当前位置: 仪器信息网 > 行业主题 > >

电子显微镜原理

仪器信息网电子显微镜原理专题为您提供2024年最新电子显微镜原理价格报价、厂家品牌的相关信息, 包括电子显微镜原理参数、型号等,不管是国产,还是进口品牌的电子显微镜原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子显微镜原理相关的耗材配件、试剂标物,还有电子显微镜原理相关的最新资讯、资料,以及电子显微镜原理相关的解决方案。

电子显微镜原理相关的资讯

  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 新视野—三维彩色的电子显微镜照片
    扫描电子显微镜,作为实验室必备工具,其功能如同照相机一样,让我们清晰的观察到材料的微观形貌,放大的尺度可以达到微米级甚至是纳米级别。扫描电子显微镜原理图一 扫描电子显微镜图片(左)和EDX图片(右)扫描电子显微镜的原理是利用电子束轰击样品产生二次电子、背散射电子、特征X射线、阴极荧光等信号,这些信号会被不同功能的探头分别接收,成像得到相对应的图片。比如二次电子信号获得的图片是材料的微观形貌,这个图像是灰度图,如图一(左)。特征X射线的图片则反应了材料的成分表征,但这个图片相比于二次电子形貌图,它是一张彩色图片,如图一(右)。由于扫描显微图片是二维的,是无法直观的获得Z方向的高度值。但样品表面的实际形貌是三维的,或许获得一个三维图像,可以更加准确的得到真实形貌。我们测试一个铝合金的断口,利用Hitachi Map 3D和SU5000的五分割BSE探头的外环四象限,分别获取图片并最终形成一张三维图片,再获取EDX的成分表征结果,两者叠加,可以得到一张彩色的三维形貌成分图,如图二所示。不仅可以在X,Y,Z方向准确的观察样品材料,同时获得三维成分信息分布的情况。图二 3D形貌EDX图片日立多功能自动化热场扫描电子显微镜SU5000,不仅配置有多个高性能探头,还可以对其增加多种扩展附件及软件,如EDS,EBSD,拉伸台,压缩台,加热台,制冷台,冷冻传输,真空转移,纳米操作手等,也可以进行光镜与电镜联用,原子力显微镜联用,拉曼联用, 3view超薄切片等,甚至可以多附件的联合使用,真正实现了一机多能。图三 SU5000及5分割BSE探头公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 电镜博物馆|1959年刊:“神奇的电子显微镜”
    温故知新,从历史刊物文章中学习早期电镜产品技术历程,以下内容摘自《Popular Electronics》1959年11月刊(Vol. 11, No. 5),文章题目“The Amazing Electron Microscope”,作者Morris M. Rubin。(由“RF Cafe”网收录)光学显微镜的分辨率受到光波长的限制。天文学家William Dawes首先提出了一种量化的方法,这种方法基于视觉上分辨距离较近的恒星的能力。被称为道斯极限,4.56/D弧秒的值是由经验确定的(D是仪器的孔径,单位是英寸)。任何具有完美光学系统的光学系统的放大倍数的理论上限在2000左右。正如这篇1959年《Popular Electronics》上这篇文章所描述,电子显微镜通过发射一束半径远小于可见光波长的电子,并测量其反射,从而消除了这种分辨极限。图像必然是“假色”,因为我们无法感知到电子束所显示的表面的真实波长/颜色。《Popular Electronics》1959年11月刊封面与目录整理译文如下,以飨读者。“惊人的电子显微镜作者:Morris M. Rubin在光学显微镜分辨率达到极限后很久,电子显微镜的分辨率还在继续提高……高达 20万倍。从第一位伟大的显微镜设计师安东列文虎克(Antony van leeuwenhoek)时代起,科学家们就将显微镜作为他们的主要工具之一。年复一年,随着光学玻璃制造技术的改进,新的更好的显微镜使科学家能够看到越来越微小的物体。随后,大约在1890年,光学显微镜分辨率的提升似乎已经走到了尽头。超过大约 2000 倍的放大倍数,即使是最精细、设计最完美的显微镜也只能看到一个模糊的斑点。光本身的基本特征阻碍了更强大显微镜的发展。与声音类似,光以可测量长度的波传播。例如,在可见光谱的中,波的长度约为 6/250000 英寸。为了让光波区分物体上的两个点,两点之间的距离必须是光波长度的三分之一,即6/ 250000英寸以上,小于约半波长的物体无法被光学显微镜清晰放大,无论其透镜多么完美。科学家们推断,既然根本的瓶颈是“普通”光的波长相对较长造成,那么如果有可能使用某种波长较短的光,就可以实现更有效的放大。于是,人们探索了这种可能性,并利用紫外光(其波长约为可见光的三分之一),设计出可以放大到5000倍的显微镜,放大倍数达到可见光显微镜极限的两倍多。此时,光学显微镜达到了其设计能力的天花板。如果科学家想要更大的放大倍数,他们必须找到一种新的方法。电子的“营救”电子显微镜的理论在20世纪20 年代提出。实验表明,当电子受到高压场加速时,它们会获得可测量的特征波长。电压越高,电子速度越大,表观波长越短。此外,已经证明电子可以被磁场弯曲或折射,类似光可以被光学透镜弯曲和折射。因此,光学显微镜的分辨率极限,就可以通过使用更短波长电子流替代光,从而获得更高放大倍数,这似乎是合乎逻辑的。有了这样的重要概念,科学家们开始着手设计电子显微镜。到20世纪30年代后期,实验型的电镜已经在欧洲、加拿大和美国投入使用。随后,在1940年,RCA公司推出美国第一台商用电子显微镜。虽然按照目前的标准,这些最初的电镜产品设计还比较落后,但相比有史以来最好的光学显微镜则要优越的多。甚至紫外线显微镜的放大倍数也仅限于 5000 倍,而这些早期的电子显微镜却能够放大 10万 倍。今天的模型放大倍数超过 20万倍——足以看到人类头发直径百万分之一的物体——并且通过照相技术进一步放大图像,可以将直径放大至100万倍以上。电子取代光。与光学显微镜的原理类似,电子显微镜使用一系列镜头逐步放大样品。但是,虽然光学显微镜使用玻璃透镜来弯曲光线,而电子显微镜的“透镜”是线圈——类似于电视机的偏转线圈——可以弯曲和偏转电子流。电子显微镜与普通光学显微镜的比较。基本原理是一样的,但是电子显微镜使用线圈来磁偏转和聚焦电子束,而不是用玻璃透镜来弯曲和折射光线。电子枪发射的电子通过聚光透镜,聚光透镜将电子束集中在样品上。由于样本被制样切成部分透明的薄片,在任何一点上,电子通过它的数量都随标本的密度而变化。这样就产生了一种不同电子密度变化的图案。虽然这种图案肉眼是看不见的,但可以通过在标本下方放置荧光屏来显示。然而,在实际操作中,电子通过物镜,这是进行放大的第一步。就在它们到达投影镜头之前,一个“展开”的密度图案就形成了,中心区域随后被投影镜头进一步放大。放大的标本可以直接在荧光屏(其外观和工作方式类似于电视屏幕)上查看,或者可以通过特殊相机拍摄图像(通常内置于电子显微镜中)。放大所得照片可以进一步放大样品。关于价格。除了光学系统,电子显微镜还必须有超稳定的高压电源和高效率的真空系统。这种复杂性导致了当今电子显微镜的高昂价格——从 12000 美元到40000 美元不等,具体取决于所需的放大倍率、品牌等。以上展示了两种最广泛使用的电子显微镜。左边是RCA EMU-3,可以放大20万倍。右边是Norelco EM100B,放大到90000倍。Norelco(荷兰飞利浦)和 RCA(美国无线电公司)是这些装置的最大生产商。德国和日本的制造商也活跃在该领域。俄罗斯人也参与其中,生产了一种电子显微镜,该显微镜似乎是 1940 年 RCA 模型的改编版。首台RCA电子显微镜的共同发明者,James Hillier博士,左边显示的是RCA的EMB模型,在1940年上市。局限性。尽管电子显微镜可能有用,但它仍然有其局限性。由于高压电子对生物体是致命的,电子显微镜不能用于观察活的细菌、病毒等。另外,电子束不能穿透超过 1/25000 英寸,所以电子显微镜不能用于观察更厚的物体——例如苍蝇的翅膀。后一个问题的解决方案是开发特殊设备,这些设备可以切割出足够薄以允许电子通过的待观察物体的切片。这种“切片机”如何处理较软的材料我们很容易想到,但我们如何切下一层 1/25000 英寸厚的钢?这个问题的答案非常简单。钢材表面的“复制品”是在柔软的材料上制成的,例如蜡。复制品很容易切片,当它安装在非常薄的透明膜上时,它会取代显微镜中的原始物体。重要性。现在全国各地的实验室都在使用大约一千台电子显微镜。它们是寻找疾病(尤其是癌症)原因的研究中的宝贵工具,同时,它们在解决各种工业问题方面也很有用。例如,可以通过仔细检查电子显微镜照片来判断橡胶轮胎的磨损质量,从而无需进行漫长而繁琐的路试。最近在纽约举行的苏联展览上展出的一个1959年的俄罗斯电镜但是,电子显微镜最令人兴奋的应用是在细胞研究中。细胞通过蛋白质合成过程生长、滋养和再生。在电子显微镜的帮助下,科学家们第一次能够看到这些过程——这才是真正的“生命的秘密”。人类是一种永不满足的好奇生物。电子显微镜是满足人类求知欲和理解力的最有效手段之一。你能认出这些图片吗?所有这些都是在电子显微镜的帮助下拍摄的(答案在页面底部)。答案1. (a) 总放大倍数 160,000X;飞利浦电子公司提供2. (c) 总放大倍数 425,000X;由法兰西学院和 RCA 提供3. (c) 总放大倍数 112,000X;由麻省理工学院 CE Hall 博士提供4. (d);总放大倍数 68,000X;由 Esso Research & Engrg 公司提供5. (c) 总放大倍数 14,680X;由陶氏化学公司和 RCA 提供”
  • 电子显微镜首次生成彩色图像
    想象你的一生只能在看见黑色和白色的世界中度过,然后第一次看见一瓶彩色的玫瑰花。这便是利用电子显微镜首次拍摄下细胞多色彩照片的科学家拥有的感觉。  电子显微镜可将一个物体放大到1000万倍,从而使研究人员得以窥视细胞或蝇眼的内部工作原理。但迄今为止,他们看到的只有白色和黑色图像。最新进展利用了3种被称为镧系元素的不同稀土金属。它们被分层叠放在显微镜载片上的细胞上方。显微镜能探测到每种金属何时失去电子并且用人工色素记录下每一次过程。迄今为止,研究人员仅能产生3种颜色——红色、绿色和黄色。他们在日前出版的《细胞化学生物学》杂志网络版上报告了这一成果。  不过,这种利用不同颜色的能力创造了灰度图像无法实现的鲜明对比。比如,该团队能更详细地看见一连串蛋白挤过细胞膜,而这是科学家此前从未做到的。随着进行更多微调并加入金属离子,研究人员希望再添加三四种其他颜色并且改善图像的分辨率。
  • 《生命科学中的电子显微镜技术》正式出版
    由丁明孝、梁凤霞、洪健、李伯勤、王素霞、朱平领衔主编的《生命科学中的电子显微镜技术》,经过八年编著,于今日正式出版。它凝聚了国内外45位电镜专家的经验和智慧,是一部综合性、实用性、专业性极强的经典著作。本书以促进生物电镜实验水平和制样效率的不断提高为目的,主要介绍了当前各类生物电镜技术,侧重实验技术的难点要点,实验问题和解决途径,强调实验设计理念与具体操作细节。全书共分为8章,包括:常规生物电镜样品制备技术,电镜原位成分分析技术,电镜三维重构技术,光电关联显微成像技术,植物组织的透射电镜样品制备技术,医学电镜超微病理诊断及电子显微镜的结构、原理及操作要点等内容。这部著作凝结着编写组的知识和心血,代表着一代中国电镜工作者的最高水平,将成为我国生命科学电镜技术及电镜教育事业的里程碑。八年来,全国生物电镜工作者一起见证了它的酝酿和诞生。这部著作在当前特殊的国际形势下诞生,具有特别的现实意义和历史意义,是全体电镜人的骄傲。为庆祝这部著作的发行,且应广大读者要求,希望获得领衔作者丁明孝教授的寄语签名,经过与丁老师沟通,中镜科仪将准备100册,由丁老师集中签名。请需要购买的老师尽快在如下链接中进行登记。点击链接填表订书: https://f.wps.cn/fw/N0vNiDmQ/
  • 见微知著——电子显微镜技术专业火爆的背后
