,硅钢为8000~12000,玻莫合金为24000,空气为近似1),借用欧姆定律可以知道,当Rs远小于Ro时,Hi将远小于Ho。磁力线被低磁阻材料分流,有限空间A内的磁场强度下降到Hi,达到消磁效果(参见图一和图二。其中Ri为A空间的空气磁阻,Rs为屏蔽体的磁阻)。屏材内部的磁畴在磁场作用下产生振动,将部分磁能以热量的形式耗散。由于硅钢和玻莫合金都存在导磁率各向异性、施工时不能敲击和折弯及焊接等特点(虽然说起来可以通过热处理改善,但实际上面对这样大型的固定式产品,实际上无法操作,办不到啊),所以它们实际效能要大大打一个折扣!不过在某些特殊部位,不需要敲击折弯和焊接的情况下,做补充或加强还是可以的。),且价格昂贵,所以在电镜磁屏蔽中一般不会用于屏蔽体大量应用,仅少量用于特殊部位(如门缝、波导口等)补充加强。磁路分流法的屏效与屏材厚度大致成线性相关,理论上可以做到无限小。B.使用高导电材料(以下简称感生磁场法)的理论依据是:使用高导电材料将一个有限空间全维度包裹起来,环境磁场以其电场分量作用于屏蔽体,产生感生电动势,进而产生感生电流以及感生磁场。从电磁学基本原理可知,这个感生磁场与原有磁场大小相同(由于存在电阻,所以会略小一点)、方向相反(由于存在相位差,所以相位略有滞后),这样有限空间内的磁场被抵消,强度下降,达到消磁效果。感生磁场法的屏效与屏材厚度在一定范围区间内无关。C.两种方法的共同之处:拼接焊缝需要全满焊、焊缝高度不得低于屏蔽体母材厚度;必须注意各种尺度的开口及波导口设计。设计/制作是否成功,将严重影响屏效(适用木桶短板理论)。另外还需注意,屏蔽室內电镜位置的震动不得大于周边环境(曾经多次检测到磁场合格了,震动却反而比原来更大造成超标)。从它们的基本工作原理可以看出(磁畴在DC磁场下不会振动以产生热能的形式消耗磁场能量;DC磁场也不能产生感生反向电动势),磁路分流法和感生磁场法对DC完全无效。对near DC也基本无效(必要时还是要配备一套主动式消磁器改善near DC电磁干扰)。D.简单列个表格比较一下吧(相同部分就不说了):优 点缺 点磁路分流法成本低,屏效可调(理论上无限)重量较大施工制作方便施工制作难度略大感生磁场法重量较轻(铝)使用有色金属材料基本机理决定屏效有限总体来说,还是磁路分流法略微占优。据本人非准确统计,国内现有磁屏蔽约400~600个,其中大多数是磁路分流法,感生磁场法估计约十分之一二。主动式低频消磁器在本系列之四《主动式低频消磁系统》中介绍过了,这里就不重复了,直接比较一下吧。与制作重量大、工期长、额外占用空间和成本高的低频电磁屏蔽相比。主动式低频消磁器体积小重量轻价格低、对环境无影响、可以后期购买安装等优点是很突出的。不过还有一点必须说一下:磁屏蔽往往是个“交钥匙”项目,就是说做磁屏蔽时往往连带把电、水、空调、照明、网络还有监控什么的统统包括进去了,如果反正要装修改造的话,性价比倒也挺高的呢。总体说来,被动式磁屏蔽的效果优于主动式消磁器,但是由于前述原因,某些环境下也只能选配消磁器。扫描电镜一般几种方法都区别不大,透射电镜建议还是尽量选用磁屏蔽(差点忘了说,场发射透射电镜对磁场要求一般比扫描电镜要高一大截呢,呵呵)。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 勤卓科技发布勤卓六度空间电磁式振动台新品
    勤卓品牌六度空间电磁式振动台HK-10G-600HZ具体参数:型号:HK-10G-600HZ控制方式:全功能电脑振动方向:上下/左右/前后振动方式:六度空间一体机(随机,正弦),(同一台面三轴〈同时/个别/连续〉振动)振动波形:半波或全波加速度:0~20g振幅:0~5mm台面尺寸: 1000*1000mm(宽*深)外形尺寸:1000*1000*550mm(宽*深*高)试验负载: 100KG频率范围: 0.5~600HZ额定推力/正弦波激振力:2000kgf工作原理:超静音工作 机台底座采用材料,安装方便,运行平稳,无需安装地脚螺丝 控制电路数字化控制与显示频率,PID调节功能,使设备工作更为稳定、可靠 扫频及定频操作方式,适应不同行业测试要求 增加抗干拢电路,解决因强电磁场对控制电路干扰 增加工作时间设定器,使测试产品达到准确测试时间。产品用途电磁振动台广泛适用于国防、航空、航天、通讯、电子、汽车、家电、等行业。该类型设备用于发现早期故障,模拟实际工况考核和结构强度试验,产品应用范围广泛、适用面宽、试验效果显著、可靠。正弦波、调频、扫频、可程式、倍频、对数、加速度,调幅,时间控制,全功能电脑控制,简易定加速度/定振幅。设备通过连续无故障运转3个月测试,性能稳定,质量可靠。创新点:高品质高低温试验箱,让您的产品稳获胜.精确温控系统,并加装散热过滤棉.勤卓六度空间电磁式振动台
  • 国瑞力恒发布烟气流速检测仪新品
    GR-3020型烟气流速检测仪产品概述GR-3020型烟气流速检测仪(以下简称检测仪)为便携式监测仪,广泛应用于锅炉、炉窑以及各种排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数的测定。适用范围本仪器采用皮托管法测量管道中气体流速,可对各种锅炉、工业炉窑以及排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数进行检测,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测。采用标准JJG 518-1998 《皮托管检定规程》GB/T 16157 -1996《固定污染源排气中颗粒物测定与气态污染物采样方法》主要特点1. 采用进口高精度微压差传感器,24小时压力漂移小于0.15Pa。;2.流速测量精度高,测定下限可达0.3m/s;3.内置可充电锂电池,一次充连续电工作48小时以上;4. 手持式测量监测仪,轻巧便携,操作简便;5. 自动计算气体的平均流速、平均压力、烟气流量等参数。 6. 具有自动零点修正,软件校准功能,保证测量精度;7.具有烟道布点功能,自动推荐采样点数和测点距离;8.大容量数据存储,可存储800组数据文件;9.宽温液晶显示器,中文操作界面;10.大尺寸、宽温高亮彩色显示屏显示;11.具有掉电保护功能,采样中掉电采样数据不丢失;12.内置蓝牙模块,可选配蓝牙打印机进行数据打印工作原理将皮托管正端正对气流方向,负端背向气流方向,烟道气流经皮托管正负气嘴时会产生压力差,微处理器根据采集的动压、全压、烟温信号计算出静压、流速和风量的值,然后根据大气压、湿度、管道截面积等参数的输入值自动计算出标杆流量。技术指标流速检测仪主要技术指标详见表1。表1 检测仪主要技术指标技术指标参数范围分辨率准确度烟气动压(0~2000) Pa0.01Pa不超过±2.0%烟气静压(-35~35) kPa0.01 kPa不超过±4.0%烟气温度(0~600) ℃1 ℃不超过±3 ℃大气压(50~110) kPa0.1 kPa不超过±4.0%烟气流速(0.3~45) m/s0.1 m/s不超过±5.0%外型尺寸(长×宽×高)190mm×95mm×50mm连续工作时间≥48小时功耗约0.5W整机重量0.6kg创新点:GR-3020型烟气流速检测仪 采用皮托管法测量管道中气体流速,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测;内置可充电锂电池,一次充连续电工作48小时以上;手持式测量监测仪,轻巧便携,操作简便。烟气流速检测仪
  • 微颗粒的电磁在线监测技术与仪器装备
    table width="614" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="482" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"微颗粒的电磁在线监测技术与仪器装备/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中国科学院大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"王晓东/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="153" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Xiaodong.wang@ucas.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:113px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="113"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"微颗粒(金属非金属氧化物颗粒、夹杂物、裂纹、气泡、缺陷、溶质、催化剂、大气污染物等等)在固相、液相和气相中的动态监测问题相当广泛地存在于不同的科学技术和工业领域里。中国科学院大学王晓东教授课题组提出基于电磁场理论的新原理,并根据监测体系和应用场合的不同,开发了一系列的系统解决方案(如下图)。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/3809cd5b-c3be-4592-9b68-234e6eadb6b2.jpg" title="4.png"//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/spanbr//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"本项目新方法,主要有以下四方面的优势:1)原理上,测量量我们以矢量(如测力、第2磁场等代替标量(如阻抗),在测量精度上我们的新方法较传统涡流方法提高了1到2个数量级 2)并且由于测量量为矢量的原因,基本上消除了传统方法难以克服的“提离”效应,使检测精度大幅提高 3)检测速度大幅提高;4)可实现在线监测(传统方法为“线上”检测方式);5)检测信号易于解析。/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"相较已有技术,本项目具备实时、在线、连续、原位、定量、高速等六大特点;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"测量精度高:探测对象为微米、亚微米级颗粒物;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"适用范围广:从低温的弱导电溶液到高温的金属液(电导率:100-106S/m;温度:常温—1600/spanspan style=" font-family:宋体"℃/spanspan style=" font-family:宋体");/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在化学化工、医药、环境领域,本技术大幅提高生产效率和质量、降低生产成本;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"突破了高温金属液洁净度的在线测量技术(世界性难题,目前尚无竞争技术);/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在无损检测领域,突破了传统标量测量量的极限,测量精度提高了1—2个数量级;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"仪器特点:精度高、信号易于解析、微小型化(便携)、适应恶劣工业环境、可远程通讯监控。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、应用于无损检测领域——基于矢量测量的新涡流监测法/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"作为朝阳行业的无损检测在我国有着广阔的发展空间。按原理分可分为五大类,而无损检测设备器材可分为26类。应用无损检测技术的企业超过3万家,而且还在不断增长,检测与服务机构超过2000家,涉及到的无损检测器材制造商800多家。从业人员超过35万(铁路系统5万人以上,石油化工、油田、天然气、锅炉压力容器四个行业12万人以上,航空系统2万以上, 此外,航天、汽车、机械行业、电力、核电、军队、电子工业、食品医药卫生、轻工及其他行业领域未计算在内)。市场总容量超过100亿。国外某知名度和权威性很高的检测公司估计中国的第三方市场是一个超过500亿美元的巨大市场。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"涡流检测方法是五大类(超声波、涡流、磁粉、渗透和射线)无损检测方法应用最广泛方法之二(另一个为超声),涡流检测设备涵盖数字化涡流探伤仪、脉冲涡流检测系统、阵列涡流检测系统、大型自动化涡流探伤系统、导电率仪、金属探测器等。相关涡流检测制造厂家超过47家(2013年数据)。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、应用于弱导电液中的(如电解质溶液、离子液体等)微颗粒监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"仪器应用对象:不仅适合于化学化工领域中的催化剂演化过程监测控、结晶工艺中控、化学提纯等领域,而且还可用于其他领域的工艺监控:磨料、墨粉、水质、稀土、化纤、陶瓷、滤材、材料、环境检测、化妆品、晶体、电子材料、食品工业、燃料、微球体、涂料和色素、造纸工业、石化、颜料、水污染检测等。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、应用于高温金属液洁净度的原位、在线、定量测量技术(冶金夹杂物监测)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"冶金过程中的夹杂物在线监控(采用光学等实验室化验方法属于非在线手段,对生产实际意义不大)是世界性难题(类似于空气污染物的监测,难度高于此!)。其价值在于能有效监控由于原材料或工艺工程中带入的非金属夹杂物,是生产洁净钢和超高洁净钢必须的关键技术。目前,基于库尔特原理的LiMCA技术只能应用于低温(熔点温度低于700度)。如能在钢铁工业、铜工业上实现夹杂物的在线监控,将是冶金领域里世界范围内技术革新。而我们的技术完全可以涵盖从低熔点到高熔点的全部范围。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体"、应用于大气颗粒物的监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"大气环境监测是所有的大气环境工作的物质基础,无论是进行大气环境质量监测、大气污染治理,还是进行大气环境科学与工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行。目前,大气中悬浮颗粒物的存在,已对环境产生了严重影响,检测与监测大气颗粒物成为研究热点。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"申请美、德、中专利20项、其中7项已获授权/span/p/td/tr/tbody/tablepbr//p
