当前位置: 仪器信息网 > 行业主题 > >

温度仪工作原理

仪器信息网温度仪工作原理专题为您提供2024年最新温度仪工作原理价格报价、厂家品牌的相关信息, 包括温度仪工作原理参数、型号等,不管是国产,还是进口品牌的温度仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温度仪工作原理相关的耗材配件、试剂标物,还有温度仪工作原理相关的最新资讯、资料,以及温度仪工作原理相关的解决方案。

温度仪工作原理相关的论坛

  • 温度变送器工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]温度电流变送器是把温度传感器的信号转变为电流信号,连接到二次仪表上,从而显示出对应的温度。温度变送器采用热电偶、热电阻作为测温元件,从测温元件输出信号送到变送器模块,经过稳压滤波、运算放大、非线性校正、V/I转换、恒流及反向保护等电路处理后,转换成与温度成线性关系的4~20mA电流信号输出。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size]1、安装前,检查配件是否齐全,紧固件有无松动,将天线拧紧。2、安装时,注意轻拿轻放,切勿敲、摔。将天线拧紧后即可正常工作3、安装后,加电后,禁止非操作人员打开前盖,如操作人员误操作后,严禁保存,断电后重新开启即可。[b]主要产生误差的原因:[/b][list][*]被测介质温度升高或者降低时变送器输出没有变化,这种情况大多是温度变送器密封的问题,可能是由于温度变送器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换变送器外壳才能解决。[*]输出信号不稳定,这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。[*]变送器输出误差大,这种情况原因就比较多,可能是选用的温度变送器的电阻丝不对导致量程错误,也有可以能是变送器出厂的时候没有标定好。[/list]

  • 各种温度计工作原理

    1.气体温度计:多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广。这种温度计精确度很高,多用于精密测量。2.电阻温度计:分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铑铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。它的测量范围为-260℃至600℃左右。3.温差电偶温度计:是一种工业上广泛应用的测温仪器。利用温差电现象制成。两种不同的金属丝焊接在一起形成工作端,另两端与测量仪表连接,形成电路。把工作端放在被测温度处,工作端与自由端温度不同时,就会出现电动势,因而有电流通过回路。通过电学量的测量,利用已知处的温度,就可以测定另一处的温度。它适用于温差较大的两种物质之间,多用于高温和低浊测量。有的温差电偶能测量高达3000℃的高温,有的能测接近绝对零度的低温。4.高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计、比色温度计和辐射温度计。高温温度计的原理和构造都比较复杂,这里不再讨论。其测量范围为500℃至3000℃以上,不适用于测量低温。5.指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的。它是以双金属片做为感温元件,用来控制指针。双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右。由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温);反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温)。6.玻璃管温度计:玻璃管温度计是利用热胀冷缩的原理来实现温度的测量的。由于测温介质的膨胀系数与沸点及凝固点的不同,所以我们常见的玻璃管温度计主要有:煤油温度计、水银温度计、红钢笔水温度计。他的优点是结构简单,使用方便,测量精度相对较高,价格低廉。缺点是测量上下限和精度受玻璃质量与测温介质的性质限制。且不能远传,易碎。7.压力式温度计:压力式温度计是利用封闭容器内的液体,气体或饱和蒸气受热后产生体积膨胀或压力变化作为测信号。它的基本结构是由温包、毛细管和指示表三部分组成。压力式温度计的优点是:结构简单,机械强度高,不怕震动。价格低廉,不需要外部能源。缺点是:测温范围有限制,一般在-80~400℃;热损失大响应时间较慢。8·水银温度计:水银温度计是膨胀式温度计的一种,水银的凝固点是 -38.87℃,沸点是 356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。

  • 双金属温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]双金属温度计的工作原理是利用二种不同温度膨胀系数的金属,为提高测温灵敏度,通常将金属片制成螺旋卷形状,当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。由于螺旋卷的一端固定而另一端和一可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度来。这种仪表的测温范围一般在-80℃~+500℃间,允许误差均为标尺量程的1.5%左右。[size=15px][b]分类:[/b][/size]普通双金属温度计、耐震型双金属温度计、电节点双金属温度计。按双金属温度计指针盘与保护管的连接方向可以把双金属温度计分成轴向型、径向型、135°向型和万向型四种。①轴向型双金属温度计:指针盘与保护管垂直连接。②径向型双金属温度计:指针盘与保护管平行连接。③135°向型双金属温度计:指针盘与保护管成135°连接。④万向型双金属温度计:指针盘与保护管连接角度可任意调整。[size=15px][color=white][back=#3c40eb][b]选型与使用:[/b][/back][/color][/size]在选用双金属温度计时要充分考虑实际应用环境和要求,如表盘直径、精度等级、安装固定方式、被测介质种类及环境危险性等。除此之外,还要重视性价比和维护工作量等因素。此外,双金属温度计在使用过程中应注意以下几点:A、双金属温度计保护管浸入被测介质中长度必须大于感温元件的长度,一般浸入长度大于100mm,0-50℃量程的浸入长度大于150mm,以保证测量的准确性。B、各类双金属温度计不宜用于测量敞开容器内介质的温度,带电接点温度计不宜在工作震动较大的场合的控制回路中使用。C、双金属温度计在保管、使用安装及运输中,应避免碰撞保护管,切勿使保护管弯曲变型及将表当扳手使用。D、温度计在正常使用的情况下应予定期检验。一般以每隔六个月为宜。电接点温度计不允许在强烈震动下工作,以免影响接点的可靠性。E、仪表经常工作的温度最好能在刻度范围的1/3~2/3处。

  • 压力式温度计工作原理

    [size=15px][b]工作原理:[/b][/size]压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。[size=15px][b]组成及分类:[/b][/size]压力式温度计由敏感元件温包,传压毛细管和弹簧管压力表组成。[list][*]若给系统充以气体,如氮气,称为充气式压力式温度计,测温上限可达500℃,压力与温度的关系接近于线性,但是温包体积大,热惯性大。[*]若充以液体,如二甲苯、甲醇等,温包小些,测温范围分别为-40℃~200℃和-40℃~170℃,[*]若充以低沸点的液体,其饱和汽压应随被测温度而变,如丙酮,用于50℃~200℃。但由于饱和汽压和饱和汽温呈非线性关系,故温度计刻度是不均匀的。[*][color=#3e3e3e]特点:[/color][/list]必须将温包全部浸入被测介质;毛细管最长不超过60m;仪表精度低,但使用简便,而且抗震动。

  • 8大温度仪表工作原理及安装注意事项!

    8大温度仪表工作原理及安装注意事项!

