当前位置: 仪器信息网 > 行业主题 > >

波文比观测系统

仪器信息网波文比观测系统专题为您提供2024年最新波文比观测系统价格报价、厂家品牌的相关信息, 包括波文比观测系统参数、型号等,不管是国产,还是进口品牌的波文比观测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波文比观测系统相关的耗材配件、试剂标物,还有波文比观测系统相关的最新资讯、资料,以及波文比观测系统相关的解决方案。

波文比观测系统相关的资讯

  • 中国海洋大学研制波浪浮标系统成功观测台风梅花
    7月28日,台风“梅花”在西北太平洋洋面上生成,随后强度迅速增强,成为今年第三个超强台风。“梅花”来势汹汹,被网友称为“梅超风”。“梅花”究竟会有多大威力,会给海洋环境造成哪些影响,我们又该如何应对等等,这一系列问题的回答就需要对海洋水文气象要素的精准预报,但预报的前提少不了对台风的前期实地观测,这就是海洋浮标等观测手段大显身手的时刻。追风观测,历来是掌握第一手资料的最佳时机,也是海洋水文气象预报分析及防灾减灾决策的重要前提。    8月2日,在“梅花”迫近前夕,国家海洋局东海分局下达由中国海洋大学自主研制的3m多参数波浪浮标系统赴东海海域实施现场观测并验收的任务。该课题负责人工程学院自动化及测控系海洋仪器装备研发中心唐原广教授立即组织课题组成员奔赴上海,经过岸基系统联调,于8月5日在“梅花”逼近前成功地布放在东海指定海域。该浮标系统的标体直径为3m,很好地解决了波浪浮标的安全性,除了可测量波浪外,还可测量风场、气压、水温、气温等参数,预留有海流、水质等参数接口,拓展了浮标的测量参数,并采用太阳能供电方式,延长了浮标在海上的作业时间,大大提高了浮标的综合性能。   经过“梅花”过境东海的狂风暴雨及恶劣海况的考验洗礼,浮标系统工作正常,并观测到台风过境的全过程,接收到揭示台风奥秘的现场数据,获取了较为完整的台风过境资料。在8月9日由国家海洋局东海分局主持的“3m多参数波浪浮标系统”验收会上,与会专家一致认为“该项目的实施,为我国海洋台站波浪观测增添了新的观测手段。”   3m多参数波浪浮标系统成功观测台风“梅花”并通过验收,是中国海洋大学学、产、研合作方式的又一成功范例。从应国家及社会之需投标立项,到与国家海洋局东海分局等密切合作,共同研制开发应用,充分展示了中国海洋大学在海洋监测技术领域的实力,提升了中国海洋大学在海洋浮标观测系统的研发服务能力,同时也形成了一支能够承担大型海洋监测设备的研发队伍和技术保障队伍,为今后在国家海洋监测领域承担更大的研发任务扩大了影响,拓展了空间,打下了基础。
  • 应用案例 | 宁波海尔欣参与欧洲ICOS集成碳观测系统森林站点项目
    项目背景:欧洲综合碳观测系统(ICOS)新站点:38米高的塔楼,6米高的集装箱(图1)。来自荷兰的多位研究人员已经安装了各种传感器来测量气象和空气质量组分。Photo 1: The new tower, 38m tall, rising up far above the 22m trees.最大的挑战之一是获得ICOS生态系统站点(第2类)的认证。为此需要安装一些组件,并自动将数据传输到ICOS碳门户网站。其中包括埃迪协方差测量(u、v、w、T、CO2、H2O在塔顶上,以测量动量通量、感热通量和潜热通量以及净CO2通量,见图2)Photo 2: The eddy covariance system for fluxes of momentum, sensible and latent heat and CO2 and VOC fluxes.宁波海尔欣光电科技有限公司为此项目提供了HT8700大气氨激光开路分析仪,用以测量高塔附近的森林冠层氨排放和沉降通量。(图3)由于HT8700的开放光路低功耗设计,使之成为世界上为数不多的具备森林冠层氨通量测量能力的仪器,也是少有的入选欧洲集成碳观测网络的中国设备。关于ICOS欧洲综合碳观测系统(Integrated Carbon Observation System, ICOS)是一个用于量化和掌握欧洲温室气体(GHG)平衡的泛欧科研基础设施,旨在汇集和评估不同的测量方法、收集高质量的观测数据并促进数据利用,如模拟GHG通量或支持排放数据验证等,将帮助城市开发用以执行气候行动计划。通过对欧洲碳汇的区域和逐年变化的分析,凸显了进一步减少碳排放以实现碳中和目标的必要性。
  • 402万!中国气象局气象探测中心采购多波段雷达协同观测试验及数据融合应用系统
    近日,中国政府采购网发布多波段雷达协同观测试验及数据融合应用系统(一期) 招标项目公告,预算402万元。潜在投标人需于2022年06月09日09点00分(北京时间)前递交投标文件。项目详细信息如下:采购单位:中国气象局气象探测中心项目编号:ZQC-H22059项目名称:多波段雷达协同观测试验及数据融合应用系统(一期)预算金额:402.0000000 万元(人民币)采购需求:多波段雷达协同控制和数据融合示范应用平台的建设内容主要包括协同控制系统和数据融合系统建设。协同控制系统包括雷达状态管理分系统、协同策略判定及下发分系统、协同全过程展示分系统、系统仿真模拟分系统和协同知识库5个部分。数据融合系统包括数据质控分系统、产品融合与监测告警分系统、分析评估分系统和数据展示分系统4个部分。协同控制系统与数据融合系统是紧密相连、密不可分的,数据融合系统识别的强对流天气发生的时间、位置等信息为协同控制的扫描模式智能切换提供依据;协同控制获得更加全面的天气过程三维精细化结构数据,为精细化精准化产品的生成提供支撑。系统平台建设完成后不仅可以在国家级部署和使用,还可以推广部署于具备多波段雷达协同观测能力的省/市运行,使平台具备灵活的拓展能力和适应性。本项目(不接受)联合体投标。
  • “用于太阳磁场精确测量的中红外观测系统”出征冷湖观测基地
    2022年4月7日上午,西安光机所参与研制的“用于太阳磁场精确测量的中红外观测系统”(简称AIMS太阳望远镜)项目迎来了重要的里程碑式节点——奔赴海拔4000米的青海省海西蒙古族自治州冷湖镇赛什腾山观测基地进行最终安装调试。这是研究所纪念建所六十周年活动启动后的第一个出所项目。   项目出征仪式在蒲城调试外场举行,在湛蓝的晴空映衬下,印着“瞬见万象 光创未来”出征口号的红条幅与“AIMS太阳望远镜出征仪式”的大幅喷绘海报遥相呼应,仿佛表达着此次出征必定携胜而归的决心。参加仪式的人员有国家天文台研究员郝晋新、林佳本,西安光机所党委书记孙传东、副所长郝伟、先进制造部、空间光子信息新技术研究室负责人、部分中层领导等共34人,特邀中国科学院国家授时中心所长办公室主任赵海成、洛轴智能机械有限公司总经理邓印出席。   首先,项目负责人空间光子信息新技术研究室徐崧博副研究员、先进制造部副部长李华分别介绍了项目研制历程与项目管理情况。接下来进行庄重的授旗仪式,先进制造部部长赵建科宣读西安光机所出征冷湖人员名单,由孙传东书记向工作队代表工艺中心主任付兴授予队旗,寄语顺利凯旋同时希望他们发扬西光所艰苦奋斗、攻坚克难优良科研传统,做好“西光精神”传人,让这面鲜艳的队旗在装调阵地高高飘扬。付兴领读誓词,他表示队伍必定不负嘱托、不负期望、不负祖国。中国科学院国家天文台郝晋新研究员讲话,最后由西安光机所副所长郝伟宣布项目设备运输发车。   AIMS太阳望远镜项目是国家自然科学基金委支持的国家重大科研仪器项目,由中国科学院国家天文台、中国科学院上海技物所和中国科学院西安光机所等三家单位共同承担,旨在研制国际上第一台中红外太阳磁场观测设备,利用中红外的观测优势,突破磁场测量百年历史中的“瓶颈”问题,实现太阳磁场从“间接测量”到“直接测量”的跨越发展,为诸如天体爆发活动的成因、日冕加热等前沿领域研究提供有力支撑。   该项目是大口径、大体积、光学系统极为复杂的地面可见及红外波段光电跟踪设备。研究所高度重视该项目,在多方面给予政策支持。项目团队也是个融合的大家庭,主要来自于空间光子学研究室、先进制造部的装校中心和检测中心,是一支以青年科技力量为主体的战斗团体。三十多人的队伍经验丰富、专业齐备、蓬勃向上、富有朝气和创新意识,他们具备优良的科研作风,始终把产品技术性能先进和质量优良摆在首位,敢打敢拼,不畏艰难,勤奋努力,严慎细实,取得了一系列设计创新、工艺创新、装检技能创新、组织管理创新、党建引领创新等成果。在出所之前的检测装调阶段,适逢西安爆发本土新冠疫情,连续30多天的封闭式管理并没有影响项目的进度,郝伟副所长代表所班子亲自指挥部署,机关积极协调,先进制造部装校中心奋勇当先,持续奋战在岗位,团结协作、众志成城,为项目顺利出所打了一场漂亮的攻坚战。另外,该项目还得到了众多领导和专家的鼎力支持,国家天文台各级领导、专家多次提供帮助与支持,我所老专家熊仁生研究员等也在项目关键性技术方面给予把关审查。这都是项目取得成功不可或缺的部分。   项目团队历经四年多来艰难攻关,顽强拼搏、夜以继日的辛勤付出终于结出了胜利的果实。4000米,不仅是海拔高度,更是对出征队伍身心意志、水平能力严峻考验的高度,不过我们相信、信任也祝福他们,因为西光人是不怕打硬仗的,我们等待为他们接风洗尘,期待项目组向研究所成立60周年献礼的最美时刻。
  • 冷湖天文观测基地中红外观测系统太阳磁场光谱仪收官在即
    当前我国正在紧锣密鼓地推进冷湖天文观测基地的建设,该基地位于我国柴达木盆地西北边缘的青海省海西州茫崖市冷湖镇赛什腾山区域,平均海拔约4000米。偏僻荒凉的赛什腾山成为火热的建设工地(央广网发 王小龙 摄) 冷湖天文观测基地由多个平台组成,其中D平台用于太阳磁场精确测量的中红外观测系统,为科学家对当今太阳物理前沿如太阳发电机、纤维化磁对流过程、日冕加热的研究提供测量手段。系统的核心部件——太阳磁场测量光谱仪由上海技物所研制。光谱仪光机部分光谱仪调试科研团队经过了多年的艰苦攻关,中红外观测系统的研制工作接近尾声。光谱仪在实验室环境下测试表明,性能达到任务书指标要求,后续将在冷湖太阳观测基地开展实测。该系统主要由望远镜、偏振光路和超高光谱分辨率成像型红外傅里叶变换光谱仪组成,能够测量出太阳谱线通过磁场所产生的微小裂距,从而解算出太阳磁场强度。其中,太阳磁场测量光谱仪部分具有极高的光谱分辨率(指标为0.004cm-1)和极高的空间分辨率(探测元尺寸不到1/4衍射斑),技术难度极大且为国际上首次研制。为满足项目对光谱仪性能的要求,除干涉仪主体外,科研团队还需要完成一系列分系统的研制:如高性能长波红外探测器、冷箱-杜瓦两制冷机系统以及低温光学系统等。 5年来,在所领导和各部门的支持下,研制团队群策群力,克服了种种困难。从技术方案论证,到探测器、制冷系统、杜瓦组件、光学薄膜、整机光机电技术攻关,一路走来的桩桩件件难忘而珍贵:有一年除夕夜,各部门参研人员在地下室完成后继光学集成工作;西藏那曲高原试验期间,大家在海拔4475m的高原上一边吸氧一边对仪器关键部件进行环境模拟测试;曾因一根薄膜电缆的接地造成的测试结果不佳而感到沮丧;也因一根管脚莫名导通而需打开冷箱大费周折。近两年多来,各地的疫情辗转反复,给研制任务造成了不少困扰。研制团队始终发扬坚韧不拔的精神,把疫情的影响降低到尽小。如杜瓦陶瓷基片加工,团队和总体轮番与加工单位协调进度,到货后又立即安排加班加点,第一时间完成装配!西藏那曲对关键部件进行环境模拟测试正如一名攀登者攀到每个峰顶收获的高兴和经历,是为登顶珠穆朗玛累积经验。前路漫漫,相信在大家的通力协作,专家的指导和研究所的全力支持下,团队成员能够一同拾级而上,创出辉煌!“用于太阳磁场精确测量的中红外观测系统”项目是国家重大科研仪器研制项目,由国家天文台、上海技物所和西安光机所联合承担,获国家自然科学基金委员会资助。
  • 祝贺碳中和背景下生态系统多要素观测技术学术交流会圆满成功!