  • 国际首创!交流电磁场检测技术获得国家批复
    2023年5月25日,薄壁不锈钢焊缝(壁厚≤3.5mm)全壁厚穿透交流电磁场检测技术在某工程的应用申请获得了国家监管单位的正式批复,标志着中国核电工程有限公司牵头研发、国际首创的数字化无损检测技术取得重要突破。交流电磁场检测(Alternating current field measurement,简称ACFM)是一种新型表面和近表面的电磁无损检测技术,原理是激励线圈在工件中感应出均变电流,感应电流在焊接缺陷和腐蚀等位置产生扰动,利用传感器测量电场扰动引起的空间磁场畸变信号,从而实现缺陷的检测与评估。为解决工程射线检测数量多、需占用专门时间和空间窗口、辐射安全风险大的问题,中国核电工程有限公司依托自主科研,联合中国核工业二三建设有限公司、中国石油大学(华东)开展深度设计施工融合,从2021年4月起,项目团队相继实现了高灵敏度隧道磁阻检测探头、微缺陷梯度算法识别等软硬件关键技术突破,完成了检测系统集成、仿真和工艺研究、缺陷检出率分析、模拟验证和现场验证,形成了系列自主知识产权,并在积极布局海外专利、行业及国家标准。在研发的过程中,中国核电工程有限公司牵头组织了十余次的专项汇报和权威专家评审,来自中国特种设备检测研究院、中国核工业集团有限公司科技委、中国核动力研究设计院、中核武汉核电运行技术股份有限公司、国核电站运行服务技术有限公司、中广核检测技术有限公司、中核建中核燃料元件有限公司、哈尔滨焊接研究所、南昌航空大学等单位的国内行业权威专家多次对项目给予指导和建议。在工程推广的过程中,公司也组织了ACFM技术有效性第三方评估和ACFM人员专项培训和取证,监管部门和业主单位给予了大力支持。在工程实际中,中国核电工程有限公司与中核二三组织进行了近4000道焊口的局部试应用。从应用情况看,研发的ACFM技术具有不低于射线检测的检出能力,效率是RT的3倍以上、人力成本可降低70%以上,并可实现同步施工、无辐射安全风险,该良好反馈为ACFM最终全面落地打通了最后“一公里”。薄壁不锈钢焊缝全壁厚穿透交流电磁场检测技术获得国家监管单位批准,将极大推动此项技术的应用,有力地保证工程建设周期,并有可能带来核工程薄壁结构无损检测领域的一场变革。
  • 重庆川仪高性能电磁流量计通过专项验收
    日前,重庆市科学技术委员会组织验收组对重庆川仪自动化股份有限公司承担的市级重大科技专项“高性能电磁流量计”项目进行了验收,并获准通过。  该项目研究了高压环境下的电极密封、低电导率介质(如纸浆液)检测、微弱信号检测和处理、基于非均匀磁场分布的高性能传感器设计与磁场分布测试验证、微伏级感应信号精确测量与干扰抑制、浆液型电磁流量计的多频励磁、基于数字信号处理的噪声滤波、信号提取、温度补偿和误差修正等技术,申请专利5项(其中发明专利2项),取得授权2项 取得软件著作权1项。开发出高精度电磁流量计、浆液型电磁流量计、电容式电磁流量计3种产品,制定出高性能电磁流量计企业标准。高精度电磁流量计通过了中国计量科学研究院型式试验,浆液型电磁流量计、电容式电磁流量计通过了机械工业第十八计量测试中心站型式试验。建成了高性能电磁流量计生产制造示范基地,具备了年产7000台(套)生产能力,项目产品在冶金、化工、水务、造纸等工程项目中得到广泛应用。
  • 国内首次!中国电科将石墨烯电磁屏蔽涂料应用于电磁屏蔽工程
    近日,中国电科33所与大同墨西科技有限责任公司通过对石墨烯电磁屏蔽涂料及其工程应用技术的联合研究,在国内首次将石墨烯电磁屏蔽涂料应用于屏蔽工程,并完成了石墨烯电磁屏蔽涂料屏蔽防护样板间的施工,屏蔽效能达到40dB,可实现电磁波阻隔99.99%。石墨烯是一种碳六元环组成的蜂窝状二维纳米材料,sp²杂化碳原子贡献的可自由移动的电子赋予了石墨烯优异的导电性和导热性,在电磁屏蔽领域拥有广泛的应用价值。石墨烯电磁屏蔽涂料不含有金属元素,具有比重小(~0.36g/cm³)、耐腐蚀性好、稳定性高、成本低廉等特点。石墨烯屏蔽涂料区别于传统的钢结构六面体式屏蔽结构,在常规房间内进行综合电磁防护设计后,在墙面上涂覆该屏蔽涂料,结合其它电磁防护产品,配合电磁防护手段,可实现40dB以上的屏蔽效果。石墨烯屏蔽涂料施工工艺简单、房屋面积利用率高,相比传统的钢结构均有显著的优势,有着广阔的前景。目前,该方案已经在山西多单位开展应用。
  • 张承青系列约稿[2]:之二 电镜实验室的电磁环境改善
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之二,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之二 电镜实验室的电磁环境改善凡是有电源的地方、有用电设备的地方、几十米内有地下电缆的地方,距离地铁沿线几百米内的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十甚至数百毫高斯的AC和DC干扰。因为低频电磁干扰往往是多源复合的矢量,低频电磁干扰的强度变化一般无规律可循(也有例外,如单一主源情况),短时间内就会有大幅波动。实际测试中,发现城市一般环境下(周边数十米范围无楼房和明显可见的输电线变压器等),AC也可达0.5~1.0毫高斯,郊区周围几百米内无人工设施环境AC可低于0.05毫高斯(看看人类干的好事)。水平方向AC磁场干扰(对不同品牌和精度的电镜标准不同,并且与人的主观感觉也有直接关系,所以无法给出一个确切数值;一般可以认为3~20mG就是强干扰吧)轻则使图像垂直边缘产生毛刺,重则使图像分割成若干幅。水平方向有强DC磁场干扰时,图像会漂移和扭曲。由于DC干扰频率低速度慢,低倍率和短时间实验时我们可能注意不到,或者误认为是其它原因。垂直方向的AC和DC仅干扰电子束飞行速度,致使难以聚焦和消除象散,但不会产生毛刺和变形等图像瑕疵。各电镜厂商对于自己不同型号的电镜,有不同的标准要求,如果初步选定的电镜实验室室环境超标,那就要采取措施改善至合格,否则电镜达不到规定的标准,厂商是不管的,呜呜。因为DC的频率(0.001~1Hz)和AC的频率(基频50Hz)相差四个数量级以上, “量变引起质变”,面对不同性质的对手,应对方法显然应该不同,所以我们要把AC和DC分开讨论。常见的AC干扰源有许多:附近(包括楼上和楼下)的供电用电设备,如变压器、配电柜(箱)、走廊里桥架上的供电电缆线、多余并盘成环形的电缆线、附近的电炉、深冷冰箱、风机、中央空调主机、深井泵、空压机、五米内的UPS(100kVA以下)、冷却水箱等等,都是常见的干扰源。复和叠加后我们经常可以测到3到6毫高斯,偶然也有高达18到22毫高斯的(不多,我一共只碰到没几次)。有些电镜需要配备UPS和冷却水箱,它们的摆放也要注意。冷却水箱一般放在辅助设备间里,只要尽量原离镜筒即可。但是摆放UPS时需要注意,除尽量远离镜筒外,一般UPS主机产生的水平(X/Y)方向AC杂散磁场强度是不一样的(UPS技术标准中没有这一项,必须引起足够重视)。曾经实际检测到某品牌UPS主机产生的X方向磁场比Y方向大两三倍的情况,本人还有过将UPS主机水平转动一个角度就大大减少AC、扫描电镜分辨率立马提高一倍的实际经历。另外有些看似毫不相关的东西竟然也会产生磁场。如消防水管(广州某部门实测)、工字钢底梁(北京某博物院实测)、有铁质护套管的普通日光灯照明电线(武汉某半导体长实测)、暖气片及暖气管道(哈尔滨某大学实测)、老式结构建筑的水管(长春某研究所实测)等,都在三米左右测到过1~3mG的AC磁场,并使用“梯度测试法”反复确认,可以明确锁定源头。某些经常被怀疑、实际往往却“不是坏蛋”的有:电梯(最容易被怀疑到的无辜者,因为它的动力部件在很远的顶层,电梯轿厢完全不产生AC磁场)、小功率空压机和真空泵(可能蹦蹦蹦叫的挺响,实际一两米外就衰减到1mG以下)、小型挂式或柜式空调(耗电量大的主机一般在几米之外,室内部分基本不产生磁场)等,不必在它们身上浪费时间。DC干扰源不多,大型UPS站、电解槽、直流电动机调速的轧钢机等都是可疑对象。不过最常见的还是来自地铁。我国目前地铁供电有直流750V(京津)和1500V(沪)两种制式,地铁在启动出站时电流变化最大,那时的DC干扰也最强。上海地铁二号线在地面三百米远处DC变化可达15mG以上,750V供电的地铁线路DC干扰更大些(不要忘了磁场是电流产生的哦)。顺便说一句,高铁和动车是交流供电,和地铁不一样,主要是AC, DC电磁干扰往往很小。知道了原因,那么很多时候我们“惹不起躲得起”,考虑到“磁场强度和距离的平方成反比”,找到主源(有时也找不到)后,有时避开同一楼层供电支路的“上游”,搬开十几米或者换一个房间/换个楼层/换个楼就搞定,一分钱不花,哈哈。这里报告一个坏消息,据本人十几年、两千多次的实践经验,在大多数情况下都是“无处可躲”,那就只好破费些银子,做个磁屏蔽或者买套消磁系统吧。对于AC我们有两个解决方案:被动式磁屏蔽(又分为磁路分流和感生反相磁场两种,详见本系列之五《几种改善电磁环境方法比较》)和主动式消磁系统(详见本系列之四《主动式低频消磁系统》)。但对于DC,目前我们只有选用具有DC消磁功能的消磁系统这唯一的解决方案,因为无论从理论上还是从实践上,都可以证明两种被动式磁屏蔽都不能搞定DC。有兴趣的可以参考本人其它相关文章,这里不再进一步展开。目前国家在低频低频电磁屏蔽方面还没有专业标准和规范,也没有技监部门来监督管理,各个工民建设计单位基本都没有配备专业检测仪器,所以,当前没有“有资质的设计部门”来做专业设计。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 基金委发布极端条件电磁能装备科学基础重大研究计划2022项目指南
    10月11日,国家自然科学基金委员会发布极端条件电磁能装备科学基础重大研究计划2022年度项目指南。极端条件电磁能装备科学基础重大研究计划2022年度项目指南极端条件电磁能装备科学基础重大研究计划以电磁能装备领域的国家重大战略需求为牵引,以建立电磁热力多场耦合极端冲击条件电磁能装备基础理论为核心,通过在等价实验机理、在线测量原理、复杂系统建模理论、快速数值求解算法、材料评价与设计方法和数据处理及分析方法方面的不断创新,为电磁能装备的研制及发展提供科学基础。一、科学目标聚焦电磁能装备及其所用储能电介质材料和直线推进金属材料在多场耦合极端冲击条件下的构效关系和物性演化,以材料调控为基础,以耦合测试为手段,以长效服役为目标,揭示电磁热力多场耦合极端冲击条件电磁能与材料相互作用时空演化机理,构建电磁热力多场耦合极端冲击条件电磁能装备科学基础,引领电磁能装备研发模式变革,产生重大原始创新,占领电磁能技术领域制高点,形成代表世界电磁能技术水平的战略科技力量。二、核心科学问题本重大研究计划的核心科学问题是:电磁热力多场耦合极端冲击条件电磁能与材料相互作用时空演化机理。三、2022年度资助研究方向本重大研究计划所述的电磁能装备特指实现电磁能与动能间瞬时高功率转换的装备;所述的极端条件特指多场耦合和极端冲击的共同作用,其中极端冲击指的是极高功率、极短时间(ms级)、极大电流(MA级)和极高速度(≥2km/s),多场耦合指的是电磁热力共同作用下的多物理场强耦合。本年度重大研究计划所述的电磁能装备材料聚焦电磁能装备所用的直线推进金属材料(含轨道和运动体)和储能材料。2022年度各项申请应符合上述限定条件。(一)培育项目和重点支持项目。拟资助(但不限于)以下方向:1. 电磁能装备直线推进材料物性演变机理与非线性构效关系。研究极端条件电磁能装备直线推进金属材料的各参量时空演化规律和指标评价体系;建立极端条件电磁能装备直线推进金属材料在多场耦合强冲击下的物性参数演变模型。2. 电磁能装备高速载流摩擦界面损伤机制与调控。面向电磁能装备高速载流摩擦磨损的极端条件,开展高速载流摩擦磨损界面行为特征和液化层动态特性研究,发展高速载流摩擦磨损模型、界面沉积层的形成和演化机制;开展界面损伤的预测理论研究,发展高速载流摩擦磨损界面失效预测模型;开展界面损伤抑制策略研究,发展摩擦界面损伤有效控制方法。3. 极端条件电磁能装备服役过程的动力学分析。开展极端条件发射装置在发射过程中载荷运动姿态的精细化建模方法研究,发展电磁发射装置发射动力学快速分析方法。4. 极端条件电磁能装备储能新材料探索研究。面向电磁能装备发展需求,探索关键性能显著提升、满足极端条件电磁热力多场耦合服役需求、促进电磁能装备储能轻量化和长寿化的新概念材料。指标要求为:体积储能密度≥30kWh/m³,质量储能密度≥30Wh/kg,放电体积功率密度≥0.5GW/m³,放电质量功率密度≥0.5MW/kg,充电倍率≥6C和放电倍率≥60C的循环充放电寿命≥1万次。(二)集成项目。拟资助以下方向:1. 电磁能装备高速载流摩擦副时空演化过程的模拟、原位测量与表征研究。针对电磁能装备直线(含轨道)推进材料的高稳定性和长寿化性能要求,从直线(含轨道)推进材料电磁热力多场强耦合作用出发,开展极端工况高速载流摩擦副时空演化过程的模拟技术研究(载流密度≥1010A/m²,摩擦速度≥2km/s,载流摩擦时间≥10ms),发展高速载流摩擦副动态行为(含磨损量、表面形貌、界面温度等)的原位测量方法,形成高速载流摩擦副的动态特性表征方法;发展高速载流摩擦副的匹配优化设计策略,突破现有直线(含轨道)推进材料的寿命关键技术指标,取得性能具有重大提升的实物研究成果(极端工况服役寿命≥1000次)和在电磁能装备上的典型示范验证。2. 电磁能装备储能材料极端条件物性演化过程的模拟与原位测量、性能劣化机理表征与性能提升研究。针对电磁能装备储能材料的高储能密度和长寿命两大技术要求,从储能材料的结构出发厘清科学问题,开展电磁热力多场耦合作用极端条件的过程模拟技术研究;发展储能材料服役物性演化过程(含空间电荷、温度分布、应力应变分布、电场分布、表面形貌等)的原位测量方法,揭示储能材料极端条件服役的物性参数劣化机理,形成储能材料极端条件服役性能的表征方法;发展储能材料跨尺度(微观分子结构、介观界面结构、宏观结构)关联性能提升策略,突破现有储能材料的密度和寿命关键技术指标,取得性能具有重大提升的实物研究成果和在电磁能装备上的典型示范验证。所述的实物研究成果指标要求为:充电秒级,放电毫秒级,储能≥1kJ,储能密度≥4MJ/m³(电容器)或≥8.5MJ/m³(材料),放电电流≥0.5A/J,额定电压涵盖2-20kV范围,放电效率≥95%(10kHz范围内),充放电频率≥20次/分,以上工况下电容器的服役寿命≥1万次。