当前位置: 仪器信息网 > 行业主题 > >

流动电流仪原理

仪器信息网流动电流仪原理专题为您提供2024年最新流动电流仪原理价格报价、厂家品牌的相关信息, 包括流动电流仪原理参数、型号等,不管是国产,还是进口品牌的流动电流仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流动电流仪原理相关的耗材配件、试剂标物,还有流动电流仪原理相关的最新资讯、资料,以及流动电流仪原理相关的解决方案。

流动电流仪原理相关的论坛

  • 流动电流检测仪

    [b]流动电流检测仪[/b](SCD仪)是可在线监控加矾混凝效果的仪表。为目前源水/污水混凝沉淀药剂自动投加系统的核心部件。Bebur公司新推出的BT6108-Streamer流动电流仪,是当前对水质变化及污染适应性有效的设备。并可用于污水处理中的污泥沉淀脱水、压滤等过程工艺的自动控制中。他可测控经化学处理后的水(或废水)样中,带电离子或颗粒在SCD取样室内的两个电极之间产生的电流。此电流的大小决定于混凝后仍留在水中的正(或负)离子的净余量,因而流动电流值可间接反映混凝效果。  应用特点:  ◆ 絮凝处理过程变化快速反应-絮凝剂监测仪  ◆ 通过提高絮凝物控制保持水质-絮凝剂控制器  ◆ 降低絮凝剂/聚合物使用成本-絮凝剂控制器  ◆ 使用电流监测仪实现絮凝剂/聚合物自动投放-絮凝剂控制器  ◆ 保证絮凝剂可靠性-絮凝剂分析仪  ◆ 提高效率-絮凝剂分析仪  ◆ 提高过滤器和絮凝剂处理效率-絮凝剂控制器  ◆ 监测你的絮凝控制过程-絮凝控制器  测量原理:  水样流进取样槽,当活塞向上运动时,水样被带进孔里,当活塞向下运动时,样品水被从孔里排出。水中颗粒物暂时附着在活塞和缸体表面,当水被活塞向前推回来时,这些颗粒物周五的正负电子向下移动到电极上,这种像电流移动导致产生的交流电流被称作“流动电流-stream current”。通过屏幕菜单操作,一个信号选择器用来选择出好的信号放大,这个信号放大需要被设置好当一定常规剂量的变化产生多少  想要的流动电流偏差(通常是30个单位)。显示的流动电流值(scv)被认为是跟原始信号放大的相关读数。  产品特征:  ◆ 获得专利的传感器设计  ◆ 探杆和活塞可快速更换  ◆ 自诊断传感器  ◆ 大水流减少传感器污染  ◆ 样品流量可高达20L/Min  ◆ IP65耐腐蚀NEMA 4x 外壳  ◆ 辅助输入信号  ◆ 自动零点调节  ◆ 可扩展的灵敏度(gain)调节  ◆ 高/低报警输出  技术指标:  ◆ 制造商: 英国Bebur  ◆ 型号:BT6108-Streamer  ◆ 应用 :水中电流持续在线监测  ◆ 样品流量:3-20L/Min  ◆ 样品Cell类型:外置接受器,大流量  ◆ 探杆类型:可快速更换墨盒  ◆ 活塞类型:可快速更换  ◆ 水样连接:进口 0.75”(19mm)OD, Barb Type  出口1”(25mm)  ◆ 接触样品材料 : 聚甲醛树脂,尼龙,橡胶,氟橡胶, PVC不锈钢  ◆ 自动诊断 :马达,光电开关  ◆ 防护外壳等级:IP65  ◆ 最高工作温度 :1-49°C  ◆ 自动温度补偿: 包含  ◆ 允许工作压力 :0-10Bar  ◆ 电压 :220VAC 1 A 50Hz  ◆ 可选:1)传感器自动冲洗  2)传感器自动清洗和化学品清洗  3)恶劣环境下电流监测:耐脏马达,大流量(到35L/Min)-应用于悬浮物很多的环境下

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【求助】疲劳灯、暗电流试验的原理和作用?

    资料上说:疲劳灯与暗电流是用于诊断仪器故障的试验。疲劳灯试验能帮助判断仪器光学系统所出现的问题;暗电流试验能帮助判断仪器电子系统所出现的问题。 请教 疲劳灯与暗电流 试验的原理是什么,根据所测得的数据如何判断仪器故障?