    2021年9月7日,碳中和背景下生态系统多要素观测技术学术交流会在线上成功举办。来自北京大学、中国林科院、中国科学院、中国农业大学、中央民族大学、北京林业大学、东北林业大学、西南大学、南京信息工程大学、武汉大学、复旦大学、同济大学、新疆大学、西北农林科技大学、成都理工大学、华东师范大学、南京农业大学等近200余个单位的专家学者及业务人员参加了此次会议,直播间访问次数达5000余次。9月7日9:00会议开始,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,欢迎前来参会的各位老师,并预祝本次研讨会圆满成功。在上午的报告中,中国科学院青藏高原研究所旭日 研究员、中国科学院水利部成都山地灾害与环境研究所魏达 研究员、中国科学院地理科学与资源研究所汪金松 博士、内蒙古农业大学张欣 博士、北京理加联合科技有限公司孙宝宇 总经理分别介绍了高寒生态系统氮循环与气候变化、基于观测的青藏高原陆地生态系统碳通量、增温对高寒草甸温室气体通量的影响、基于碳同位素分析兴安落叶松天然林碳释放主要途径及其成因、生态系统碳循环测量技术及应用介绍。在下午的报告中,北京理加联合科技有限公司郑宁 博士、中国农业科学院邵长亮 研究员、中国林业科学研究院原文文 博士、中国气象局气象探测中心张晓春 正高级工程师、国家海洋环境预报中心吕洪刚 高级工程师、北京理加联合科技有限公司丰怀泽 植被遥感工程师分别就温室气体通量观测及其研究进展、蒙古高原通量观测、华北典型森林生态系统温室气体通量观测研究、GB/T 34286-2017《温室气体 二氧化碳测量 离轴积分腔输出光谱法》GB/T 34287-2017《温室气体 甲烷测量 离轴积分腔输出光谱法》内容简介、中国近海大气温室气体观测与分析、SIF:不止于空中的通量塔等方面进行了详细地介绍。本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,快速进行问题答疑。培训过程中大家专心听讲,面对其中的难点,积极参与线上交流,学习氛围良好,互动热烈。此次线上会议还有直播抽奖环节,共抽取一等奖(1名)二等奖(3名)三等奖(5名)气候变化是人类面临的全球性问题,由此产生的极端气候事件频发,影响日渐深重。2021年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告,这是我们应对气候变暖的国际行动的一部分。面对碳中和的需求,减排(减少CO2排放)和增汇(增加CO2吸收)是两条根本的途径,我们应在尽可能减排的同时大力采取增汇措施。相信通过此次交流会的学习,参会的老师和同学对SIF植被遥感、湍流涡动通量、多通道土壤呼吸等为代表的天空地一体化温室气体监测技术有了更深的了解。如您有任何需要,欢迎随时联系我们,北京理加联合科技有限公司将竭诚为广大科研工作者服务。
  • 会议日程 | 碳中和背景下生态系统多要素观测技术学术交流会
    碳中和背景下生态系统多要素观测技术学术交流会理加云学堂(第十期)会议时间:2021年9月7日(星期二)参会方式:网络线上直播01 背景气候变化是人类面临的全球性问题,由此产生的极端气候事件频发,影响日渐深重。2021年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告,这是我们应对气候变暖的国际行动的一部分。面对碳中和的需求,减排(减少CO2排放)和增汇(增加CO2吸收)是两条根本的途径,我们应在尽可能减排的同时大力采取增汇措施。以SIF植被遥感、湍流涡动通量、多通道土壤呼吸等为代表的天空地一体化温室气体监测技术为实现碳中和目标提供了先进的技术支撑。为更好地开展生态系统温室气体长时序动态监测,建立多源、多尺度、多要素的综合监测数据集,推动新技术在碳中和背景下天空地一体化温室气体观测系统中的运用。北京理加联合科技有限公司于2021年9月7日以网络会议的形式召开“碳中和背景下生态系统多要素观测技术学术交流会”。02 会议目的面向广大科研人员,开展碳中和背景下SIF植被遥感、湍流涡动通量、多通道土壤呼吸等监测技术的基础理论,技术方法,数据分析和应用研究进展等多方面为主的技术交流和培训,促进不同学科领域学者间的交流,提升野外生态台站的观测技术水平。03 会议内容1.天空地一体化温室气体观测技术前沿的科学问题2.天空地一体化温室气体观测技术的基础理论与方法3.天空地一体化温室气体观测技术的应用和研究进展04 会议日程碳中和背景下生态系统多要素观测技术学术交流会上午孙宝宇 总经理北京理加联合科技有限公司9:00~9:05致辞旭日 研究员中国科学院青藏高原研究所9:05~9:45高寒生态系统氮循环与气候变化魏达 研究员中国科学院水利部成都山地灾害与环境研究所9:45~10:25基于观测的青藏高原陆地生态系统碳通量10:25~10:30休息时间汪金松 博士中国科学院地理科学与资源研究所10:30~11:10增温对高寒草甸温室气体通量的影响张欣 博士内蒙古农业大学11:10~11:50基于碳同位素分析兴安落叶松天然林碳释放主要途径及其成因孙宝宇 总经理北京理加联合科技有限公司11:50~12:10生态系统碳循环测量技术及应用介绍休息时间下午郑宁 博士北京理加联合科技有限公司13:30~14:10温室气体通量观测及其研究进展邵长亮 研究员中国农业科学院14:10~14:50蒙古高原通量观测原文文 博士中国林业科学研究院14:50~15:30华北典型森林生态系统温室气体通量观测研究15:30~15:40休息时间(互动环节)张晓春正高级工程师中国气象局气象探测中心15:40~16:20GB/T 34286-2017《温室气体 二氧化碳测量 离轴积分腔输出光谱法》GB/T 34287-2017《温室气体 甲烷测量 离轴积分腔输出光谱法》内容简介吕洪刚高级工程师国家海洋环境预报中心16:20~17:00中国近海大气温室气体观测与分析丰怀泽植被遥感工程师北京理加联合科技有限公司17:00~17:30SIF:不止于空中的通量塔05 会议时间、形式1.会议时间:2021年9月7日(星期二)2.会议形式:网络线上直播06 注意事项本次研讨会不收取费用。
  • 我国建成首套近地面沙尘观测系统
    地面50米范围内是沙尘暴发展变化最为剧烈的区域,绿洲防护林可以减少70%的沙尘水平通量,消减风速30.5%—52.9%,防风固沙林和农田防护林网对沙尘暴的阻截作用非常显著。这是甘肃民勤荒漠草地生态系统国家野外科学观测研究站经过5年的观测研究获取的一组结论,该站研发的“0—50米近地面沙尘观测系统”为沙尘暴灾害防治和荒漠绿洲防护体系建设提供了新的研究方法。   这套系统由“风沙流流量监测仪”等6种自主知识产权的沙尘暴观测系统和风沙流观测仪器组成。科研人员对民勤地区沙漠、沙漠—绿洲过渡带和绿洲3种地貌的气象、沙尘、环境、土壤、植被等进行了全面监测,系统开展了沙尘暴演变过程中风场结构与变化特征、沙尘通量、气溶胶浓度、降尘结构与时空变化、不同防护体系对沙尘暴过程的影响等多方面的研究,开创了中小尺度范围沙尘空间结构新学科领域。   “以前我国沙尘暴主要由气象部门靠卫星和激光雷达高空监测,50米以下地面条件是雷达监测的盲区,更是人类活动频繁的区域。”项目组负责人赵明介绍说,这套系统为沙尘污染预测预报和防沙固沙工程提供了科学依据,解决了世界范围内沙尘暴的研究难题,在探索荒漠生态微观演变、干旱区经济模式、沙区资源可持续利用方面具有积极作用。   民勤县位于甘肃河西走廊东北部,石洋河流域下游,巴丹吉林沙漠和腾格里沙漠之间,是全国四大沙尘暴策源地之一。其生态状况关乎河西走廊绿洲和祁连山冰川的稳定,对黄河流域、河套平原乃至华北地区的气候环境,有着至关重要的影响。   中国科学院院士郑晓静等专家认为,这套系统改进和完善了近地面沙尘天气野外监测研究方法,建立的风沙流定位观测数据库和沙尘样品档案库,达到国际领先水平,填补了研究空白。
  • 会议通知 | 碳中和背景下生态系统多要素观测技术学术交流会(第二轮通知)
    碳中和背景下生态系统多要素观测技术学术交流会会议时间:2023年8月29日参会方式:线上承办单位主办方:国家林业和草原局西南岩溶石漠化治理国家创新联盟北京理加联合科技有限公司协办方: 北京林业大学林业生态工程教育部工程研究中心美国Picarro公司01 背景中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色,巩固和增强生态系统碳汇是我国“双碳”目标实现的有效途径之一。但目前对于不同生态系统的碳源汇功能、量级、分布、动态和驱动因素的认识仍存在较大的不确定性,这就对生态系统碳通量的准确观测提出了更高的要求。传统的基于单一方法的观测通常存在着观测要素单一和尺度单一等问题,且可能受到方法本身的局限性和误差的影响而建立多方法的立体联合观测,如将SIF遥感、涡度相关法、箱式法和通量梯度法、同位素观测技术等观测方法相结合。一方面,各方法之间可以相互验证,提高观测数据的代表性和准确性;另一方面,各方法之间又可以相互补充,可用来建立多源、多尺度、多要素的综合监测数据集。进而,可以更全面和综合地评估生态系统碳通量,更深入地理解和认识生态系统碳源汇功能,更有效地制定减排增汇策略,推动双碳目标的实现。为了推动生态系统多要素观测技术的发展,北京理加联合科技有限公司拟定于2023年8月29日召开“碳中和背景下生态系统多要素观测技术学术交流会”,此次交流会将以线上的形式进行。02 会议目的面向广大科研人员,开展“碳中和”背景下生态系统SIF、湍流涡动通量、土壤温室气体通量和相关同位素通量等要素的观测方法、基础理论、数据分析和应用研究进展等方面的技术交流和培训,促进不同学科领域学者间的交流,提升野外生态台站的综合观测技术水平。03 会议内容1)生态系统碳源汇观测技术的基础理论与方法2)生态系统碳源汇观测技术的前沿科学问题3)生态系统碳源汇观测技术的应用与研究进展04 会议日程碳中和背景下生态系统多要素观测技术学术交流会张宇清 教授北京林业大学9:00~9:05致辞孙宝宇 总经理北京理加联合科技有限公司9:05~9:10致辞周金星 教授北京林业大学9:10~9:50喀斯特区岩溶碳汇及其动态过程初探周文君 副研究员中国科学院西双版纳热带植物园9:50~10:30云南典型森林生态系统土壤温室气体研究10:30~10:40休息时间巩晓颖 教授福建师范大学10:40~11:20气体交换和同位素联合测定在生态学研究中的应用严堇纾 应用科学家美国Picarro公司11:20~12:00CRDS激光光谱技术在大气科学与生态学研究中的应用休息时间肖薇 教授南京信息工程大学13:30~14:10长三角典型水体温室气体通量和蒸发研究进展胡中民 教授海南大学14:10~14:50陆地生态系统初级生产力的时空变异特征与驱动机制郑宁 应用科学家北京理加联合科技有限公司14:50~15:30涡动通量研究最新进展及生态系统多要素观测方法简介15:30~15:40休息时间高添 研究员中国科学院沈阳应用生态研究所15:40~16:20基于科尔塔群的复杂地形下森林碳通量监测研究(初步进展)李鹏 教授西安理工大学16:20~17:00陕西生态系统固碳能力评估与监测关键技术孙宝宇 总经理北京理加联合科技有限公司17:00~17:40生态系统碳源碳汇立体监测方案及实践05 会议时间、形式1.会议时间:2023年8月29日2.会议形式:网络线上直播06 注意事项本次研讨会不收取费用。07 报名方式关注“理加联合”微信公众号,回复“碳中和”
  • 我国首个水下观测网水质在线监测系统问世
    p style=" line-height: 1.75em "   此时此刻某个水源的水质情况如何?可以不需要原来的取样、化验、分析滞后的书面报告了,有关部门和关注水质情况的人们只要登录电脑,或打开手机APP就能实时得到有效数据。4月16日,国内第一个水下观测网水质在线监测系统通过鉴定。据悉,这项新技术打破了国际垄断,填补了国内空白。 /p p style=" line-height: 1.75em "   据介绍,提供这项高新技术的是中天科技海缆有限公司四名博士组成的专家团队,他们联合浙江大学的专家教授经过较长时间的攻关,终于成功地应用于长江流域的水下观测水质在线监测。据郭朝阳博士介绍,这项系统技术应用起来十分方便,提供的监测数据具有实时、稳定、连续、可靠的优越。 /p p style=" line-height: 1.75em "   由于世界性水危机,地表水和地下水都遭到了不同程度的污染,水质日益恶化,于是人们对水质监测的神经特别敏感。一项水质报告显示,中国29个重点城市中,只有15个城市中的20项饮用水指标全部合格,约占抽检城市的52% 而14个城市存在一项或多项指标不合格。 /p p style=" line-height: 1.75em "   据了解,长期以来,我国对水质监测方式停留在传统取样和浮标监测,实时性和可靠性低,而且不能够真正达到原位监测的目的,较为先进的监测系统基本都依赖进口。而中天科技海缆研发的水下观测网集成多种声学、图像、物理、化学、生物等传感观测设备,布设在重要水源底部,进行长期连续、实时、原位观测,并能将原始数据和解算后的参数信息发送至各种信息终端,对饮用水安全和水环境保护有重要的民生价值。 /p p style=" line-height: 1.75em "   中天科技海缆总经理薛建凌表示,开发具有民生和经济价值的水下观测网水质在线监测系统,对饮用水安全进行全方位的检测和预警,不仅具有重要的社会意义,也为公司提供了新的利润增长点,并能够带动海光缆,海工器件等配套产品的生产和销售,具有良好的市场前景。 /p p style=" line-height: 1.75em "   该项目组织者杨华勇博士表示,这一系统的研制成功,有效提高监测参数的原位性、实时性和可靠性,同时也为其它应用场合,包括海洋观测、水质水文研究等提供了基础研制条件,将为我国饮用水源监测在内的环保领域的发展提供有力的保障。 /p p br/ /p