    [align=center][b][size=16px]8大温度仪表工作原理及安装注意事项![/size][/b][/align][font=-apple-system, BlinkMacSystemFont, &][color=#333333] 本文主要针对常用的8大温度仪表进行讲解,从工作原理,到安装要求,以及产品选型和使用过程中应该注意的问题,及仪表的组成,详细的阐述了常见的8大温度仪表,为仪表人在后期工作中提供理论和经验帮助![/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#333333][b]双金属温度计[/b][/color][/font][color=#333333][font=&][color=#ffffff][/color][/font][/color][color=#333333][font=&][color=#ffffff][img=,484,294]https://ng1.17img.cn/bbsfiles/images/2021/04/202104060239032796_4273_1626275_3.jpg!w484x294.jpg[/img][/color][/font][/color][color=#333333][font=&][color=#ffffff][/color][/font][/color][b]工作原理[/b]: 双金属温度计的工作原理是利用二种不同温度膨胀系数的金属,为提高测温灵敏度,通常将金属片制成螺旋卷形状,当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。 由于螺旋卷的一端固定而另一端和一可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度来。 这种仪表的测温范围一般在-80℃~+500℃间,允许误差均为标尺量程的1.5%左右。[b]选型与使用[/b]: 在选用双金属温度计时要充分考虑实际应用环境和要求,如表盘直径、精度等级、安装固定方式、被测介质种类及环境危险性等。除此之外,还要重视性价比和维护工作量等因素。 此外,双金属温度计在使用过程中应注意以下几点:A、双金属温度计保护管浸入被测介质中长度必须大于感温元件的长度,一般浸入长度大于100mm,0-50℃量程的浸入长度大于150mm,以保证测量的准确性。B、各类双金属温度计不宜用于测量敞开容器内介质的温度,带电接点温度计不宜在工作震动较大的场合的控制回路中使用。C、双金属温度计在保管、使用安装及运输中,应避免碰撞保护管,切勿使保护管弯曲变型及将表当扳手使用。D、温度计在正常使用的情况下应予定期检验。一般以每隔六个月为宜。电接点温度计不允许在强烈震动下工作,以免影响接点的可靠性。E、仪表经常工作的温度最好能在刻度范围的1/3~2/3处。[b]压力式温度计[/b]:[img=,536,313]https://ng1.17img.cn/bbsfiles/images/2021/04/202104060247028687_349_1626275_3.jpg!w536x313.jpg[/img][b]工作原理[/b]:[font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e] 压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e][/color][/size][/font]压力式温度计由敏感元件温包,传压毛细管和弹簧管压力表组成。[list][*]若给系统充以气体,如氮气,称为充气式压力式温度计,测温上限可达500℃,压力与温度的关系接近于线性,但是温包体积大,热惯性大。[*]若充以液体,如二甲苯、甲醇等,温包小些,测温范围分别为-40℃~200℃和-40℃~170℃,[*]若充以低沸点的液体,其饱和汽压应随被测温度而变,如丙酮,用于50℃~200℃。但由于饱和汽压和饱和汽温呈非线性关系,故温度计刻度是不均匀的。[/list][b]特点[/b]: 必须将温包全部浸入被测介质;毛细管最长不超过60m;仪表精度低,但使用简便,而且抗震动。[b]电阻式温度计[/b]:[img=,332,182]https://ng1.17img.cn/bbsfiles/images/2021/04/202104060253208520_7898_1626275_3.jpg!w332x182.jpg[/img][font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e][b]工作原理[/b]:[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e][/color][/size][/font] 热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度或者与温度有关的参数。 绝大多数金属的电阻值随温度而变化,温度越高电阻越大,即具有正的电阻温度系数。而大多数半导体材料具有负的电阻温度系数,即温度越高电阻越小。[b]常用的热电阻元件有:铂热电阻、铜热电阻、半导体热敏电阻。[/b][list][*]铂热电阻采用高纯度铂丝绕制而成,具有测温精度高、性能稳定、复现性好、抗氧化等优点,因此在基准、实验室和工业中被广泛应用。但其在高温下容易被还原性气氛所污染,使铂丝变脆,改变其电阻温度特性,所以需用套管保护方可使用。铂丝纯度是决定温度计精度的关键。铂丝纯度越高其稳定性越高、复现性越好、测温精度也越高。[*]铜热电阻的电阻值与温度近于呈线性关系,电阻温度系数也较大,且价格便宜,所以在一些测量精度要求不是很高的情况下,就常采用铜热电阻。但其在高于100℃的气氛中易被氧化,故多用于测量-50~150℃温度范围。[*]半导体热敏电阻优点:负电阻温度系数大,因此灵敏度高。电阻率大,可作成体积小而电阻值大的电阻元件,这就使之具有热惯性小和可测量点温度或动态温度。缺点:同种半导体热敏电阻的电阻温度特性分散性大,非线性严重,元件性能不稳定,因此互换性差、精度较低。[/list][b][b]热电阻连接方式:[/b][/b][list][*]二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制,这种引线方法很简单,但由于连接导线必然存在引线电阻R,R大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合[*]三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。[*]四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。[/list][b]安装要求[/b]: 对热电阻的安装,应注意有利于测温准确,安全可靠及维修方便,而且不影响设备运行和生产操作。在选择对热电阻的安装部位和插入深度时要注意以下几点:1、为了使热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电阻。2、带有保护套管的热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:1)对于测量管道中心流体温度的热电阻,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装)。如被测流体的管道直径是200毫米,那热电阻插入深度应选择100毫米;2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电阻。浅插式的热电阻保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电阻的标准插入深度为100mm。3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电阻插入深度1m即可。4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支支撑架和保护套管。[b]热电偶温度计[/b]:[img=,332,249]https://ng1.17img.cn/bbsfiles/images/2021/04/202104060301146383_3669_1626275_3.jpg!w332x249.jpg[/img][b]工作原理[/b]:[font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e] 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e][b]安装要求[/b]:[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#3e3e3e][/color][/size][/font][list][*]首先热电偶和热电阻的安装应尽可能保持垂直,以防止保护套管在高温下产生变形,但在有流速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触以保证其测量精度。[*]另外热电偶和热电阻应尽量安装在有保护层的管道内,以防止热量散失。其次当热电偶和热电阻传感器安装在负压管道中时,必须保证测量处具有良好的密封性,以防止外界冷空气进入,使读数偏低。[*]当热电偶和热电阻传感器安装在户外时,热电偶和热电阻传感器的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,而损坏热电偶和热电阻接线盒内的接线影响其测量精度。[*]应经常检查热电偶和热电阻温度计各处的接线情况,特别是热电偶温度计由于其补偿导线的材料硬度较高,非常容易从接线柱脱离造成断路故障,因此要接线良好不要过多碰动温度计的接线并经常检查,以获得正确的测量温度。[*]热电偶安装时应放置在尽可能靠近所要测的温度控制点。为防止热量沿热电偶传走或防止保护管影响被测温度,热电偶应浸入所测流体之中,深度至少为直径的10倍。当测量固体温度时,热电偶应当顶着该材料或与该材料紧密接触。为了使导热误差减至最小,应减小接点附近的温度梯度。[*]当用热电偶测量管道中的气体温度时,如果管壁温度明显地较高或较低,则热电偶将对之辐射或吸收热量,从而显着改变被测温度。这时,可以用一辐射屏蔽罩来使其温度接近气体温度,采用所谓的屏罩式热电偶。[*]选择测温点时应具有代表性,例如测量管道中流体温度时,热电偶的测量端应处于管道中流速最大处。一般来说,热电偶的保护套管末端应越过流速中心线。 [/list][color=#3e3e3e] (未完待续)[/color][color=#333333][font=&][color=#ffffff][/color][/font][/color][color=#333333][font=&][color=#ffffff][/color][/font][/color][color=#333333][font=&][color=#ffffff][/color][/font][/color][color=#333333][font=&][color=#ffffff][/color][/font][/color][b][/b]