四、2022年度资助计划2022年度拟资助培育项目9项左右,直接费用的资助强度约为80万元/项,资助期限为3年,申请书中研究期限应填写“2023年1月1日至2025年12月31日”;拟资助重点支持项目9项左右,直接费用的资助强度约为300万元/项,资助期限为4年,申请书中研究期限应填写“2023年1月1日至2026年12月31日”;拟资助集成项目2项左右,直接费用的资助强度约为1200万元/项,资助期限为4年,申请书中研究期限应填写“2023年1月1日至2026年12月31日”。鼓励来自电气、材料、数学、物理、信息等不同学科领域的研究队伍联合参与申请。五、申请注意事项(一)申请条件。本计划项目申请人应当具备以下条件:1. 具有承担基础研究课题的经历;2. 具有高级专业技术职务(职称);在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1. 本重大研究计划项目实行无纸化申请。申请书提交日期为2022年11月14日-11月18日16时。(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划将紧密围绕核心科学问题,对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的核心科学问题和本指南公布的拟资助研究方向,在分析国内外已有成果的基础上,明确新的突破点以及创新思路,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”、“重点支持项目”或“集成项目”,附注说明选择“极端条件电磁能装备科学基础”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个,集成项目的合作单位不得超过4个。(4)申请人在申请书“立项依据与研究内容”部分,应当首先说明申请符合本项目指南中的重点资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。2. 依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年11月18日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于11月19日16时前在线提交本单位项目申请清单。3. 其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办1次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动,并认真开展学术交流。(四)咨询方式。工程与材料科学部工程五处联系电话:010-62328301
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV  分析原理:吸收紫外光能量,引起分子中电子能级的跃迁  谱图的表示方法:相对吸收光能量随吸收光波长的变化  提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息  荧光光谱法FS  分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光  谱图的表示方法:发射的荧光能量随光波长的变化  提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息  红外吸收光谱法IR  分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁  谱图的表示方法:相对透射光能量随透射光频率变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  拉曼光谱法Ram  分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射  谱图的表示方法:散射光能量随拉曼位移的变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  核磁共振波谱法NMR  分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁  谱图的表示方法:吸收光能量随化学位移的变化  提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息  电子顺磁共振波谱法ESR  分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁  谱图的表示方法:吸收光能量或微分能量随磁场强度变化  提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息  质谱分析法MS  分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离  谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化  提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息  气相色谱法GC  分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关  反气相色谱法IGC  分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力  谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线  提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数  裂解气相色谱法PGC  分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型  凝胶色谱法GPC  分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:高聚物的平均分子量及其分布  热重法TG  分析原理:在控温环境中,样品重量随温度或时间变化  谱图的表示方法:样品的重量分数随温度或时间的变化曲线  提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区  热差分析DTA  分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化  谱图的表示方法:温差随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  TG-DTA图  示差扫描量热分析DSC  分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化  谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  静态热―力分析TMA  分析原理:样品在恒力作用下产生的形变随温度或时间变化  谱图的表示方法:样品形变值随温度或时间变化曲线  提供的信息:热转变温度和力学状态  动态热―力分析DMA  分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化  谱图的表示方法:模量或tg&delta 随温度变化曲线  提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM  分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象  谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象  提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等  扫描电子显微术SEM  分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象  谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等  提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等  原子吸收AAS  原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。  (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP  原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。  X-raydiffraction,x射线衍射即XRD  X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。  满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。  高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)  CZE的基本原理  HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。  扫描隧道显微镜(STM)  扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。  原子力显微镜(AtomicForceMicroscopy,简称AFM)  原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。  俄歇电子能谱学(Augerelectronspectroscopy),简称AES  俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 张承青电镜实验室环境约稿[3]:低频电磁屏蔽实践
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之三,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之三 低频电磁屏蔽实践《低频电磁屏蔽实践》一文第一稿于2007年11月完成,曾被不知名朋友鼓捣到百度上置顶数年(未署名),本篇主要内容来自该文。此次经补充修改,第一次署名。孔乙己有名言:偷书不算偷,我抄自己的当然更不算啦。怕产生误解,特此说明一下。这里我们讨论一下低频电磁屏蔽的机理及推导计算(以下不加说明均指磁路分流法),和在实际工作中必须要加以注意的事项。对“感生反相电磁场法”感兴趣的朋友,请参见本系列之五《几种改善电磁环境方法比较》。许多“专业文献”在分析低频电磁屏蔽机理的机理时套用了中高频电磁屏蔽的理念和计算方法,致使计算和设计与实际结果偏差很大。有些中高频电磁屏蔽理念被盲目照搬到低频领域,造成不少误解、产生不少浪费和失误。众所周知,电磁波是磁场-电场交替传播的,既有电性又有磁性。所以往往很自然地推导出电磁波既可以用电场来度量,也可以用磁场来度量。可是这必需要做具体讨论。实际上泛泛谈论“电磁波”对讨论基本物理原理而言固然没错,但实际工作中,还必须结合频率来考虑。在频率趋于0时(频率等于零时,那就是直流磁场啦),电磁波的磁场分量趋强,电场分量渐弱;在频率升高时,电场分量趋强而磁场分量减弱。这是一个渐变的过程,没有一个明显的转变点。一般从零到几千赫兹时,用磁场分量可以较好地表征、度量和计算,所以一般我们用“高斯”或“特斯拉”做场强的单位;而在100kHz以上时,用电场分量表征比较好,这时就用伏特/米来做场强的单位。对于低频电磁环境,直截了当从减弱磁场分量入手应该是一个好办法。下面重点讨论屏蔽体内体积为40~120m3,屏蔽前磁场强度在0.5~50mGauss p-p(毫高斯 峰-峰值) 范围的低频(0~300Hz)电磁场屏蔽的实际应用(一般电镜实验室环境大致就是这样的)。考虑到性价比,屏蔽体材料如无特殊情况,一般应选择低碳钢板 Q195(旧牌号为A3)。 我们先来建立一个数学模型:1.计算式推导因为低频电磁波的能量主要由磁场能量构成,所以我们可以使用高导磁材料来提供磁旁路通道以降低屏蔽体内部的磁通密度,并借用并联分流电路的分析方法来推导磁路并联旁路的计算式。这里有以下一些定义:Ho: 外磁场强度Hi: 屏蔽内空间的磁场强度Hs: 屏蔽体内磁场强度A: 磁力线穿过屏蔽体的面积 A=L×WΦo:空气导磁率Φs:屏蔽材料导磁率Ro: 屏蔽内空间的磁阻Rs: 屏蔽材料的磁阻L: 屏蔽体长度W: 屏蔽体宽度h: 屏蔽体高度(亦即磁通道长度) b: 屏蔽体厚度由示意图一可以得到以下二式Ro=h/( A×Φo)=h/(L×W×Φo) (1)Rs=h/(2b×W+2b×L)Φs (2)由等效电路图二可以得到下式Rs= Hi×Ro/(Ho- Hi) (3)将(1)、(2)代入(3),整理后得到屏蔽体厚度b的计算式(4) b=L×W×Φo(Ho-Hi)/ (W+L) 2Φs Hi (4)注意:在(4) 式中磁通道长度h已在整理时约去,在实际计算中Φo、Φs 、Ho、Hi等物理单位也将约去,我们只需注意长度单位一致即可。由(4) 式可以看出,屏蔽效果与屏蔽材料的导磁率、厚度以及屏蔽体的大小有关。屏蔽材料导磁率越高、屏蔽材料越厚则磁阻越小、涡流损耗越大,屏蔽效果越好;在导磁率、厚度等相同的情况下,屏蔽体积越大屏效越差。因为整体材料的涡流损耗比多层叠加(总厚度相同)的涡流损耗要大,所以如无特殊情况不宜选用薄的多层材料而选用厚的单层材料。2.计算式校验我们用(4)式计算并取Φo=1, L=5m,W=4m,Φs=4000,计算结果与实测数据(收集这些数据花了好几个月呢)对照比较(参见表1),发现差别很大:表1厚度(mm) 场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度18.513.99.266.945.564.633.47注:1.外磁场强度为5~20mGaussp-p。 2.为便于比较将计算数值及实测数值都归算为百分数。 3.实测值系由不同条件下的多次测试折算而得。由于各次的测试条件不完全相同,所以只能取其大约平均数。事实上,由于各种因素的影响,试图建立一个简单的数学模型直接去分析和计算低频电磁屏蔽的效果是相当困难的。通过分析,发现计算与实测相比偏差较大主要有两方面的原因。并联分流电路的函数关系是线性的,而在磁路中,导磁率、磁通密度、涡流损耗等都不是完全线性关联,许多参数互为非线性函数关系(只是在某些区间线性度较好而已)。