    在河南省开封市东京大道北侧的职业教育园区里,坐落着一所特别的学校——河南化工技师学院。这所以现代化工技术为专业特色的技工院校因电子显微镜而“放大”了其在科研领域的知名度。电子显微镜可以帮助人类直接看到物质的原子结构或生物蛋白结构,是现代科学技术中不可缺少的重要工具,广泛应用于生命科学、材料科学、航空航天、医学、冶金学、考古学、刑侦学等领域。2023年4月19日,观众在《阅壤——月壤科研成果主题艺术展》展览上,观看月壤颗粒扫描电子显微镜背散射全景照片。新华社记者 黄博涵 摄国内唯一的以电子显微镜及相关科研领域为展览内容的博物馆——开封市电子显微镜博物馆就位于河南化工技师学院的校园里。漫步其约1500平方米的展厅,不仅可以回望电子显微镜的发展史,也能了解中国在电子显微科研领域的成长历程。河南化工技师学院拥有全国职业教育院校中唯一的电子显微镜技术专业(以下简称电镜专业),这也是学院招生最为火爆的专业。据河南化工技师学院党委副书记、院长袁巧红介绍,电镜专业的毕业生绝大多数就职于北大、清华、中科院等国内知名高校、医院和科研院所,为中国现代科学的科研一线提供了大量电镜技术人才。对于电镜专业的火爆需求,该专业的授课老师郭颖深有感触,“在我授课的一年级新生里,已经有两位被就业单位预定了。还有一位本科毕业的外聘教师被电镜专业的就业前景所吸引,在前年成了这个专业的学生。”据介绍,今年该专业原本计划招生40人,因报考和市场需求火爆,最后扩大招生至100人。电镜专业热门的背后是不断增长的电镜技术人才需求,而电镜技术人才稀缺的背后则是中国在材料科学、生命科学、半导体工业等前沿科学及工业领域不断加大的研发投入。继2022年中国全社会研发经费支出首次突破3万亿元、研发投入强度首次突破2.5%之后,2023年,全国全社会研发经费支出同比增长8.1%,研发投入强度达2.64%,基础研究投入比重连续5年超过6%。技术工人队伍是支撑中国制造、中国创造的重要力量。今年初,拥有自主知识产权的首台国产场发射透射电子显微镜正式发布,标志着中国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力。据了解,河南化工技师学院电镜专业的部分师生也参与了相关研发工作,为这一重大科研突破作出了贡献。电镜专业的火爆反映了社会对技能人才的不断认可。目前中国技能劳动者超过2亿人,其中高技能人才超过6000万人。按照规划,“十四五”时期末,中国技能人才占就业人员的比例将达到30%以上,高技能人才占技能人才的比例达到1/3。以职业教育大省河南为例,该省在2021年提出推动实施“人人持证、技能河南”建设。河南省连续15年技工院校年招生突破10万人,越来越多的劳动者特别是青年一代选择走技能成才之路。仅河南化工技师学院就培养出两位被誉为“世界技能奥林匹克”的世界技能大赛获奖选手,贺江涛曾获得世界技能大赛工业控制项目铜牌,姜雨荷则为中国夺得世界技能大赛化学实验室技术项目金牌,两人如今都在学校任教。“三百六十行,行行出状元”。这句老话在现代同样适用。
  • 电子显微镜新型电子源在日本问世
    近日,日本物质材料研究机构的研究人员开发出一种新型电子源,有望使电子显微镜的识别和测定能力得到飞跃式提高。  据介绍,开发出这种新型电子源的是日本物质材料机构的两名华人科学家,一次元材料组组长唐捷和研究员张涵(音译)。为了大幅度提高电子显微镜的性能,他们重点进行了新型电子源的开发,同时在电子放射方法方面也进行了创新。  目前,电子显微镜普遍使用金属元素钨作为电子源,而化合物六硼化镧(LaB6)作为电子源虽然在性能上超过钨,但其硬度超过钨一倍以上,如果没有合适的加工方法很难实现应用。此次研究人员使用了一种叫化学气相堆积法的方法,首先制成了单结晶的六硼化镧纳米线,然后使用电界蒸发的方式除去了纳米线表面的不纯物质,从而成功开发出了新型电子源。与以往通过高温加热热源,使之放射出热电子的方式相比,新型电子源采用的是以极高的亮度放射出超细电子束的电界放射方式。  在电子显微镜技术领域,日本过去一直领先世界,透过式电子显微镜和扫描式电子显微镜也一直是日本重要的技术出口产品,但目前在该领域日本已经被美国和德国超越。研究人员称,前段时间日本已经开发出新型高性能镜头,如果配上此次开发成功的六硼化镧单结晶纳米线电界放射型电子源,将有望使日本重新夺回透过式电子显微镜世界领先地位。
  • 820万!华中师范大学扫描电子显微镜和透射电子显微镜设备采购项目
    项目编号:ZJZB-ZC-202211-255/HSAWT01-20220420项目名称:华中师范大学扫描电子显微镜和透射电子显微镜设备采购预算金额:820.0000000 万元(人民币)最高限价(如有):820.0000000 万元(人民币)采购需求:本项目采购扫描电子显微镜、透射电子显微镜各1台,主要用于合成生物学科研工作开展,以及创新型人才培养。(详见采购文件第三章“项目采购需求”)(1)类别:货物(2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定(3)其他:投标人参加投标的报价超过该包采购最高限价的,该包投标无效;投标人报价须包含该采购需求的全部内容。合同履行期限:交货期:签订合同之日起270日历天内送货并完成安装调试;质保期/保修期:提供自设备验收合格之日起2年内免费维修。本项目( 不接受 )联合体投标。华中师范大学扫描电子显微镜和透射电子显微镜设备采购招标公告.docx
  • 816万!日立中标华中师范大学扫描电子显微镜和透射电子显微镜设备采购项目
    一、项目编号:ZJZB-ZC-202211-255/HSAWT01-20220420(招标文件编号:HSAWT01-20220420)二、项目名称:华中师范大学扫描电子显微镜和透射电子显微镜设备采购三、中标(成交)信息供应商名称:森塔实验室科技服务(武汉)有限公司供应商地址:武汉市东湖新技术开发区高新大道888号高农生物园总部B区1#楼205室中标(成交)金额:816.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 森塔实验室科技服务(武汉)有限公司 扫描电子显微镜和透射电子显微镜 日立 SU8600和HT7800 各一台 8160000
  • 场发射电子显微镜的电子源研制
    成果名称场发射电子显微镜的电子源研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:该项目拟搭建一套ZrO/W Schottky场发射电子源基本研制平台,主要开展以下两个方面的研究内容:1)通过增加电子束磁偏转控制、可编程皮安电流表和法拉第杯等部件,搭建一套电子束性能评测系统,用于电子束的角电流密度、亮度、稳定度、束流密度分布等重要电子光学参数的测评。完善场发射电子源研制平台,优化研制工艺,获得可用于实际测试的ZrO/W Schottky场发射电子源。2)将自主研制的场发射电子源安装到商用Amray1910场发射扫描电镜上,和FEI公司提供的ZrO/W Schottky电子源进行实际成像比较,为实用定型提供依据。 该项目完成了电子束磁偏转系统的搭建;在高真空下,完成了法拉第杯和高精度皮安电流表电子束束流检测系统;用EYG单晶荧光屏替换普通荧光粉屏解决高真空放气问题等;完成超高真空发射体炼面和电子束斑成像系统中发射体性能评测系统的研制;利用评测系统进行电子束的角电流密度、亮度、稳定度及发射体功函数等重要电子光学参数测试,进而优化场发射电子源研制工艺。由于本项目完善了&ldquo 发射体性能评测系统&rdquo ,申请人利用该评测系统对自己研制的场发射电子源和FEI公司的商用电子源进行了对照测试,测试结果证明:自己研制的场发射电子源在亮度上达到了FEI公司的商用电子源的水平。后续准备加工FEI公司的场发射环扫(ESEM)的场发射源组件,待ESEM更换电子源时,直接更换进行实际使用测试。
  • 到2026年,全球电子显微镜市场规模将超过38亿美元
    接下来,小编先带大家了解下,什么是电子显微镜吧!电子显微镜,简称电镜,由镜筒、真空装置和电源柜三部分组成。作为实验研究的基本工具,其在各大领域的研究过程中发挥着不可少的作用。显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。据悉,电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。电子显微镜的出现使人类的洞察能力提高了好几百倍,不仅看到了病毒,而且看见了一些大分子,即使经过特殊制备的某些类型材料样品里的原子,也能够被看到。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。到21世纪,电子显微镜已广泛应用到生物学、医学、材料科学、地质勘探、灾害鉴定以及工业生产等领域,拥有较大的市场规模,发展前景可期。据数据显示,近年来随着全球对生命科学、材料研究的探索和研究持续深入,以及对半导体需求不断扩大等,推动了高校、科研院所、半导体工业等领域对电子显微镜的需求。全球电子显微镜行业市场规模呈不断增长趋势。另外,由于高倍率,电子显微镜在生物学、材料科学、纳米技术和半导体工业中具有重要的应用。不断增长的研发活动,以及较易获得国家、政府科研资金等,将推动生命科学和材料学等领域利用扫描电子显微镜进行科学研究需求增加,从而推动电子显微镜的增长。因此,据预测,未来全球电子显微镜将保持5.85%的复合增速保持快速增长,到2026年全球电子显微行业市场规模将超过38亿美元。而对于我国而言,目前我国有超过20多家专业生产显微镜的厂家,但产品基本为教育类和普及类的显微镜,年营业额仅为18亿元人民币,市场竞争激烈。近年来以中国为首的发展中国家在教育、工业化、技术产业化、科研设施建设方面加快投资,我国显微镜产量呈现逐年稳步增长态势。未来,随着政府以及私人机构加大纳米技术、半导体等新兴应用领域的研发投资以及生命科学领域的蓬勃发展,显微镜的市场需求将持续增加,相关企业可重点布局。
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置
    Hello,好久不见距离上次更新已有时日,这段时间小编没密集更新是因为知道大家在忙着立新年flag!但2018年的计划一定不能少的是跟随tescan电镜学堂持续输入电镜知识,稳定输出科研成果! 这里是TESCAN电镜学堂第7期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 特殊试样的处理对于一些特殊的试样,除了常规制样方法外,可能还需要一定的特殊处理。§1. 金相试样金相试样要经过严格的抛光程序,为了在电镜下观察能有更好的衬度,需要进行一定的腐蚀处理。不同的金属需要不同的腐蚀剂以及腐蚀时间,这需要去慢慢摸索。腐蚀不能过度,否则表面会有太多的腐蚀坑,此外,腐蚀剂要清洗干净。§2. 生物试样对于生物样品,为了保证在电镜样品室的高真空下不发生变形而保持原貌,需要对试样进行一系列的处理,需要经过清洗、固定、脱水、干燥等步骤。① 清洗:试样取材好后可用生理盐水或缓冲液清洗,或用5%的苏打水清洗;用超声震荡或酶消化的方法进行处理。② 固定:常用戊二醛及锇酸双固定。③ 脱水:样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。④ 干燥:可用空气干燥法、临界点干燥、冷冻干燥等方法。§3. 石墨烯试样石墨烯是近年特别火热的样品,不过利用扫描电镜进行石墨烯的观察需要一定的技巧,否则难以有很好的说服力。理论上石墨烯厚度非常小,在扫描电镜下难以有很好的衬度。而那些铺展的很平整,却有着很好的明暗衬度的试样,本人觉得只能算是石墨薄片而不能算石墨烯。扫描电镜分辨率还不足以观察到石墨烯的碳原子结构,也没有探测器能证明其碳结构,不过扫描电镜可以定性判断其膜层的厚薄,当然这需要特殊的制样。我们可先对硅片这种平整基底镀上一层较厚的金膜,然后将石墨烯分散镀金硅片上。我们对镀金的形貌有着非常清晰的认识,如果表面有一层石墨烯的话,金膜就会像蒙了一层纱一样。石墨烯膜层越薄,金颗粒越清楚;反之如果金颗粒越不清楚,则膜层越厚;当完全看不见金颗粒时,则膜层已经相当厚,完全不算是石墨烯了,这点可以通过蒙特卡罗模拟来得到印证。之所以选择先镀金,就是让被覆盖的与未被覆盖的区域进行一个对比,这样可以定性判断石墨烯的膜厚。图4-9 石墨烯分散在硅片和镀金硅片上的对比如图4-9,左边四张图片是石墨烯直接分散在硅片上,因为没有参照物,只能判断出不同区域的厚薄,而这些厚薄是否能达到石墨烯要求的水准则难以判断;而右边六张图片是分散在镀金硅片上的图片,我们很容易通过与空白处金颗粒的对比来大致判断其膜层厚度是否符合石墨烯的要求。第三节 试样的放置问题 试样在放入电镜室中需要满足一定的几何条件。首先,一次性放置多个样品时,尽量保持高度一致。遇到高度不等的情况,可以将较矮的样品放置在加高台上,如图4-10。将不同高度的样品垫平。 图4-10gm-163-r样品台其次,样品如果表面凹凸不平,如断口材料或楔形样品,在放置样品的时候尽量将要观察的区域的朝着eds或etd的方向,避免在电镜观察时,因为观察面背向探测器而有强烈的阴影或者没有eds信号。还有,对于截面样品观察,有时候并非在90度的绝对垂直下效果最好。特别是对于一些膜面质量不是很好有点撕裂的薄膜,有时候倾转一点的角度,在非正入射的条件下有更好的立体感和景深,有时候更能观察到膜面和基体的结合情况。不过在进行测量的时候要记住需要进行倾斜修正。如图4-11上图,在正90度下虽然能观察到膜面,但是膜面质量的好坏及整体情况却无法判断,而在70度下则能看出膜层的整体情况。将倍数放大后,也可看到70度下有更好的景深和立体感,也更有助于进行膜面和基底结合的判断。 图4-11 膜的截面在90度和70度倾转下的对比再如图4-12,试样为两层同样成分的薄膜,如果在正90度下进行观察,膜之间的界线很不明显,而如果旋转到55度,可以发现膜在断裂过程中有发生“错位”地方,这个角度的观察使得对膜层的观察更加清楚。图4-12 双层膜的截面在90度和55度倾转下的对比特别是一些半导体的截面样品,时常都是先在非正入射的情况下进行观察,再转到90度的情况下进行测量。?福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。?奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】截面样品观察,是否一定是在90°的绝对垂直下效果最好,为什么?(快去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息: TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统