  • 漏电电流和剩余电流

    漏电电流是电源没经过负载,而是与其他不应该通电的物体产生的电流,比如绝缘不好导致的接地电流,因为潮湿导致的与设备外壳产生的电流。这是种非常危险的电流,一旦人接触到设备外壳上,立刻会构成回路。如果是高电压,就十分危险。所以一边家庭都安装漏电保护器,一旦漏电电流小于36mA,就跳闸。漏电电流是有危险的,剩余电流是电器本身产生的,虽然是不允许,但有时还是避免不了。剩余电流一般比较小 ,不会造成什么大危害!漏电电流和剩余电流在本质上有什么区别?1、漏电电流是剩余电流的一种,剩余电流的含义涵盖了漏电电流;2、从保护工作原理上看,漏电保护器和剩余电流保护器是完全一样的,叫剩余电流保护器更加合理,因为不仅仅漏电使保护器动作,三相不平衡、谐波电流也会使保护器动作;3、剩余电流是根据IEC标准翻译过来的,没有漏电电流的定义;4、国内大都数厂商都已更名为剩余电流动作保护装置,也有些仍然沿用漏电保护器名称。资料来自传奇商城

  • 电流变送器的工作原理及其应用

    0.5V  应变桥电流变送器  由XTR115构成应变桥电流变送器的电路如图2所示。将脚3视为公共地,由脚1给应变桥提供+2.5V的电源电压。前置放大器采用TL061型单运放(亦可采用OPA2277型双运放,仅用其中的一个运放),由+5V稳压器单独给运放供电。RI为20kΩ输入电阻,C为降噪电容,VT为外部NPN功率管,可选2N4922,TIP29C或TIP31B等型号。以2N4922为例,其主要参数为UCEO=60V,ICM=1A,PCM=30W.该电路的工作原理是当试件受力时,应变桥输出的电压信号首先经过前置放大器放大成0.8~4V的输入电压UI,再通过RI转换成40~200μA的输入电流II,最后经XTR115放大100倍后获得4~20mA的电流。  需要指出,XTR115只能配NPN功率管,不能配MOS场效应功率管。外部功率管应满足XTR115对电压、电流的要求,使用中还须给功率管装上合适的散热器。  保护电路的设计  保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns.采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1.4V),由式(2)确定。  ULOOP=Us-IORL-1.4(2)  过压保护电路采用一只1N4753A型稳压管,其稳定电压为36V,稳定电流为7.0mA.当环路电压过高时就被钳位到36V.实验证明,即使环路电压达到65V,XTR115也不会损坏。为了改善瞬态过压保护特性,还可采用Motorola公司生产的P6KE39A型瞬态电压抑制器(其英文缩写为TVS,亦称瞬变电压抑制二极管)来代替稳压管。P6KE39A的钳位电压UB=39V,钳位时间仅为1ns,其性能远优于齐纳稳压管  配J型热电偶的电流变送器电路http://www.dzsc.com/data/uploadfile/201210817330508.jpg图4 带冷端温度补偿的J型热电偶输入电路  由XTR101构成带冷端温度补偿功能的J型热电偶输入电路,如图4所示。该电路可将温度信号转换成4~20mA的电流信号。Rs为满量程(SPAN)设定电阻,其电阻值由式(3)确定。  Rs=40/(3)  式中:ΔIo=20mA-4mA=16mA.  例如,当UI=100mV时,由式(3)不难算出,Rs=278Ω。Rs的引线应尽量短,以减小干扰。当Rs=∝时,UImax=1V.Rp为调零电位器,在0℃下调整Rp可使Io=4mA.冷端温度补偿电路由二极管VD1,分压电阻R1和R2组成,R1及R2均采用精密金属膜电阻。  J型热电偶在-200℃~+750℃测温范围内的平均温度系数αT=+51.70μV/℃。硅二极管正向压降的温度系数αD≈-2.1mV/℃,经过R1和R2分压后  αD′=αD?=-2.1×=-52μV/℃≈-αT  因为αD′与αT的大小相等而方向相反,二者又分别接到XTR101的负输入端和正输入端上,所以在室温下二者能互相抵消,从而实现了冷端温度(即环境温度)补偿,使温差热电势仅仅与被测温度有关(e=αTT),不受环境温度变化的影响。XTR101能输出两路1mA激励电流,分别接J型热电偶和电阻分压器。反向电压保护电路由VD2组成,当Us接反时VD2截止,电源不通。正常工作时VD2导通,环路电压ULOOP=Us-IORL-0.7V.  电流变送器技术参数:  ●精度:优于0.5% ;  ●非线性失真:优于0.5%;  ●额定工作电压Vcc:+24V±20% ,极限工作电压:≤35V ;  ●电源功耗:静态4mA,动态时相等于环路电流,内部限制25mA+10%;  ●额定输入:5A……1KA(42个规格);  ●穿孔穿芯圆孔直径:9、12、20、25、30mm;  ●输出形式:两线制DC4~20mA;  ●输出电流温漂系数:≤50ppm/℃;  ●响应时间:≤100mS;  ●输入/输出绝缘隔离强度:AC3000V / 1min、1mA;  ●输出负载电阻:RLmax ≤ (Vcc-10V)/ 20mA  ●输入过载保护:30倍1min;  ●输出过流限制保