  • 温度(差)变送器的工作原理是什么

    简述温度(差)变送器的工作原理 答:在热工测量中,通常用各种标准刻度的热电偶或热电阻检测温度和温差,这些一次元件所显示的是直流毫伏或电阻欧姆等变化数据。温度或温差变送器的作用是把上述一次元件的不同输出转变为统一的“0-10”的直流电流信号,作为调节、控制、记录、显示等装置的标准输入信号。 目前常用DBW型温度(差)变送器实质上是个低电平的直流毫伏变送器。温度(差)变送器。 (3)采用晶体管或磁调制的变送器. 它利用了热电偶由于温度变化可输出变化的毫伏直流电压,热电阻阻值会因温度变化而发生变化的原理。通过上述调制方法使输入量的变化和输出量的变化保持线性关系,经过电子放大器后转换成直流电流输出。

  • 热电偶温度计的应用范围及工作原理介绍

    热电偶是一种感温元件。它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。下面我们来了解下热电偶温度计的工作原理及应用范围。  一、热电偶温度计的工作原理及应用范围    热电偶温度计的工作原理丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。国能仪表专业生产压力表:压力表,精密压力表,不锈钢压力表,双针压力表,膜盒压力表,隔膜压力表、耐震压力表,电接点压力表,防爆电接点压力表等系列压力表。    二、热电偶温度计的应用范围    采用双金属温度计、热电偶或热电阻一体化温度变送的方式,既满足现场测温需求,亦满足远距离传输需求,可以直接测量各种生产过程中的-80-+500℃范围内液体、蒸气和气体介质以及固体表面测温。    用途:用于测量各种温度物体,测量范围极大,远远大于酒精、水银温度计。它适用于炼钢炉、炼焦炉等高温地区,也可测量液态氢、液态氮等低温物体。    上述的内容就是热电偶温度计的工作原理及应用范围,常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

  • 温度开关工作原理和安装要求

    [size=15px][b]工作原理:[/b][/size]温度开关是一种用双金属片作为感温元件的温度开关,电器正常工作时,双金属片处于自由状态,触点处于闭合/断开状态,当温度升高至动作温度值时,双金属元件受热产生内应力而迅速动作,打开/闭合触点,切断/接通电路,从而起到热保护作用。当渐度降到重定温度时触点自动闭合/断开,恢复正常工作状态。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size]1、采用接触感温式安装时,应使金属盖面贴紧被控器具的安装面,为确保感温效果,应在感温表面涂上导热硅脂或其他性能类似的导热介质。2、安装时不可把盖面顶部压塌、松动或变形,以免影响性能。3、不能让液体渗入控温器内部,不得使外壳出现裂纹,不得随意改变外接端子的形状。4、产品在不大于5A电流的电路中使用,应选择铜芯截面为0. 5-1㎜2导线连接;不大于10A电流的电路中使用,应选择铜芯截面为0.75-1.5㎜2导线连接。5、产品应在相对湿度小于90[[%]],环境温度40℃以下通风、洁净、干燥、无腐蚀性气体的仓库中存放。

  • 热电偶温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size][list][*]首先热电偶和热电阻的安装应尽可能保持垂直,以防止保护套管在高温下产生变形,但在有流速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触以保证其测量精度。[*]另外热电偶和热电阻应尽量安装在有保护层的管道内,以防止热量散失。其次当热电偶和热电阻传感器安装在负压管道中时,必须保证测量处具有良好的密封性,以防止外界冷空气进入,使读数偏低。[*]当热电偶和热电阻传感器安装在户外时,热电偶和热电阻传感器的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,而损坏热电偶和热电阻接线盒内的接线影响其测量精度。[*]应经常检查热电偶和热电阻温度计各处的接线情况,特别是热电偶温度计由于其补偿导线的材料硬度较高,非常容易从接线柱脱离造成断路故障,因此要接线良好不要过多碰动温度计的接线并经常检查,以获得正确的测量温度。[*]热电偶安装时应放置在尽可能靠近所要测的温度控制点。为防止热量沿热电偶传走或防止保护管影响被测温度,热电偶应浸入所测流体之中,深度至少为直径的10倍。当测量固体温度时,热电偶应当顶着该材料或与该材料紧密接触。为了使导热误差减至最小,应减小接点附近的温度梯度。[*]当用热电偶测量管道中的气体温度时,如果管壁温度明显地较高或较低,则热电偶将对之辐射或吸收热量,从而显着改变被测温度。这时,可以用一辐射屏蔽罩来使其温度接近气体温度,采用所谓的屏罩式热电偶。[*]选择测温点时应具有代表性,例如测量管道中流体温度时,热电偶的测量端应处于管道中流速最大处。一般来说,热电偶的保护套管末端应越过流速中心线。 [/list]