  • 日本制硅谐振水压计成功用于观测海平面波动
    近日,日本防灾科学技术研究所(NIED)、东京大学地震研究所(ERI)和横河电机株式会社(横河电机)对用于探测早期海啸的新研发的水压计进行了评估。   本次评估中使用的水压计配备了一种新型硅谐振压力传感器,安装在房总半岛附近水深3436m的海底。在本次评估过程中,该压力计成功识别了70MPa压力波动,相当于海平面7厘米的变化。 水压计,配有采用MEMS技术的硅谐振压力传感器。长度261.5毫米(来源:横河电机)   虽然因海啸是罕见的事件很难获得海啸的数据,但评估检测到类似海啸的海平面变化,水压计预计将被用于实际海啸的检测。南海海底地震海啸观测网(N-net)将采用此水压计,观测地震引发海啸所引起的海底水压波动,从而实现较准确的海啸探测,以减轻灾害带来的损失。   NIED、ERI和横河电机已经评估了一种配备MEMS硅谐振压力传感器的水压计的有效性,该传感器用作海底压力观测,能够在发生地震的重大震动期间获取准确数据。鉴于地震期间发生的重大地面运动,本次测试旨在确定测量数据的采集是否会受到水压计振动或其姿态变化的影响。   经证实,姿态变化对水压计的影响小于传统水压计。此外,在重复应用于70 MPa (相当于7,000m水深)的精密测试中,不高于70MPa的0.005%的重复性被证实性能出色。该水压计采用MEMS技术,因此具有每种产品拥有相同质量的优势。   为了评估水压计在实际海底环境中的性能,在日本千叶县房总半岛附近3,436米的深度进行了总计203天的海底观测。由于海啸是一种罕见的现象,获取海啸观测数据通常很困难。然而,在评估工作中观察到, 伴随2022年1月15日汤加火山的爆发,海平面出现了7厘米的波动。进一步的数据分析还证实,水压计能够观察到相当于海平面变化小于1厘米的压力变化。确认的灵敏度表明水压计具有足够的性能来观测实际的海啸。水压计是日本制造的产品,适用于深海作业,具有与世界上任何地方制造的尖端仪器相同的灵敏度。   地震海啸观测网络是减少灾害风险的基础设施的一部分,有助于发展关于灾害风险信息和地震海啸灾害风险研究。NIED负责陆地和海底地震海啸监测(MOWLAS),覆盖日本所有陆地和海域。从2019年开始,NIED一直在开发N-net,一种电缆型海底地震海啸观测系统。N-net将安装在南海海槽的震源区内,该震源区预计会发生地震,但尚未建立观测网络(从高知县近海到日向滩)。   N-net是一个网络系统,可以直接探测地震和海啸,并将信息可靠地传输到陆地,从而实现实时观测。这种新型硅共振水压计在该系统中发挥了重要作用。NIED、ERI和横河电机已经进行了多次测试,以确保这种水压计的可靠性,目的是在南海海槽发生大地震时,尽可能地减轻损失。据悉,横河电机的硅谐振压力传感器采用基于单晶硅谐振器谐振频率随压力变化的传感方法,具有低功耗、紧凑型、高灵敏度、高稳定性和高耐压性的特点。谐振器使用硅半导体制造技术密封在清洁的真空腔中,防止外来颗粒粘附在谐振器上降低其性能。此外,使用石英晶体谐振器的传感器不会因气体解吸而导致性能变化,并且可以实现稳定的测量。自1991年以来,横河电机一直在其工业差压和压力变送器中使用这种传感方法安装压力传感器。
  • 会议通知 | 碳中和背景下生态系统多要素观测技术学术交流会(第三轮通知)
    碳中和背景下生态系统多要素观测技术学术交流会会议时间:2023年8月29日参会方式:线上承办单位主办方:国家林业和草原局西南岩溶石漠化治理国家创新联盟北京理加联合科技有限公司协办方: 北京林业大学林业生态工程教育部工程研究中心美国Picarro公司01 背景中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色,巩固和增强生态系统碳汇是我国“双碳”目标实现的有效途径之一。但目前对于不同生态系统的碳源汇功能、量级、分布、动态和驱动因素的认识仍存在较大的不确定性,这就对生态系统碳通量的准确观测提出了更高的要求。传统的基于单一方法的观测通常存在着观测要素单一和尺度单一等问题,且可能受到方法本身的局限性和误差的影响而建立多方法的立体联合观测,如将SIF遥感、涡度相关法、箱式法和通量梯度法、同位素观测技术等观测方法相结合。一方面,各方法之间可以相互验证,提高观测数据的代表性和准确性;另一方面,各方法之间又可以相互补充,可用来建立多源、多尺度、多要素的综合监测数据集。进而,可以更全面和综合地评估生态系统碳通量,更深入地理解和认识生态系统碳源汇功能,更有效地制定减排增汇策略,推动双碳目标的实现。为了推动生态系统多要素观测技术的发展,北京理加联合科技有限公司拟定于2023年8月29日召开“碳中和背景下生态系统多要素观测技术学术交流会”,此次交流会将以线上的形式进行。02 会议目的面向广大科研人员,开展“碳中和”背景下生态系统SIF、湍流涡动通量、土壤温室气体通量和相关同位素通量等要素的观测方法、基础理论、数据分析和应用研究进展等方面的技术交流和培训,促进不同学科领域学者间的交流,提升野外生态台站的综合观测技术水平。03 会议内容1)生态系统碳源汇观测技术的基础理论与方法2)生态系统碳源汇观测技术的前沿科学问题3)生态系统碳源汇观测技术的应用与研究进展04 会议日程碳中和背景下生态系统多要素观测技术学术交流会张宇清 教授北京林业大学9:00~9:05致辞孙宝宇 总经理北京理加联合科技有限公司9:05~9:10致辞周金星 教授北京林业大学9:10~9:50喀斯特区岩溶碳汇及其动态过程初探周文君 副研究员中国科学院西双版纳热带植物园9:50~10:30云南典型森林生态系统土壤温室气体研究10:30~10:40休息时间巩晓颖 教授福建师范大学10:40~11:20气体交换和同位素联合测定在生态学研究中的应用严堇纾 应用科学家美国Picarro公司11:20~12:00CRDS激光光谱技术在大气科学与生态学研究中的应用休息时间肖薇 教授南京信息工程大学13:30~14:10长三角典型水体温室气体通量和蒸发研究进展胡中民 教授海南大学14:10~14:50陆地生态系统初级生产力的时空变异特征与驱动机制郑宁 应用科学家北京理加联合科技有限公司14:50~15:30涡动通量研究最新进展及生态系统多要素观测方法简介15:30~15:40休息时间高添 研究员中国科学院沈阳应用生态研究所15:40~16:20基于科尔塔群的复杂地形下森林碳通量监测研究(初步进展)李鹏 教授西安理工大学16:20~17:00陕西生态系统固碳能力评估与监测关键技术孙宝宇 总经理北京理加联合科技有限公司17:00~17:40生态系统碳源碳汇立体监测方案及实践05 会议时间、形式1.会议时间:2023年8月29日2.会议形式:网络线上直播06 注意事项本次研讨会不收取费用。07 报名方式关注“理加联合”微信公众号,回复“碳中和”08 专家一览周金星 教授;北京林业大学周金星,男,汉族,水土保持工程教研室主任。任中国陆地生态系统观测研究网络 (CTERN) 云南建水生态站站长、教育部林业生态工程研究中心主任、西南岩溶石漠化治理国家创新联盟理事长、中国林业工程建设协会石漠化监测与综合治理专业委员会副主任委员。获国家林草局“百千万人才工程”省“中国水土保持青年科部级人选、“中国林业青年科技奖”技奖”“北林学者”杰出青年。获省部级奖励10余项,国家专利9项、国家新品种11项、行业标准5项。著作7部、论文200余篇、其中SCI论文50余篇。团队被授予“西南地区困难立地生态修复”国家创新团队称号。研究领域:水士保持与荒漠化防治、石漠化治理、生态修复工程。周文君 副研究员;中国科学院西双版纳热带植物园周文君,现在中国科学院西双版纳热带植物园,热带森林生态学重点实验室,全球变化研究组工作,副研究员,硕导。研究方向为全球变化生态学:以森林与农田生态系统的碳氮水过程为研究对象,结合微生物生态学,稳定同位素生态学、生态学、土壤生态学等学科,开展全球变化背景下,森林与农田碳氮过程对区域气候变化的响应与适应的机制研究;秉持可持续发展农业生态理念,开展植物源生物质材料的应用效应与机理的研究,打造高效可循环农业模式;响应乡村振兴与绿色农业建设的号召,进行农林生态系统的碳汇评估,并开展农业减氮土壤固碳研究,已在水稻的降镉减氮、土壤增汇提质等方面取得了一系列进展,将为森林、农业生态系统的碳达峰与碳中和和乡村振兴的推进提供科学数据支撑。主持参与国家自然基金,云南省自然科学资金、中科院、中外合作项目,国家973,国家科技部重大专项,宜春5511工程项目等共20余项。已发表研究论文50余篇。巩晓颖 教授;福建师范大学巩晓颖,研究员,博导,福建省“闽江学者”特聘教授,福建省百人计划获得者。主要从事植物生理生态学和稳定同位素生态学方面的研究工作。目前在New Phytologist,Plant Cell & Environment等知名学术期刊发表论文三十余篇;担任中国生态学会稳定同位素生态专业委员会委员、福建省创业创新领军人才(B类引进高层次人才)、SCI 期刊Frontiers in Plant Science编委、European Journal of Soil Science客座编辑和《地球科学与环境学报》编委,以及十余个专业期刊的审稿人。严堇纾 应用科学家;美国Picarro公司严堇纾博士毕业于华盛顿大学地球化学专业,现任Picarro的应用科学家。在国际期刊发表多篇学术论文,在环境气体和同位素领域具有丰富的实验设计、方法开发、仪器操作和维护、数据收集和校准以及学术/技术写作等经验。肖薇 教授;南京信息工程大学肖薇,教授,博士生导师,国家重点研发计划项目首席科学家,国家级青年人才计划入选者。中国科学院地理科学与资源研究所博士,耶鲁大学联合培养博士,耶鲁大学博士后。长期从事陆地碳水循环和气候变化领域研究,主持国家重点研发计划项目、江苏省杰出青年基金项目、国家自然科学基金面上项目等科研项目十余项。在《Nature Geoscience》、《Global Change Biology》和《Environmental Science & Technology》等期刊发表论文共120余篇;出版专著3部。现任中国生态学学会稳定同位素生态专业委员会副主任委员、国际水文科学协会中国委员会同位素分委员会委员,入选江苏省“333高层次人才培养工程”第二层次培养对象,并担任江苏省“333人才”领军型人才团队负责人,被评为“全国优秀青年气象科技工作者”和“江苏省科技创新十大女杰”,获教育部自然科学奖二等奖(排名第二)、中国气象学会大气成果基础研究成果奖一等奖(排名第五)、中国通量观测研究网络ChinaFLUX十大科学进展(排名第一)。胡中民 教授;海南大学海南大学生态系统监测与评估团队负责人。从事全球变化对陆地生态系统影响研究。长期以来,借助长期定位监测、野外控制实验、模型模拟以及遥感观测等多种技术手段,从不同时间尺度与空间尺度揭示气候变化对生态系统功能(如固碳与水分消耗)和结构(系统转变)的影响,在气候变化对陆地生态系统碳水循环影响方面取得了重要进展。以第一或通讯作者在前沿SCI刊物发表论文30余篇,累计影响因子200,含Trends in Ecology and Evolution, Ecology Letters,Global Change Biology, Remote Sensing of Environment,Global Ecology and Biogeography, Agricultural and Forest Meteorology,Journal of Climate, Journal of Hydrology等生态学与地学主流期刊论文。曾获中国科学院优秀博士论文、中国科学院青年创新促进会会员、中国生态学会青年科技奖等荣誉。主持国家自然科学基金优秀青年基金、国家重点研发子课题等项目10余项。高添 研究员;中国科学院沈阳应用生态研究所高添,博士,中国科学院沈阳应用生态研究所,研究员,硕士生导师。现任辽宁省陆地生态系统碳中和重点实验室副主任,中国生态学学会生态遥感专业委员会委员,负责辽宁清原森林生态系统国家野外科学观测研究站“科尔塔群”(森林碳通量研究平台)的全面工作。主要从事森林生态系统碳-水通量观测、遥感模拟与生态系统服务评估等研究。发表学术论文40余篇,第一/通讯作者在Agricultural and Forest Meteorology, International Journal of Applied Earth Observation and Geoinformation, Atmospheric Measurement Techniques, Ecohydrology等期刊发论文13篇。主持国家自然基金面上项目、青年基金、国家重点研发项目子课题、中国科学院先导专项(A类)专题等10余项。获2019获国家科技进步二等奖、中国科学院科技促进发展奖。李鹏 教授;西安理工大学李鹏,博士,西安理工大学,教授,博士生导师。兼任旱区⽣ 态⽔ ⽂ 与灾害防治国家林业和草原局重点实验室主任,中国⽔ 利学会⾬ ⽔ 利⽤ 专业委员会副主任,中国⼟ 壤学会⼟ 壤侵蚀专业委员会副主任,中国国⼟ 经济学会资源⽣ 态专委会副主任。主要从事流域泥沙与⽔ ⼟ 保持⽣ 态修复等⽅ ⾯ 研究⼯ 作。发表学术论文300余篇,SCI收录170余篇,先后主持国家重点研发计划课题、国家⾃ 然科学基⾦ 等国家与省部级项⽬ 50余项,获国家科技进步⼆ 等奖和陕西省科学技术⼀ 等奖等国家与省部级技术奖励10余项;获陕西省中⻘ 年科技创新领军⼈ 才和陕西省⻘ 年科技奖。