  • 【分享】FIA流动注射分析仪的基本原理

    [B]流动注射的基本原理[/B]Ruzicka 等1988 年在其专著第二版中对流动注射分析作的定义为:向流路中注入一个明确的流体带,在连续非隔断载流中分散而形成浓度梯度,从此浓度梯度中获得信息的技术。原理是基于把一定体积的液体试样注射到一个运动着的、无空气间隔的由适当液体组成的连续载流中。被注入的试样在向前运动过程中由于对流和扩散作用而分散成一个个具有浓度梯度的试样带,试样带与载流中某些组分发生化学反应,产生某种可以被检测的物质,然后被载带到检测器中连续记录其吸光度、电极电位或其它物理参数。试样流过检测器的流通池时,这些参数连续地发生变化。典型的检测仪输出信号呈峰形,其高度或面积与待测物浓度有关。欢迎使用流动注射分析仪的版友来讨论自己的流动注射分析!!

  • 【资料】CA砂浆流动度测定仪的使用原理和工作时间是什么?

    CA砂浆流动度测定仪(漏斗)的使用原理:CA砂浆流动度与可工作时间是保证板式轨道CA砂浆现场灌注施工质量的重要指标。从乳化沥青与水泥砂浆掺合到一起后,CA砂浆的固化作用就开始了,砂浆的粘性逐渐增加,流动性逐渐丧失而最终固化。  为确定CA砂浆流动度指标,试验采用容积为650ml的特制漏斗进行测定,将拌和好的砂浆注入漏斗,打开出口开始,至砂浆全部流出所经历的时间,即为流动度。适当的流动度对于砂浆的性能与灌注质量非常重要,流动度过小,砂浆材料会出现离析,影响其强度和耐久性;流动度过大,砂浆粘稠,就难以将轨道板与基础间的填充密实,直接影响灌注质量。  然而影响CA砂浆流动度的因素很多,在拌和方式、投料顺序一定的条件下,流动度随温度、外加剂、主要原材料的配合比、水灰比的变化而不同。  CA砂浆流动度测定仪CA砂浆的可工作时间是指CA砂浆处于规定的流动度范围内所经历的时间。这个时间应该较长而不至影响现场砂桨的灌注施工。因为考虑到现场从砂浆拌和站配制好的运输过程、灌注作业所需要的时间,规定CA砂浆的可工作时间不少于30min。所以操作人员要注意工作时间和使用。资料来源于:http://www.czfangyuan.net/czfyyq-Article-116304/