  • 吉林大学电子显微镜中心启动 张希与郑伟涛共同揭牌
    p  1月10日上午,吉林大学电子显微镜中心启动仪式在中心校区文科实验楼举行。吉林大学校长张希,副校长郑伟涛、孙友宏,学校相关职能部门、学院负责人出席仪式。仪式由孙友宏主持。/pp  据悉,吉林大学电子显微镜中心目前配置了十余套电镜相关设备,包括日本电子JEM-ARM300F球差校正透射电镜、JSM-7900F场发射扫描电镜、JEM-2100F场发射透射电镜,赛默飞Tolos L120C透射电镜等。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/8fe68651-ddfd-4f85-9685-c03083ea4bf7.jpg" title="0.jpg" alt="0.jpg"/  /pp  启动仪式上,实验室与设备管理处、测试科学实验中心负责人汇报了电子显微镜中心的筹建情况。生命科学学院负责人作为学院代表发言。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/bda57110-0094-43a1-a042-db7412808525.jpg" title="1.jpg" alt="1.jpg"//pp  张希对前来参加电子显微镜启动仪式的各位老师表示欢迎,并对他们在中心筹建过程中所付出的辛勤努力和作出的重要贡献表示感谢。他指出,“工欲善其事,必先利其器。”借用新的研究工具,人类可以认识物质世界的新层次。电子显微镜是一类纳米乃至皮米级的结构分析工具。希望电镜中心老师们为全校师生提供专业的技术服务,充分开发仪器的各种功能,保障数据的重复性和精确性,促进全校相关学科科学研究水平的提升。他强调,基于新原理的仪器研制成功本身就是重大原创成果。目前,国内先进仪器设备大多依赖进口。希望学校师生能够致力于重大仪器的自主研制,为开发基于新原理的国产重要仪器作出贡献,助力科技强国梦的早日实现。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/06826570-3a8e-4255-b60a-16794187aba7.jpg" title="2.jpg" alt="2.jpg"//pp  随后,张希与郑伟涛共同为电子显微镜中心揭牌。/pp  仪式结束后,与会人员参观了电子显微镜中心实验室。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/5f67885d-2387-462e-bd26-b823422674df.jpg" title="3.jpg" alt="3.jpg"//pp  吉林大学电子显微镜中心的正式启动,将为校内外提供高水平专业化的技术服务,为学校教学、科研和“双一流”建设提供新动能。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/334caa55-8aab-46c8-a45d-543e2168edb2.jpg" title="00.jpg.png" alt="00.jpg.png" style="width: 450px height: 401px " width="450" vspace="0" height="401" border="0"//p
  • 电子显微镜下首次成功创建电子—光子对
    来自德国和瑞士的一个研究团队首次在电子显微镜中以可控方式成功创建了电子—光子对。这一发表在《科学》杂志上的新方法,可同时生成两个成对的粒子,且能够精确地检测到所涉及的粒子。该研究结果扩展了量子技术的工具箱。 世界各地的科学家都在尝试将基础研究的成果应用到量子技术中。为此,通常需要具有定制特性的单个粒子。 德国马克斯普朗克研究所(MPI)、哥廷根大学和瑞士洛桑联邦理工学院(EPFL)的国际团队成功地在电子显微镜中耦合单个自由电子和光子。在哥廷根大学的实验中,来自电子显微镜的光束穿过由瑞士团队制造的集成光学芯片。该芯片由一个光纤耦合器和一个环形谐振器组成,该谐振器通过将移动的光子保持在圆形路径上来存储光。 MPI科学家阿明菲斯特解释说,当一个电子在最初的空谐振器上散射时,就会产生一个光子。在这个过程中,电子损失的能量正好是光子在谐振器中从无到有创造出来所需的能量。结果,这两个粒子通过它们的相互作用耦合成一对。通过改进测量方法,物理学家可精确地检测所涉及的单个粒子及其表现。 研究人员强调,使用电子—光子对,只需要测量一个粒子即可获得有关第二个粒子的能量和时间的信息,这使得研究人员可在实验中使用一个量子粒子,同时通过检测另一个粒子来确认它的存在。这对于量子技术的许多应用来说都十分必要。 研究人员将电子—光子对视为量子研究的新机遇。该方法为电子显微镜开辟了吸引人的新用途。在量子光学领域,纠缠光子对已经改善了成像。通过该项工作,可用电子来探索这些概念。研究人员称,这是第一次将自由电子纳入了量子信息科学的工具箱。更广泛地说,使用集成光子耦合自由电子和光,可为新型混合量子技术开辟道路。
  • 一文看懂透射电子显微镜TEM
    p  透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。/pp strong 1 背景知识/strong/pp  在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。/pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height="316" width="521"//p/centerp style="text-align: center "strong电子束与样品之间的相互作用图/strong/pp 来源:《Characterization Techniques of Nanomaterials》[书]/pp  透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。/pp  strong2 TEM系统组件/strong/pp  TEM系统由以下几部分组成:/pp  电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。/pp  聚光镜:将电子束聚集得到平行光源。/pp  样品杆:装载需观察的样品。/pp  物镜:聚焦成像,一次放大。/pp  中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。/pp  投影镜:三次放大。/pp  荧光屏:将电子信号转化为可见光,供操作者观察。/pp  CCD相机:电荷耦合元件,将光学影像转化为数字信号。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height="359" width="358"//centerp style="text-align: center "strong透射电镜基本构造示意图/strong/pp 来源:中科院科普文章/pp  strong3 原 理/strong/pp  透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height="333" width="422"//centerp style="text-align: center "strong电镜和光镜光路图及电镜物镜成像原理/strong/pp 来源:中科院科普文章/pp  strong4 样品制备/strong/pp  由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。/pp  试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。/pp  制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height="296" width="406"//centerp style="text-align: center "strong超细颗粒制备方法示意图/strong/pp 来源:公开资料/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height="325" width="404"/br/strong材料薄膜制备过程示意图/strong/centerp  来源:公开资料/pp strong 5 图像类别/strong/pp  strong(1)明暗场衬度图像/strong/pp  明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。/pp  暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height="306" width="237"/br/strong明暗场光路示意图/strong/centercenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height="318" width="294"/br/strong硅内部位错明暗场图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(2)高分辨TEM(HRTEM)图像/strong/pp  HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height="312" width="213"//centerp style="text-align: center "strongHRTEM光路示意图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height="234" width="321"/br/strong硅纳米线的HRTEM图像/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(3)电子衍射图像/strong/pp  选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。/pp  会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。