我们在推导磁路并联旁路的机理时,为避免繁杂的计算,忽略或近似了一些参数,简化了一些条件,把磁路线性化后计算。这些因素是造成计算精度差的主要原因。另一方面,商品低碳钢板的规格一般为1.22m×2.44m,按一个长×宽×高为5×4×3m3的房间来算,焊接缝至少五六十条,即便是全部满焊,焊缝厚度也往往小于钢板的厚度。另外屏蔽体上难免有开口和间隙,这些因素造成的共同结果就是:屏蔽体磁阻增大,整体导磁率下降。用并联分流电路的分析方法推导出的磁路屏蔽计算式必须加以修正才能接近实际情况。3.修正后的计算公式在(4)式基础上,我们引入修正系数μ,且考虑到空气导磁率近似为1,得到(5)式b=μ〔L×W(Ho-Hi)/ (W+L) 2Φs Hi 〕 (5)μ在3.2~4.0之间选取。屏蔽体体积小、工艺水平高可取小值,反之取较大值为好。我们用(5)式取μ=3.4计算出的结果与实测数据对照比较(参见表2),啊哈,这下吻合度基本可以满意。表2厚度(mm)场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度62.947.231.523.618.915.711.8注:其它情况与表1相同。必须指出的是,多次测试数据表明,虽然(5)式计算结果与多次的现场实测结果吻合度较高,但后来也发现个别相差较大的实例,究其原因是属于现场施工的问题。以下是在现场施工中可能发生的几种情况:1.个别部位(如门)用了薄钢板;2.钢板没有连续焊接且拼接缝过大;3.钢板焊缝深度不足,焊缝处导磁率变小,形成多处“瓶颈”;4.屏蔽体在设备基础部位开口过大且波导口处理不当;5.随意缩短波导管的长度或加工时有偷工减料现象;6.波导管壁厚过小;7.屏蔽体多点接地致使屏蔽材料中有不均匀电流;8.屏蔽体与电源中性线相连。一两处小小疏忽就会造成屏蔽效果严重劣化。这有点类似于“水桶理论” :水桶的容量取决于最短的那块木板。对于这类隐蔽项目,质量往往由工艺保证。所以在选择一个可靠的施工单位、严格遵照设计工艺要求、加强现场施工监理、实施分阶段验收等方面,都是一定要引起高度注意的。屏蔽体的开口设计:设计一个屏蔽体,一定会碰到开口问题。常见开口设计的理论方法大多难以在低频磁屏蔽设计中直接应用。下面以一个房间的屏蔽设计为例来讨论。1.小型开口房间内安装的被屏蔽设备,一般都需要供应动力、能源和冷却水等等。这些辅助设施大多位于屏蔽室之外,通过进出水管、进排气管和电缆连接进来。我们可以将这些管道和电缆适当集中,统一经由一个或数个小孔穿过屏蔽体。小孔可用与屏蔽体相同的材料做成所谓 “波导口”,长径比为一般认为至少要达到3~4﹕1(现场条件允许的话长些更好)。例如小孔直径为80mm,则长度至少为240~320mm。2.中型开口空调的通风口、换气扇的进排气口等直径(或者正方形、长方形的边长)一般在400~600mm左右,这样算来波导口的长度将达到1200~2400mm,这在实际施工中是无法承受的。这时可以用栅格将原来的开口分隔为几个同样大小的小口。例如将一个400×400mm的进风口分隔为九个等大的栅格,则长度由1200~1600mm减少为400~530mm(栅格增加的风阻很小,可以忽略不计)。设计和加工时注意以下几点:1)栅格的材料与屏蔽体相同,不要随意减小材料的厚度;2)栅格的截面尽量接近正方形;3)在长度可以接受的情况下,尽量减少栅格的数量,以减少加工难度和风阻;4)栅格各处都要连续焊接,以免磁阻增大;5)各个开口接缝处,可以增加硅钢板就,以增加导磁性。3.可关闭的大型开口一般房间的门窗等开口都在1m×2m以至更大,这时应该依照门窗(均为与屏蔽体同样的材料制成)关闭后的非导磁间隙来设计波导口。设门窗关闭后的非导磁间隙为5mm(这在技术上并不困难,个别难以处理的地方可以加道折边),则波导口的长度为15~20mm。考虑到间隙是狭长的,这个长度尽量长些为好。注意这里的波导口并不是只由门窗的框构成,在所有的非导磁间隙处都要有一定厚度的折边,保证波导口的长度。为保证特殊情况下的安全撤离,屏蔽室的门框应特别加强,屏蔽门最好向外开启。下面有一个实际设计的例子:房间的长、宽、高分别为5米、4米和3.3米,原磁场强度x=10mGauss,y=8mGauss,z=12mGauss,试设计一低频电磁屏蔽,要求屏蔽体内任一方向的磁场强度小于2mGauss。参见图三。1.选用商品低碳钢板,Φs=4000,规格为1.22m×2.44m;2.按照(5)式分别从x、y、z三个方向来计算钢板厚度:μ取3.8,L×W分别以条件所给的长、宽、高代入,且与x、y、z等方向的原磁场强度对应。bx=3.8〔3.3m×4m×(10mGauss -2mGauss)/(4m+3.3m) 2×4000×2mGauss〕 =3.43mmby=3.8〔3.3m×5m×(8mGauss -2mGauss)/(5m+3.3m) 2×4000×2mGauss〕 =2.83mmbz=3.8〔5m×4m×(12mGauss -2mGauss)/(4m+5m) 2×4000×2mGauss〕 =5.28mm (若取长宽分别为10、6米,则可计算得b=2280/56000=8.91mm)全部钢板厚度至少为6mm(为防止环境磁场变化留有裕量亦可选用8~10mm),单层。全部焊缝要求连续焊接,并尽量使焊缝深度接近母材厚度。3.波导口处理(略。参见屏蔽体的开口设计)。以上实例完工后检测,完全达到设计要求。需要注意的是:由于磁屏蔽不能改善DC干扰环境,在需要改善DC电磁干扰环境时,需与具有消除DC功能的主动式消磁器配合使用。另有一种情况,对于电源线、变压器等产生电磁干扰的,也用铁管铁盒套住,是不是也可以改善呢?千万不要!多地多处的多次测试证明,电源线用铁管套住后磁场往往不会减少反而增大,似乎可以解释为这是加大了“源”的体积,提高了磁场发散效率。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 超大型电磁振动台国家重大科研仪器专项获批
    日前,由上海交通大学、北京工业大学和苏州东菱振动试验仪器有限公司共同承担的国家重大科研仪器设备研制项目&ldquo 超大型电磁振动试验台动力学设计、控制及装备研制&rdquo 正式得到批准立项,获得国家自然科学基金委员会的资助。  该项目拟通过开展超大型电磁振动台台体优化设计、大型抗高倾覆力矩水平滑台系统设计等工作,进一步提升单台振动台推力(研制出60吨超大推力电磁振动台)等性能指标 研制面向航天领域的振动测试集成系统,开展航天领域大型部件、结构件及系统的复杂力学环境振动测试与分析技术研究,全面提升我国在大型航天器研制过程中的动力学实验水平,旨在为未来国家战略发展中涉及的众多大型结构与重大装备,如航天航空、交通、船舶、发电设备和数控机床等领域的大型部件及系统的动力学试验提供支撑。  作为全球振动行业领域的佼佼者,东菱公司在超大型电磁振动台的设计和研制上拥有强大的技术实力和丰富的实施经验,首创的35吨和50吨超大推力电磁振动台曾圆满完成了&ldquo 神舟系列&rdquo 、&ldquo 天宫系列&rdquo 、&ldquo 探月工程&rdquo 、&ldquo 北斗&rdquo 、&ldquo 大飞机&rdquo 、&ldquo 轨道交通&rdquo 、&ldquo 风电&rdquo 、&ldquo 物联网&rdquo 等众多国家重点科研项目的环境试验任务,其优越的技术指标和稳定的工作性能赢得了社会的一致好评。此次能参与承担国家自然科学基金委国家重大科研仪器设备研制项目,再一次印证了东菱公司在超大型电磁振动台的设计和研制上具有不可比拟的核心优势。  据了解,国家重大科研仪器设备专项是为贯彻落实《国家中长期科学与技术发展规划纲要(2006-2020年)》,推动我国重大科研仪器设备自主研制工作,根据国家科学和经济社会发展战略布局,以科学目标为导向,面向科学前沿和国家需求而设立的。该项目由中央财政专款设立,国家自然科学基金委员会负责管理,旨在鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。
  • HI-3604工频电磁场强度测试仪促销
    联系电话: 15321363169 010-59483169单台仪器即可实现电场磁场同时测试 仪器说明:HI-3604是专门为检测50/60Hz电力线,有电设备和设施,视频显示终端等周围的电磁场强度而设计,为工程师,工业卫生学者以及人身安全健康专家等人员提供电力环境的准确测试工具。液晶显示器显示的单位可选择毫高斯,高斯,伏/米,千伏/米,并有图形显示功能,可方便直观的定位电磁场源位置及强辐射点。单探头实现全量程,仪器面板为覆膜式按键设计,非常适合现场使用,内部存储器可存储最多127个读数。技术参数:技术参数:  &bull &bull 频率范围: 30 &ndash 2000 Hz &bull &bull 频响范围: ± 0.5 dB (50-1000Hz) ± 2.0 dB (30-2000Hz) &bull &bull 电场测量范围:1 V/m &ndash 200 kV/m &bull &bull 磁场测量范围:0.2 mG &ndash 20 G &bull &bull 检测:单轴 &bull &bull 响应:真有效值 &bull &bull 存储:内置,最多112 读数 &bull &bull 环境:温度-10° C &ndash 40° C, &bull &bull 湿度5% - 95%无冷凝 基本配置: &bull &bull 电磁场两用探头(单轴) &bull &bull 显示部分 &bull &bull 绝缘手柄 &bull &bull 使用手册 &bull &bull 便携箱 &bull &bull HI-3616 型远程读取控制器 (可选) &bull &bull HI-4413 RS232 光纤转换器 (可选) &bull &bull 绝缘体三角架 (可选)配置:标配:电磁场两用探头(单轴),显示部分,绝缘手柄,使用手册,便携箱选件:HI3616远方显示器,HI4413 RS232光纤MODEM,三脚架 联系电话: 15321363169 010-59483169
  • 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)
    p style="margin-left: 66px text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px font-family:宋体"【作者按】/span/strongspan style="font-size:19px font-family:宋体"仪器的测试过程可归类为两件事:激发样品的信息,接收及处理样品的信息。因此其可被看成是由两类功能部件所组成:信号激发、信号接收处理。对扫描电镜来说电子枪和磁透镜属于激发样品信号的部件,探头属于接收样品信息的部件。它们都是构成扫描电镜的最基本部件,其性能的高低将对扫描电镜测试结果产生重大影响。学习扫描电镜也必须从认识这三个功能部件做起。篇幅所限,本文将只探讨激发信号的关键部件:电子枪、电磁透镜。/span/pp style="text-align: justify text-indent: 2em "strong style="text-indent: 0em "span style="font-size:24px"一、span style="font-variant-numeric: normal font-variant-east-asian: normal font-weight: normal font-stretch: normal font-size: 9px line-height: normal font-family: ' Times New Roman' " /span/span/strongstrong style="text-indent: 0em "span style="font-size:24px font-family:宋体"电子枪/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 0em "电子枪是电子显微镜产生高能电子束,这一样品信号激发源的源头。透射电镜和扫描电镜电子枪的构造基本一致。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"电子枪分为两种:热发射、场发射,它们主体都是三极结构设计。不同点:热发射(阴、栅、阳);场发射(阴极、第一阳极、第二阳极)。热场电子枪在阴极下方增加了一个抑制热电子发射的栅极。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.1/span/strongstrongspan style="font-size:19px font-family: 宋体"热发射电子枪/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"热发射电子枪按阴极材质分为两类:发叉钨丝和六硼化镧。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"发叉钨丝材质是多晶钨,功函数大,电子须由高温激发。电子束发散性、色差都比较大,束流密度低。故本征亮度低,分辨能力较差。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"六硼化镧灯丝的材质为六硼化镧单晶,功函数较发叉钨丝低,激发电子的温度也较低,电子束发散性、色差较发叉钨丝小,束流密度较高。本征亮度和分辨力都好于发叉钨丝。