  • 碳中和背景下生态系统多要素观测技术学术交流会圆满成功
    2023年8月29日,碳中和背景下生态系统多要素观测技术学术交流会在线上成功举办。来自中国科学院、清华大学、北京大学、北京林业大学、中国地质大学、中国海洋大学、天津大学、西安理工大学、西北大学、内蒙古农业大学等学校的近600名专家学者及业务人员参加了此次会议。8月29日9:00会议正式开始,首先,北京林业大学张宇清教授为会议致开幕词,表达了对理加联合和各位参会专家的感谢,以及对本次会议的期许。随之,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,欢迎前来参会的各位老师,并预祝本次研讨会圆满成功。在上午的报告中,北京林业大学周金星 教授、中国科学院西双版纳热带植物园周文君 副研究员、华福建师范大学巩晓颖 教授、美国Picarro公司严堇纾 应用科学家分别介绍了喀斯特区岩溶碳汇及其动态过程初探、云南典型森林生态系统土壤温室气体研究、气体交换和同位素联合测定在生态学研究中的应用、CRDS激光光谱技术在大气科学与生态学研究中的应用。在下午的报告中,南京信息工程大学肖薇 教授、海南大学胡中民 教授、北京理加联合科技有限公司郑宁 应用科学家、中国科学院沈阳应用生态研究所高添 研究员、西安理工大学李鹏 教授、北京理加联合科技有限公司孙宝宇 总经理分别就长三角典型水体温室气体通量和蒸发研究进展、陆地生态系统初级生产力的时空变异特征与驱动机制、涡动通量研究最新进展及生态系统多要素观测方法简介、基于科尔塔群的复杂地形下森林碳通量监测研究(初步进展)、陕西生态系统固碳能力评估与监测关键技术、生态系统碳源碳汇立体监测方案及实践等方面进行了详细地介绍。注:高添老师和李鹏老师的研究内容尚未发表,PPT内容及视频录屏暂不分享本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,进行报告分享和问题答疑,带来了一场精彩纷呈的学术盛宴。此次线上会议还有直播抽奖环节,共抽取特等奖(1名)一等奖(3名)二等奖(5名)三等奖(7名)特别奖(9名)没有填写地址的同学请尽快到公众号后台联系我们哦!此次会议可以分享的PPT我们会在公众号内逐步进行推送,请大家时刻关注。会议的视频回放请移至理加联合公众号查看。通过此次交流会的学习和交流,相信各位老师、同学对生态系统多要素观测技术及应用有了更深层次的认识。如您有任何需要,欢迎随时联系我们,北京理加联合科技有限公司将竭诚为广大科研工作者服务。
  • 中科院青藏所用红外系统观测纳木错湖面温度
    人民网科技频道讯 在公益性行业(气象)科研专项“中国冰冻圈卫星监测关键技术研究及系统开发”(项目编号:GYHY(QX)2007- 6-18)的湖冰专项的支持下,青藏高原所科研人员在纳木错成功安装了IRR-P红外温度数据采集系统,积极开展湖面温度观测。  据科研人员介绍,这套红外温度数据采集系统,采用适于野外观测的SI-111 高精度红外温度传感器(波长范围: 8-14 μm),并与CR1000数据采集器连接,设定采集数据的时间间隔后,采用太阳能板供电,保障了在野外条件下进行不间断的数据测量。该红外数采系统为长期湖面温度、湖冰变化、蒸散发遥感反演等气候变化研究提供了基础数据支持,为青藏高原冰川-湖泊以及水文过程变化研究提供基础数据。
  • 法媒探究引力波观测台:全球最精密仪器
    位于华盛顿汉福德的激光干涉引力波观测台内景  法媒称,令科学家们第一次得以窥见引力波“真容”的机器,是有史以来最先进的、用于探测宇宙中最轻微振动的探测仪。  据法新社2月11日报道,置于美国地下的这两台探测仪,名为激光干涉仪引力波观测台(LIGO)。其中一台位于华盛顿的汉福德,另一台位于约3000公里外的路易斯安那州的利文斯顿。  报道称,观测台的建设工作始于1999年,并在2001年到2007年间开展了观测工作。之后,这两个观测台经历了一次重大升级,令其功能增强了10倍。  2015年9月,升级后的高级LIGO探测仪首次开始全面运转。当月14日,路易斯安那州的探测仪首先捕捉到了一个来自13亿年前南部天空的引力波信号。  报道称,这种波是一种对于太空中的波动的测量方式,即拉伸时空结构的大规模质量体的运动所产生的影响——这是一种将时间和空间视为一个单一的、交织的连续统一体的方式。  7.1毫秒后,华盛顿的探测仪也捕捉到了相同的信号,这使得科学家们能够证实这一发现真实不虚。  报道称,这些超精密工具通过利用单个长约4千米的大型激光干涉仪工作。这些干涉仪都被埋在地下,令其能够得出最精确的测量结果。  这种L型仪器根据激光物理学和空间物理学原理追踪引力波。它们不像望远镜那样依赖天空中的光线。它们感知太空中的振动,这种优势令它们可以揭示黑洞的特性。  麻省理工学院的高级LIGO项目负责人戴维休梅克说:“当一个引力波通过太空传播的时候,它便会拉伸时空。”  报道称,简言之,引力波探测仪“就是一台将太空中的波动转变为电子信号的大型仪器”。
  • 杨学明小组首次观测到化学反应中分波共振现象
    大化所杨学明小组首次观测到化学反应中分波共振现象   研究成果发表在美国《科学》杂志上,图像达到了光谱精度     实验测量到的F+HD反应中后向散射HF(v=2,j=6)产物强度随碰撞能量的变化(实圆点)。红实线是理论计算的结果。观测到的三个振荡峰被归属为J=12,13,14的分波共振。图中的三维图是在1.285kcal/mol碰撞能下HF产物在各个方向的散射微分截面图。B代表后向散射方向,F代表前向散射方向。   在实验上观测由特定分波引起的动力学现象,一直是化学动力学研究领域的一个极具挑战的课题。如今,通过设计一个世界上最高分辨率的交叉分子束散射实验,中国科学院大连化学物理研究所杨学明研究小组首次在实验中观察到了化学反应中的这种分波共振。研究成果发表在3月19日出版的美国《科学》杂志上。杨学明说:“这一反应共振动力学图像已经完全达到了光谱精度,为反应共振态动力学研究提供了一个教科书式的例子。”   这是杨学明和中国科学院大连化学物理研究所研究员张东辉等近年来在反应共振态研究方向的又一个新的突破。在同期出版的《科学》杂志上,英国剑桥大学Althorpe教授发表评述文章,详细介绍了这项工作的学术意义。   化学反应是旧化学键断裂、新化学键生成的过程,是化学学科的核心科学问题。在所有气相分子反应中,新化合物的形成都是通过两个反应物之间的碰撞而达成的。每一个反应必须先经过一个“过渡态区域”,在这个区域中,反应物分子中的旧化学键即将断裂、生成物分子中的新化学键即将生成。而所有的反应碰撞都是在特定的碰撞参数条件下,通过过渡态区域而进行的。这些特定的碰撞参数在量子力学中是一个“好量子数”,因此在整个反应过程中是守恒的,这些特定的碰撞参数相当于反应体系特定的转动量子态,一般被称为“分波”(PartialWave)。   过渡态的分波结构是影响化学反应的决定性因素,也是化学动力学研究的重要基础课题。由于反应过渡态寿命非常短(飞秒量级,1飞秒等于10-15秒),分波一般在能量上很宽且重叠在一起,因此很难在实验室观测到单个分波的结构。在绝大多数情况下,即使完全量子态分辨的交叉束实验测量的微分截面也是不同分波叠加后的平均值,因此,观测单个特定的分波结构是动力学研究领域的一个极大挑战。   反应共振态是反应体系在过渡态区域形成的具有一定寿命的准束缚态。由于不同分波的共振态具有不同能量及较长的寿命,从而提供了一个观测单个分波分辨的动力学现象的可能。2006年,杨学明研究小组首次在低能F+H2→HF+H反应中发现了可能由反应共振引起的实验现象。张东辉与南京大学教授谢代前建立了精确的XXZ势能面并开展了动力学计算,证实了F+H2反应中反应共振态的存在。这一成果于2006年发表在美国《科学》杂志上,被两院院士评为2006年国内十大科技进展之一。   被认为单个分波共振结构实验探测最有希望的反应体系是F+HD→HF+D反应。2008年,杨学明研究小组对这一反应体系进行高分辨的分子束散射实验研究,得到了由共振所引起的动力学实验图像。经过长时间研究之后,张东辉发现以前所有的势能面不能定量地解释F+HD反应和F+H2反应的动力学图像上的差异。为此,他与合作者发展了一个有效的更高精度的势能面构造方法。利用该方法,张东辉与厦门大学徐昕等人成功构建了目前最为精确的F+H2(HD)体系的FXZ势能面,并对F+HD反应进行了量子动力学研究。理论结果与实验动力学测量结果高度吻合。理论计算表明,这一反应是由于单个共振态所引起的。这一成果于2008年9月发表在美国《国家科学院院刊》上。   上述理论结果的进一步分析表明,当F+HD反应共振态寿命长达几百飞秒,那就有可能探测到单个分波的共振结构。迄今为止,世界上还没有任何人能够在实验中清晰地观测到这样的分波共振结构。而要分辨不同分波的共振结构,必须进一步提高交叉分子束实验的分辨率,以探测由共振态不同分波引起的微分散射截面随能量的振荡现象。为此,杨学明研究小组设计了一个世界上最高分辨的交叉分子束散射实验。他们将两个分子束源同时冷却到液氮的温度下(零下196摄氏度),使实验的能量分辨率到达了前所未有的水平。博士研究生董文锐和肖春雷等同学花费了大量心血,终于在实验上成功观测到了理论预测的转动量子态为12、13、14的反应共振态分波所引起的3个振荡峰(如图),并且发现理论预测的共振态能量误差只有0.03kcal/mol,完全达到了光谱精度。   张东辉说:“由此我们可以看到,实验与理论的相互作用推动了这一系列共振态研究的发展:实验通过新现象的发现指导理论构造更为精确的势能面,而更为精确的理论帮助实验发现新现象,并可进一步推动理论的发展。通过这一系列的理论和实验结合的研究,也使得我们对共振态的认识上升到了一个新的境界。”   这项研究工作得到了国家自然科学基金委、科技部以及中国科学院的资助。
  • 祝贺碳中和背景下生态系统碳源碳汇观测技术与学术交流会成功举办