/pp  微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br//pp  /pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height="296" width="227"//ppstrong电子衍射光路示意图/strong/p/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height="174" width="173"//centerp style="text-align: center "strong单晶氧化锌电子衍射图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height="174" width="175"//centerp style="text-align: center "strongstrong无定形氮化硅电子衍射图/strong/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height="174" width="170"/br/strong锆镍铜合金电子衍射图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong6 设备厂家/strong/pp  世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。/pp  strong7 疑难解答/strong/pp  strongTEM和SEM的区别:/strong/pp  当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。/pp  SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。/pp  strong简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理:/strong/pp  单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。/pp  多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。/pp  非晶的衍射花样为一个圆斑。/pp strong 什么是衍射衬度?它与质厚衬度有什么区别?/strong/pp  晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。/pp  strong8 参考书籍/strong/pp  《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /pp  《电子衍射分析方法》 黄孝瑛著 /pp  《透射电子显微学进展》 叶恒强,王元明主编 /pp  《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /pp  《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。/pp  来源:中国科学院科普文章《透射电子显微镜基本知识介绍》/p
  • 电子显微镜助人们看清蚂蚁各细节
    这张蚂蚁显微图片是由136张有电子显微镜拍得的照片拼起来的。(此为原图缩小后的图片)   蚂蚁的腿关节  蚂蚁的头部  蚂蚁的尾部,上面附着一些杂物  据英国媒体报道,借助显微镜人们能够很清楚地观察微小生物,比如国外昆虫研究人员用显微镜观察蚂蚁,取得了很奇特的效果。  借助电子显微镜人们能够非常清楚地观察蚂蚁身上的各个细节。这些照片是由位于加州的美国宇航局艾姆斯研究中心(Ames Research Center)的莫利-吉布森拍摄的,在纳米技术专家杰伊-隆森的帮助下这些奇异的图片得以呈现在人们面前。不过由于光学显微镜的视场没有电子显微镜深,所以用光学显微镜无法获得如此奇异的图片。
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备
    这里是TESCAN电镜学堂第6期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!样品制备对扫描电镜观察来说也至关重要,样品如果制备不好可能会对观察效果有重大影响。通常希望观察的样品有尽可能好的导电性,否则会引起荷电现象,导致电镜无法进行正常观察;另外样品还需要有较好的导热性,否则轰击点位置温度升高,使得试样中的低熔点组分挥发,形成辐照损伤,影响真实的形貌观察。如果要进行EDS/WDS/EPMA定量检测,还需要样品表面尽可能平整。第一节 常规样品制备样品制备主要包括取样、清洗、粘样、镀膜处理几个步骤。§1. 取样在进行扫描电镜实验时,在可能的条件下,试样应该尽量小,试样有代表性即可。特别在分析不导电试样时,小试样能改善导电性和导热性能。另外,大试样放入样品室会有较多气体放出,特别是多孔材料,不但影响真空度,还大幅度增加抽真空的时间,可能也会引入更多的污染。因此对于多孔材料在放入电镜前,可以在不损伤样品的前提下,对样品进行一定的热处理,比如电吹风吹,红外灯烘烤,或者放入烘箱低温加热一段时间,将其空隙的气体排出,以减小进入电镜后的抽真空时间。对于薄膜截面来说最好能够进行切割、镶嵌、抛光等处理。在镶嵌时最好能将试样一分为二,将要观察的膜面朝里然后对粘,然后再进行镶嵌、抛光处理。这样做的好处是避免在抛光过程中因为膜面和镶嵌料之间的力学性能有一定的差异,而引起薄膜的脱落或者出现裂纹和缝隙,如图4-1。对粘后的膜面两面力学性能一样,会改善此种情况。 图4-1 单膜面力学性能不对称引起的损伤对于比较软的样品在制截面时,一般不要用剪刀直接剪断,直接剪断的截面经过了剪切的拉扯,质量较差。可以考虑用锋利的刀片切断,比如手术刀片等。或者在将试样浸泡在液氮中进行冷冻脆断。在冷冻脆断前可以先切一个小缺口,这样冻硬的样品可以顺着切口用较小的力就可发生断裂。有条件的话可以考虑用截面离子束抛光或者FIB抛光。对于粉末样品来说,取样要少量,否则粉末堆叠在一起会影响导电性和稳定性。粉末样品团聚严重的话,可以考虑将粉末混合在易挥发溶剂中(如纯水、乙醇、正己烷、环己烷等),配成一定浓度的悬浊液,用超声分散,然后取小滴滴在试样座或者硅片、铜(铝)导电胶带上。此时不要使用碳导电胶带,因为碳导电胶带不够致密,会使得样品嵌入在空隙中影响观察。等待溶剂挥发干燥后,粉体靠表面吸附力粘附在基底上,如图4-2。 图4-2 粉末超声分散制样不过值得注意的是溶剂的选择,溶剂不能对要观察的试样有影响,否则会改变试样的初始形貌而使得图像失真。如图4-3,高分子球样品在用水稀释分散后仍为球形,而用无水乙醇分散后,形貌发生了变化。 图4-3 水(左)和乙醇(右)稀释分散对形貌的影响§2. 清洗试样尽可能保证新鲜,避免沾染油污。特别是不要直接用手直接接触试样,以免沾染油脂。清洁不仅仅是针对试样的要求,同样还包括了样品台。样品台要做到经常用无水乙醇进行清洗。§3. 粘样试样的粘贴应该尽量保持平稳、牢固,并尽可能减少接触电阻,以增加导电性和导热性。特别是对于底面不平整的试样,最好用银胶进行粘贴,让银胶填满缝隙以保证平稳。如果要进行EBSD测试,最好也用银胶。EBSD采集要经过70度的倾转,重力力矩较大,而导电胶带有一定的弹性,可能会因为重力缘故而逐步拉伸,导致样品漂移。此外,平时大多数试样都是采用碳导电胶带进行粘贴,不过如果要进行极限分辨率的观察,最好也用银胶,以进一步增加导电性。我们粘贴样品的目的是使得样品要观察的表面要能和样品台底座之间具有导电通路,而不是仅仅认为表面导电就好。样品表面导电性再好,如果没有导电通路和样品台联通的话,仍然会有荷电。特别是对于不规则样品,更要注意粘贴时候的导电通路。如图4-4,左边与中间的表面并未和样品台导通,属于不合理的粘贴,而右边形成了通路,是合理的粘贴方式。 图4-4 合理(右)与不合理(左、中)的粘贴对于很多规则样品,比如块体或者薄片样品,也存在很多不合理的粘贴方式。很多人认为试样有一定的导电性,就将试样直接粘在导电胶带上,如图4-5左。样品表面和样品台之间依然会出现没有通路的情况,有时即使样品导电性好,可能也会因为有较大的接触电阻使得图像有微弱的荷电或者在大束流工作下有图像漂移。而图4-5右,则是开始将导电胶带故意留一段长度,将多余的长度反粘到试样表面去。这样使得不管样品体内导电性如何,表面都能通过导电胶带形成通路。而且即使样品整个体内都有较好的导电性,连接到表面的导电胶带相当于一个并联电路,并联电路的总电阻总是小于任何一个支路的电阻,所以无论试样的导电性任何,都应习惯性的将一段导电胶带连接到表面,以进一步减小接触电阻,增强导电性。 图4-5 将导电胶带延伸到试样表面的粘贴 对于粉末试样的粘贴,也是要少量,避免粉末的堆叠影响导电性和导热性。粉体可以取少量直接撒在试样座的双面碳导电胶上,用表面平的物体,例如玻璃板或导电胶带的蜡纸面压紧,然后用洗耳球吹去粘结不牢固的颗粒,如图4-6左。如果粉末量很少,无法用棉签或药勺进行取样,也可将碳导电胶带直接去粘贴粉末,如图4-6右。 图4-6 粉末试样的粘贴方法§4. 镀膜对于导电性不好的试样,我们通常可以选择镀膜处理。通常情况我们选择镀金Au膜,如果对分辨率有较高的要求,可以选择镀铂Pt、铬Cr、铱Ir。如果要对样品进行严格的EDS定量分析,则不能镀金属膜,因为金属膜对X射线有较强的吸收,对定量有较大影响,此时可选用蒸镀碳膜。现在的镀膜设备一般都能精确控制膜厚,通常镀5nm的薄膜就足够改善导电性,对于有些特殊结构的试样,比如海绵或泡沫状,表面不致密,即使镀较厚的导电层,也难以形成通路。所以我们镀膜尽量控制在10nm以下,如果镀10nm的导电膜仍没有改善导电性,继续增加镀膜也没有意义。一般镀金的话在10万倍左右就能看见金颗粒,镀铂的话可能需要放大到20万倍才能看见铂颗粒,而镀铬或者铱则需要放大到接近30万倍。所以对于导电性不好的试样来说,可以根据需要选择不同的镀膜。镀膜之后,由金属膜代替试样来发射二次电子,而一般镀的金、铂都有较高的二次电子激发率,在镀膜之后还能增强信号强度和衬度,提升图片质量。只要镀膜不会掩盖试样的真实细节,完全可以进行镀膜处理,而不用纠结于一定要不镀膜进行观察,除非有特别不能镀膜的要求。当然,对于要求倍数特别高或者严格测量的一些观察要求,则要谨慎镀膜处理。毕竟在高倍数下,镀膜会掩盖一定的形貌,或者使测量产生偏差。如图4-7,左边是镀金处理的PS球在SEM下的测量结果,右边是TEM直接拍摄的结果,可以发现SEM的测量结果大约在195nm左右,而TEM的测量结果在185nm左右,这就是因为给PS球镀了5nm金而引起直径扩大了10nm左右。 图4-7 PS球在SEM下镀膜观察和TEM直接观察的对比除了不导电样品需要镀膜,对于一些导热性不佳的试样,有时也需要镀膜。电子束轰击试样时,很多能量转变成热能,使得轰击点温度升高,升高温度表达式为ΔT(K) = 4.8 × VI / kd其中,V为加速电压、I为束流、d为电子束直径,k为试样热导率。对于导热性差的试样,k较低,ΔT有时能接近1000K,很容易对试样造成损伤。比如有时候对高分子样品进行观察时,会发现样品在不断的变化,其实是样品受到电子束轰击造成了辐照损伤损伤,如图4-8。而经过镀膜后,可以提高热导率,降低升温程度,避免样品受到电子束辐照损伤。 图4-8 电子束辐照损伤【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【奖品公布】上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】如果要对样品进行严格的EDS定量分析,可以镀金属膜吗,为什么?(快关注“TESCAN公司”微信公众号去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息:TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看: 电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。电镜放在一个大房间中央的贝都因帐篷里。在W.G.Braams的看管下,它成为了一个规模不大的服务设施。电镜的应用还包括为医学生物学领域的未来研究提供基础。1957年,该电镜被Philips EM75样机取代。1958年12月,Braams被W. Th. Daems接替,W. Th. Daems和我们在阿姆斯特丹接受过电镜使用训练,在斯德哥尔摩的Sjostrand实验室接受过固定、嵌入和超薄切片的训练。