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.1.1/span/strongstrongspan style="font-size:19px font-family:宋体"钨灯丝结构图/span/strong/pp style="text-align: center text-indent: 0em "strongspan style="font-size:19px font-family:宋体"img style="max-width: 100% max-height: 100% width: 664px height: 215px " src="https://img1.17img.cn/17img/images/201912/uepic/ce0d7ace-71d6-4ab7-8f68-495672dab472.jpg" title="电子枪与电磁透镜的另类解析1.png" alt="电子枪与电磁透镜的另类解析1.png" width="664" height="215" border="0" vspace="0"//span/strong/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.1.2 /span/strongstrongspan style="font-size:19px font-family:宋体"六硼化镧灯丝结构图/span/strong/pp style="text-align: center text-indent: 0em "span style="text-indent: 0em font-size: 19px "strongimg style="max-width: 100% max-height: 100% width: 664px height: 278px " src="https://img1.17img.cn/17img/images/201912/uepic/a3341978-d9d2-4556-b62b-1f1c8cfe9484.jpg" title="电子枪与电磁透镜的另类解析2.png" alt="电子枪与电磁透镜的另类解析2.png" width="664" height="278" border="0" vspace="0"//strong/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 0em font-size: 19px "strong1.1.3/strong/spanstrong style="text-indent: 0em "span style="font-size:19px font-family:宋体"热发射电子枪(钨灯丝、六硼化镧)结构如下图:/span/strong/pp style="text-align: justify text-indent: 2em "strong/strong/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 239px " src="https://img1.17img.cn/17img/images/201912/uepic/186b57f0-421c-4d0e-afcb-fcf35820cb7e.jpg" title="电子枪与电磁透镜的另类解析a.png" alt="电子枪与电磁透镜的另类解析a.png" width="664" height="239" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.2/span/strongstrongspan style="font-size:19px font-family: 宋体"场发射电子枪/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"场发射电子枪分为:热场发射电子枪、冷场发射电子枪。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.2.1/span/strongstrongspan style="font-size:19px font-family:宋体"场发射电子枪灯丝的结构及对比/span/strongstrong/strong/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 215px " src="https://img1.17img.cn/17img/images/201912/uepic/100f10a3-fe51-4966-96a8-ff2395470ad4.jpg" title="电子枪与电磁透镜的另类解析1.png" alt="电子枪与电磁透镜的另类解析1.png" width="664" height="215" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px" 1.2.2/span/strongstrongspan style="font-size:19px font-family:宋体"场发射电子枪的结构/span/strongstrongspan style="font-size:19px" /span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"其结构图如下:/spanspan style="font-size: 19px text-indent: 28px " /span/pp style="text-align: center text-indent: 0em "span style="font-size: 19px text-indent: 28px "img style="max-width: 100% max-height: 100% width: 664px height: 219px " src="https://img1.17img.cn/17img/images/201912/uepic/201f9912-eb0e-4749-9f83-1d2fb5184e03.jpg" title="电子枪与电磁透镜的另类解析5.png" alt="电子枪与电磁透镜的另类解析5.png" width="664" height="219" border="0" vspace="0"//span/pp style="margin-left: 4px text-align: center text-indent: 2em "strongspan style="font-size: 18px "span style="font-family: 宋体 "左图为热场发射电子枪结构图/span span style="font-family: 宋体 "右图为冷场发射电子枪结构图/span/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"从上图可见,电子枪无论是热场还是冷场,其基本架构都是阴极、第一阳极、第二阳极结构。热场电子枪结构多了一个栅极保护器,以抑制热场电子枪为降低功函数,在灯丝上加高温所发射的热电子。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px"strong1.2.3/strong/spanstrongspan style="font-size:19px font-family: 宋体"场发射电子枪的工作过程/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.2.3.1/span/strongstrongspan style="font-size:19px font-family: 宋体"热场发射电子枪:/span/strong/pp style="text-align: justify text-indent: 2em "strong style="text-indent: 37px "span style="font-size:19px font-family:宋体"氧化锆/span/strongstrong style="text-indent: 37px "span style="font-size:19px font-family: 宋体"∕/span/strongstrong style="text-indent: 37px "span style="font-size:19px font-family: 宋体"钨单晶/span/strongstrong style="text-indent: 37px "span style="font-size:19px font-family:宋体"?/span/strongstrong style="text-indent: 37px "span style="font-size:19px"1.0.0/span/strongstrong style="text-indent: 37px "span style="font-size:19px font-family:宋体"?/span/strongspan style="text-indent: 37px font-size: 19px font-family: 宋体 "所构成的灯丝(阴极)通电后其温度达到/spanspan style="text-indent: 37px font-size: 19px "1200K/spanspan style="text-indent: 37px font-size: 19px font-family: 宋体 "。位于灯丝下方的栅极(电压低于阴极)保护层将抑制多晶钨和单晶钨的热电子发射。栅极保护层下方第一阳极上加载的电位高于阴极,称为引出电压,在该电压作用下氧化锆电子被从灯丝尖部拔出,由第二阳极与阴极间的加速电场加速,形成扫描电镜信息激发源/spanspan style="text-indent: 37px " /spanspan style="text-indent: 37px font-size: 19px font-family: 宋体 "—/spanspan style="text-indent: 37px " /spanspan style="text-indent: 37px font-size: 19px font-family: 宋体 "直径小于/spanspan style="text-indent: 37px font-size: 19px "50nm/spanspan style="text-indent: 37px font-size: 19px font-family: 宋体 "的“高能电子束”。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.2.3.2/span/strongstrongspan style="font-size:19px font-family:宋体"冷场发射电子枪:/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"冷场发射电子抢灯丝尖为单晶钨?/spanspan style="font-size:19px" 3.1.0 /spanspan style="font-size:19px font-family:宋体"?面。该晶面逸出功低,可由位于其下方第一阳极上的引出电压直接拔出。该电子枪不设栅极保护层。拔出的电子由阴极与第二阳极间加速电场加速,形成扫描电镜信号激发源 — 直径小于span10nm/span的“高能电子束”。/span/pp style="text-align: justify text-indent: 2em "strong style="text-indent: 0em "span style="font-size:19px"1.2.4/span/strongstrong style="text-indent: 0em "span style="font-size:19px font-family:宋体"冷、热场电子枪的优缺点/span/strong/pp style="text-align: justify text-indent: 2em "strong style="text-indent: 0em "span style="font-size:19px"1.2.4.1/span/strongstrong style="text-indent: 0em "span style="font-size:19px font-family: 宋体"冷场电子枪/span/strong/pp style="text-align: justify text-indent: 2em "span style="text-indent: 0em font-size: 19px font-family: 宋体 "冷场电子枪阴极采用单晶钨(/spanspan style="text-indent: 0em font-size: 19px "3.1.0/spanspan style="text-indent: 0em font-size: 19px font-family: 宋体 ")面,功函数极低,针尖电子可以被第一阳极直接拔出。在工作中电子枪温度和环境温度一致而得名“冷场电子枪”。该电子枪灯丝电子的出射范围小,溢出角(立体角)也小,溢出电子的能量差也小(色差)。这些结果会使得以该阴极为基础形成的电子枪本征亮度大。电子枪本征亮度大有利于扫描电镜获取高分辨的测试结果。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"由于电子枪温度低,镜筒中气体分子容易在灯丝表面积累,对拔出电子产生影响。故在工作中发射电流会逐渐下降,需要不断提升引出电压(/spanspan style="font-size:19px"set/spanspan style="font-size:19px font-family:宋体")或定时加一个瞬时电流(/spanspan style="font-size:19px"FLASH/spanspan style="font-size:19px font-family: 宋体")来驱赶这些气体分子,使发射束流满足测试需求。为了保持束流在测试中尽可能稳定,镜筒真空要求更高,高真空也是高分辨的基础条件之一。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"由于发射面积较小,因此虽然电子枪的本征亮度大,但是束流总量不如热发射以及热场电子枪来的大。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"冷场电子枪可以有更好的图像分辨,但束流的稳定度以及束流总量略显不足。不过现在最新的日立/spanspan style="font-size:19px"REGULUS 8230/spanspan style="font-size: 19px font-family:宋体"冷场电镜在电子枪设计、真空度以及镜筒质量上的改进使这些缺陷有所弥补。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "strongspan style="font-size:19px"1.2.4.2/span/strongstrongspan style="font-size:19px font-family: 宋体"热场电子枪/span/strongstrong/strong/pp style="margin-left: 4px text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"热场电子枪问世时间较冷场电子枪来得早。