  • 【分享】臭氧检测仪原理

    [size=4]1.检测原理 科学家们已经发现臭氧层能吸收紫外线,研究表明臭氧仅对波长253.7nm的紫外线具有最大吸收系数,在此波长下紫外线通过臭氧会产生衰减,符合兰波特一比尔定律:该原理已被美国等国家作为臭氧标准分析方法:该臭氧检测仪就是采用紫外线吸收法的原理,用稳定的紫外灯光源产生紫外线,用光波过滤器过滤掉其它波长紫外光,只允许波长253.7nm通过。经过样品光电传感器,再经过臭氧吸收池后,到达采样光电传感器。通过样品光电传感器和采样光电传感器电信号比较,再经过数学模型的计算,就能得出臭氧浓度大小。 2.臭氧浓度数学计算模型 臭氧浓度数学模型是根据Lambert and Bee:定律推出的。 在公式(1)中,只要知道样品电流、采样电流和臭氧吸收池距离,即可计算出臭氧浓度大小。由于臭氧吸收池距离的限制,最大臭氧浓度只能测到 3.电路原理的实现 基本电路由电源部分、紫外灯控制、紫外光线样品检测、紫外光线采样检测、对数放大器Log100、模拟输出及显示部分等组成。 电路核心部分就是用对数放大器Log100来实现臭氧浓度数学模型,基本接线如图1所示。Log100是集成电路的14引脚,可以对两个电流或电压之比进行对数运算。该放大器输出电流动态范围宽,可以在1nA} 1mA之间变化。输出误差范围不超过0.1%。输出公式: 电源部分主要是产生紫外灯需要的高压电源,同时产生电路板上需要的+15V直流电紫外灯灯控部分控制紫外灯电流在允许范围之内,如果不能自动调节,面板上将有一个红灯变亮,提示更换新的紫外灯。标准紫外光检测和采样紫外光检测部分也是较关键部分,光电传感器把紫外线的光信号转换为电压信号,然后经两次运算放大器进行信号整理放大,送给Log100进行计算处理后,显示输出。模拟输出0~20mA与臭氧浓度大小成线性关系。[/size]

  • 【讨论】直流电流测量电路的工作原理

    [em09506]如图所示,简单的电流表只能用来测量小于或等于其满偏电流量的电流。为了扩大电流表的量程,可以在表头两端并联一定数值的电阻,如图b所示。但是,若此时仍不能满足测量范围的需要,可以采用独立分挡式电流表,如图c所示。独立分挡式电流表具有以下缺点:  1)转换开关在换挡时,由于开关接触电阻增大或分流支路某点断路,将有大电流流过表头,可能造成表头损坏。  2)由于各挡分流电阻的阻值不等,对无框架阻尼表头来说,不能得到相等的阻尼效果。  3)若表头满偏电流不是一个合适的整数数值,这种情况将不便于一表多用的综合设计。  4)由于各分流电阻彼此独立,因而用料多,体积大,致使仪表重量过大。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912121142_189660_1943690_3.gif[/img] 图 直流电流测量   a)简单电流表 b)扩大量程的电流表 c)独立分挡式电流表 d)闭路抽头式电流表  针对独立分挡式电流表的这些缺点,又出现了一种闭路抽头式电流表,如图d所示。这种电流表克服了前面三种电流表所有的缺点,因而它得到了广泛应用。图d中,K2在结构简单的万用表中应用较少;`而在灵敏度要求较高的万用表中,为了获得电压测量的高灵敏度,测量时通常将K2切断。

  • 【讨论】直流电流测量电路的工作原理

    [em09511] 简单的电流表只能用来测量小于或等于其满偏电流量的电流。为了扩大电流表的量程,可以在表头两端并联一定数值的电阻,如图b所示。但是,若此时仍不能满足测量范围的需要,可以采用独立分挡式电流表,如图c所示。独立分挡式电流表具有以下缺点:  1)转换开关在换挡时,由于开关接触电阻增大或分流支路某点断路,将有大电流流过表头,可能造成表头损坏。  2)由于各挡分流电阻的阻值不等,对无框架阻尼表头来说,不能得到相等的阻尼效果。  3)若表头满偏电流不是一个合适的整数数值,这种情况将不便于一表多用的综合设计。  4)由于各分流电阻彼此独立,因而用料多,体积大,致使仪表重量过大。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912121135_189659_1943690_3.gif[/img] 图 直流电流测量   a)简单电流表 b)扩大量程的电流表 c)独立分挡式电流表 d)闭路抽头式电流表  针对独立分挡式电流表的这些缺点,又出现了一种闭路抽头式电流表,如图d所示。这种电流表克服了前面三种电流表所有的缺点,因而它得到了广泛应用。图d中,K2在结构简单的万用表中应用较少;`而在灵敏度要求较高的万用表中,为了获得电压测量的高灵敏度,测量时通常将K2切断。