1959年底,西门子Elmiskop I电镜取代了EM75,在酶细胞化学和放射自显影的帮助下,最终为形态学和细胞生物学研究奠定了基础。在乌得勒支大学(the University of Utrecht),情况并不比在阿姆斯特丹容易。1952年3月20日,Utrecht EM100正式落成,但该仪器被放置在物理大楼里,距离L.H.Bretschneider(自1950年以来一直专注于细胞学和电子显微学)和他的同事P.F.Elbers(曾在巴黎接受W.Bernhard的培训)都不方便。直到1954年,生物学家才可以方便地每天使用电子显微镜。Bretschneider于1955年获得教授职位,并成为生物体亚显微研究中心负责人,Elbers负责日常事务。直到1957年,奈梅亨大学(the University of Nijmegen)才安装EM100电子显微镜。在这里,首先为医学、及科学学院配置了一台电镜,由Bretschneider和Elbers的学生A.Stadhouders负责。这台电镜被安装的建筑物的地基恰好位于铁路站场共用的砾石床上!因此,在火车转轨过程中,电镜无法正常使用,直到确定并纠正了干扰源。奈梅亨大学的电镜装置迅速得到扩展应用,开展了重要的研究活动,主要是在人类病理学和植物学领域。在飞利浦研究实验室,H.B.Haanstra多年来一直负责电子显微镜的研究。在20世纪50年代和60年代,他出版了大量出版物。在代尔夫特理工大学,A.J.Kluyver教授的微生物学实验室安装了一台EM100,Le Poole研究所的生物学工作就此结束。在这里,A.L.Houwink与P.A.Roelofsen教授一起研究了植物细胞壁内的组织,这催生了“multinet growth”理论(1954年)。他和D. R. Kreger 博士一起研究了酵母的细胞壁(1953年)。Houwink于1953年在一种螺菌的壁上发现了晶体结构,后来加拿大的R.G.E.Murray对其进行了广泛研究,成为分子生物学的一个重要课题。在Le Poole的电子显微镜研究所,在电镜仪器开发和电镜商业化方面的有趣发展在持续进行。1954年,Le Poole发表了博士论文《电子和电离光学的一些设计》。它包含了如此多的创新,以至B. Von Borries在贺信里写道:“这可能是三篇论文。”1957年,Le Poole成为代尔夫特理工大学的教授。他继续研究像散与磁透镜孔圆度不足之间的关系,以及通过校正各种像差来提高分辨率,多年来,图像质量的提高一直是他关注的焦点。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。早期在组织、技术以及纯科学方面的巨大努力为荷兰卓有成效的研究奠定了基础。电子显微镜教会了我什么? Kluyver教授在我的职业生涯中强烈地激励了我,他的伟大想法是他在生物化学中的统一概念。在我多年的积极研究中,我和许多研究人员都非常清楚,超微结构研究揭示了基本细胞结构的多样性的统一。在我晚年的思考中,这种统一对我们生活哲学基础的影响已经在我个人身上慢慢开始显现。致谢在本次审查中,下列同事提出了许多有用的建议:B. J. Spit, P. F. Elbers, H. B. Haanstra, C . C。E. Hulstaert, E. F. J. van Bruggen等。除此之外,它主要是基于我自己的笔记和回忆。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 投身中国电子显微镜事业 参与我国首台电子显微镜研制——北京航空航天大学姚骏恩院士访谈
    为贯彻落实习近平总书记在科学家座谈会上的重要讲话精神和相关要求,大力弘扬科学家精神,《中国光学》自2021年第1期开始开辟《院士访谈》专栏。《院士访谈》栏目由中国科学院院士、我国著名光学专家陈星旦先生悉心策划和组织。陈先生虽年逾耄耋,但仍亲自邀约各位院士,召集相关编辑人员进行汇编整理,逐字逐句审定终稿。陈先生的辛勤付出,实为本栏目之质量保证,深为本刊同仁所景仰尊崇。该栏目结合访谈、自述等多元化形式,记录院士们在成长、教学、科研等经历中难以忘怀的故事,以及他们对人生、科学、教育等问题的认识与思考,以此彰显老一辈科学家的爱国奉献与创新求实精神。人物小传姚骏恩,1932年4月生于上海市。应用物理学家。中国工程院院士。北京航空航天大学教授。1952年毕业于大连工学院(后为大连理工大学)应用物理系。1952-1964年在中国科学院仪器馆(后为中国科学院长春光学精密机械与物理研究所)工作。1964-2003年,调入中国科学院北京科学仪器研制中心(后为北京中科科仪股份有限公司)工作。2003年起在北京航空航天大学任教。是我国电子显微镜研制和生产的主要开拓者之一,设计并主持完成我国第一台大型透射电子显微镜、高分辨透射电子显微镜等,促进了国内电子显微镜制造、生产技术的推广应用。率先在我国主持研制完成扫描隧道显微镜和光子扫描隧道显微镜等十余种纳米检测仪器和器件,对有关理论和应用研究作出了突出贡献。一、成长经历1 历经战乱,曲折求学1932年4月9日,我出生在一个邮局职员家庭。父亲姚国勲安分守己,对子女的教育非常严格,从小教导我们三个子女要老老实实做人、认认真真做事。他常讲:“每人头上都有一片天,不要嫉妒别人;要自己努力,不投机取巧;要尊重长辈,助人为乐”。我的母亲唐玉瑛生于1899年,为人正直善良,任劳任怨,严以律己,宽以待人。她一生跨越三个世纪,享年105岁。一直用端庄贤良深深地影响着我。正是父母的教导、良好的家风激励着我在战乱中不断成长。1932年,在“一二八”淞沪抗战前夕,我家从上海闸北宝山路开始逃难,一路上历尽苦难和屈辱,最后终于在“法租界”暂时安顿了下来,是年4月9日,我就在那里出生。1936年秋,在我4岁的这年,我来到上海培成小学开始接受教育。1937年8月13日清晨,日舰用重炮轰击上海闸北,日本海军陆战队越过淞沪路冲入宝山路,我军予以自卫反击,“八一三”淞沪会战由此开始。我家不得不再次迁到“法租界”,之后我转读了巽明小学。我是家里最小的一个,有点小“聪明”,很是贪玩,不好好读书,常在弄堂里踢小皮球,结果小学三年级时留了一级。1941年12月8日,日本偷袭珍珠港,向美国宣战,太平洋战争就此爆发。是日,路上行人稀少,形势分外紧张,日军占领了上海法租界。一天上午,我正在家中,突然听到一声巨响,浓烟四处弥漫,断壁残垣上燃烧着火焰,同时周围哭喊声、惨叫声连成一片。我和哥哥急忙跑出去,才知道是日本两架军用飞机在演习时相撞,坠落在离我家仅二十多米远的地方,几十间房屋瞬间倒塌,我家弄堂对面的房子后半部都被烧为了灰烬。抗战开始后,江苏省立上海中学从漕河泾区吴家巷搬迁至“法租界”的菜市路,改名为私立沪新中学。1943年,我小学毕业后就读于此。1946年初,我就读的江苏省立上海中学迁回郊区的吴家巷原址,我第一次离家住校,开始独立生活。是夏,我初中毕业,心想考取自己学校的高中部不会有问题,结果掉以轻心,最终名落孙山。我就先到了上海市复兴中学读高中一年级。复兴中学的前身是始建于1886年的“麦瑟尼克”学校,抗战胜利后学校重建,定名为“上海市复兴中学”。校名“复兴”,含“复兮旦兮,兴我中华”之意。复兴中学的师资和校舍都很出色,离家又近,我在那里受到了良好的教育。不过由于父亲毕业于江苏省立第二师范学校(上海中学的前身),哥哥也是该校的学生,我一直希望继续在这个享誉全国的上海中学学习。于是,半年后我又再次报考,结果还是没有成功。我并不甘心,1947年暑期第三次报考,还记得当时的作文题目是“你为什么要考上海中学”,我有感而发,取得了优异的成绩,终于如愿以偿地再次进入了上海中学。我插班到理科高中二年级,由于我是班上年龄较小的,同宿舍的同学叫我“姚弟弟”。我所在的丁班,虽然考试成绩不如其他几班,但我们不死读书,都有着自己的兴趣爱好。我们很喜欢运动,如短跑、跳高、垫上运动、足球、垒球、乒乓球等,记得当时我们在课间的时候,曾把老师的讲台临时拉上球网,直接就打起了乒乓球。至今我还保留了那时的一些旧照片,这些记忆也是我一生中宝贵的财富。2 求学大连,幸遇名师1949年5月,上海解放,正值我高中毕业报考大学。是年,全国高校分区联合招生。我是在受帝国主义侵略欺凌的环境下长大,日本飞机经常在大中城市狂轰滥炸,而我们毫无还手之力,在“航空救国”的思想下,我选择了大连大学的电机系,一方面是共产党使我看到了光明,看到了希望,而大连大学是共产党在解放区创办的第一所正规大学,为即将诞生的新中国培养建设人才,哥哥也很鼓励我去;另一方面是因为该校有一批名师,都是在解放军渡长江前后辗转进入解放区的。此外,我担心父亲失业,家庭经济收入没有保障,无力为我交学费,而大连大学学生享受“供给制”待遇,不仅免交学杂费还提供生活费用,而且在上海首先发榜。父母虽然希望我留在上海,但最终也相信我的选择。于是,我和上海中学的几十名同学一起,乘坐学校包租的火车专列去了大连。那时,直达东北的火车还未开通,路过南京时,还遭到了国民党飞机的轰炸。到达天津后等待了十多天,考虑到坐船去大连不稳妥,我们最后决定还是继续乘火车。在东北广袤的大地上,只有我们这辆“专列”,边修路、边行车。晚间,我们就睡在车厢顶部的行李架和座位下面的地板上。走走停停,从天津到大连竟行驶了好多天。1949年9月底,我终于到达了大连,就读于大连大学工学院电机系。10月1日,我们这批大学生列队在大连火车站广场上,聆听了毛主席在开国大典上的讲话,备受鼓舞。是年年底,为了解我们这批首届学生的业务水平,学校组织了物理学摸底考试。有些考题我在上海中学时学过,所以答题比较顺利。当时我感到监考老师在我旁边站了一会儿,交卷时老师签名,我一看像是“美術”两字,后来才知道这是老师“王大珩”三个字的连写。这是我第一次见到恩师王大珩先生的情景,至今仍记忆犹新。大连大学非常重视理论联系实际,学校开办之初,就大力建设实验室。在刚解放的大连,什么科学器材都很难买到。物理系主任王大珩先生亲自带领教师和实验人员,从仓库和旧货市场上淘来旧秒表、天平、望远镜、电位差计和光学玻璃等,自己动手制造仪器。不到一年时间,就建成了可同时容纳130名学生做实验的普通物理实验室。王大珩先生指导学生做实验,认真负责、一丝不苟,审查实验报告也非常仔细。在给“不对”两字时,故意不说明原因,以培养学生的独立思考和动手能力。有的同学嫌仪器设备简陋,做实验不顺手、太费事,王大珩先生的回答是:“告诉你们一个真理,所有精密的东西都是用不精密的设备造出来的,你们要学会用低级的仪器做出好的实验结果。”他说自己在清华大学物理系读书时,有位老师经常讲,不能给学生好的东西用,就是要逼着学生学会自己动手。后来王大珩先生告诉我:“1950年在为你们准备钟摆物理实验时,那根挂钟摆的吊线经常断,实验课马上就要开始了,很着急。后来才发现,是穿过吊线的那个小孔边上有毛刺,把吊线割断了。刮去了毛刺,问题就解决了。”王大珩先生就是这样以身作则地教会了我们实验要认真负责、重视细节。后来,我们这些学生能独立思考并有较强的实际工作能力,与王大珩先生当时的细心培养和严格要求是分不开的。1950年秋,王大珩先生动员学生读应用物理。他说:“物理可以说是一切工业技术的基础,再冠以‘应用’两字,对新中国的建设更有现实意义。‘物理人’比单纯学工科的考虑问题更深入些,虽不能解决所有问题,但知道该去找什么人。”就这样,我们二十个同学成为了应用物理系的第一批学生,我从此开始进入了应用物理学科。大学一年级时,包括体育在内,我各门成绩都是5分,在全校名列前茅,因此我担任了班长,后来当选为校学生会数理分会主席。当时,我的体育老师是“中国奥运第一人”刘长春教授,他特别擅长短跑,动作步频快、步幅大、向前性好,悉心传授我们的短跑技术和经验,使我们受益匪浅。大连工学院首届毕业同学留影(三排左三:姚骏恩)3 投身科研,艰难缔造根据国家第一个五年经济建设计划的需要,1952年全国大学物理系三年级的学生都提前一年毕业。当时王大珩先生已受命在长春市筹建中国科学院仪器馆(后改名为长春光学精密机械与物理研究所,简称长春光机所),从各地招收了二十名大学应届毕业生,我是其中之一。当时的长春满目疮痍,还没有从战争创伤中恢复过来。我从设计大礼堂的座椅、采购器材和实验设备开始,日夜兼程、东奔西走,全身心的投入到中国科学院仪器馆的建设工作中。1953年,我的第一个科研项目是研制精密电阻箱。研究期间我发现电阻的阻值竟不是书本上所写的固定值,而是天天在变,而且引起变化的原因有很多,这使我深深体会到了事物的复杂性。