电子枪阴极采用的是单晶钨(/spanspan style="font-size:19px"1.0.0/spanspan style="font-size:19px font-family:宋体")面,其功函数较多晶钨丝和六硼化镧单晶要低很多但比冷场枪的单晶钨(/spanspan style="font-size:19px"3.1.0/spanspan style="font-size:19px font-family:宋体")面要大。电子发射虽然也是由第一阳极拔出,但需要采用一系列降低功函数的方法:/spanspan style="font-size:19px"1./spanspan style="font-size:19px font-family:宋体"灯丝加一定电流产生/spanspan style="font-size:19px"1200K/spanspan style="font-size:19px font-family: 宋体"的高温,/spanspan style="font-size: 19px"2./spanspan style="font-size:19px font-family:宋体"表面涂覆一层氧化锆,以降低灯丝表面的功函数,提升发射效果。由于电子基本由第一阳极在单晶钨针尖部拔出,因此其发射面积、立体角及色差都较热发射小很多,但比冷场要大。故本征亮度要比热发射提高很多,但略低于冷场电子枪。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "strongspan style="font-size:19px font-family: 宋体"热场和冷场电子枪对比:/span/strongspan style="font-size: 19px font-family:宋体"本征亮度低会造成仪器分辨能力不足;氧化锆的消耗会降低灯丝束流发射效果,氧化锆有破损,灯丝的高分辨寿命也到头,因此其高分辨寿命较短。束流大且稳定对微区分析有利,但是随着分析设备(/spanspan style="font-size:19px"EDS\EBSD/spanspan style="font-size:19px font-family:宋体")性能的提升该优势也在逐步淡化,而分析过程中的空间分辨劣势也会逐步加深。不过这都有个度,而且和测试需求有关,辩证的关系无处不在。/span/pp style="margin-left: 4px text-align: justify text-indent: 2em "strong style="text-indent: 0em "span style="font-size:24px"二、span style="font-variant-numeric: normal font-variant-east-asian: normal font-weight: normal font-stretch: normal font-size: 9px line-height: normal font-family: ' Times New Roman' " /span/span/strongstrong style="text-indent: 0em "span style="font-size:24px font-family:宋体"电磁透镜/span/strong/pp style="margin-left: 48px text-align: justify text-indent: 2em "strong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"透镜系统是显微镜对样品信息激发源(光)进行操控的部件。不同激发源(光束、电子束)使用不同的透镜系统:光学显微镜用的是光学透镜,电子显微镜是电磁透镜和静电透镜(静电透镜在电镜中应用面较窄,效果也较差,本文不予探讨)。无论光学透镜还是电磁透镜都是通过对激发源(可见光、高能电子束)运行方向的改变来对其进行操控。尽管高能电子束在电磁透镜中的运行轨迹较可见光在光学透镜中要复杂的多,但结果基本相似,因此在电子显微镜教材中对电磁透镜和电子光路路径的探讨都是以光学显微镜为模板。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px"strong2.1/strong/spanstrongspan style="font-size:19px font-family:宋体"光学透镜/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.1/span/strongstrongspan style="font-size:19px font-family: 宋体"光的折射现象/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"直线传播、反射、折射是光的三种运行(传播)模式。在同一种均匀介质中光是以直线方式来运行,小孔成像、影子等都是光线直线传播的反映。光线在两种介质交界处会发生传播方向的改变,如果光返回原来介质中这就是反射,反射光光速和入射光相同。光线从一个介质进入另一个介质,会发生传播方向以及传播速度的改变,这就是光线的折射现象。初中的物理教科书告诉我们透镜的成像原理正是基于这种折射现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px"strong2.1.2/strong/spanstrongspan style="font-size:19px font-family:宋体"光学透镜的成像原理/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"透镜可以看成许多棱镜按照特别设计的构造所进行的组合。通常情况下光通过透镜时:凸透镜会将光线经两次折射后会聚在透镜另一侧的焦点(平行光)或像平面上,凹透镜将光线经两次折射后按照像点和虚像各点连线所形成的角度发散出去。/span/pp style="text-align: center text-indent: 0em "span style="font-size:19px font-family:宋体"img style="max-width: 100% max-height: 100% width: 664px height: 347px " src="https://img1.17img.cn/17img/images/201912/uepic/323d613a-1a81-4dda-9653-58a36a6d5ef1.jpg" title="电子枪与电磁透镜的另类解析7.png" alt="电子枪与电磁透镜的另类解析7.png" width="664" height="347" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strongspan style="font-size:19px font-family: 宋体"凸透镜和凹透镜的经典成像图/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"显微系统中凸透镜的作用是对光线进行会聚、成像(实像、虚像、放大、缩小),也可对光路进行调整,是组成显微系统的主体部件。凹透镜在显微系统中主要是用于消除系统像差对分辨率的影响。/span/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 307px " src="https://img1.17img.cn/17img/images/201912/uepic/3543cd28-5d88-47f4-9ff7-0e6d73d304ad.jpg" title="7.jpg" alt="7.jpg" width="664" height="307" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-size:19px font-family: 宋体"透镜的成像规律/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.3/span/strongstrongspan style="font-size:19px font-family: 宋体"像差及像差校正/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"色差和球差是显微系统中光线经过透镜时形成的两个主要像差,对显微镜分辨率有极大影响。消除像差影响对获取高分辨像帮助极大。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.3.1/span/strongstrongspan style="font-size:19px font-family: 宋体"色差/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px "任何光都很难保证光束中能量完全一致。不同能量的光线传播速度不同,通过透镜时折射程度也存在差别,因此其焦点也不相同。如此就会在焦平面或像平面上形成一个弥散斑,使图像模糊不清,影响图像的分辨能力。不同能量的光线对应不同色彩,因此由光的能量差异而引起的像差被称为“色差”。不同形态(凸透镜、凹透镜)、不同材质的透镜色差通过合理的安排可以相互抵消,以此方式就可以消除整个透镜系统的色差。/span/pp style="text-align: justify text-indent: 0em "span style="font-size:19px font-family:宋体"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/0cf133ab-eb6d-4b98-83bd-95d8413e54a0.jpg" title="电子枪与电磁透镜的另类解析8.png" alt="电子枪与电磁透镜的另类解析8.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.3.2/span/strongstrongspan style="font-size:19px font-family:宋体"球差/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"透镜中心区与边缘区对光线折射会有差异,使得轴上某个物点发出的光束最后会聚在光轴上不同位置,在像面上形成一个弥散斑从而影响图像的分辨力,这种差异被称为“球差”。利用光阑只让近光轴光线通过可以减少球差,另外还有两种方法最常见:配曲以及组合。/span/pp style="text-align: justify "br//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.3.2.1/span/strongstrongspan style="font-size:19px font-family:宋体"配曲/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 37px "透镜两个曲面采用不同曲率半径,这两个曲面会对光线的折射产生差异,互相抵消和弥补会减少透镜球差的数值。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.1.3.2.2/span/strongstrongspan style="font-size:19px font-family:宋体"组合/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 37px "利用凸凹透镜的组合消除球差。组合方式有胶合和分离。/span/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 709px " src="https://img1.17img.cn/17img/images/201912/uepic/546f7baa-45c4-4b2c-9bf5-06508692bd6f.jpg" title="电子枪与电磁透镜的另类解析9.png" alt="电子枪与电磁透镜的另类解析9.png" width="664" height="709" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.2/span/strongstrongspan style="font-size:19px font-family:宋体"电磁透镜/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px "电子显微镜使用高能电子束做为光源,若用光学透镜对电子束进行会聚的结果是损耗大、工艺繁琐、效果差。因此必须选用另外的方式来对电子束进行操控。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 37px "一个轴对称的均匀弯曲磁场对电子束拥有更好的折射效果,而且操控简单、效果优异,是对电子束进行会聚的主要方式,类似于光学透镜对光线的会聚,被称为“磁透镜”。该磁场是利用电流通过铜线圈来产生,故而被命名为“电磁透镜”。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px"strong2.2.1/strong/spanstrongspan style="font-size:19px font-family:宋体"电磁透镜的构造及工作原理/span/strongstrong/strong/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"电磁透镜构造是将一个轴对称螺旋绕制的铜芯线圈置于一个由软磁(顺磁)性质的材料/spanspan style="font-size:19px"(/spanspan style="font-size:19px font-family:宋体"纯铁或低碳钢/spanspan style="font-size:19px")/spanspan style="font-size:19px font-family: 宋体"制成具有内环间隙的壳子里。内部插入磁导率更高的锥形环状极靴。该构造可以使得磁场强度、均匀性、对称性得到极大提升,从而在较小空间获得更大的电磁折射率来提升磁透镜的会聚效果。/span/pp style="text-align: justify text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 199px " src="https://img1.17img.cn/17img/images/201912/uepic/0ea4c139-2224-402e-8f16-0c835e6079c0.jpg" title="123.png" alt="123.png" width="664" height="199" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 19px "电磁透镜的工作过程如下:当电流通过铜芯线圈时,将产生一个以线圈轴中心对称分布的闭环磁场。