  • 【分享】干湿球温度计(简称干湿温度计)的工作原理

    干湿球温度计(简称干湿温度计)的工作原理干湿球温度计  干湿球温度计(dry and wet bulb thermometer )是一种测定气温、气湿的一种仪器。它由两支相同的普通温度计组成,一支用于测定气温,称干球温度计;另一支在球部用蒸馏水浸湿的纱布包住,纱布下端浸入蒸馏水中,称湿球温度计。   根据测出的干球温度和湿球温度,查“湿空气线图”,可以得知此状态下空气的温度、湿度、比热、比焓、比容、水蒸气分压、热量、显热、潜热等资料。例如:干球18度,湿球15度时,其度差3度之纵栏与湿球15度之横栏交叉68度就是表示湿气为68%。   通过测的的数值,对照湿空气线图可以计算空气加热,冷却,加湿和减湿的状态变化。 干湿球湿度计的特点  早在18世纪人类就发明了干湿球湿度计,干湿球湿度计的准确度还取决于干球、湿球两支温度计本身的精度;湿度计必须处于通风状态:只有纱布水套、水质、风速都满足一定要求时,才能达到规定的准确度。干湿球湿度计的准确度只有5%一7%RH。 干湿球湿度计的原理  干湿温度计的干球探头直接露在空气中,湿球温度探头用湿纱布包裹着,其测湿原理就是,在一定风速下,湿球外边的湿纱布的水分蒸发带走湿球温度计探头上的热量,使其温度低于环境空气的温度;而干球温度计测量出来的就是环境空气的实际温度,此时,湿球与干球之间的温度差与环境的相对湿度有一个相应的关系,但该关系是非线性的。用公式表达起来相当复杂。这两者之间的关系会受好多因素的影响如:风速,温度计本身的精度,大气压力,干湿球温度计的球泡表面积大小,纱布材质等等。   相对湿度=水汽分压/饱和蒸汽压(压力、温度一定的情况下)

  • 玻璃管液体温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]玻璃液体温度计采用热胀冷缩效应的测温原理:当温度变化时,玻璃球中的液体体积会发生膨胀或收缩,使进入毛细管中的液柱高度发生变化,从刻度上可指示出温度的变化。温度表的刻度分辨力高低与温度表的灵敏度有关,灵敏度大,则温度表的刻度分辨力高。要提高温度表的灵敏度,可增大测温液的体积或减小毛细管的直径。但增大测温液的体积,不易于与被测物质取得热平衡,造成较大的滞后误差,且容易使球部产生变形;而减小毛细管直径则会使毛细管不易加工均匀,造成液柱上升不均匀,影响测量准确性。因此,应取适当的灵敏度。另外,温度表的灵敏度还与测温液和玻璃的热膨胀系数之差有关,且成正比。一般均选取热膨胀系数较大的液体作为测温液,而玻璃的热膨胀系数应尽可能的小。常用的测温液有水银和酒精。[b]主要产生误差的原因:[/b](1)零点永远位移(2)球部暂时变形(3)压力变化(4)刻度不准确(5)读数方法不正确(6)热滞效应(7)酒精温度表产生误差的特殊原因(8)最高温度表产生误差的特殊原因

  • 电阻式温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度或者与温度有关的参数。绝大多数金属的电阻值随温度而变化,温度越高电阻越大,即具有正的电阻温度系数。而大多数半导体材料具有负的电阻温度系数,即温度越高电阻越小。[size=15px][b]组成材料要求[/b][/size]1、在测温范围内化学和物理性能稳定;2、复现性好;3、电阻温度系数大,以得到高灵敏度;4、电阻率大,可以得到小体积元件;5、电阻温度特性尽可能接近线性;6、价格低廉。[b]常用热电阻原件:常用的热电阻元件有:铂热电阻、铜热电阻、半导体热敏电阻。[/b][list][*]铂热电阻采用高纯度铂丝绕制而成,具有测温精度高、性能稳定、复现性好、抗氧化等优点,因此在基准、实验室和工业中被广泛应用。但其在高温下容易被还原性气氛所污染,使铂丝变脆,改变其电阻温度特性,所以需用套管保护方可使用。铂丝纯度是决定温度计精度的关键。铂丝纯度越高其稳定性越高、复现性越好、测温精度也越高。[*]铜热电阻的电阻值与温度近于呈线性关系,电阻温度系数也较大,且价格便宜,所以在一些测量精度要求不是很高的情况下,就常采用铜热电阻。但其在高于100℃的气氛中易被氧化,故多用于测量-50~150℃温度范围。[*]半导体热敏电阻优点:负电阻温度系数大,因此灵敏度高。电阻率大,可作成体积小而电阻值大的电阻元件,这就使之具有热惯性小和可测量点温度或动态温度。缺点:同种半导体热敏电阻的电阻温度特性分散性大,非线性严重,元件性能不稳定,因此互换性差、精度较低。[/list][b]热电阻连接方式:[/b][list][*]二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制,这种引线方法很简单,但由于连接导线必然存在引线电阻R,R大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合。[*]三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。[*]四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。[/list][size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size]对热电阻的安装,应注意有利于测温准确,安全可靠及维修方便,而且不影响设备运行和生产操作。在选择对热电阻的安装部位和插入深度时要注意以下几点:1、为了使热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电阻。2、带有保护套管的热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:1)对于测量管道中心流体温度的热电阻,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装)。如被测流体的管道直径是200毫米,那热电阻插入深度应选择100毫米;2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电阻。浅插式的热电阻保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电阻的标准插入深度为100mm。3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电阻插入深度1m即可。4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支支撑架和保护套管。

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 红外温度传感器工作原理选型应用

    红外温度传感器工作原理选型应用

    [b]红外温度传感器简介[/b]红外温度传感器[color=#333333],在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。[/color][color=#333333]温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。[/color][color=#333333][img=,236,195]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_01_3332482_3.jpg!w236x195.jpg[/img][/color][color=#333333][b]红外温度传感器工作原理[/b][color=#333333]红外线[/color][color=#333333]红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。[/color][color=#333333]红外辐射[/color][color=#333333]红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。[/color][color=#333333]传感原理[/color][color=#333333]热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。[/color][/color][color=#333333][color=#333333][img=,511,294]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_02_3332482_3.jpg!w511x294.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器选型要点[/b]主要从性能指标和环境和工作条件两方面来加以考虑。性能指标:首先就是量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能更好的测量。用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。其次是要注意传感器的尺寸,不能选择过大也不能太小,必须选择适合自己的尺寸才能更好的方便测量,量程和尺寸是选择传感器都要注意的,但是选择红外温度传感器还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等。工作条件:红外温度传感器所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。[/color][/color][color=#333333][color=#333333][img=,536,285]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_01_3332482_3.jpg!w536x285.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器应用[/b]非接触式温度测量红外辐射探测移动物体温度测量连续温度控制热预警系统气温控制医疗器械长距离测量[b]红外温度传感器在智能空调上的应用[/b]舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。[b]红外温度传感器在智能空调上的应用[/b]传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量,让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。[/color][/color][color=#333333][color=#333333][img=,549,249]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_02_3332482_3.jpg!w549x249.jpg[/img][/color][/color][color=#333333][color=#333333][color=#333333]智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。[/color][/color][/color][color=#333333][color=#333333][color=#333333][img=,388,316]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_03_3332482_3.jpg!w388x316.jpg[/img][/color][/color][/color][color=#333333][color=#333333][color=#333333]以上就是工采网小编今天给大家介绍的关于[/color]红外温度传感器[color=#333333]的相关知识及它的应用范围的介绍,因为红外温度传感器的使用帮助我们生产和科研的过程编的更加的简单,所以我们增加对于它的相关知识的了解是非常的有必要的,毕竟是我们经常会使用的工具。这就是今天讲解的全部内容了,希望对大家在日后的生活中能够有所帮助。[/color][/color][/color]