第二年,我又开始研制测量微弱电流的检流计,仅读数不回零的问题就经过数十次试验才得以解决。这些问题的答案都是书本上没有的,必须自己找出关键所在,“尽信书不如无书”,正是这样的经历培养了我独立进行科研工作的能力。后来看来,这些极为普通的常规仪器,当时却还要在中国科学院仪器馆研制,可见建国初期的科技水平是何等落后。二、投身电子显微镜事业1 参与研制我国首台电子显微镜显微镜是人类认识微观世界的有力工具。光学显微镜的出现,使人们发现了被称为19世纪三大发现之一的生物细胞,对自然界的认识有了一个极大的飞跃。诞生于1932年的电子显微镜和1982的扫描隧道显微镜,分别作为显微镜发展史上继光学显微镜之后的第二和第三个里程碑,促进了纳米科技的诞生和持续发展。1953年,德意志民主共和国的总统把一台该国蔡司公司生产的、代表当时世界水平的电子显微镜(简称电镜),送给毛主席作为六十寿辰的大礼。1956年,我国制定《1956-1967年科学技术发展远景规划纲要》时,由王大珩先生领导的仪器规划小组提出要研制电子显微镜。而当时的苏联顾问认为这个项目难度太大,在此期间中国做不出来,不要列入规划,中国如要用,可以向苏联买。但王大珩先生并未因此停止研制电子显微镜的步伐。我当时是仪器规划小组的工作人员和俄文翻译,在此期间,光机所拟送我去苏联国家计量院学习,但因体检发现视觉红绿色弱,不合格而作罢。第二年,长春光机所又选派我去德意志民主共和国的蔡司公司学习红外光谱仪器制造技术,在中国科学院沈阳干部学院学习了将近一年的德语。年底,一切去德的手续都已办妥,行李也送上了火车,准备第二天出发。可是,当晚接到中国科学院的紧急通知,“暂不去德”。我们以为又发生了类似的“匈牙利事件”。后来才明白,是德国方面要分别“安排”。不久,到大学进修的去了德国,而蔡司公司则不接受我们去学习他们的关键技术,德国之旅未能成行。1958年,在“破除迷信,解放思想”思想指引下,所长王大珩先生大胆提出在长春光机所研制电镜,并邀请了一位刚从德国留学回来的中国科学院电子学研究所博士作为负责人,以中国科学院武汉一个研究所刚从日本订购的中型电镜作为参考样机开始研制工作。研制电镜需要解决真空问题,当时光机所只有一台前苏联生产的氦质谱真空检漏仪,在此期间,我翻译了俄文说明书。通过夜以继日的刻苦攻关以及高效的协调配合后,只经过短短的72天,在1958年8月即成功制造了我国第一台电子显微镜,加速电压50kV,分辨本领达10nm。这台电子显微镜作为光机所研制成功的“八大件”(指八项先进的高端光学仪器)之一,于当年国庆节前夕在北京中关村展出。毛主席参观了这个展览会,当工作人员介绍到电子显微镜时,他高兴地说“我们也能做这个东西(电子显微镜)了”,对这些科研成果倍加赞赏。后来我独自一人去武汉归还之前借来的日本电镜,由于是被拆成零部件后再重新装起来的,问题不少,就连机械泵也发生了故障。当时,我“初生牛犊不怕虎”,竟敢把它拆开,清洗精密的旋转刮板后再装起来。我打开不容许用户触动的50kV高压油箱进行检查维修,并过滤高压变压器油。经反复调试,这台电镜的分辨本领终于恢复到其出厂指标2.5nm。此后,该中型电子显微镜向南京教学仪器厂(后改名为江南光学仪器厂)等推广生产。他们在光机所图纸的基础上不断改进,于1961年实现了小批量生产,至1994年共生产了两百多台。2 共同自主研发电子显微镜 在成功制造我国第一台电子显微镜后,有人说,你们能做电子显微镜,很好!但这是仿制的,自己设计行吗?我们了解自主研发面临的巨大挑战,但更加深知这是我国科技发展的必由之路。为此,1958年9月,长春光机所决定自行设计研制100kV大型电子显微镜并成立了电子显微镜研究小组,由我任组长和课题负责人,电子所的一位专家为技术负责人。由于我在研制检流计时熟悉了磁路设计,加上具备相关的光学知识和英、德、俄文的基础,参考了国外有关经典文献和当时世界上最先进的德国西门子公司的Elmiskop型电子显微镜产品样本,很快就完成了电子显微镜总体设计和电子光学系统、电磁透镜的设计,并提出了对加速电压及纹波、透镜电源和真空系统等的要求。经过全体人员十个月不分日夜的辛勤劳动、协同合作,终于在1959年9月末,我们研制成功了我国第一台自行设计的电子显微镜(XD-100型),分辨本领优于2.5nm、加速电压100kV、放大倍数达10万倍以上。100 kV电子显微镜工作照片(左一:姚骏恩)为参加国庆十周年全国工业交通展览会,我们特别包租了一节火车车皮,我和负责机械设计的同志就坐在电子显微镜的包装箱上,星夜奔赴北京。在北京展览馆安装好后,却发现冷却水漏进了物镜线包造成漏电,导致电子显微镜无法工作。当时已是放假前夕,我抱着十几公斤重的物镜找到兄弟单位,用真空烘箱烘干,又花了一天的时间抽真空,终于及时解决了问题。10月1日,这台10万倍电子显微镜作为一项重大科技成果,在北京展览馆按时展出,并且摆在了中央大厅的显要位置。观众十分好奇地排起长队等待着用电子显微镜来观看蚊子翅膀上的“汗毛”,这个场景至今令我难以忘怀。当天,天安门前举行国庆十周年庆祝大会,这台XD-100大型电子显微镜的巨大模型排在中国科学院游行队伍最前面,接受了检阅。这台电子显微镜被列为我国仪器仪表行业从仿制到自行设计研制的一个里程碑标志,被列入了“中华人民共和国四十年重大科学技术成就”之一,并收入了记载古今中外自然科学大事的《自然科学大事年表》。长春光机所发扬当时提倡的“全国一盘棋”和“共产主义大协作精神”,1958年和1960年先后将仿制的中型电镜和自行设计制造的XD-100大型电子显微镜的全部设计资料和机械图纸无偿地交给南京教学仪器厂和上海精密医疗器械厂(后改名为上海电子光学技术研究所)。我也多次到上海、南京毫无保留地向他们介绍电镜设计及调试技术。就这样,我国逐步建立起了自己的电子显微镜制造领域。1960年9月,国家科委在北京召开第一次全国电子显微技术交流会,我作了题为“ XD-100大型电子显微镜研制”的学术报告。会议期间我被确诊得了肺结核,11月回到上海家里,肺部已有严重的“空洞”,在接受近一年住院治疗后,才得以再次回到长春工作。上海精密医疗器械厂在XD-100型基础上制成了DXA2-8型电镜,分辨本领达2.0nm。当时,为了庆贺全国八个具有代表性的新产品问世,邮电部特别发行了一套纪念邮票(8张),其中一张就是DXA2-8型电子显微镜。这是世界上最早的以电子显微镜为主题的邮票。1965年7月,研制成功DXA3-8型一级电子显微镜,分辨本领提高到0.7nm,通过了国家鉴定。1968年定型了DXA4-10(0.7nm,100kV),到1977年共生产了72台。中国科学院新疆化学研究所购置了第一台DXA4-10商用高分辨率电子显微镜,并利用这台仪器发现了四百多种动植物病毒,不但为我国动植物病毒研究作出了重要贡献,也培养了一批优秀人才。这也印证,我国自主研发电子显微镜的能力取得了长足进步。3 调入北京继续从事电子显微镜研发1964年4月,根据中国科学院集中力量的决定,将长春光机所电子显微镜研究室包括我在内的13人调并到北京的科学仪器厂(后为北京中科科仪股份有限公司)。当时全厂召开联欢会热烈欢迎我们的到来。之后,我出任了电子显微镜研究实验室副主任,负责研制DX-2型100kV透射电子显微镜,主要负责总体设计和电子光学系统计算。在此期间,我重点解决了电子显微镜的“心脏”——物镜极靴的研制和高稳定度100kV高压电源的问题。1965年底,中国科学院组织成果鉴定,结论为:“根据在鉴定过程中所拍摄的铂铱粒子照片,测得最小可分辨距离为0.4nm和0.5nm 的五对点子。按国外常见的表示方法,DX-2电镜的分辨本领可达0.4nm。按国内采用从严的分辨本领鉴定方法(以第五对最近点中心间的距离计算), 评定该电镜的分辨本领为0.5nm ,电子光学放大可达25万倍以上。由此可以认为DX-2电镜在分辨本领和放大倍数方面已达到国际先进水平” (原结论中以埃为单位,1nm = 10埃)。1966年1月,DX-2型电镜作为重点展品参加了北京全国仪器仪表新产品展览会。此后,我参与了6台DX-2型电子显微镜的小批量生产。我指导并参与研制完成了我国第一台扫描电镜(DX-3型),负责人是我的第一位研究生。这台扫描电镜性能达到了1973年我国进口的日本扫描电子显微镜的水平,并且实现了批量化生产。同年,科学仪器厂扫描电子显微镜组获得了国务院总理亲笔题词的荣誉证书,给了我们莫大的鼓舞。我还负责研制X射线波谱仪,并将其和同轴光学显微镜一起配装在扫描电镜上,发展成DX-3A型分析扫描电镜。该型扫描电镜先后生产了近百台,并向国内几家单位推广生产。1982年出现了扫描隧道显微镜(缩写STM),横向分辨本领达0.1~0.2nm,纵向分辨本领高达0.01nm,这是其它显微镜难以达到的。更重要的是STM克服了电镜试样必须处于真空环境的限制,可在大气、真空、甚至液体环境中观察物体在自然状态下的表面结构和实际状态。1986年的诺贝尔奖物理奖即授予了扫描隧道显微镜的两位发明人和50年前(1932年)第一台电子显微镜的创制者。后来,中国科学院成立了北京电子显微镜(开放)实验室,依托在中国科学院北京科学仪器厂,我被任命为副主任。我认识到STM大有发展前途,自己又有研制电子显微镜的经验,于是提出自行研制STM,得到了实验室主任的大力支持,由我兼任STM研制小组组长并且赴美调研,不久我确定了设计方案,经过半年多的刻苦攻关得以研制成功。北京电镜室工作者用自制的STM首次获得了石墨表面原子图像,横向和纵向分辨本领分别达到了0.1nm和0.01nm,达到国际先进水平。1987年12月22日,《人民日报》头版上的报眼以“我国制成新型扫描隧道显微镜”为题,对此进行了专题报导。该型电镜后续实现了小批量生产。第二年,在英国召开的第三届STM会议上首次报导了我国研制成功的STM,并选入了会议论文集。我们还在国际上首次用实验验证了一个重要论断,即STM图像不只是试样的像,还与探针有关。之后,在1989年又诞生了光子扫描隧道显微镜(PSTM),分辨本领突破了传统光学显微镜光束半波长的衍射限制,引起世人瞩目。1991年我又提出研制PSTM,在与大连理工大学物理系的合作下,于1993年6月研制成功我国第一台光子扫描隧道显微镜,图像横向分辨本领优于10nm,纵向分辨本领为1nm,达到国际先进水平,与此同时还开展了应用研究,不断推动我国的电镜事业跟上世界发展的脚步。我从中国科学院北京科学仪器研制中心退休后,也未停止科学研究的脚步,继续从事发展原子力显微镜的工作。我之前与一位专家合作共同发展了一种国际上分辨率最高的MoS2固体径迹探测器,研制生产了我国第一代激光检测原子力显微镜。2001年我当选为中国工程院院士后,老师王大珩先生告诫我“要更加谦虚谨慎,发挥作用”。还有位院士朋友对我说:“当选院士的最大好处是可以继续工作”。这些我都铭记在心。2003年我受聘到北京航空航天大学任教,重新获得了工作的机会。1949年上大学我报考的就是航空工程系,后来因为种种原因而转为应用物理专业,在应用物理领域一干就是半个世纪,这一次可谓实现了我54年前报考大学时为祖国航空事业服务的愿望。对此,我十分珍惜,兢兢业业,只争朝夕,把这份工作当作自己再一次“创业”的机遇,尽自己最大的努力工作。我积极开拓学科方向、组建科研团队、引进优秀人才、培养青年教师和研究生,先后任教授、校学术委员会副主任、航空科学与技术国家实验室(筹)首席科学家和理学院物理研究所所长。主持组建“北航微纳测控研究中心”,筹建“微纳测控与低维物理教育部重点实验室”,任筹备主任和名誉主任。负责完成了国家自然科学基金和科学技术部等多项专项课题。开展了近场光学显微学、离子束纳米级加工、原子力显微视频成像、高次谐波及多频激励成像、频率调制原子力显微术以及智能化便携式原子力显微镜等研发工作。我曾在《科学仪器》杂志上发表我国第一篇系统论述电镜设计制造的文章“XD-100型电子显微镜”;撰写了数十篇科普与综述文章,以推动显微镜领域科学传播;多次组织国际和全国学术会议并编辑出版论文集;组办学习班,编写教材,在全国普及电子显微学知识等等。始终致力于促进国内电子显微镜的研制生产和应用。1980年中国电子显微镜学会成立,我是主要创办人之一;1982年《电子显微学报》创刊,我作为副主编、主编主持日常工作。三、漫漫电镜路,汲汲求索心我们实现了多种电子显微镜的国产化,多项产品的主要指标接近或达到当时的国际水平,这些国产电子显微镜为促进我国的科学技术和工农业生产发展作出了贡献,创造了属于自己的辉煌。但是改革开放后各种电镜大量进口,促进了外国公司的发展,而国产电子显微镜因使用性能等不如进口产品而竞争力有限,只剩下一个研制单位——北京中科科仪股份有限公司还在艰苦奋斗,小批量生产中档扫描电镜。