电子束在穿越磁场时因切割磁力线而受洛仑兹力作用发生向心的偏转折射,该偏转和电子运行方向叠加后使得电子在磁场中以圆锥螺旋曲线轨迹运行,并使电子束从磁场另一端飞出后被重新会聚。类似于光学透镜中的光线会聚,电磁场对电子束起到一个透镜的作用。改变线圈电流的大小,可以改变电磁透镜对电子束的折射率。电子显微镜通过对透镜电流的调节,来无级变换焦点及放大倍率。任何一级透镜可以在需要时打开,不用时关闭,因此更易于仪器的调整。/span/pp style="text-align: justify text-indent: 0em "img style="max-width: 100% max-height: 100% width: 664px height: 199px " src="https://img1.17img.cn/17img/images/201912/uepic/21c7877d-4b03-4a3c-a3a9-778f4197b5e6.jpg" title="电子枪与电磁透镜的另类解析10.png" alt="电子枪与电磁透镜的另类解析10.png" width="664" height="199" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="font-size:19px"2.2.2/span/strongstrongspan style="font-size:19px font-family: 宋体"电磁透镜的像差/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px "虽然电子束在电磁透镜中的电子轨迹比可见光在光学透镜中的轨迹要复杂得多,但结果基本类似。光学透镜成像过程中存在的像差,在电磁透镜的成像过程中也同样存在,只是程度以及解决方式不一样。解决像差,对扫描电镜和透射电镜成像效果的影响也不一样。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"电子显微镜使用高能电子束和电磁透镜,相对于光学显微镜,其所形成的像差要小很多。而解决像差影响也会对测试结果产生负面影响,比如束流密度增大带来的热损伤、运用单色器会对信号量形成衰减、会聚角增大在扫描电镜测试时会增加样品信号扩散,这些负面影响是否会超过解决像差所带来的正面效果?这里存在着一个辨证的关系。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"光学显微镜显然是解决像差带来的正面效果要大,所以大量的消像差组件存在于光路当中。电子显微镜呢?目前仅在场发射透射电镜中加入球差校正器有着极为明显的作用,扫描电镜中却未见使用。这与两种电子显微镜所针对的样品以及所获取的样品信息特性有关。/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"透射电镜样品极薄、样品中信号扩散基本可以忽略不计。球差的改善会带来两个结果:束流密度的增加、会聚角的增加。束流密度增加会使得信息的激发区缩小同时信号量增加,这无疑对提高分辨力有利;电子束会聚角的增加有利于散射电子散射角的扩大,对/spanspan style="font-size:19px"stem/spanspan style="font-size:19px font-family:宋体"成像有利。因此对于透射电镜来说,解决球差所带来结果基本都是正面,这使得球差校正对透射电镜提高分辨力的影响十分明显。当然基础还是电子枪,热发射电子枪加装球差校正,结构更复杂而且结果差。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 28px "扫描电镜样品相对电子束来说无穷厚,电子束击入样品所引起的信号扩散较大。采用信号又是溢出样品表面的二次电子和背散射电子,电子束会聚角的改变对它们溢出范围影响不可忽略。球差校正结果到底如何?目前还没看到球差校正在扫描电镜中被运用。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 19px "球差校正器是采用多极子校正装置产生的磁场对电子束做一个补偿散射(如凹透镜对光线的散射),来消除聚光镜边缘所引起的球差。/span/pp style="text-align:center"span style="font-size:19px"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/c178f974-3020-497b-9c33-5f66b75f8046.jpg" title="10.jpg" alt="10.jpg"//span/pp style="text-align: center text-indent: 0em "strongspan style="font-size:19px font-family: 宋体"球差校正器图解/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体 font-size: 19px text-indent: 28px "电子显微镜减少色差主要依靠单色器。其原理是将电子束按照能量进行分离,然后选取某个能量段的电子束,由此降低电子束的能量差也就是色差。其缺点是电子束强度同时降低,这就要求样品能产生充足信号,同时信号接收器的接收效果也要相应提升。目前单色器主要被用在热场电子枪电镜。冷场电子枪由于色差很小,束流也较小,单色器对测试结果的正面影响不大,负面影响(束流的衰减)可能会更大,因此冷场电镜未见使用单色器。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 28px font-size: 19px font-family: 宋体 "辩证法的规律无处不在,任何条件的改变,部件的设计都不会是完美无缺。任何事、任何物的存在和变化都包含有正、反两方面的结果。我们必须对事和物做全面的正确了解,根据自己需求选取最大的正面因素,才能使得我们在做事和选物时获得最好的结果。最后以老祖宗的名言来做结束。那就是被我们常常认为是消极思维,其实却包含极大哲理的/spanstrong style="text-indent: 28px "span style="font-size:24px font-family: 宋体"“中庸之道、过犹不及”。/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="font-family: 宋体 font-size: 19px text-indent: 28px "作者简介:/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "span style="font-family: 宋体 font-size: 19px text-indent: 28px "img style="max-width: 100% max-height: 100% float: left width: 100px height: 154px " src="https://img1.17img.cn/17img/images/201912/uepic/3b78ff26-962f-4859-9049-9705ef02e500.jpg" title="9735aac7-cc11-41a0-b012-437faf5b20b5.jpg" alt="9735aac7-cc11-41a0-b012-437faf5b20b5.jpg" width="100" height="154" border="0" vspace="0"/林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。/span/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "span style="font-family: 宋体 font-size: 19px text-indent: 28px "br//span/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="font-size: 19px font-family: 宋体 "参考书籍:/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 19px font-family: 宋体 "《扫描电镜与能谱仪分析技术》张大同/spanspan style="font-size: 19px "2009/spanspan style="font-size: 19px font-family: 宋体 "年/spanspan style="font-size: 19px "2/spanspan style="font-size: 19px font-family: 宋体 "月/spanspan style="font-size: 19px "1/spanspan style="font-size: 19px font-family: 宋体 "日/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"华南理工出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"《微分析物理及其应用》/span span style="font-size:19px font-family: 宋体"丁泽军等/spanspan style="font-size: 19px" 2009/spanspan style="font-size:19px font-family:宋体"年/spanspan style="font-size:19px"1/spanspan style="font-size:19px font-family:宋体"月/spanspan style="font-size:19px" /span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"中科大出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"《自然辩证法》/spanspan style="font-size:19px" /spanspan style="font-size:19px font-family:宋体"恩格斯/spanspan style="font-size:19px" /spanspan style="font-size:19px font-family:宋体"于光远等译/spanspan style="font-size:19px" 1984/spanspan style="font-size:19px font-family:宋体"年/spanspan style="font-size:19px"10/spanspan style="font-size:19px font-family: 宋体"月/spanspan style="font-size:19px" /span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"人民出版社/spanspan style="font-size:19px" /span/pp style="text-align: justify text-indent: 2em "span style="font-size: 19px font-family: 宋体 "《显微传》/spanspan style="font-size: 19px " /spanspan style="font-size: 19px font-family: 宋体 "章效峰/spanspan style="font-size: 19px " 2015/spanspan style="font-size: 19px font-family: 宋体 "年/spanspan style="font-size: 19px "10/spanspan style="font-size: 19px font-family: 宋体 "月/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"清华大学出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"日立/spanspan style="font-size:19px"S-4800/spanspan style="font-size:19px font-family:宋体"冷场发射扫描电镜操作基础和应用介绍/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family:宋体"北京天美高新科学仪器有限公司/spanspan style="font-size:19px" /spanspan style="font-size:19px font-family:宋体"高敞/spanspan style="font-size:19px" 2013/spanspan style="font-size:19px font-family:宋体"年/spanspan style="font-size:19px"6/spanspan style="font-size:19px font-family: 宋体"月/span/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family: 宋体"br//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-size: 19px font-family: 宋体 color: rgb(0, 176, 240) "延伸阅读:/span/strong/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="text-decoration: underline "span style="color: rgb(0, 0, 0) font-size: 19px font-family: 宋体 "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈(1)/span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-decoration: underline "span style="font-size: 19px font-family: 宋体 color: rgb(0, 0, 0) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-align: justify text-indent: 2em "span style="font-size:19px font-family: 宋体"/span/p