  • 电气转换器(I-P电流型、E-P电压型)与电气比例阀的基本原理和性能对比

    电气转换器(I-P电流型、E-P电压型)与电气比例阀的基本原理和性能对比

    [color=#ff0000]摘要:电气转换器和电气比例阀是目前常见了两类电控式气体压力调节器,尽管它们的基本功能相同,都属于电子式减压阀,但所用技术、功能和指标并不一样。本文详细介绍了这两类电子压力调节器,并做出对比,为选型和具体应用提供参考。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、概述[/b][/color][/size]从第一性原理来看,电气转换器和电气比例阀这两类器件都属于电子控制式的气体减压阀,都是通过电信号对输入的气体压力进行自动减压调节。从历史上来看,电气转换器是上世纪五十年代发展的比较典型的电子压力调节器,且市场占有率较大。但随着近一二十年来的技术进步,新兴出现了电气比例阀,且正在快速蚕食电气转换器的市场份额。面对目前这两类电子压力调节器共存的局面,在具体应用中会面临选型的问题,因此有必要对这两类气体压力调节器有比较深刻的了解,但国内在这方面的相关资料非常稀少。本文将详细介绍这两类电子压力调节器,并做出对比,为选型和具体应用提供参考。[color=#ff0000][b][size=18px]二、基本概念[/size][size=16px]2.1 电气转换器[/size][/b][/color]电气转换器(Electro-Pneumatic Transducer)在国内外有多种称谓,最常用的术语是:(1)电流/压力转换器(I/P Transducer 或 I/P Converter)。(2)电压/压力转换器(E/P Transducer或 E/P Converter)。(3)电子压力调节器(Electronic Pressure Regulator)上述这些术语很容易理解,其中“I”代表电流,“E”代表电压,“P”代表气动压力。作为典型的电子式气体减压装置,顾名思义,这些装置通过电流(通常为4~20mA)或电压(通常为0~5VDC或0~10VDC)将较大压力的进气进行减压调节。因此,I/P 是一种将电流转换为已知输出压力的电子设备,而 E/P 是将电压转换为已知输出压力的电子设备。电气转换器的一个重要特点是成正比,即随着电流或电压的增加,减压后的输出压力也相应增加。典型的电气转换器及其内部结构如图1所示。电气转换器的基本原理是通过磁线圈(类似于扬声器线圈)在导向膜片上产生力的不平衡来进行运行。除了线圈,没有控制压力输出的电子部件。从图1可以看出,电气转换器是一个简单的力机械天平,具有可调的零点和量程弹簧偏压。操作使用人员经过精心培训,可以调整零点和量程螺钉,以获得所需的精度和重复性。[align=center][img=电气转换器及其内部结构示意图,600,315]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127044971_7024_3221506_3.jpg!w690x363.jpg[/img][/align][align=center]图1 电气转换器及其内部结构示意图[/align]在电气转换器中通常还包含第二个流量增压级,该增压级使用力平衡隔膜和阀座在出口处产生比第一级阀更高的流量。电气转换器作为一种传统的电子压力调节装置,如果正确维护和经常校准,这些压力调节器工作得相当好。事实上,自上世纪五十年代后,电气转换器是气动控制的基础,在世界各地的工厂中配合了无数的控制阀和气缸进行工作。[size=16px][color=#ff0000][b]2.2 电气比例阀(伺服或电磁阀机构)[/b][/color][/size]电气比例阀是国内比较常用的术语,同样,电气比例阀也有以下多种称谓:(1)电子比例调节器/阀(Electronic Proportional Regulator)(2)电气调节器/电空比例阀(Electro-Pneumatic Regulator)(3)比例压力调节器/阀(Proportional Pressure Regulator)(4)比例压力控制阀(Propportional Pressure Control Valve)(5)电子压力控制器(Electronic Pressure Controller)在过去十多年中,发展最快的电子压力调节器类型是伺服阀形式设计的电气比例阀,它使用了两个高速伺服或电磁阀来根据需要增加或降低气体压力以实现减压压力。与以前的电气转换器技术相比,这些电子压力调节器提供了更高的压力和更大的灵活性和鲁棒性。典型的电气比例阀及其工作原理如图2所示。[align=center][img=电气比例阀及其工作原理示意图,600,395]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127280548_153_3221506_3.jpg!w690x455.jpg[/img][/align][align=center]图2 电气比例阀及其工作原理[/align]电气比例阀的基本工作原理是一种典型的气体动态平衡法,即通过使用一个进气阀和一个排气阀使内部压力保持动态平衡,使得出口压力保持在所需的设定值。一个压力传感器监控输出压力,一个数字或模拟控制器调节伺服阀(电磁阀)的快速开启关闭以控制设定点压力。从结构上来说,电气比例阀是一个完整的闭环控制阀,包括两个高速电磁阀、一个底座、一个积分压力传感器和一个电子PID控制电路。二个高速电磁阀分别控制进气、出气。进气阀门的操控与电子电路供给的压力信号成比例。内置压力传感器测量输出压力并提供反馈信号到PID控制电路。反馈信号与压力控制设定值相比较,当二者之间不同时,使其中一个阀门打开。如果要达到系统所需的压力,就会使进气阀动作,按比例消除比较信号中的差异。典型电气比例阀通常需要直流电源和代表压力设定点的模拟信号进行工作。控制器通常接受电流(4~20mA)或电压(通常0~10或0~5VDC)输入信号。除了常见的模拟信号标准外,带数字电路的型号还可以接受串口通信(如RS-485或DeviceNet)。大多数电气比例阀还提供代表压力传感器的模拟信号输出。有些型号的电气比例阀还会包含一个小放气阀(向大气排放少量气体),以便在非常低或无流量情况下使用。[b][size=18px][color=#ff0000]三、特性比较[/color][/size][/b]从上述的基本概念内容可以看出,电气转换器和电气比例阀的基本功能相同,都是用来进行压力的减压控制,都属于电子式减压阀,但所用技术、功能和指标并不一样。表1对这两类压力调节阀进行更详细的对比。[align=center]表1 电气转换器与电气比例阀对比表[/align][align=center][img=电气比例阀和电气转换器比较表,690,519]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127513875_1243_3221506_3.jpg!w690x519.jpg[/img][/align][align=center][/align][b][size=16px][color=#ff0000]四、结论[/color][/size][/b]从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。另外,由于电器比例阀内置了压力传感器和PID控制器,为很多压力控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 请教各位大侠凝胶色谱中流动相加盐的目的和原理