    2022年9月6日,碳中和背景下生态系统碳源碳汇观测技术与学术交流会在线上成功举办。来自哥本哈根大学、加拿大阿尔伯塔大学、清华大学、北京大学、香港科技大学、中国农业大学、中国林科院、中国科学院、北京师范大学、北京林业大学、南京林业大学、沈阳农业大学、内蒙古农业大学、华中农业大学、西北农林科技大学、四川农业大学、东北林业大学、南京农业大学等学校的1000余位专家学者及业务人员参加了此次会议,各平台访问次数达10000余次。9月6日8:30会议正式开始,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,孙总简要介绍了此次会议的基本情况,欢迎前来参会的各位老师,在教师节及中秋即将来临之际,祝此次参会的专家学者节日安康,并预祝本次研讨会圆满成功。在上午的报告中,福建师范大学陈镜明 加拿大皇家科学院院士、中国气象科学研究院周广胜 研究员、中国科学院地理科学与资源研究所温学发 研究员、北京理加联合科技有限公司郑宁 博士、北京理加联合科技有限公司孙宝宇 总经理分别介绍了碳中和对植被遥感的挑战、陆地碳源汇的观测、模拟与展望、生态系统碳通量观测技术和方法的原理及应用、碳监测系统的数据综汇管理方案、生态系统碳源碳汇立体监测方案及实践等方面的研究。在下午的报告中,中国农业科学院农业环境与可持续发展研究所秦晓波 研究员、中国科学院青藏高原研究所孔维栋 研究员、北京理加联合科技有限公司胡勇博 博士、北京大学朱彪 研究员、国际竹藤中心栾军伟 研究员分别就农业碳减排及碳交易市场激励机制、青藏高原土壤微生物固碳潜力与机制、Picarro分析仪在温室气体及稳定同位素测量方面的应用、高寒草甸土壤碳动态对气候变暖的响应、分解系统中生物多样性如何应对环境胁迫与干扰--对森林土壤碳汇的启示等方面进行了介绍。本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,快速进行问题答疑。培训过程中大家专心听讲,面对其中的难点,积极参与线上交流,学习氛围良好,互动热烈。此次线上会议还有直播抽奖环节,共抽取一等奖(1名)二等奖(3名)三等奖(5名)四等奖(7名)没有填写地址的同学请尽快到公众号后台联系我们哦!关于此次会议PPT是否可以分享工作人员还在与各位老师沟通当中我们会将可以分享的PPT逐步在公众号内进行推送微信搜索“理加联合”——关注我们通过此次交流会的学习和交流,相信各位老师、同学对不同生态系统碳源汇功能的认识有了更深层次的认识。如您有任何需要,欢迎随时联系我们,北京理加联合科技有限公司将竭诚为广大科研工作者服务。如需观看回放,请点击下方链接:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650314309&idx=1&sn=da5393ffee7343b483bb34c143cc6a11&chksm=bee1baba899633ac676e9c8d1ee1af1d35e3dd8a3122804f937db28295f4bc7073173191c76f&token=1673281865&lang=zh_CN#rd
  • 第二届陆地生态系统多尺度/多要素观测技术研讨会第一轮通知
    一、背景陆地生态系统是全球生态系统的重要组成部分,其中以土壤-大气界面、植被-大气界面等为代表的物质能量交换过程在全球气候变化研究中具有重要意义。近些年来,以土壤温室气体监测、稳定同位素、涡动通量、高光谱成像以及无人机为代表的新一代生态系统观测技术迅速成熟,大数据背景下的整合生态学研究针对陆地生态系统实时监测和动态评估的需求,需要运用新的观测技术构建天空地一体化监测系统,为了更好地开展生态系统的长时序动态监测,建立多源、多尺度、多要素的综合监测数据集,推动新技术在生态系统观测中的运用,由北京大学地表过程分析与模拟教育部重点实验室主办、北京理加联合科技有限公司协办的第二届陆地生态系统多尺度/多要素观测技术研讨会定于2020年9月25日以网络会议的形式召开。二、会议目的面向生态观测研究人员,开展以多要素观测中基础理论、仪器组成、设备安装、数据质控、分析应用及研究进展等方面为主的多要素技术与方法交流和培训,培养野外生态观测研究队伍,提升野外台站的观测技术水平。三、会议内容1、 生态系统观测方面前沿的科学问题2、 多要素观测新技术的基础理论与技术方法3、 多要素观测新技术的应用和发展趋势四、会议时间、形式1. 会议时间:2020年9月25日2. 会议形式:网络线上直播五、其他注意事项1、本次研讨会不收取费用。六、组织单位主办单位:北京大学地表过程分析与模拟教育部重点实验室协办单位:北京理加联合科技有限公司七、报名注册扫描二维码,回复“报名”填写表单即可报名截止日期与时间:2020年9月24日12:00时
  • 生态系统碳源碳汇观测技术与学术交流会(第一轮通知)
    碳中和背景下生态系统碳源碳汇观测技术与学术交流会第一轮通知理加云学堂(第十三期)会议时间:2022年9月6日(星期二)参会方式:网络线上直播01 会议背景气候变化是当今人类面临的重大全球性挑战。气候变暖背景下,极端气候事件频发,对人类的影响也日益严重。为应对气候变化的影响,“碳达峰”和“碳中和”于2021年两会上被提出,并被首次写入政府工作报告,成为我国应对气候变暖的国际行动的一部分。减排(减少CO2排放)和增汇(增加CO2吸收)是实现“碳中和”目标的两条根本途径,生态系统作为自然界的主要碳汇,增强其碳汇功能对实现“碳中和”目标的重要途径,但不同生态系统的碳源、碳汇功能、量级、分布、动态和驱动因素仍存在较大的不确定性,这就对生态系统碳通量的准确观测提出了更高的要求。以SIF植被遥感、湍流涡动通量和多通道土壤呼吸等为代表的天空地一体化碳源、碳汇监测技术,可以为生态系统碳通量监测提供先进的技术支撑,同时有助于更好地开展长时序动态监测,建立多源、多尺度、多要素的综合监测数据集,推进我们对不同生态系统碳源汇功能的认识。北京理加联合科技有限公司将于2022年9月6日以网络直播的形式召开“碳中和背景下生态系统碳源碳汇观测技术与学术交流会”。02 会议目的面向广大科研人员,开展“碳中和”背景下生态系统SIF植被遥感、湍流涡动通量、多通道土壤呼吸等监测技术以及数据综汇及管理的基础理论、技术方法、数据分析和应用研究进展等方面的技术交流和培训,促进不同学科领域学者间的交流,提升野外生态台站的综合观测技术水平。03 会议内容🔸生态系统碳源碳汇观测技术的基础理论与新方法;🔸生态系统碳源碳汇的前沿科学问题;🔸生态系统碳源碳汇观测技术的应用与研究进展;04 会议日程会议特邀专家与报告信息,将于第二轮通知发布,敬请关注。05 注意事项本次研讨会不收取费用。06 会议时间及形式会议时间:2022年9月6日会议形式:网络线上直播07 报名方式关注微信公众号“理加联合”,回复“报名”,填写表单即可我们将根据报名人数来选择对应的网络直播方式08 联系我们BeijingLICA (工作人员微信号)添加工作人员微信,邀请您进入此次会议交流群
  • NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测
    NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测江苏海兰达尔 2023-06-09 12:24 发表于江苏原文链接:https://doi.org/10.1101/2022.09.27.50975301蓝碳和红树林蓝碳是气候缓解战略的关键组成部分,该战略旨在通过沿海和开放海洋碳封存以降低大气二氧化碳浓度。在全球范围内,蓝碳有助于《巴黎协定》目标的达成,将全球平均气温上升幅度控制在远低于2℃以内,并实现温室气体净零排放。从蓝碳的角度来看,红树林生态系统非常有意义,因为它们是地球上最具生产力的生态系统之一,净初级生产力(NPP)在1000~2000gCm-2yr-1。虽然它们只占地球陆地面积的一小部分,但为全球NPP贡献了约210TgCyr-1。这些碳中的大部分储存在生物中或封存在土壤沉积物中,根据最近的激光雷达和雷达测量估计,红树林的总碳储量约为5.03PgC。这些碳储量只集中在几个关键的生物地理区域,例如,有10个国家占总碳储量的70%以上,这就意味着在国家范围内,红树林碳管理可以在国家层面制定的缓解气候变化策略上发挥重要作用。02BlueFlux行动2020年,美国航空航天局碳监测系统(NASA CMS)为建立BlueFlux行动提供了支持,目的是开发原型CO2和CH4产品以了解红树林的修复和保护情况。BlueFlux野外观测行动旨在提供横跨佛罗里达南部和加勒比地区的CO2和CH4通量的综合测量,重点是红树林系统,它们的季节性动态,以及邻近的生态系统,比如广阔的锯草沼泽以及其中的树木“岛屿”。这些通量测量覆盖了从“健康”的红树林到近期受到干扰和濒死的红树林“鬼森林”,来帮助了解在损失和恢复过程中碳通量的任何方向性变化。BlueFlux将有助于量化蓝碳如何减缓气候变化,并帮助减少红树林碳循环时空成分的不确定性。BlueFlux行动的目标示意图现场地面和飞机测量的目标区域在美国境内,在佛罗里达南部的核心地区,对碳储量和通量进行测量,以了解物种、干扰、水文和气候梯度如何解释通量变化。该行动计划在2022~2024年间进行6次现场观测,测量手段包括:1)对生态系统结构、物种以及腔室通量的地面测量,2)高塔通量测量,3)飞机测量,4)卫星遥感。墨西哥湾研究区域03地面测量:土壤和植被通量的腔室测量2022年3月,BlueFlux的第一次现场行动在大沼泽地国家公园进行,分别对两个高度退化和两个完整/再生的森林场地的树木,根系和土壤CO2和CH4通量进行了测量。根据植物的形态以及土壤沉积物成分的不同使用了不同的气室,CO2和CH4浓度的测量使用Picarro G4301 GasScouter 移动气体分析仪,测量频率为1Hz。静态气室法测量生态系统成分通量的示意图以及相应气室设计的照片04地面测量:水化学为了捕捉佛罗里达大沼泽地红树林水域的水-空气温室气体交换及其变化,于2022年3月进行了一项为期3天的空间调查,方法为驾驶一艘游艇从库特湾出发,沿乔河到鲨鱼河再到塔彭湾,然后返回,同时测量pH值,水温,盐度,CO2、CH4和N2O浓度以及CO2和CH4稳定同位素。地表水样从约0.5米深处连续泵送到由“淋浴头”平衡器组成的船载装置,该平衡器通过闭合空气回路连接到两台气体分析仪,Picarro G2201-i和Picarro G2308。使用校准的多参数探测器每分钟测量一次地表水电导率(EC)、溶解氧(DO)、温度、pH和有色可溶性有机物(CDOM)。同时定期收集过滤的无菌离散样品,并在耶鲁大学实验室内用于分光光度计pH、溶解无机碳(DIC)和总碱度(Talk)的测量。05机载涡流协方差通量测量:CARAFE机载涡流协方差(AEC)是一种公认的用于量化痕量气体和能量的地表-大气交换的技术。当与小波变换相结合时,AEC可以表征模型相关尺度(1-100km)下通量的空间梯度,是对地面观测数据很好的一种补充。Blueflux AEC观测采用了动态航空公司驾驶的配备气象和微量气体传感器的Beechcraft King Air A90飞机,并进行了CArbon大气通量实验(CARAFE)。由Aventech公司的AIMMS-20测量系统提供10 Hz的3D风速、空气温度、飞机位置和飞机方位(俯仰/翻转/偏航)观测。该系统包括一个用于气象测量的探测器(安装在左翼下方),该探测器与高分辨率差分GPS和惯性导航系统相结合。环境空气通过安装在右翼下方的进气口进行采样,并通过(机翼中的)聚四氟乙烯管传输到机舱中的两台气体分析仪。其中Picarro G2401-m机载专用气体浓度分析仪提供0.5Hz的CO2、CH4、H2O和CO测量值,而Picarro G2311-f双模式高精度气体分析仪提供10Hz的CO2和CH4测量值。G2401-m包含用于机载操作的专用压力控制系统,因此可对气体摩尔分数进行精准测量,而G2311-f可提供AEC所需的快速时间响应。CO2和CH4的干空气摩尔分数在实验室中使用NOAA WMO的压缩标准气体进行两点校准。下图为2022年4月进行的航测飞行轨迹,这些飞行测量重点关注佛罗里达南部和东部的沿海红树林植被,同时也包括一些内陆森林和湿地。每次飞行时间在2.5~4.5小时,典型的海拔高度为地平面以上100m,偶尔会进入到混合层(200-800m),以确定垂直通量散度和修正。在100米的高度,预计通量足迹大约为5000米宽,对于5~10m s-1的典型表面风速,50%的通量在1000米内,90%在5000米内。CO2的通量范围在0~-40μmol m-2 s-1,CH4的通量范围在0~200μmol m-2 s-1。总的来说,在4月的野外航测中,锯草的甲烷通量似乎更高,红树林的二氧化碳吸收量更大,接下来的飞行测量将继续探索季节和年际变化。BlueFlux AEC航测的飞行路线06预期结果目前“蓝碳”评估的不足之一是,人们考虑了碳存储量,但往往忽略了非二氧化碳温室气体的排放,这可能会极大地影响(积极或消极)这些生态系统的总体净辐射强迫效应。红树林是潮间带生态系统,虽然这些生态系统是净自养的,但小海湾和沉积物通常是大气中CO2和CH4的来源,也可以作为N2O的源或汇。沿着潮汐高度梯度(从小海湾到森林盆地),红树林覆盖率、物种多样性和沉积物结构会发生显著变化,导致温室气体通量的空间变异性很大。红树林温室气体通量的站点间变化会进一步受到各种其他因素的驱动,包括区域气候、水文、地貌、物理化学、生物,生物地球化学和人为因素等。BlueFlux行动旨在收集红树林结构和温室气体通量多尺度测量的详细信息,利用激光雷达或雷达等手段,掌握森林结构和地形信息,捕捉土壤、水文和扰动梯度。网格化碳通量产品将为评估过去二十年温室气体通量的趋势及其空间模式提供基础,以应对不断变化的气候以及极端气候的出现。编辑人:陆文涛审核人:史恒霖
  • 观测引力波用了什么科学仪器?