  • 热电偶温度变送器工作原理是什么

    热电偶温度变送器要求变送器的抽出电压信号与相应的变送器输入的温度信号成线性关系。但一般热电偶输出的毫伏值与所代表的温度之间是非线性的.如图2一22所示。各种热电偶的非线性也是不一样的,而且同一种热电偶在不同的测量范围的非线性程度亦不相同。例如铂铹—拍热电俱的特性曲线是凹向上的,而镍铬—镍铝热电俩特性曲线开始是凹向上的,温度升高时又变为凹向下皇S形,仪器仪表网提供。http://www.china-1718.com/File/day_120111/201201110433068301.jpg 热电偶是非线性的,而温度变送器放大回路是线性的.若将热电俱的热电势直接接到变送器的放大回路,则温度T与变送器的输出电压Usc之间的关系是非线性的。因此为了使温度变送器的输入温度T与输出电压Usc之间保持线性关系,则变送器的放大回路特性不能是线性的。假设热电偶的特性是凹向上的,若要使T与Usc的关系呈线性变化.则变送器放大回路的特性曲线必须是凹向下的。 热电偶温度变送器是由热电偶输入回路和放大回路两部分组成的。因此为了得到线性关系.必须使放大回路具有非线性特性。放大器非线性特性一般是使反该回路非线性来达到的。图2一23为热电偶输入温度变送器框图。图中:W1 (S)为热电偶的传递函数;Wt(S)为放大回路反馈电路的传递函数。 http://www.china-1718.com/File/day_120111/201201110434114746.jpg则温度变送器的传递函数为:W(S)为:W(S)=W1(S)*W2(2)式中W2(S)—放大回路的传递函效。 由于变送器放大回路放大器的放大系致K很大,故放大回路的传递函数W2(s)可以认为等于反馈电路的传递函教的倒数.即W2(S) ≈1/Wt(S)则热电偶输入温度变送器的传递函效为W(S) ≈W1(S)/Wf(S) 由式2-12可知,欲使热电偶输入的温度变送器保持线性,就要使反饭电路的特性曲线与热电偶的特性曲线相同,亦即变送器放大回路的反馈电路输入与输出特性要模拟成热电偶的非线性特性关系,如图2-24所示。 按图2-24原理实现的温度变送器即可使变送器输出电压Usc与输入温度信号T呈线性关系。 由上可知,热电偶温度变送器的关性技术是如何使放大回路的反该电路具有热电偶的非线性特性。热电偶温度变送器的结构框图如圈2-25所示。来源——仪器仪表网

  • 工业分析仪基本工作原理

    工业分析仪基本工作原理工业分析仪主要用于测定煤等有机物中的水分、灰分和挥发分的含量,其主要特点是整个测试过程由计算机控制自动完成,分析时间短,测试精度高。并且,该仪器通过采用先进采集和传输数据控制系统,使得该仪器具有很高的可靠性。该仪器自投放市场后深受广大用户和专家的好评。为了使有关人员能更好地掌握该仪器的使用和维护,我们编制了这本《自动工业分析仪使用说明书》,对如何正确使用和维护该仪器作了全面的介绍。工业分析仪基本工作原理 仪器检测原理为热重分析法它将远红外加热设备与称量用的电子天平结合在一起,在特定的气氛条件、规定的温度、规定的时间内称量受热过程中的试样质量,以此计算出试样的水分、灰分和挥发分等工业分析指标。 仪器工作过程通过计算机控制测试主机来测定试样的水分、挥发分和灰分。 测定流程 工业分析仪运行仪器的测试程序,进入工作测试菜单,输入相关的试样信息后仪器自动称量空坩埚,空坩埚称量完毕,系统自动打开上盖,提示放入试样,然后系统称量试样质量并开始加热。升温到145℃左右恒温30分钟(指按国标方法,温度与恒温时间可自定义设置)后开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0006克)时水分分析结束,系统报出水分测定结果,此时系统会自动打开上盖,提示加坩埚盖,仪器自动称量加坩埚盖质量,然后系统控制高温炉继续升温,目标温度900℃(系统自动打开氮气阀,向高温炉内通氮气,气体流量控制在4~5L/min),高温炉温度升到900℃,恒温规定的时间后,系统会自动打开上盖开始降温,当高温炉温度降到设定值时,仪器自动称量各坩埚质量,系统报出挥发分测定结果。此时系统再次升温至845℃恒温(系统会打开氧气阀,向高温炉内通氧气,气体流量控制在4~5L/min),之后系统开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0006克)时灰分分析结束,系统报出灰分测定结果,并打印结果或报表(如果在系统设置中设置了打印)。