但先进的技术是买不来的,“工欲善其事、必先利其器”,为建成创新型国家,我国必须掌握高端显微装备的核心技术,必须自主发展新的纳米测量方法和纳米加工技术。50余年来,我有幸负责自行设计制造了我国第一台大型透射电子显微镜;指导、参加研制完成我国第一台扫描电镜,并在国内推广电子显微镜的设计制造技术;率先在我国主持研制完成扫描隧道显微镜和光子扫描隧道显微镜等十多种纳米检测仪器和器件,对有关理论和应用研究作出了一些贡献,为发展我国纳米科技提供了必要的技术基础,起了先导作用。我对于发展电镜事业心坚如磐,走过的这条路踏实而又厚重,不断的为我国高端电镜的自主可控贡献自己的力量。本世纪初,由于种种原因,国产电镜和扫描探针显微镜的质与量还远远不能满足全国的广泛需求。为此,我与王大珩先生等在2003年1月,向国家呈交了“建立我国自己的纳米测量仪器和纳米加工装备制造业”的“工程院院士建议”,2006年初又提出了“振兴我国的电子显微镜制造事业”的建议:(1)发展具有自己特色、先进的多功能亚埃(0.1nm)分辨率、亚eV级像差校正电子显微镜,实现我国在纳米尺度表征与度量的髙端突破;(2)整合国内现有基础,形成有市场竞争力的电子显微镜规模产业;(3)创建电子显微镜研发团队,建立具有国际竞争力的电子显微镜研发平台和基地。国家科技部考虑了这个建议,并将“场发射枪透射电子显微镜的研制”列为“十一五”国家科技支撑计划的重大课题,推动了电镜产业的加速发展。其实不仅是国产电镜和扫描探针显微镜,整个中国科学仪器制造行业都面临极大的挑战。国外厂商对中国的策略往往是,你不能制造的精密仪器,他要高价,甚至不卖给你;当你有能力制造时,他以低价销售给你,打垮你,让你难以发展。因此,我们必须自立自强。电子显微镜,从1958年开始我国就做出来了,但稳定性、可靠性不如国外产品。要解决这些问题不是一日之功。生产高质量仪器的关键在于建立一条完整的科学仪器产业链。从材料的选择、加工工艺,到整机的装配调试,每一个零部件都需要注意,每一个细节都需要精益求精,这需要一整套技术标准,才能实现高指标、高可靠性。我们需要一个打基础的过程,一个积累的过程,而这样积累的过程是难以一蹴而就的。只有选择性地把某些仪器做到满足国内需求以减少对国外的依赖,在打好基础的情况下逐步发展我们的技术特色,利用我国已领先的新原理、新材料等来制造新仪器,争取一部分先超越。这样,中国的科学仪器制造事业才能逐渐强大起来。现在国内已研制生产了有完全自主知识产权的高质量扫描电子显微镜、透射电子显微镜原位观察测试研究的开发与应用研究等。时至今日,我仍在为发展我国的超显微镜制造事业继续努力,展望未来,我必将为这项事业奋斗终生。回首过去的人生轨迹,有成长的曲折,成功的喜悦,也有未竟的遗憾。从失望到期望、从惴惴不安到信心满怀。我相信,只有经历磨难,生命方有厚度!2009年姚骏恩在北京航空航天大学工作
  • 超30亿预算!10月发布显微镜(含电子显微镜等)采购意向汇总
    近日,科学仪器行业迎来了前所未有的利好消息。2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。 2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7%(加上此前中央财政贴息2.5个百分点)。这两大重磅政策提供极低利息的贷款给消费端提前进行设备购置和更新改造,推动我国仪器市场迎来新一波仪器采购大潮。仪器信息网注意到,10月7日以来,44所高校院所等单位发布的399项采购意向涉及显微镜(包括电子显微镜等),采购预算总额约33亿元。10月份含显微镜(含电子显微镜等)采购意向汇总序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320北京理工大学10月26日2022年12月意向原文2分析测试中心原位微区气氛系统采购项目290北京理工大学10月26日2022年12月意向原文3真空转移型高分辨场发射扫描电子显微镜560复旦大学10月26日2022年12月意向原文4原位催化型XPS互联高空间分辨表征系统540复旦大学10月26日2022年12月意向原文5高通量介孔储能材料原位电化学聚光镜单球差透射电镜1900复旦大学10月26日2022年12月意向原文6多功能多气氛环境介孔催化剂评价用图像矫正器透射电镜1300复旦大学10月26日2022年12月意向原文7材料加工-原位加热-结构表征双束多功能综合平台360复旦大学10月26日2022年12月意向原文8复杂结构解析及电热功能原位分析高通量-高分辨表征平台580复旦大学10月26日2022年12月意向原文9高分辨热场发射扫描电子显微镜采购242中山大学10月26日2022年11月意向原文10全自动高分辨快速成像系统采购152中山大学10月26日2022年11月意向原文11激光共聚焦显微镜采购260中山大学10月25日2022年11月意向原文12近红外上转化共聚焦显微镜440华中科技大学10月25日2022年11月意向原文13超高分辨激光共聚焦显微镜420华中科技大学10月25日2022年11月意向原文14智能超灵敏活细胞超分辨显微镜450华中科技大学10月25日2022年11月意向原文15西南交通大学高水平公共测试服务平台建设项目采购2900西南交通大学10月25日2022年11月意向原文16(材料型)原子力显微镜150复旦大学10月25日2022年11月意向原文17超高分辨激光共聚焦显微镜520浙江大学10月25日2022年12月意向原文18原位微纳热力分析型聚焦离子束/电子束扫描电镜836上海交通大学10月25日2022年12月意向原文19中国农业科学院蔬菜花卉研究所国家蔬菜种质资源中期库建设项目122中国农业科学院蔬菜花卉研究所10月24日2022年11月意向原文20西南交通大学复杂环境路面材料耐久性能测试系统采购177西南交通大学10月24日2022年11月意向原文21西南交通大学轨道结构材料响应细微观表征分析平台采购120西南交通大学10月24日2022年11月意向原文22西南交通大学扫描电镜能谱一体机采购140西南交通大学10月24日2022年12月意向原文23共聚焦激光扫描显微镜520浙江大学10月24日2022年11月意向原文24多光子共聚焦显微镜350中国科学院宁波材料技术与工程研究所10月24日2022年12月意向原文25双光子显微镜系统300浙江大学10月24日2022年11月意向原文26先进能源学院 场发射扫描电镜200中山大学10月23日2022年11月意向原文27先进能源学院 扫描电化学显微镜130中山大学10月23日2022年11月意向原文28先进能源学院 原子力显微镜100中山大学10月23日2022年11月意向原文29核科学与技术学院+核材料制备装置120兰州大学10月22日2022年12月意向原文30阜外医院医疗设备购置项目20000中国医学科学院阜外医院10月21日2022年11月意向原文31光发射电子显微镜1500南京大学10月21日2022年12月意向原文32冷冻电镜8000南京大学10月21日2022年12月意向原文33球差矫正透射电子显微镜3000南京大学10月21日2022年12月意向原文34场发射高分辨透射电镜800南京大学10月21日2022年12月意向原文35200kV透射电镜350南京大学10月21日2022年12月意向原文36120kV透射电镜600南京大学10月21日2022年12月意向原文37环境扫描电子显微镜420南京大学10月21日2022年12月意向原文38扫描电子显微镜600南京大学10月21日2022年12月意向原文39透射电镜原位纳米力学测试系统190南京大学10月21日2022年12月意向原文40显微镜操作平台250江南大学10月21日2022年12月意向原文41原子力显微镜200南京大学10月20日2022年12月意向原文42高分辨扫描电子显微镜与阴极荧光系统490南京大学10月20日2022年12月意向原文43显微操作系统、倒置显微镜160山东大学10月20日2022年11月意向原文44自动活细胞成像系统180山东大学10月20日2022年11月意向原文45光片显微成像系统580山东大学10月20日2022年11月意向原文46兰州大学现代化工程训练中心项目建设方案(电工电子基础训练及创新中心)——电子产品装配与检测模块68.22兰州大学10月20日2022年11月意向原文47家畜生物学国家重点实验室培育建设项目2098西北农林科技大学10月20日2022年11月意向原文48未来农业研究院平台建设项目1815西北农林科技大学10月20日2022年11月意向原文49超高分辨率活细胞三维长时程成像系统877.5复旦大学10月20日2022年12月意向原文50转盘式激光共聚焦显微镜675复旦大学10月20日2022年12月意向原文51多功能共聚焦显微拉曼成像系统298北京大学10月20日2022年12月意向原文52CSU转盘式扫描高速共聚焦成像380华南理工大学10月20日2022年11月意向原文53粤港澳中枢神经再生研究院科研设备121.5暨南大学10月20日2022年12月意向原文54快速扫描电子显微镜500上海交通大学10月20日2022年11月意向原文55电子探针系统600中山大学10月19日2022年11月意向原文56低能电子成像系统880中山大学10月19日2022年11月意向原文57场发射扫描电镜350中山大学10月19日2022年11月意向原文58场发射透射电镜1000中山大学10月19日2022年11月意向原文59拉曼-原子力显微镜联用系统200中山大学10月19日2022年11月意向原文60光子技术研究院科研设备987.7暨南大学10月19日2022年12月意向原文61基础医学与公共卫生学院科研设备429暨南大学10月19日2022年12月意向原文62场发射透射电子显微镜800湖南大学10月19日2022年11月意向原文63化学本科实验教学分析表征平台仪器设备购置664兰州大学10月19日2022年11月意向原文64药学实验教学中心升级改革——倒置荧光显微镜27浙江大学10月19日2022年12月意向原文65双球差矫正透射电子显微镜、场发射透射电镜2900北京大学10月19日2022年12月意向原文66材料科学与工程教学实验室规划、改造与建设630华北电力大学10月19日2022年11月意向原文67科研设备更新改造专项-场发射透射电子显微镜900中山大学10月19日2022年12月意向原文68中山医学院荧光显微镜(3台)采购105中山大学10月19日2022年11月意向原文69科研设备更新改造专项-聚焦离子束双束电子显微镜790中山大学10月19日2022年12月意向原文70电能转换与智慧用电教育部工程研究中心实验平台建设1889华北电力大学10月19日2022年12月意向原文71新能源电力系统国家重点实验室仪器设备升级更新项目7242华北电力大学10月19日2022年12月意向原文72国家储能技术产教融合创新平台5000华北电力大学10月19日2022年12月意向原文73新能源发电国家工程研究中心平台建设与设备更新4000华北电力大学10月19日2022年12月意向原文74氢能科学与工程学科及高水平科研平台建设5037华北电力大学10月19日2022年12月意向原文75低碳能源系统功能新材料开发与微纳制造平台4992华北电力大学10月19日2022年12月意向原文76清洁高效燃煤发电关键技术与装备集成攻关大平台4272华北电力大学10月19日2022年12月意向原文77新能源高效转换与特性研究4400华北电力大学10月19日2022年12月意向原文78水利工程学科科学研究706.6华北电力大学10月19日2022年12月意向原文79多维度单分子超分辨表征系统600浙江大学10月19日2022年11月意向原文80白激光共聚焦系统410西安电子科技大学10月19日2022年11月意向原文81化学化工学院高时空分辨显微成像设备采购项目350兰州大学10月19日2022年12月意向原文82材料科学与工程高水平研究平台建设项目2900武汉理工大学10月18日2022年11月意向原文83中南大学资源与安全工程学院新材料/能源环境控制与安全防控技术采购项目1541中南大学10月18日2022年11月意向原文84激光共聚焦显微镜(更正)490清华大学10月18日2022年11月意向原文85材料特征微区原位拉伸形貌分析仪150清华大学10月18日2022年11月意向原文86生物透射电子显微镜440清华大学10月18日2022年11月意向原文87双束三维