    p   近日,美国“激光干涉引力波天文台”(LIGO)第一次直接探测到引力波,证实了爱因斯坦引力理论的最后一项预言,震动世界。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201602/insimg/f43374f7-db15-45fb-8c97-91efd317f630.jpg" / /p p style=" text-align: center " LIGO联合创办人Kip Thorne向全世界宣布引力波的发现 /p p   该引力波是由于两个黑洞融合所产生,第一次证明了一个世纪前爱因斯坦所提出的时空结构涟漪假说的真实存在。这一发现的宣布,让全球的天文爱好者为之振奋,并将其比作同伽里略开启太空观测一样的另一座科学里程碑。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201602/insimg/d5cee5d5-4d62-4e31-bae1-5856aaa2f464.jpg" / /p p   一个世纪前,著名物学家艾伯特爱因斯坦预言宇宙空间存在一种时空涟漪产生的引力波,但是由于当时缺少必要的研究条件,以至于一直没能获得真实的数据来支持这个论点。不过一个世纪后的今天,科学家们终于在加州激光干涉引力波观测站(LIGPO)证实了引力波的真实存在。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201602/insimg/f00d15ed-caa7-4278-a0a7-64c12b08cce4.jpg" / /p p   除此之外,科学家们还对引力波的发出源进行了探索,证明是130万年前两个巨大的黑洞猛烈撞击并融合所产生的。 /p p style=" text-align: center " img style=" width: 563px height: 316px " title=" s_e0d2a05c89db40818e44127421be43c9.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201602/insimg/6f486ef8-aeb0-42fe-ac40-ca3dd9b64ffb.jpg" width=" 563" height=" 316" / /p p   回到1915年前后,德国物学家爱因斯坦否定了科学界普遍认同的宇宙是静态的这一假定。相反的,他认为宇宙空间会由于周围产生的能量而不断弯折扭曲。这一假说属于爱因斯坦广义相对论中的一部分,其中阐述了,有质量的物体会使它周围的时空发生扭曲,物体的质量越大,时空就扭曲得越厉害。 /p p style=" text-align: center " img style=" width: 563px height: 375px " title=" 4914841271746935268.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201602/insimg/75b2a09f-5c3e-4ef9-b305-806c6a72138d.jpg" width=" 563" height=" 375" / /p p style=" text-align: center " 位于华盛顿汉福德的激光干涉引力波观测台内景(路透社) /p p   令科学家们第一次得以窥见引力波“真容”的机器,是有史以来最先进的、用于探测宇宙中最轻微振动的探测仪。置于美国地下的这两台探测仪,名为激光干涉仪引力波观测台(LIGO)。其中一台位于华盛顿的汉福德,另一台位于约3000公里外的路易斯安那州的利文斯顿。 /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201602/insimg/7e6ed1aa-7504-4d9e-8ec7-8284bf83b87d.jpg" / /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201602/insimg/724b51c6-db91-4fcb-b9ea-98436af9474d.jpg" / /p p style=" text-align: center " 该图为激光干涉引力波观测站实验室中所使用的光学器具 /p p   上述两部完全相同的检测器可以在引力波穿过后检测到细微的波动。麻省理工学院的高级LIGO项目负责人戴维· 休梅克说:“当一个引力波通过太空传播的时候,它便会拉伸时空。”简言之,引力波探测仪“就是一台将太空中的波动转变为电子信号的大型仪器”。 /p p style=" text-align: center " img style=" float: none " title=" 6.png" src=" http://img1.17img.cn/17img/images/201602/insimg/91048f32-96a2-4a69-828b-0af0983f60b8.jpg" / /p p style=" text-align: center " img style=" float: none " title=" 7.png" src=" http://img1.17img.cn/17img/images/201602/insimg/2513d9a7-83b9-4af2-8c7e-9b8a321bc5b0.jpg" / /p p   报道称,这些超精密工具通过利用单个长约4千米的大型激光干涉仪工作。这些干涉仪都被埋在地下,令其能够得出最精确的测量结果。这种L型仪器根据激光物理学和空间物理学原理追踪引力波。它们不像望远镜那样依赖天空中的光线。它们感知太空中的振动,这种优势令它们可以揭示黑洞的特性。 /p p style=" text-align: center " img style=" float: none " title=" 8.png" src=" http://img1.17img.cn/17img/images/201602/insimg/3484a25f-9c7f-4fec-80ea-8cfaf2603b78.jpg" / /p p style=" text-align: center " img style=" float: none " title=" 9.png" src=" http://img1.17img.cn/17img/images/201602/insimg/c5675432-eb91-41c7-9fc9-10c78d89f374.jpg" / /p p style=" text-align: center " 位于美国华盛顿州汉福德激光干涉引力波观测站(LIGO)的航拍图 /p
  • 应用案例 | HT8850成功应用于常熟生态实验站全自动多通道土壤通量观测系统
    项目名称:全自动多通道土壤通量观测系统项目地点:常熟生态实验站项目时间:2024年3月 项目背景 气候变化已成为全球迫在眉睫的环境挑战之一。人类社会生产生活造成的温室气体排放,尤其是二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的排放,是全球气候变暖的主要原因。据估计,这三种气体对温室效应的贡献率接近80%。其中,土壤释放的温室气体占比相当显著:约有5%~20%的二氧化碳、15%~30%的甲烷以及80%~90%的氧化亚氮来自土壤,而农田土壤是温室气体的重要排放源。 随着全球气候变化的加剧,了解和监测这些温室气体的排放和变化对于制定有效的环境政策和气候行动方案至关重要。因此需要准确的温室气体测量数据,以便更好地评估人类活动对气候的影响,并制定相应的减排措施。为应对这一挑战,常熟生态实验站启动了全自动多通道土壤通量观测系统项目,宁波海尔欣昕甬智测为此项目提供了HT8850便携式多组分高精度温室气体分析仪,通过精确的温室气体测量,为气候变化研究和减排政策制定提供科学数据支持。 仪器介绍 HT8850便携式多组分高精度温室气体分析仪宁波海尔欣光电科技有限公司推出了昕甬智测HT8850便携式多组分温室气体分析仪。这款仪器基于量子级联激光(QCL)技术,能够精确测量二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)和水(H2O)等温室气体的浓度,采用独立强吸收谱线,使其不受其他气体分子光谱的交叉干扰。该气体分析仪能够可由太阳能或锂电池供电,实现温室气体浓度的定点或移动连续观测。 产品特点: 1. 多组分:目标种类: CO2, CH4, N2O, H2O采用中红外波段,独立强吸收谱线,无交叉干扰,使测量更精准。 2.便携性:高强度ABS材料箱体设计,防水耐用易携带,在仪器箱内实现快速响应的高精度测量。 3.可靠性:气体分子的强吸收信号,不需要超长光腔,使光腔结构更稳定,数据更可靠。 4.灵活性:可用于定点或车载走航连续自动检测,突破检测环境局限。 应用案例清华大学深圳国际研究生院户外实验塔里木大学双循环土壤呼吸观察系统项目在甘肃兰州完成野外安装 海尔欣昕甬智测以科技创新为引领,积极参与全球气候变化的应对工作。未来,公司将继续致力于研发更先进的气体分析技术,为实现全球“碳中和”目标贡献更多力量。
  • 碳中和背景下生态系统多要素观测技术学术交流会(第一轮通知)
    碳中和背景下生态系统多要素观测技术学术交流会会议时间:2023年8月29日参会方式:线上承办单位主办方:国家林业和草原局西南岩溶石漠化治理国家创新联盟北京理加联合科技有限公司协办方:北京林业大学林业生态工程教育部工程研究中心美国Picarro公司01 背景中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色,巩固和增强生态系统碳汇是我国“双碳”目标实现的有效途径之一。但目前对于不同生态系统的碳源汇功能、量级、分布、动态和驱动因素的认识仍存在较大的不确定性,这就对生态系统碳通量的准确观测提出了更高的要求。传统的基于单一方法的观测通常存在着观测要素单一和尺度单一等问题,且可能受到方法本身的局限性和误差的影响而建立多方法的立体联合观测,如将SIF遥感、涡度相关法、箱式法和通量梯度法、同位素观测技术等观测方法相结合。一方面,各方法之间可以相互验证,提高观测数据的代表性和准确性;另一方面,各方法之间又可以相互补充,可用来建立多源、多尺度、多要素的综合监测数据集。进而,可以更全面和综合地评估生态系统碳通量,更深入地理解和认识生态系统碳源汇功能,更有效地制定减排增汇策略,推动双碳目标的实现。为了推动生态系统多要素观测技术的发展,北京理加联合科技有限公司拟定于2023年8月29日召开“碳中和背景下生态系统多要素观测技术学术交流会”,此次交流会将以线上的形式进行。02 会议目的面向广大科研人员,开展“碳中和”背景下生态系统SIF、湍流涡动通量、土壤温室气体通量和相关同位素通量等要素的观测方法、基础理论、数据分析和应用研究进展等方面的技术交流和培训,促进不同学科领域学者间的交流,提升野外生态台站的综合观测技术水平。03 会议内容1)生态系统碳源汇观测技术的基础理论与方法2)生态系统碳源汇观测技术的前沿科学问题3)生态系统碳源汇观测技术的应用与研究进展04 会议日程会议特邀专家与报告信息,将于第二轮通知发布,敬请关注。05 会议时间、形式1.会议时间:2023年8月29日2.会议形式:网络线上直播06 注意事项本次研讨会不收取费用。07 报名方式关注“理加联合”微信公众号,回复“碳中和”
  • 国家民用空间基础设施陆地观测卫星综合实验场分系统建设取得进展