  • 红外热像仪工作原理

    热像仪的操作以红外热像仪的工作原理为基础。热像仪通常作为一种开源节流的检测工具,可用于诊断、维护和检查电气系统、机械系统和建筑结构,另外,科学研究和企业研发人员也可以通过热成像技术攻克各类研究过程中的难题。那么,到底什么是红外热成像技术呢?而红外热像仪工作原理又是什么呢?就让福禄克红外热像仪来告诉你吧!  红外热成像  红外热成像是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。  人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。  例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。  热像仪工作原理  热像仪旨在检测目标所放出的红外辐射。参见下图。目标是指使用热像仪进行检查的物体。http://www.wzxxw.cn/p/m/1224/20(6).jpg  目标是指使用热像仪进行检查的物体。热像仪旨在检测目标所发出的红外辐射。  红外辐射通过热像仪的光学镜片聚焦于探测器,从而引起反应,通常是电压或电阻的变化,该变化由热成像系统中的电子元件读取。热像仪产生的信号将转换成电子图像(温度记录图)并显示在屏幕上。温度记录图是经过电子处理后显示在屏幕上的目标图像,在该图像中,不同的色调与目标表面上的红外辐射分布相对应。在这个简单的过程中,热像仪可以查看与目标表面上发出的辐射能量相对应的温度记录图。  热像仪组件  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、探测器和处理电子元件、控件、数据存储设备、配有手带的把柄以及数据处理和报告制作软件。这些组件因热成像系统的类型和型号而异。参见下图。http://www.wzxxw.cn/p/m/1224/21(5).jpg  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、控件和配有手带的把柄。http://www.wzxxw.cn/p/m/1224/22(5).jpg  热像仪通常都带有一个便携包,用于放置热像仪、软件及现场使用的其它相关设备。  镜头。热像仪至少配有一个镜头。热像仪镜头可以捕获红外辐射并使之聚焦于红外探测器上。探测器将作出反应并生成电子(热)图像或温度记录图。热像仪镜头用于采集传入的红外辐射并使之聚焦于探测器上。大多数长波热像仪的镜头包含锗 (Ge)薄层增透膜,可以改善镜头的透光能力。  福禄克最新发布的全新25微米微距镜头和4倍长焦预校准镜头,将极端目标温度变化尽收眼底。25微米微距镜头可以识别在印刷电路板等上的超微目标,甚至是肉眼难以看见的缺陷。新的4倍长焦镜头让用户能够看到放大四倍的远处目标,从而能够轻松检测电线或高火炬塔等目标。http://www.wzxxw.cn/p/m/1224/23(8).jpg  显示屏。热图像显示在热像仪的液晶显示屏 (LCD) 上。LCD 显示屏必须足够大,而且足够清晰,以便在各种场合的不同光线条件下轻松查看图像。此外,显示屏通常还会提供其它信息,例如电池电量、日期、时间、目标温度(以 °F、°C 或 °K 为单位)、可见光图像以及与温度有关的色谱键。参见图 1-5。http://www.wzxxw.cn/p/m/1224/24(5).jpg  图1-5 热像图显示在热像仪上的液晶屏(LCD)上。  探测器和处理电子元件。探测器和处理电子元件用于将目标处理成为有用的信息。目标发出的热辐射将聚焦于探测器(通常是电子半导体材料)上。热辐射可使探测器作出可测量的反应。该反应在热像仪中经过电子处理,形成热图像,并显示在热像仪的显示屏上。  控件(操作菜单)。控件用于执行各种电子调整,以优化显示屏上的热图像。可以对温度范围、热跨度和级别、调色板和图像融合度等变量执行电子调整。此外,还可以对辐射率和反射背景温度执行调整。参见图 1-6。近几年已出现触摸屏热像仪实现所有操控。http://www.wzxxw.cn/p/m/1224/25(6).jpg  图1-6 借助控件,可以对变量(例如温度范围、热跨度和级别和其它设置)执行电子调整。  数据存储设备。包含热图像和相关数据的电子数字文件存储在各类电子记忆卡或存储器以及传输设备中。许多红外成像系统还允许存储补充语音或文字数据以及通过集成的可见光摄像机采集的相应可见光图像。  数据处理和报告制作软件。与大多数现代热成像系统配合使用的软件不仅功能强大,而且容易使用。数字热图像和可见光图像可以导入个人计算机中,然后在此处通过各种调色板显示,而且还可以进一步调整所有辐射参数和分析功能。之后,经过处理的图像将被插入报告模板中,或者发送至打印机、以电子形式存储或者通过互联网发送给客户。福禄克红外热像仪使用的是SmartView红外分析软件。

  • 干湿球温度计的定义及工作原理

    干湿球温度计是用于气象的温度计,根据湿球的通风情况测量温度,精度高。把湿球的温度换成湿度,采用微机进行处理,使其达到最佳状态。这种湿球传感器已有各种类型,但缺点是要给湿球供水。露点计用于电子冷却系统的冷却,还用于测量镜面结露点的温度。露点计也可以用来作为标准湿度的校正计,这与干湿球湿度计相同。但装置复杂,为保证镜面结露温度,需要进行控制。阻抗式湿度计是根据湿敏传感器的阻抗值变化而求得湿度的一种湿度计,由于能简单地转换为电信号,它是广泛采用的一种方法,本节主要介绍这类湿敏传感及其应用。湿敏传感器是由湿敏元件和转换电路等组成,它是将环境湿度变换为电信号的装置。湿敏传感器在工业、农业、气象、医疗以及日常生活等方面都得到了广泛的应用,特别是随着科学技发展,对于湿度的检测和控制越来越受到人们的重视并进行了大量的研制工作。通常,理想的湿敏传感器的特性要求是,适合于在宽温、湿范围内使用,测量精度要高;使用寿命要长,稳定性好;响应速度快,湿滞回差小,重现性好;灵敏度高,线形好,温度系数小;制造工艺简单,易于批量生产,转换电路简单,成本低;抗腐蚀,耐低温和高温特性等。

  • 【转帖】单片机上18b20温度传感器的工作原理是什么?

    我对DS18B20[url=http://www.cgxk163.com]温度传感器[/url]还是很熟悉的,前一阵才用过。如果你是应用这个的,那么你不需要搞清楚它的内部原理,内部主要有ROM.RAM和温度传感器。DS18B20是使用一根数据线进行通信,首先你要先向它发送一系列脉冲信号。一般我们用的步骤大致为:初始化--跳过ROM操作--启动温度转换--(延时)--初始化--跳过ROM操作--读温度寄存器命令然后就可以读出温度的数据了。先读出的是低8位,然后是高位。由于是单线通信,所以对时序的要求相对较高,所以你要根据时序图和自己的晶振频率好好计算一下。最后还要注意的是,它的数据线平时是要拉到高电平的。以上都是我自己打出来的,希望对你有帮助!

  • 气相色谱仪的工作原理和操作步骤

    [align=center][b][size=24px]气相色谱仪[color=#666666]的工作原理和操作步骤[/color][/size][/b][/align][size=16px][font=&][color=#666666] 众所周知[/color][/font]气相色谱仪[font=&][color=#666666]是一种常用的检测设备。现代[/color]气相色谱仪具有许多型号款式,不同的性能和不同的使用范围,但基本原理是相同的。很多人可能对工作原理以及如何使用气相色谱仪了解不多,所以下面的将告诉你整个气相色谱仪的工作原理和操作步骤。气相色谱仪工作原理[color=#666666]  [/color]气相色谱仪是利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。  气相色谱仪操作步骤  A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。  B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。  C、设置各工作部温度  TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min (b)进样器温度是260℃,检测器温度是280℃。  D、点火  待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。  E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。  F、关机程序  首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。  以上就是气相色谱仪工作原理及操作步骤的全部介绍,相信大家看过之后对气相色谱仪的应该有了一定的认识。气相色谱仪主要对混合气体中各种成分进行分析,具有性能稳定、使用灵活、维护简便、可靠性高等优点。[/font][/size]