    本人凝胶色谱新手,在做一个项目,需要用凝胶色谱。美国药典论坛上已有方法,重复了人家方法发现有些地方不对,撇开这些不谈,先说说我的疑问吧!1 美国药典上的流动相加了0.1M的硝酸钾,我试了一针加的,一针不加的,发现不加盐峰会前沿,加盐的峰很对称,请问在凝胶色谱里加盐的目的除了改善峰形还有什么作用吗?我更好奇的是盐是通过什么原理来改善峰形的?2 还有一个很奇怪的现象,我的样品和两个杂质出峰时间重叠,即专属性不合格,这三种物质虽然都是钠盐,但大家请注意样品的分子量范围是1000-2000,而两个杂质的分子量一个是100多,一个是300多,就是说在分离原理为分子排阻的凝胶色谱里,分子量1000多的和100,300的一起出峰,改变流动相(换过纯水,也试过加大有机相比例)变化并不明显,这是为什么呢?难道现在的凝胶色谱已经不是单纯的分子排阻原理了,还是说样品的出峰时间除了和分子量有关,还和他们的水溶性有关?这两个问题快把我折磨疯了,请高手解答!

  • 霍尔电流传感器简绍

    在工业、电力、牵引等领域,电压、电流及功率的计量是非常至关重要的。对于电压的计量,低压可以用电压表直接测量,如果测量高压就需要有电压互感器变压后进行测量。那么对于电流的测量交流直流电流很小时,可以用万用表直接串入电路测量,稍大点的(0-7000A以下)电流可以用分流器测量,但是这种方法测量精度低,隔离程度低,电流超过7000A以上时分流器就无法使用了。这里介绍一下测量电流的一种设备电流传感器,电流传感器是电流的一种新型设备,该设备采用霍尔检测原理具有测量精确度高、线性好、隔离程度高、安装更换简便等优点。逐渐取代比较笨重的电流互感器。电流传感器主要有霍尔直测试和霍尔检零式两种原理其中霍尔楂零式精度高但是电路复杂有功耗成本高,霍尔直测式电路简便,成本低安装件结。在此着重介绍一下直测试电流传感器。 一、霍尔电流传感器原理 霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。 二、霍尔元件的电原理 当霍尔元件的垂直方向加上一个磁场B,在原件上加上控制电流I,那么霍尔元件就有一个霍尔电压Uh输出,它们的关系式为Uh=kh·I·B,其中kh为霍尔元件的灵敏度,B为磁场轻度。

  • 【原创】讨论-从零开始做连续流动法比表面积仪(一):原理

    目标仪器:连续流动法比表面积测试仪:功能:测试颗粒的比表面积方法:通过标样和被测样的比较确定被测样的比表面积原理:氮气和氦气混合气,其中氮气作为被吸附气体,氦气为载气,混合气连续不断地流过被测样品,而混合气的成分变化由热导池检测器进行检测,当样品浸入到液氮中,氮气会发生吸附,导致热导池检测器的参考臂和测量臂的电压产生差异,通过数据采集系统和上位机程序实时记录这种电压差,就会画出一个吸附峰;当脱附时,会画出一个相反的峰,由于脱附峰比较陡,便于计算和分析,所以一般都会计算脱附峰的面积,通过和已知比表面积的标样进行比较,就会得出被测样的比表面积。

  • 零磁通电流探头的原理和特性是什么?