    作为国家民用空间基础设施陆地观测卫星共性应用支撑平台项目牵头单位,中国科学院空天信息创新研究院于8月9日在京组织项目综合实验场分系统现场评审。综合实验场分系统通过初步验收,后续将逐步面向行业应用部门和区域用户单位开展卫星共性产品综合实验业务服务。国家民用空间基础设施综合实验场分系统是真实性检验场网系统的重要组成部分,面向空基卫星数据产品高质量应用需求,在全国范围内建成东北、华北、华中、华南、西北、西南六个综合实验场,拥有辐射、几何、水体、陆表、大气、植被六类先进的遥感实验设备,具备天空地一体化的综合实验观测能力。   综合实验场具有区域多样性、多要素、多领域、综合性、开放性等数据采集优势,可提供覆盖范围广、地物类型丰富、观测手段多样的星空地同步大型综合实验地面数据集,是真实性检验站点时序观测的有力补充,为开展空基卫星在轨测试评价、遥感产品反演、算法优化和应用验证提供强有力的技术保障。   目前,项目已全面完成全国重点区域的六大综合实验场建设工作,可开展多周期的地表反射率、水体反射率、几何定位控制点、水质参数、土壤含水量、植被含水量、植被覆盖度、叶面积指数、气溶胶光学厚度、大气含水量、地表覆盖、地面粗糙度等参数测量。   “十二五”期间,项目共完成12次多行业联合实验,采集样方超过5000个,数据条目超过12万条,形成了16种共性产品检验数据集,先后为8颗卫星提供在轨测试和产品检验服务。数据集涵盖空基和高分系列卫星以及航空激光雷达和多光谱数据,累计星地同步航空与卫星影像300余景,为全国重点区域的地表多参数遥感监测,提供多尺度、全谱段和高分辨率数据支撑。   此外,综合实验场正逐步完成智能观测高端仪器装备建设和研制工作,拥有地面、机载、车载等共计44台(套)设备,具有智能化、高精度的走航式及面阵数据采集优势。   经过综合实验场的五年稳定试运行,空天院与用户单位、合作单位、设备研制单位等协同工作,取得了一系列初步成果。2018年至今,先后为2米/8米光学卫星(3颗)、高分七号、5米光学卫星(多光谱和高光谱相机)、高分多模卫星、资源04A卫星、资源1-F卫星、高分三号B/C卫星、高分五号 01A卫星的在轨测试和共性产品的验证提供了数据支撑和验证报告。从2021年开始,分别在东北综合实验场——“黑土粮仓”科技会战三江示范区基地以及华中综合实验场——五湖典型水体实验基地,持续开展激光雷达、多光谱飞行实验,同步开展地面观测实验,并协调多颗卫星同步观测,发挥国产卫星遥感数据和产品在区域业务应用中的作用,为黑土地可持续利用与长三角水资源保护提供必要的数据支撑。   本次验收团队包括项目建设单位、用户单位、监理单位、设备研制单位、软件研发单位的负责人、专家和技术骨干。专家组认为项目按照规划建成了六大综合实验场,实验设备指标先进,采集数据类型丰富,有效支撑了空基项目共性产品检验和共性技术算法模型优化,一致同意综合实验场分系统通过验收。   专家组提出继续进一步完善六大综合实验场的建设,同时加强与行业应用部门的联系,做到卫星遥感应用中的共性、基础性服务需求对接,提升真实性检验大型综合实验能力建设和技术水平,为行业用户提供空间信息产品质量检验与品质保障服务,提高遥感卫星的精细化、定量化应用水平。综合实验场建设初步成果
  • 首套毫米波太阳射电观测仪器研制成功 未来应用场景广泛
    近日,山东大学空间科学研究院空间电磁探测技术实验室(LEAD),在该校攀登计划创新团队、基金委重大项目课题和面上等项目支持下,研制成功国际首台套工作在35-40GHz的毫米波太阳射电频谱观测系统。该系统是根据山东大学攀登计划创新团队首席科学家陈耀教授提出的科学目标和研制规划,由空间科学研究院空间电磁探测技术实验室主任、机电与信息工程学院副教授严发宝带领实验室成员自2017年底开始攻克多项关键技术难题而完成。相应主要学术论文以《毫米波宽带太阳射电频谱仪》为题在《天体物理学杂志增刊》在线发表。据悉,该文为美国天文学会(AAS)旗下系列期刊上发表的为数很少的太阳射电观测仪器技术类科研论文。太阳耀斑爆发是灾害性空间天气的主要源头,所产生的高能量粒子与强电磁辐射可直接威胁人类空间设施与深空探测等太空活动安全,还会增加导航误差、导致中断通信等。通过自主研制太阳微波辐射探测仪器可获得一手科学数据,可开展耀斑爆发机理和粒子加速机制等方面的科学研究,还可助力空间灾害预警预报,为太空活动安全提供保障。传统太阳射电仪器专注于18GHz以下,在18GHz以上仅有少数频点的探测装备,而对于耀斑物理的研究还需要在更高频段部署观测仪器,以获得辐射频谱的完整测量。为填补毫米波频段观测数据空白,团队于2017年底开始提议和研制35-40GHz频域的地基太阳射电频谱观测系统。该仪器实现了35-40GHz范围内5GHz带宽的扫描观测,系统噪声系数~300K,系统线性度0.9999,时间分辨率为5ms~1.3s(~134ms, 默认),频率分辨率为153kHz。该仪器样机目前已常规运行两年有余,积累了大量观测数据,并有望在即将到来的第25周太阳活动峰年观测到更多耀斑爆发数据。在仪器研制过程中,团队突破了毫米波高精度探测、GHz采样数据并行实时处理、宽带信号的平坦度处理等系列关键技术,先后在中国科学、RAA、PASJ等国内外期刊发表多篇学术论文,基于仪器实现方法等授权国家发明专利4项,并获得了国家自然科学基金委重大项目课题、面上项目以及学校攀登计划创新团队的支持。
  • 中国电科11所多谱段长波红外探测器组件随高光谱综合观测卫星成功入轨
    高光谱红外热成像可以获取地物的热辐射精细光谱信息,更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用。12月9日,中国光学光电子行业协会理事长单位、红外分会理事长单位中国电科11所研制的多谱段长波红外探测器作为宽幅热红外成像仪载荷的核心红外器件随高光谱综合观测卫星(高分五号01A)进入预定轨道,将实现每天3次大气环境、红外全球覆盖,通过卫星的应急观测能力,实现对全球热点区域的快速高光谱重访观测,以高新红外技术,为我国航天事业发展做出新的重要贡献。2022年12月9日02时31分,长征二号丁遥四十五运载火箭在太原卫星发射中心点火升空,成功将高光谱综合观测卫星(高分5号01A)送入预定轨道,发射任务取得圆满成功,标志着高分辨率对地观测系统重大专项空间段建设任务圆满收官。高光谱综合观测卫星将在生态环境动态监测、自然资源调查与监测、大气成分探测等方面发挥重要作用。高光谱综合观测卫星搭载的宽幅热红外成像仪载荷的核心红外器件是由中国电科11所自主研制的一款多谱段长波红外探测器,探测器具有以下特点:4个长波红外谱段。8um-12.5um的长红外波段细分为4个波段,通过分裂窗的反演算法实现高精度、高稳定性定量温度反演。优于50mk的温度分辨率。在波长12.5um的红外探测器中,温度分辨率达到了国际先进水平,可以直观、清晰地迅速捕捉地表广域范围内的昼夜热红外图像。优于10%的响应非均匀性。拍摄的每一幅图像是通过扫描机构将不同区域的图像扫描拼接而成,卓越的非均匀性为百米量级数据提供了保障。该探测器的成功入轨,为我国空间光学遥感领域再添红外“新丁”,将为热红外定量遥感提供百米量级数据,提升红外数据应用效能。▲11所自主研制的多谱段长波红外探测器组件高光谱综合观测卫星是高分5号系列的最后一颗卫星。2012年起,11所开始高分5号卫星用红外组件研制工作,并经过6年努力,红外组件于2018年随高分5号01星成功发射;2021年新研制组件再次随高分5号02星入轨。2022年12月9日,我们又一次见证了载有11所探测器组件的高光谱综合观测卫星成功入轨,它既是高分5号系列的最后一颗,也是高分工程的收官星。高分5号系列卫星发展的十年,也是11所宇航用红外组件研制水平快速发展的十年。未来,11所将继续发挥自身优势,为我国航天事业的发展做出新的更大贡献。
  • OceanPack走航观测系统顺利通过“中山大学”号海试验收
    文章中部分内容转自:“公众号:中山大学大气科学”——“中山大学”号首次科考设备验收航次精彩瞬间回顾,原文章点击文章末尾链接查看“雷伊”台风过后,“中山大学”号执行了第一次科考设备验收航次。德国SubCtech公司OceanPack表层海水多参数测量系统在此次验收航次中表现优异,顺利通过验收。OceanPack与其他传统船载科考设备一起为科考作业提供了坚实的硬件基础,为开展多学科交叉科学研究试验提供数据条件。航次合影OceanPack表层海水多参数测量系统在此次科考航次中,科研人员通过OceanPack表层海水多参数测量系统,测量海水温度、盐度、溶解氧、叶绿素等光学参数,并结合其他船载设备对不同深度海水、生物标本进行采集与化学分析,由此对冬季季风下南海陆架环流、水团特性及南海北部重力环境形成更为清晰的认识,为今后海洋化学、生物研究提供样本材料。OceanPack表层海水多参数测量系统经典型精简型可移动型德国SubCtech公司在海洋仪器领域具有超过26年的历史,是一家独资企业,具有高度的生产、研发自主性。德国SubCtech公司OceanPack™ AUMS表层海水走航观测系统是一套集成有海水和空气CO2/H2O/CH4含量分析、多种海水物理化学性质传感器、五参数全自动营养盐分析仪、各种船载设备数据输入输出的高度集成的一体化系统,具有较佳的性能、很强的稳定性和适应性、极大减少人工参与的自主化操作能力,以及完全可扩展的系统设计,完全满足各项的系统要求。OceanPack™ AUMS独特的设计使其在走航式水-气CO2测量领域备受好评。二氧化碳分析仪集成在19”的OceanPack™ 机架之中,通过船上的表层水采集系统可以分析水中pCO2的值,利用单独安装在甲板上的进气箱可以采集来自大气中的CO2并进行分析。其独特之处在于采用了特殊的膜结构实现水体中二氧化碳与检测仓中二氧化碳的平衡,检测仓中装载成熟的LI-COR® 系列分析仪,检测二氧化碳浓度并输出信号,膜法平衡器受渗透率、浓差极化与透膜率的影响,仓中气体变化平缓,因此信号非常平滑,另外由于操作简单,检测过程耗时短、响应快,且数据更加准确。OceanPack™ AUMS系统集成工作状态稳定的红外分析仪或激光分析仪,应用于海洋环境中表层海水及大气中CO2/H2O/CH4浓度,及其相关参数(温度、盐度、pH)的走航监测。仪器自带切换海水/大气测量所需的全部软件和硬件,支持水体和空气中CO2/H2O/CH4测量时间和周期的自由调整。从测量水体切换到测量空气:平衡时间小于1分钟,从测量空气切换到测量水体:平衡时间小于5分钟。系统控制软件兼容性强,系统具有完善的自监测功能,包括系统自监测和测量数据监测等,以保证数据质量,在无人操作的情况下也可自我运转。OceanPack™ AUMS几乎可兼容所有探头,可在主机的除泡器内集成溶解氧、浊度、硝酸盐、叶绿素、CDOM、pH、温度盐度等,相关参数可以基本实现同步测量,测量得到的数据通过主机内的数据采集器实时显示在屏幕中,无需另外增加旁路,也无需将数据导出后再进行复杂计算。用户也可根据需要选择是否在旁路增加更多的分析仪进行其他参数的测量。
  • 中科院在宁波建立城市环境观测研究站
    8月26日,中科院城市环境研究所与北仑区政府正式签约共建中科院宁波城市环境观测研究站。   中科院宁波城市环境观测研究站项目选址北仑春晓滨海新城,预计2014年正式运行。研究站将立足宁波市,辐射长三角,面向生态环境保护、城市生态科学和环境科学与技术的发展研究,开展城市环境长期观测研究、城市生态环境与健康、城市环境治理与修复技术、环境治理工程与循环经济、城市规划与环境政策研究与开发以及技术转移、转化和规模产业化。   宁波市委副书记、市长刘奇说,中科院宁波城市环境观测研究站暨宁波城市环境研究中心的落户,不仅有助于提升区域科技创新能力,推进低碳生态城市建设,实现经济社会全面协调可持续发展,而且有助于推进宁波传统产业高端化、高新技术产业化、新兴产业规模化,加速构建现代产业体系。