  • 压力罐工作原理

    压力罐工作原理是什么?正常状态下是怎么运作的?南京捷登作为15年专业销售压力罐的厂家,给您以下解释。压力罐——使用波义耳(RobertBoyle)气体规律:PV/T=n;(P-压力,V-气压罐气体体积,T-温度);在必定温度下气体压力(P)与容积(V)乘积等于常数的原理,使用水的紧缩性极小的性质,用外力将水储存在压力罐内,气体遭到紧缩压力升高。众所周知,管网结尾阀门很难作到滴水不漏,因而,无负压供水设备压力罐的给水设备或体系,由管网本身的压力水保持体系压力。因为水的紧缩比远远小于气体,当管网有小流量的走漏可形成压力大幅度的降低,可使水泵频繁启动。供水设备如工频泵直接向用户供水,就必需装备压力罐,减轻水泵频繁启动。因为变频的使用,设备控制水泵因需而供(变量恒压)。恒压供水零流量时变频器控制水泵低速确保管网“恒压”,使用这一点,不再设置压力罐的变频给水设备就必须有一台水泵24小时不断作业或频繁启动来确保管网的压力,因而,压力罐是确保水泵正常歇息并延伸睡觉时刻的必要条件。这也正是压力罐的工作原理。

  • 恒温养护箱的工作原理

    1恒温恒湿养护箱的工作原理,由加热系统和制冷系统产生升温和降温,用控制仪进行调控。1、当温度低于(箱内温度)20℃时,控温仪继电器开始工作,箱内温度20℃时,电热器停止升温,保持箱内20℃恒温,当箱内温度高于20℃时,制冷系统开始工作,箱内温度低于20℃时,制冷系统停止工作,保持箱内20℃±1℃,这样反复连续工作,达到水泥试体养护工作。2、恒湿控制采用超声波加湿加湿,专用控湿仪控制,当箱内湿度达不到所需湿度时,加湿器自动向箱内加湿,达到自动停止,以保箱内湿度恒定在90%。

  • 了解自动凝点倾点测定仪的工作原理

    自动凝点倾点测定仪的工作原理自动凝点倾点测定仪符合GB/T510-83及GB/T3535-2006标准用于测定变压器油、润滑油及轻质油的凝固点值倾点值,液晶屏幕中文人机对话图形显示界面,制冷深度、试油标号、检测气压、试验日期等参数具有菜单导向式输入,方便直观。汉字操作软件提示修改功能,界面清晰,易操作,打印试验数据,实现了试验全过程微机自动化,是理想的进口仪器替代产品。图形动态模拟工作过程,屏幕在现试验过程,实时跟踪油质温度的变化状态,半导体制冷,测试速度快,结果准确,可单独测试凝点、倾点值,也可同时测试,一机两用,注油、测试、放油、打印微机自动完成 配有时钟等多种参数表示。工作原理微型计算机智能化控制,实现了测定过程全部自动化,即自动对试样加热50℃,自然降温至35℃,再自动将试样放入冷阱中,当试样温度达到检测温度时自动倾斜装有试样的冷浴箱45℃,并采用液位检测技术进行对试样的流动性-凝固点进行检测,每一次检测试样凝固性的全部过程都是一致的;由此保证试样的凝点是准确的。程序控制实现了测出试样的凝固点(即高于这个温度2℃试样就流动,和等于这个温度试样就凝固);并自动数据存储和打印记录。自动凝点倾点测定仪的国产生产厂家北京得利特的就符合多种标准,型号也比较多。他们主要产品仪器有自动凝点倾点测定仪,运动粘度测定仪,微量水分测定仪,颗粒计数器,酸值测定仪、界面张力测定仪、石油密度测定仪,自然点测定仪,空气释放值测定仪、馏程测定仪等多种润滑油分析仪器、燃料油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器。

  • 恒温槽的结构组成及恒温槽的工作原理

    一、首页,大致分为如下几个结构   1-电机2-混合区3-工作区4-控温仪5-油泵6-储油箱7-铂热电阻温度计   二、标准油槽的工作原理:   油槽槽体中油的流动和温度控制系统在电机带动的浆叶推动下,油在混合区经加热器加热,自上而下流动,经桨叶强烈搅动,油流充分混合,油流的温度达到均匀一致,然后导流向上进入工作区,在工作区中油流要求有合适的流速,良好的绝热,以保证它在工作区中温度均匀且稳定不变;此后油流再进入混区,合依次做循环流动。   1、控温仪工作原理   控温仪的感温元件铂热电阻温度计置于流体中,用于检测温度信号,使温度控制装置根据槽温变化,以PID调节方式发出控制信号,控制双向可控硅导通角的大小,调节加热器的加热功率,使槽温稳定在设定温度下   2、供油循环系统:(有的油槽无储油箱,需人工进行)   该系统在油槽正常工作时不启用,只有在需要注油时才工作。具体结构下如:在油槽底部设有贮油箱,通过油泵和换向阀,将贮油箱中的油经输油管泵入油槽中;若需清理贮油箱中的油,可通过换向阀和换油放液阀抽离贮油箱,在油槽升温时,溢出的油通过溢流管,直接排入贮油箱,若槽温需快速下降,可打开放油阀门,把槽中部分高温油放入贮油箱后,再用油泵将冷油经输油管泵入槽内,由此,供油循环系统使得工作环境干净,操作人员操作较简单、高效。   3、温度控制系统   油恒温槽,要求必须在其工作范围内、任一设定温度下,能建立一个温度分布均匀且稳定不变的热环境,因此所配备的温度控制系统十分重要。另外,恒温槽槽体结构、系统的热惯性、介质的均匀受热状况、混合和良好的流动状态、装置绝热保温的优劣,以及整机运转的稳定性,都直接影响控温品质。目前较一般第三章恒温槽温场的影响因素分析的设备均采用数显温度控制仪与装置配合,可实现较高品质的温度控制,槽温波动度一般可达到0.1℃/30min,槽温均匀度可达0.1℃。