    零磁通电流探头的原理和特性是什么?

    零磁通交直流电流探头,采用霍尔效应传感器技术来测量交流和直流信号。其最大可测 2000A 的DC、±2000A 的 AC、DC+AC 峰值。标配的适配器为 15V/2A,输入电压为 100~240VAC,可兼容不同国家地区的市电。零磁通交直流电流探头使用过程中功耗比较大,如果出现过温情况,电源指示灯会闪烁,此时请立即停止测量,断开信号源,待探头降温后,再进行测试。外配标准 BNC 输入,其具有一键归零、正常/故障提示。亦可使用 BNC-to-banana 转接器连接数字电表使用。[img=,690,479]https://ng1.17img.cn/bbsfiles/images/2022/08/202208041620444619_8086_5787068_3.jpg!w690x479.jpg[/img]特性:AC/DC 电流探头DC:2000AAC:4000Ap-p带宽:DC-100KHz(PT-712)/200KHz(PT-722)自动归零,误差≤0.1mV采用零磁通技术,具备低零漂、低温漂和低非线性误差;同时具备低插入阻抗、涡流效应和负载效应。最小电流:0.1A DC最大耐压:600VAC固定衰减比:1000:1导体位置误差: 0.5%额定供电电压:15V零磁通彻底解决了大电流下铁心磁通饱和带来的非线性误差;同时也解决了直流下磁芯被磁化存在剩磁引起的直流失调。零磁通电流探头/闭环式电流探头,真真切切地改善了传统开环式电流探头的测量精度问题。

  • 请问下面对电流的释义有那些不符合计量的错误?

    在“电流”词目下 《辞海》(1999年版), 释义仅有“电荷的流动”, 并没有作出量的释义, 而在句末称“有时也作为 ‘电流强度’的简称”; 对“电流强度”的释义也只 有一个: “有时简称‘电流’. 单位时间内通过导 体横截面的电量.”

  • 【讨论】电压互感器和电流互感器在作用原理上有什么区别?

    主要区别是正常运行时工作状态很不相同,表现为:1)电流互感器二次可以短路,但不得开路;电压互感器二次可以开路,但不得短路;2)相对于二次侧的负荷来说,电压互感器的一次内阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.

  • 泪流满面请教各位大侠凝胶色谱中流动相加盐的目的和原理

    本人凝胶色谱新手,在做一个项目,需要用凝胶色谱。美国药典论坛上已有方法,重复了人家方法发现有些地方不对,撇开这些不谈,先说说我的疑问吧!1 美国药典上的流动相加了0.1M的硝酸钾,我试了一针加的,一针不加的,发现不加盐峰会前沿,加盐的峰很对称,请问在凝胶色谱里加盐的目的除了改善峰形还有什么作用吗?我更好奇的是盐是通过什么原理来改善峰形的?2 还有一个很奇怪的现象,我的样品和两个杂质出峰时间重叠,即专属性不合格,这三种物质虽然都是钠盐,但大家请注意样品的分子量范围是1000-2000,而两个杂质的分子量一个是100多,一个是300多,就是说在分离原理为分子排阻的凝胶色谱里,分子量1000多的和100,300的一起出峰,改变流动相(换过纯水,也试过加大有机相比例)变化并不明显,这是为什么呢?难道现在的凝胶色谱已经不是单纯的分子排阻原理了,还是说样品的出峰时间除了和分子量有关,还和他们的水溶性有关?3 还有一个现象我不能理解,就是走空白,也就是流动相的时候会出现一些溶剂峰,走样品的时候也会出现溶剂峰,但是样品中的溶剂峰的响应要比溶剂峰里的高多了,这是怎么回事呢?这几个问题快把我折磨疯了,请高手解答!!