  • 基于新一代含卤气体高精度监测系统在上甸子站的在线观测研究及华北地区排放量的估算应用
    含卤气体主要包括氟氯碳化物(CFCs)、哈龙(Halons)、四氯化碳(CCl4)、甲基氯仿(CH3CCl3)、甲基溴(CH3Br)、氟氯烃(HCFCs)、氢氟碳化物(HFCs)、全氟化物(PFCs)、三氟化氮(NF3)、六氟化硫(SF6)等臭氧消耗物质和温室气体。2019年,含卤气体的辐射强迫达到0.41 W/m2,相当于CO2辐射强迫的19%。考虑到它们对气候变化的影响以及它们极低的大气环境浓度(ppt量级),对于含卤气体连续的高精度观测非常重要且难度极大。中国北部地区人口密集,是全世界最重要的氟化工、电解铝和氯碱工业生产基地之一,是含卤气体排放的重点地区,因此对于北部地区的四类F-gases(HFCs、PFCs、SF6和NF3)的排放估算也十分必要。本研究利用自主研发的高精度在线监测系统天霁 ODS5-pro系统,于2020年10月至2021年9月在北京上甸子大气本底站对36种含卤气体进行了连续的高精度监测,并对观测数据进一步筛分,得到了36种含卤气体的本底浓度和污染浓度,讨论了含卤气体抬升浓度之间的相关性。最后,根据观测数据结合种间相关法估算了2020-2021年中国北部地区HCFCs和F-gases的排放量,并将结果与全球排放量进行了比较,揭示了中国北部地区HCFCs和F-gases对全球排放的贡献。天霁ODS5-Pro系统由在线采样模块、分析系统、标气、辅助气组(氦气+氮气)和数据处理系统组成。其中分析系统由自组装的冷凝预浓缩模块和气相色谱-质谱检测模块组成。该系统在完成设计、组装和测试后,在北京上甸子大气本底站针对背景大气开展了为期1年(2020.10-2021.9)的实地观测试验;实现了36种含卤气体的有效分离和长期高精度监测,具体为大气浓度大于100ppt物种的精度约0.5%,大气浓度20-100 ppt物种的精度为0.5%~1%,大气浓度1~20 ppt物种的精度为1%~4%;大气浓度为0.1~1 ppt物种的精度为4%~9%。系统的准确度优于±0.5 %,检出限优于0.5 ppt。此外,天霁ODS5-pro系统与国际先进水平的Medusa GC-MS系统进行了同期比对实验。将两套系统间隔70 分钟以内的数据进行配对后,两套系统绝大部分物质的浓度偏差<3%,表现出良好的监测一致性,验证了天霁ODS5-pro系统的监测可靠性。表1 上甸子站2020年10月至2021年9月含卤气体的背景浓度和污染浓度所有35种含卤气体有25%-81%的有效数据被筛分为背景浓度。对于大多数已经被《蒙特利尔议定书》淘汰的物质(CFCs、哈龙和CH3CCl3), 59%-81%的测量结果被筛分为背景浓度。然而CCl4显示出高频率的污染事件,只有40%的测量结果被筛分为背景浓度。本研究中所有HCFCs的背景浓度数据量仅占总数据量的比例为27%-29%,反映出其在中国逐步淘汰过程中持续而强烈的排放。对于HFC-32、HFC-125、HFC-134a和HFC-227ea来说,其背景浓度数据量占比为27%-33%。此外,包括CH2Cl2、CHCl3和PCE在内的短寿命卤代烃(定义为在大气中寿命少于6个月的物质)的污染事件经常发生,其中背景浓度数据占比为25%-31%。在所有测量的含卤气体中,CH2Cl2的背景浓度数据量占比最低。图1 典型含卤气体大气抬升浓度间的相关性,以相关系数r表示,*表示两种物质在0.05水平上显著相关CFCs与其他物质之间的相关性较低,因为主要CFCs的污染浓度数据量占比仅为19%-25%,其相对背景浓度的抬升不到10%(表1)。HCFCs和HFCs的抬升浓度之间存在很强的相关性,反映出其在中国占主导地位的生产和消费,因此存在大量的人为排放。HFC-32与HFC-125具有较高的相关性,相关系数(r)为0.94。这一结果与之前Li et al.(2011) 和Kim et al.(2010)报道的低相关性不同。他们认为HFC-32和HFC-125主要来自工业生产过程中的逸散排放。本研究发现的强相关性证实了主要用作HCFC-22替代品的混合制冷剂R410A(HFC-32与HFC-125 质量比1:1)在中国房间空调得到了广泛使用。R410A的人为生产和消费已经成为HFC-32和HFC-125的主要排放源。此外,HFC-143a广泛存在于R404A和R507A的混合制冷剂中,因此与HFC-32和HFC-125的相关性较强,分别为0.70和0.76。在中国,HFC-23主要作为HCFC-22的工业生产过程副产物而排放。同样的,PFC-318主要在以HCFC-22为原料的四氟乙烯和其他含氟化学品的生产过程中产生和排放。HFC-23和PFC-318的抬升浓度相关性很强,为0.80,这暗示了它们均主要来源于与HCFC-22相关的氟化工行业的排放。氯甲烷类(包括CH3Cl、CH2Cl2、CHCl3和CCl4)与HCFCs和HFCs的抬升浓度相关性相对较强。在中国,氯甲烷类在各种工业过程中排放,其主要用作氟化学品生产的原料以及在人口稠密和工业化地区被广泛用作溶剂。本研究得出的相对较高的相关性可归因于工业区域氯甲烷类、HCFCs和HFCs排放的同源性。图2 2020年10月至2021年9月上甸子站观测对含卤气体排放的敏感性表2 利用种间相关法估算的2020-2021年中国北部地区F-gases和HCFCs的排放量aHCFC-22的排放量为数值反演法获得图3 (a)F-gases和(b)F-gases和HCFCs中各物质的CO2当量(CO2-eq)排放的占比表3 2020-2021年中国北部地区CO2-eq排放量以及对2020年全球含卤气体排放量的贡献排放敏感性分析结果(图2)表明,上甸子站的观测对中国北部地区12个省份的排放具有较高的敏感性。因此,采用种间相关法,以HCFC-22和CO为参考物估算了中国北部地区F-gases和HCFCs的排放量。结果表明,2020-2021年中国北部地区F-gases的CO2-eq排放量达到181±18 Tg /yr。在估算的四类F-gases中,SF6的CO2-eq排放量的占比最高(24%),其次是HFC-23(22%)、HFC-125(17%)、HFC-134a(13%)、NF3(10%)、CF4(5.9%)、HFC-143a(3.9%)、HFC-32(3.4%)和HFC-152a(0.2%)。如果将HCFCs的排放纳入其中,HCFC-22由于其巨大的实物吨排放量而贡献F-gases和HCFCs总CO2-eq排放量的42%,接近一半。因此,进一步减少HCFCs的排放将有助于臭氧层的恢复,并对减缓气候变化起到积极作用。与全球排放量进行比较后发现,仅中国北部地区的NF3、SF6和HCFCs的占全球排放的比例就高达20-40%,表明中国整个地区上述物质的排放量可能占全球排放的一半以上。因此,中国减缓NF3、SF6和HCFCs的排放将对全球的减排进程产生重要影响。中国北部地区有意生产的HFCs的排放量占全球排放的比例较低(<15%),而工业副产物HFC-23的贡献比例相对较高,为19%。文章信息研究成果以“In Situ Observations of Halogenated Gases at the Shangdianzi Background Station and Emission Estimates for Northern China”为题已在 Environmental Science & Technology 期刊上作为封面文章发表。北京大学环境科学与工程学院的博士生伊丽颖为文章的第一作者,复旦大学姚波研究员和北京大学许伟光工程师为本文的通讯作者。该研究工作得到了国家重点研发计划项目(2019YFC0214502)的支持。文章链接:https://pubs.acs.org/doi/10.1021/acs.est.3c00695文中引用的参考文献:1. Li, S. Kim, J. Kim, K. R., et al., Emissions of Halogenated Compounds in East Asia Determined from Measurements at Jeju Island, Korea. Environ. Sci. Technol. 2011, 45, (13), 5668-5675.2. Kim, J. Li, S. Kim, K. R., et al., Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China. Geophys. Res. Lett. 2010, 37, L12801.
  • 中国科大利用火星上的波动观测对合声波激发理论模型进行测试
    合声波是广泛存在于地球和其他行星磁层中的一种电磁波动。将合声波的电磁信号转化为声音后听起来像清晨群鸟的合唱声,因而得名合声波。合声波能够通过共振的方式加速空间中的高能电子,在磁暴活动期间引发地球辐射带电子通量的快速上升;同时,合声波能够将空间中的高能电子散射到大气层中,形成弥散和脉动极光现象。   合声波的特征之一是其频谱通常呈现出窄带的快速扫频结构。该扫频结构的激发机制引起了人们的兴趣,科学家对此提出了多种理论模型。然而,关于合声波为何会出现扫频以及如何计算扫频率的问题存在争议。其中,一个主要争论点是背景磁场的不均匀度是否在合声波的扫频中起到关键作用,以及这种不均匀度如何影响合声波的扫频现象。此前,中国科学技术大学队提出的合声波“Trap-Release-Amplify”(TaRA)模型基于现代等离子体物理理论,认为磁层中合声波的扫频是非线性过程与背景磁场不均匀度共同作用的结果,并提供了相应的扫频率计算公式。然而,地球磁层中的磁场不均匀度变化有限,无法在更大的参数空间内对TaRA模型开展测试。   火星与地球之间存在不同的磁场环境:地球拥有全球性的类偶极磁场,而火星则只存在局地的岩石剩磁。在火星的剩磁环境中,MAVEN卫星也曾观测到类似合声波事件。图1展示了在火星和地球上观测到的波动事件以及相应的背景磁力线轨迹。研究通过计算发现,火星与地球的背景磁场不均匀度相差了五个数量级。对比研究地球和火星上的波动事件,可在更加极端的条件下测试此前所提出的TaRA模型。   本研究基于MAVEN卫星对火星粒子分布的观测,结合相应的火壳剩余磁场模型,采用基于第一性原理的粒子模拟方法,重现了火星上观测到的类合声波动现象。研究通过对粒子相空间分布的分析,确认了这种波动的扫频过程与地球上的合声波一致,即均由非线性过程引发。此外,该研究进一步使用TaRA模型提供的两种不同方法来计算合声波的扫频率,并将其与观测和模拟结果进行对比。研究发现,基于非线性过程和背景磁场不均匀度计算出的扫频率与模拟结果之间存在高度一致性。研究表明,尽管火星和地球拥有不同的磁场和等离子体环境,但在火星上观测到的类合声波动与地球磁层中的合声波动遵循相同的基本物理过程。同时,本研究还在磁场不均匀度相差五个数量级的极端条件下验证了TaRA模型所描述的扫频基本物理过程的广泛适用性。这一发现不仅确认了火星上存在合声波动,而且为在极端条件下验证和应用TaRA模型提供了重要支持。   相关研究成果以Whistler mode chorus waves at Mars为题,发表《自然-通讯》(Nature Communications)上。日本京都大学、美国加州大学洛杉矶分校、意大利ENEA非线性等离子体物理中心及浙江大学的科研人员参与研究。研究工作得到中国科学院类地行星先导专项、国家自然科学基金和中央高校基础研究经费的支持。火星和地球上的磁力线位型以及观测到的合声波频率-时间谱图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制