  • 热电偶的工作原理

    热电偶的工作原理  热电偶的工作原理(热电偶原理) 什么叫热电偶?这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B:热电偶工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2:热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。常用的热电偶材料有:热电偶分度号热电极材料 正极负极S铂铑10纯铂R铂铑13纯铂B铂铑30铂铑6K镍铬镍硅T纯铜铜镍J铁铜镍N镍铬硅镍硅E镍铬铜镍  1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应(Seebeck effect)”。  Thomas Johann Seebeck(1780~1831)  〔发现者〕托马斯·约翰·塞贝克(也有译做“西伯克”)1770年生于塔林(当时隶属于东普鲁士,现为爱沙尼亚首都)。塞贝克的父亲是一个具有瑞典血统的德国人,也许正因为如此,他鼓励儿子在他曾经学习过的柏林大学和哥廷根大学学习医学。1802年,塞贝克获得医学学位。由于他所选择的方向是实验医学中的物理学,而且一生中多半时间从事物理学方面的教育和研究工作,所以人们通常认为他是一个物理学家。  毕业后,塞贝克进入耶拿大学,在那里结识了歌德。德国浪漫主义运动以及歌德反对牛顿关与光与色的理论的思想,使塞贝克深受影响,此后长期与歌德一起从事光色效应方面的理论研究。塞贝克的研究重点是太阳光谱,他在1806年揭示了热量和化学对太阳光谱中不同颜色的影响,1808年首次获得了氨与氧化汞的化合物。1812年,正当塞贝克从事应力玻璃中的光偏振现象时,他却不晓得另外两个科学家布鲁斯特和比奥已经抢先在这一领域里有了发现。  1818年前后,塞贝克返回柏林大学,独立开展研究活动,主要内容是电流通过导体时对钢铁的磁化。当时,阿雷格(Arago)和大卫(Davy)才发现电流对钢铁的磁化效应,贝塞克对不同金属进行了大量的实验,发现了磁化的炽热的铁的不规则反应,也就是我们现在所说的磁滞现象。在此期间,塞贝克还曾研究过光致发光、太阳光谱不同波段的热效应、化学效应、偏振,以及电流的磁特性等等。  1820年代初期,塞贝克通过实验方法研究了电流与热的关系。1821年,塞贝克将两种不同的金属导线连接在一起,构成一个电流回路。他将两条导线首尾相连形成一个结点,他突然发现,如果把其中的一个结加热到很高的温度而另一个结保持低温的话,电路周围存在磁场。他实在不敢相信,热量施加于两种金属构成的一个结时会有电流产生,这只能用热磁电流或热磁现象来解释他的发现。在接下来的两年里时间(18222~1823),塞贝克将他的持续观察报告给普鲁士科学学会,把这一发现描述为“温差导致的金属磁化”。  赛贝壳的实验仪器,加热其中一端时,指针转动,说明导线产生了磁场  塞贝克确实已经发现了热电效应,但他却做出了错误的解释:导线周围产生磁场的原因,是温度梯度导致金属在一定方向上被磁化,而非形成了电流。科学学会认为,这种现象是因为温度梯度导致了电流,继而在导线周围产生了磁场。对于这样的解释,塞贝克十分恼火,他反驳说,科学家们的眼睛让奥斯特(电磁学的先驱)的经验给蒙住了,所以他们只会用“磁场由电流产生”的理论去解释,而想不到还有别的解释。但是,塞贝克自己却难以解释这样一个事实:如果将电路切断,温度梯度并未在导线周围产生磁场。所以,多数人都认可热电效应的观点,后来也就这样被确定下来了。(来自:以色列·希伯莱大学网站,陈忠民译)  〔应用〕热电效应发现后的1830年,人们就为它找到了应用场所。利用热电效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度!  热电偶的两种不同金属线焊接在一起后形成两个结点,如图(a)所示,环路电压VOUT为热结点结电压与冷结点(参考结点)结电压之差。因为VH和VC是由两个结的温度差产生的,也就是说VOUT是温差的函数。比例因数α对应于电压差与温差之比,称为Seebeck系数。  热电偶测温原理  图(b)所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的结点。本例中,每个开路结点与铜线电气连接,这些连线为系统增加了两个额外结点,只要这两个结点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热结点与冷结点温差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热结点的实际温度,冷结点温度必须是已知的。冷结点温度为0℃(冰点)时是一种最简单的情况,如果TC=0℃,则VOUT=VH。这种情况下,热结点测量电压是结点温度的直接转换值。不过,在实际应用中这是难以实现的。为此,美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表,所有数据均基于0℃冷结点温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热结点温度。

  • ICP—1000型仪器组成及工作原理

    仪器组成及工作原理 ICP—1000型等离子体单道扫描光谱仪是多元素顺序测量的分析测试仪器。该仪器由射频发生器、试样引入系统、扫描分光器、光电转换、计算机控制系统和分析操作软件组成。射频发生器产生的高频功率通过感应工作线圈加到三同心石炬管上,在石英炬管的外层通入氩气并引入电火花使之产生电离形成氩等离子体,这种氩等离子体的温度可达6000~8000摄氏度。待测水溶液试样通过喷雾器形成的气溶胶进入石英炬管中心通道,受到高温的激发后,以光的形式放出特征谱线,通过透镜射到分光器中的光栅上,分光后的待测元素特征谱线光强通过计算由步进电机转动光栅传动机构,准确定位于出口狭缝处,光电倍增管将该谱线光强转变成光电流,再经电路处理和V/F变换后,进入计算机进行数据处理,最后由打印机打出分析结果。

  • 气相色谱仪多少钱?气相色谱仪工作原理及操作步骤

    大家都知道,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]是一种常用的检测设备。近代[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]型号很多,性能各异,使用范围也不相同,但其基本原理是一致的。可能很多人对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]工作原理和如何使用还不是很了解,所以下面小编就来为大家介绍一下整套[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]多少钱?[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]工作原理及操作步骤。[align=center][img]http://5b0988e595225.cdn.sohucs.com/images/20180724/b239be3adb604b9d8e087e7d2f01e1d9.jpeg[/img][/align]整套[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]多少钱?上海精科上分GC112A[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]¥28800上海精科上分GC122[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]¥43200上海精科(仪电上分)GC128[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]¥94300上海仪电GCl02AF[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]¥18000注:以上价格来源于网络,仅供参考[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]工作原理[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]是利用试样中各组份在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]操作步骤A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。C、设置各工作部温度TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min (b)进样器温度是260℃,检测器温度是280℃。D、点火待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。F、关机程序首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。以上就是小编对整套[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]多少钱?[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]工作原理及操作步骤的全部介绍,相信大家看过之后对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的应该有了一定的认识。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]主要对混合气体中各种成分进行分析,具有性能稳定、使用灵活、维护简便、可靠性高等优点。

  • 非接触式红外测温仪工作原理

    [size=15px][b]工作原理:[/b][/size]非接触式红外测温仪(以下简称“测温仪”)可以通过测量目标表面所辐射的红外能量来确定表面温度。非接触式红外测温仪采用超低功耗智能设计。超低功耗设计确保产品能够更长时间的工作,为用户减少频繁更换电池及工作时欠电的烦恼。智能设计帮助用户更方便测试、更快捷捕捉到被测物体的真实值,同时仪表能够智能选择电池或USB连接供电。[size=12px][color=#7b7f83]来源:仪电圈[/color][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制