  • 不同系列接近开关工作原理比较

    不同系列接近开关工作原理比较

    1、概述  接近开关可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近开关大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。  特性:  ● 非接触检测,避免了对传感器自身和目标物的损坏。  ● 无触点输出,操作寿命长。  ● 即使在有水或油喷溅的苛刻环境中也能稳定检测。  ● 反应速度快。  ● 小型感测头,安装灵活。2、类型  (1)按配置来分  (2)按检测方法分  ●通用型:主要检测黑色金属(铁)。  ●所有金属型:在相同的检测距离内检测任何金属。  ●有色金属型:主要检测铝一类的有色金属。3、高频振荡型接近开关的工作原理电感式接近开关由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近开关检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。http://ng1.17img.cn/bbsfiles/images/2012/11/201211081641_402495_2627921_3.jpg  下面为详细介绍:  (1)通用型接近开关的工作原理  振荡电路中的线圈L产生一个高频磁场。当目标物接近磁场时,由于电磁感应在目标物中产生一个感应电流(涡电流)。随着目标物接近开关,感应电流增强,引起振荡电路中的负载加大。然后,振荡减弱直至停止。传感器利用振幅检测电路检测到振荡状态的变化,并输出检测信号。振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。  (2)所有金属型传感器的工作原理  所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近开关时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。  (3)有色金属型传感器工作原理  有色金属传感器基本上属于高频振荡型。它有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率的变化。当铝或铜之类的有色金属目标物接近开关时,振荡频率增高;当铁一类的黑色金属目标物接近开关时,振荡频率降低。如果振荡频率高于参考频率,传感器输出信号。4、电容式接近开关的原理  电容式接近开关由高频振荡器和放大器等组成,由传感器的检测面与大地间构成一个电容器,参与振荡回路工作,起始处于振荡状态。当物体接近开关检测面对,回路的电容量发生变化,使高频振荡器振荡。振荡与停振这二种状态转换为电信号经放大器转化成二进制的开关信号。5、霍尔接近开关工作原理  原理简介:  当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为 U=K•I•B/d 其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。  霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关、压力传感器、里程表等,作为一种新型的电器配件。6、线性接近开关的原理  工作原理:  线性接近开关是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。该接近开关具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。线性传感器主要应用在自动化装备生产线对模拟量的智能控制。7、电感式接近开关的工作原理  工作原理:  电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。

  • 【讨论】电压互感器和电流互感器在作用原理上有什么区别?

    主要区别是正常运行时工作状态很不相同,表现为:1)电流互感器二次可以短路,但不得开路;电压互感器二次可以开路,但不得短路;2)相对于二次侧的负荷来说,电压互感器的一次内阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.

  • 【转帖】电导率仪是测量两电极板间的电流的仪器

    以下原文来自:http://www.saikehb.cn/article-1554.html 什么是电导率?电导率是物体传导电流的能力。电导率的基本单位是西门子(S),原来被称为欧姆。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。 电导率仪的工作原理是什么?电导率仪的测量原理其实就是按欧姆定律测定平行电极间溶液部分的电阻。电导率测量仪是因为电导电极内部结构中的两块平行的极板,在被测溶液中,使得极板的两端加上一定的电势——通常为正弦波电压,然后测量极板间流过的电流。 根据欧姆定律,电导率(G)--电阻(R)的倒数,是由电压和电流决定的。主要计算方式   1   I (amps) G = ── = ───── ;   R   E (volts) 但是,当电流通过电极时,会发生氧化或还原反应,从而改变电极附近溶液的组成,产生“极化”现象,从而引起电导测量的严重误差。为此,采用高频交流电测定法,可以减轻或消除上述极化现象,因为在电极表面的氧化和还原迅速交替进行,其结果可以认为没有氧化或还原发生。电极常数常选用已知电导率的标准氯化钾溶液测定。不同浓度氯化钾溶液的电导率(25℃)列于下表。溶液的电导率与其温度、电极上的极化现象、电极分布电容等因素有关,仪器上一般都采用了补偿或消除措施。 电导率仪由电导电极和电子单元组成。电子单元采用适当频率的交流信号的方法,将信号放大处理后换算成电导率。因为溶液中离子的电荷会加速电流的导通,所以溶液的电导率与溶液中的离子浓度成比例。但是,某些溶液的电导率与离子浓度没有直接的关系。参考dds-11a-s电导率仪的使用方法说明见http://www.saikehb.cn/article-305.html 。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制