  • 车内检测出电磁辐射 远超变电站
    英国辐射保护委员会官网设定0.4μT为危险值广州某变电站3米内电磁辐射强度为0.7μT雪佛兰这款车被车主检出车内辐射高达19μT  近日,一则题为《震惊,科鲁兹车内电磁辐射非常之大》的帖子在多家车汽论坛上引起热议:多位雪佛兰科鲁兹车主检测出车内辐射超标。据检测,科鲁兹行驶中主驾驶位置的电磁辐射强度达到19μT,而专业机构检测的广州某变电站3米范围内的电磁辐射强度仅0.7μT,也就是说,车内的电磁辐射强度是变电站的近30倍。  据了解,我国目前尚无公众环境下工频电磁辐射强度安全范围的国家标准,而英国国家辐射保护委员会官方网站上把危险值设定在0.4μT,瑞典更是率先正式承认强度在0.2μT以上的工频电磁场对人体有害。    在主驾位排挡杆下部左侧面,记者录得辐射高达19μT。    车主:车内电磁辐射超过变电站周边  记者联系上了发帖的车主郭先生。郭先生称,他于2010年12月在广州某4S店购买了一辆雪佛兰科鲁兹汽车(1.6LSLAT天地版标配)。  近日,郭先生从朋友处借得一台家庭电磁辐射测试仪,欲测试家里电脑、电视等电子产品的电磁辐射强度有多大。当他无意中在自己的车上打开测试仪时,结果让他非常震惊:车内辐射远远大于电脑、电视等产生的辐射。发动机怠速运行时主、副驾驶的辐射达到了4μT(微特斯拉),行驶过程中辐射最高更达到15μT,排挡杆下部左侧面(主驾驶位置)更达到19μT以上,越低的位置辐射越强,最下面已超过20μT。随后,郭先生找到多位科鲁兹车主,对其科鲁兹汽车进行检测,发现其车内的电磁辐射强度与自己车内电磁辐射强度大小差不多。根据郭先生的投诉,记者昨日也用电磁辐射测试仪测试了多辆科鲁兹汽车,均得出相同的数据。  4μT、15μT、19μT究竟是多大辐射?据了解,省环境辐射研究检测中心的专家曾对位于广州市海珠区的110千伏小港变电站、天河区的110千伏林和变电站、110千伏盘福变电站分别做现场环境检测,得出结果是磁感应强度0.6μT,3米处则为磁感应强度小于0.7μT。也就是说,车内辐射已达变电站周边辐射的几十倍。  厂家:专业机构出检测报告才能受理  郭先生告诉记者,当发现辐射有可能超标后,他和另外一名车主刘先生便向上海通用公司投诉,该公司第二天回复说,目前为止尚未收到类似投诉,也没有发现类似问题,要求郭先生先将车开到4S店检测。  郭先生于是将车开到买车的4S店检测。但该店称,没有检测工具。于是,郭先生就用自己的检测仪检测了该店的另外几台科鲁兹以及雪佛兰景程和科帕奇。检测结果显示,无论是在发动机怠速运转状态还是在行驶中,科鲁兹车内的电磁辐射都大于景程并远大于科帕奇。发动机怠速运转状态,景程主副驾驶的辐射和在1μT左右,而科帕奇主副驾驶的辐射更低至0.02μT以下。  对于检测结果,4S店并不否认,但该店表示,必须要有专业的检测机构出具检测报告证明辐射确实超标,才会处理此事。到目前为止,通用公司和4S店尚未给郭先生任何其他回复。  记者与郭先生和车友们一起又找来天籁、凯美瑞、君威等多款车与科鲁兹进行检测对比,检测发现,在相同时间、相同地点,除了科鲁兹之外,其它车的电磁辐射强度都小于0.4μT。  专业机构:国家无标准无法检测  记者联系了广州市环境监测中心站及广东省环境辐射监测中心,希望能为科鲁兹作出车内电磁辐射的专业检测。作为环境监测的权威机构,这两个机构均有检测电磁辐射并出具相关报告的业务。  但是,两个机构均表示,目前只能测量国家有标准的无线通讯机站及变电站的辐射值,无法测量汽车内的辐射值,因为国家对于汽车车内的电磁辐射尚无任何相关标准。随后,记者又联系了几家有资质的监测机关,都得到了相同的答案。“我们现在也不知道该怎么办了,生产厂家和4S店都不处理我们的投诉,要我们拿专业机构的检测报告才肯处理,但专业机构又没法为我们出具检测报告,真是投诉无门啊!”车主刘先生无奈地对记者说。  记者致电广州电器科学科究院的一位工程师,据工程师介绍,我国对汽车电磁辐射的检测,也仅仅停留在电池对其他元器件的电磁干扰领域,至于对人体的影响,目前尚没有这方面的研究及计划。  公众环境电磁辐射的标准  我国还在采取上世纪九十年代国际辐射保护协会推荐限值0.1mT,相当于100μT  电磁辐射的安全范围是多少?其强度超过多少了会对人体有害?我国对于公众环境电磁辐射的标准和规范集中在射频电磁辐射,主要的标准有1988年6月1日实施的《电磁辐射防护规定》,1989年1月1日开始实施的《环境电磁波卫生标准》,这两个规范都只规定了100KHz及以上频率电磁波的辐射限值要求。对于工频电磁辐射的安全范围,我国目前尚缺乏相应的国家规范。对公众环境工频电磁辐射限值,自上世纪九十年代,我国一直采取国际辐射保护协会推荐的限值0.1mT(相当于100μT)。  目前,英国国家辐射保护委员会官网把危险值设定在0.4μT(4mG),国际上认同儿童居住环境中的磁场强度也不应超出这个标准。瑞典则首个认为强度在0.2μT(2mG)以上,就会对人体有害。  汽车车内电磁辐射是工频辐射还是射频辐射?  不少网友将其归为工频辐射,市环境监测中心相关专家昨表示目前尚不能定论  电磁辐射分为工频(低频)电磁辐射和射频电磁辐射:工频电磁辐射较为典型的是变电站、高压电线和家用电器、笔记本等产生的电磁辐射,这部分设备因为使用交流电,其电磁场变化频率较低。  射频电磁辐射较为典型的是微波站、电视塔、基站等产生的电磁辐射,这些设施对外发射频率较高的电磁波(一般是MHz及以上单位)。一般对于低频电磁辐射强度,使用电磁感应强度来表示,其单位是特斯拉T,旧单位是高斯G,其换算单位是1T=10000G。一般环境电磁辐射强度数量级在毫高斯级别(mG)或微特斯拉级别(μT)1μT=10mG。
  • 2012电源技术交流论坛--电源电磁兼容、磁技术研讨会
    2012年电源创新技术论坛 电源磁技术、电磁兼容技术技术交流会 2012.9.8 中国· 北京 2012年9月8号,中国电源协会与北京森馥科技有限公司一起在北京举办本年度电源创新技术论坛&mdash &mdash 电源磁技术、电磁兼容技术技术交流会,会议设在北京东三环中国南航明珠大酒店,与会人员300多人,涉及到电源相关各个机构及公司,北京森馥科技作为主要协办单位,特邀请意大利电磁兼容专家Michele 博士一起与大家探讨电源电磁兼容测试技术与方法,并提供电磁兼容设备供大家现场体验。整个会议达到预期效果,大家受益匪浅,2012-9-8下午17:00点圆满结束。
  • 上海舜宇恒平科学仪器有限公司推出新一代电磁力天平
    新一代电磁力天平基于模块化理念设计而成,它由许多独立的模块组合而成,用户可以根据使用的需要选择相应的模块。模块包含电磁力传感器模块,内校系统模块,运算控制模块,显示模块,RS232接口模块,USB接口模块等。脉宽调制电磁力平衡技术,提高了天平的抗干扰能力。 新一代电磁力天平 新一代电磁力密度天平 产品特点: 模块化电磁力平衡传感器 量程指示白光大屏幕液晶显示器 高灵敏度轻触按键 内藏式下称吊钩 玻璃门运输保护锁 RS232接口模块 USB接口模块 内置时钟 独立清零、去皮按键______________________________________________________________________________________联系方式:上海舜宇恒平科学仪器有限公司地址:上海市虹漕路456号8号楼5-6楼邮编:200233电话:021-64956777E-mail:sales@hengping.comhttp://www.hengping.com
  • 2012年电源产品电磁兼容技术研讨会将举办
    2012-9-8号中国电源协会与北京森馥科技有限公司共同举办2012中国电源产品电磁兼容技术研讨会,邀请意大利电磁兼容博士迈克尔先生及国内电源设计技术专家一起探讨电磁兼容技术在电源产品中的应用技术。  一、具体涉及到如下内容:  电磁兼容在电源设计中的应用  电源产品电磁兼容测试标准及测试内容  电源电磁兼容测试技术方法  未来电源电磁兼容技术发展  电磁兼容测试主要仪器  二、主要参加人员  1.电源设计及相关产品设计工程师  2.电磁兼容测试工程师  3.标准协会人员  4.检测及认证机构相关人员  5.相关产品质量控制人员  6.电源相关行业人员…  三、会议举办及参加形式  会议以专家主讲和听众讨论的形式,持邀请信函到会议举办前台登记、或提前电话预约,请提前准好相关讨论问题与专家讨论。  四、会议地址及联系方式  地址:北京南航明珠商务酒店(国贸桥东南角),北京市朝阳区东三环中路10号  联系电话:13521348443、13501083950  如有其它疑问及时联系。  北京森馥科技有限公司  Safety Test Technology(Beijing)Co.Ltd  地址:北京市朝阳区北苑东路清河营郊野公园西北门A座  电话:400 668 6776 - 804 传真:400 668 6776 - 818
  • 搭“核辐射”顺风车 电磁辐射检测仪热销国内市场
    北京市环保局首次公布京城辐射环境信息引起市民对于生活环境中辐射指数的关注,部分市民还自购仪器自行测量电磁辐射。23日记者调查发现,目前市场上的测试仪器技术标价不一且规格混乱,还有人借“核辐射好帮手”推销。相关专业人士表示,市民自测辐射行为并不可取。  检测仪称能测“核辐射”  热销辐射测试仪、钻石信誉电磁辐射检测笔、台湾原产电磁辐射测试仪……在淘宝网输入“辐射”二字,各种广告语扑面而来。日本地震后,平日无人问津的辐射检测仪搭上了“核辐射”的顺风车,销路大开。仅以电磁辐射测试仪为例,这种仪器价格从八九元到上百元、上万元不等,一款声称从德国进口的标价36000元。而一款198元的家用测试仪一个月内竟卖出182件,还有一款来自香港的电磁辐射检测仪称是“核辐射好帮手”。而据专家介绍,电磁辐射是由空间共同移送的电能量和磁能量所组成,与核辐射无关。  再仔细观察发现,这些产品的各种技术指标也不尽相同。有的仪器测量频宽是50赫兹到3000兆赫兹,也有仪器的频宽为50赫兹到5000兆赫兹,有些厂家自行规定了低频和高频,低频为5赫兹到40万赫兹,高频则为30兆赫兹到2000兆赫兹。不仅如此,仪器误差也不同,有的是3%,有的是5%。  而专业人士指出,应该根据辐射源的频率来选择测试仪的频宽。而对于低频和高频的区分,厂家的划分也不科学。一般来说,超低频有不同限值,用的较多的是50赫兹或者100赫兹。高频则是10万赫兹到30兆赫兹,30兆到300兆为超高频,300兆到30万兆属于微波频率。  专业机构1500元起测  目前,北京市环保局并无附属的对外测试电磁辐射的单位,市场上活跃的一般是第三方检测机构。  “主要是测‘房’测‘站’。”一家检测机构工作人员告诉记者,他们测的数据大多是用来打官司用的,有测小区附近的高压线电磁场的,有测机房和设备的,还有居住在变电站或者手机基站附近的居民也要求测试辐射环境。他们一般会根据客户所处的地段和要求,测量出电场或者磁场强度、功率密度,并出具一份报告。  这名工作人员也告诉记者,因为个人测试的数据并未经过CMA国家计量认证,不具有法律效力,居民打官司时还得请专业公司来测。  由于是专业测试,这些机构的开价也不低。北京室内环境污染检测技术中心工作人员透露,他们测试一般3个点起测,一个点500元,一次至少1500元。另一家检测机构谱天测试中心同样是3个点1500元起测。工作人员还“关照”记者:“如果个人测,我们能优惠点。如果是开发商或者物业委托,就走对公价格,自然要贵点。”据了解,该机构给小区做一个环境评价,平均价格是3万元到4万元。  电磁辐射环境有国标  对于自测电磁辐射行为,专业人士指出这种做法并不可取。  北京室内环境污染检测技术中心的一位金姓工程师告诉记者,检测设备购买后得先拿到中国计量科学研究院做检定,之后才会使用,使用过程中也会按固定周期拿去检定,以保证仪器的灵敏度。市民个人购买仪器检测,在准度上就无法保证。  那么,什么样的辐射环境才算正常?环保部颁布的《电磁辐射防护规定》指出,在30兆赫兹到3000兆赫兹这一公众最敏感范围内,电磁场功率密度的标准限值为0.4瓦每平方米,低于这一数值才比较安全。关于超高压选变电设置的工频电场、磁场强度限值,我国推荐0.1毫特斯拉作为磁感应强度的评价标准。  金工程师还建议,市面上的各种电磁辐射测试仪器良莠不齐,不同厂家生产的设备,性能差别很大。且电磁辐射受环境影响因素很大,即使误差较大也难以识别,测出来的数据并没有说服力。如果真有这方面需要,建议市民邀请具有资质的专业机构去测试。  相关链接:  受日本核危机影响 核辐射检测仪器需求大增  韩国没有可批量检测商品的大型核辐射检测设备  日本强震 韩国“哄抢”核辐射测量仪
  • 电磁环境保护新标准即将出台
    来自浙江省辐射环境监测站的最新消息称,新近在京举行的国家标准《电磁辐射防护规定》修订最后一次审议会议,同意由浙江省辐射环境监测站编写的送审稿经修改后报环保部审批。至此,更名为《电磁环境公众暴露控制限值》(GB8702)的新电磁标准即将在近期公开发布。新标准的出台,标志着我省辐射环境监测站在全国电磁环境保护领域已经达到领先水平,并将在该领域发挥更大作用。  近年来,我国在移动通信、电网和广播电视等方面的建设发展迅速,公众对电磁环境安全的关注也空前高涨。原《电磁辐射防护规定》已不能满足当前社会发展的需要,急需一家技术水平较高又中立的单位来承担这个艰巨的任务。  早在2000年9月,由国家质量技术监督局牵头,联合信息产业、环保、广电、电力以及卫生部等单位组成了标准起草小组。但由于受技术条件制约,修订工作10年未决。2008年3月,环境保护部下文要求浙江省辐射环境监测站承担修订该标准的任务。该站组织精干力量,广泛吸收世界卫生组织(WHO)等国际权威机构的研究成果,充分结合我国当前经济和技术条件,经两年的努力最终形成了送审稿。  浙江省辐射环境监测站近期喜报频传。不但新投运了全国辐射环境监测网数据评价中心、质谱仪实验室等先进设备,省辐射环境安全监测重点实验室也于去年底通过了省科技厅组织的立项论证。该重点实验室的建设,成为省辐射环境监测站培养高层次人才、加强科学研究和社会服务功能的又一里程碑,对进一步提高我省核设施、核技术和电磁能利用项目环境安全和监测水平有着重要作用,得到了省科技厅、环保厅的大力支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制