立体生物成像电子显微镜950清华大学10月18日2022年11月意向原文88高通量切片扫描成像系统206清华大学10月18日2022年11月意向原文89活细胞晶格激光片层扫描显微镜830清华大学10月18日2022年11月意向原文90高分辨率X射线显微镜800清华大学10月18日2022年11月意向原文91快速超高分辨激光共聚焦显微镜450清华大学10月18日2022年11月意向原文92连续光谱激光共聚焦显微镜650清华大学10月18日2022年11月意向原文93多元多相燃料高效清洁混燃研究平台建设665华北电力大学(保定)10月18日2022年12月意向原文94光伏制储氢发电一体化技术研究平台340华北电力大学(保定)10月18日2022年11月意向原文95高分辨率电子显微镜1000南京大学10月18日2022年11月意向原文96多功能可控环境扫描探针显微镜300南京大学10月18日2022年11月意向原文97高倍显微镜260南京大学10月18日2022年11月意向原文98多功能超高分辨荧光分析与激光共聚焦系统970北京理工大学10月18日2022年11月意向原文99原位透射电镜表征系统2156北京理工大学10月18日2022年12月意向原文100功能有机分子化学国家重点实验室+原子力显微镜采购项目250兰州大学10月18日2022年11月意向原文101偏光显微镜60兰州大学10月18日2022年12月意向原文102包裹体测温测压系统80兰州大学10月18日2022年12月意向原文103单分子时间分辨共聚焦荧光显微系统(已有显微镜光谱系统更新)150浙江大学10月18日2022年11月意向原文104全功能扫描光电化学显微镜210浙江大学10月18日2022年11月意向原文105多功能化学成像系统1050浙江大学10月18日2022年11月意向原文106多维度单分子超分辨表征系统1215浙江大学10月18日2022年11月意向原文107表面等离子体共振显微镜300浙江大学10月18日2022年11月意向原文108高分辨多模态近场纳米光学原子力成像系统330山东大学10月18日2022年12月意向原文109超高分辨率场发射扫描电镜400厦门大学10月18日2022年12月意向原文110冷冻切片传输微加工系统585华南理工大学10月18日2022年11月意向原文111双光子激光共聚焦显微镜1000华南理工大学10月18日2022年11月意向原文112广东农工商职业技术学院化学品智能安全管理与实验教学中心设备建设项目372.9广东农工商职业技术学院10月17日2022年11月意向原文113正置荧光显微镜采购项目105北京师范大学10月17日2022年11月意向原文114光片荧光显微镜采购项目580北京师范大学10月17日2022年11月意向原文115中山大学科研设备更新改造专项-活细胞功能分析系统采购190中山大学10月17日2023年6月意向原文116中山大学科研设备更新改造专项-化学发光成像系统采购40中山大学10月17日2023年6月意向原文117中山大学科研设备更新改造专项-切片扫描系统采购168中山大学10月17日2023年6月意向原文118一体化荧光显微成像系统270中山大学10月17日2022年12月意向原文119显微注射系统55中山大学10月17日2022年12月意向原文120中山医学院倒置显微镜(2台)采购100中山大学10月17日2022年11月意向原文121高速双光子显微镜220清华大学10月17日2022年11月意向原文122场发射透射电子显微镜600南京大学10月17日2022年11月意向原文123环境扫描电子显微镜400南京大学10月17日2022年11月意向原文124双球差矫正透射电镜2000南京大学10月17日2022年11月意向原文125微结构加工与成像系统138浙江大学10月17日2022年10月意向原文126tirf全内返荧光显微镜180江南大学10月17日2023年6月意向原文127开尔文探针原子力显微镜220重庆大学10月17日2022年12月意向原文128高通量脑切片成像系统230中国科学院脑科学与智能技术卓越创新中心10月17日2022年11月意向原文129原子力显微镜230北京理工大学10月17日2022年11月意向原文130压电力显微镜180北京理工大学10月17日2022年11月意向原文131高通量低电压透射电子显微镜467北京理工大学10月17日2022年11月意向原文132原子力显微镜350山东大学10月17日2022年11月意向原文133FRET显微镜测定分析系统155山东大学10月17日2022年11月意向原文134微流场测试系统190山东大学10月17日2022年12月意向原文135原子力显微镜390山东大学10月17日2022年11月意向原文136单细胞荧光扫描显微镜120山东大学10月17日2022年12月意向原文137表面共振显微镜400山东大学10月17日2022年11月意向原文138激光扫描共聚焦显微镜195山东大学10月17日2022年12月意向原文139200KV冷冻透射电镜3750山东大学10月17日2022年11月意向原文140显微高速摄像系统190山东大学10月17日2022年12月意向原文141北京大学医学部冷冻电镜系统(一批)采购项目8500北京大学10月17日2022年11月意向原文142北京大学医学部200KV多用途场发射透射电子显微镜采购项目730北京大学10月17日2022年11月意向原文143全自动3D全息无标记活细胞成像系统200江南大学10月17日2022年11月意向原文144材料与能源学院新材料与新能源实验教学平台建设项目-数字显微镜25兰州大学10月17日2022年11月意向原文145材料与能源学院新材料与新能源实验教学平台建设项目-桌面型扫描电镜85兰州大学10月17日2022年11月意向原文146材料与能源学院新材料、新能源科研平台建设项目-原位高分辨显微织构测试系统510兰州大学10月17日2022年11月意向原文147材料与能源学院新材料、新能源科研平台建设项目-激光干涉多物理场传感成像系统480兰州大学10月17日2022年11月意向原文148橡胶类冷冻扫描分析系统520华南理工大学10月17日2022年11月意向原文149冷冻切片传输微加工系统585华南理工大学10月17日2022年11月意向原文150原子力显微镜220华南理工大学10月17日2022年11月意向原文151中南大学湘雅医学院冷冻电子显微镜平台采购项目8000中南大学10月16日2022年11月意向原文152中南大学湘雅医学院形态学平台科研设备采购项目18053中南大学10月16日2022年11月意向原文153中南大学湘雅医学院分子生物学平台采购项目15407中南大学10月16日2022年11月意向原文154中山医学院荧光显微镜(2台)采购150中山大学10月16日2022年11月意向原文155超高分辨率激光共聚焦显微镜500中山大学10月16日2022年11月意向原文156中山医学院激光共聚焦显微镜(全光谱)采购415中山大学10月16日2022年11月意向原文157中山医学院双束扫描电子显微镜采购800中山大学10月16日2022年11月意向原文158中山医学院多维活细胞灌流成像系统采购120中山大学10月16日2022年11月意向原文159原位透射电镜样品杆420复旦大学10月15日2022年11月意向原文160液相原子力显微镜350复旦大学10月15日2022年11月意向原文161聚焦离子束场发射扫描电子显微镜800华南理工大学10月15日2022年11月意向原文162台式扫描电子显微镜150华南理工大学10月15日2022年11月意向原文163中南大学高水平公共卫生学院建设采购项目6600中南大学10月15日2022年11月意向原文164中南大学医学精准诊断实验平台、高端医学影像实验平台、医学智能计算实验平台建设采购项目3000中南大学10月15日2022年11月意向原文165透射电子显微镜520吉林大学10月15日2022年12月意向原文166超高分辨激光共聚焦显微镜315吉林大学10月15日2022年11月意向原文167全自动数字玻片扫描系统280吉林大学10月15日2022年11月意向原文168倒置荧光显微成像及显微操作系统200吉林大学10月15日2022年11月意向原文169活细胞工作站320吉林大学10月15日2022年11月意向原文170高光谱显微镜--显微平台220南京农业大学10月14日2022年11月意向原文171膜蛋白结晶工作站150中山大学10月14日2022年12月意向原文172X射线显微镜900中山大学10月14日2022年11月意向原文173超分辨率显微镜650中山大学10月14日2022年12月意向原文174高通量分子相互作用分析仪0.03中山大学10月14日2022年12月意向原文175自动换液成像培养设备680中山大学10月14日2022年12月意向原文176高分辨率激光共聚焦显微镜580中山大学10月14日2022年12月意向原文177细胞无损实时监测系统100中山大学10月14日2022年12月意向原文178激光共聚焦显微镜260中山大学10月14日2022年12月意向原文179荧光斑点分析仪ELISPOT85中山大学10月14日2022年12月意向原文180高内涵成像分析系统400中山大学10月14日2022年12月意向原文181全自动外泌体提取纯化系统60中山大学10月14日2022年12月意向原文182多功能激光成像仪220中山大学10月14日2022年12月意向原文183液体闪烁计数器90中山大学10月14日2022年12月意向原文184理学院聚焦离子束-电子束系统采购项目925中山大学10月14日2022年11月意向原文185全自动活细胞荧光成像系统75中山大学10月14日2022年12月意向原文186原子力显微镜450中山大学10月14日2022年12月意向原文187化学学院多功能显微发光光谱测试系统采购项目150中山大学10月14日2022年12月意向原文188明场玻片扫描系统50中山大学10月14日2023年6月意向原文189脑片膜片钳系统(含钙成像)195中山大学10月14日2023年6月意向原文190显微注射系统85中山大学10月14日2023年6月意向原文191全光谱成像及组织微环境定量分析系统440中山大学10月14日2023年6月意向原文192细胞荧光成像系统90中山大学10月14日2023年6月意向原文193多普勒干涉原子力显微镜550中山大学10月14日2022年11月意向原文194包裹体测温测压系统80兰州大学10月14日2022年12月意向原文195双目镜3.5兰州大学10月14日2022年12月意向原文196偏光显微镜60兰州大学10月14日2022年12月意向原文197物理科学与技术学院/基于物理学科的基础学科拔尖人才培养实践教学平台建设71兰州大学10月14日2022年12月意向原文198化学学院扫描俄歇纳米探针采购项目750中山大学10月14日2022年11月意向原文199昆虫自动监测系统采购120中山大学10月14日2022年11月意向原文200化学学院形状测量激光显微系统采购项目120中山大学10月14日2023年2月意向原文201显微成像光谱系统150武汉大学10月14日2022年12月意向原文202中山医学院高通量共聚焦活细胞成像系统采购490中山大学10月14日2022年11月意向原文203中山医学院在体双光子显微成像系统采购600中山大学10月14日2022年11月意向原文204中山医学院实时无标记电阻细胞分析仪采购250中山大学10月14日2022年11月意向原文205中山医学院晶格层光显微成像系统采购800中山大学10月14日2022年11月意向原文206中山医学院荧光显微镜采购150中山大学10月14日2022年11月意向原文207化学学院 STM扫描隧道显微镜 项目150中山大学10月14日2022年12月意向原文208seahorse细胞能量代谢分析仪255中山大学10月14日2022年12月意向原文209中山医学院超分辨率显微镜采购720中山大学10月14日2022年11月意向原文210化学学院压电力显微镜采购项目300中山大学10月14日2022年12月意向原文211全自动细胞荧光显微成像90中山大学10月14日2022年12月意向原文212珠海校区高分辨共聚焦拉曼成像系统采购项目476.9北京师范大学10月14日2022年12月意向原文213多功能高分辨磁光克尔显微成像系统109吉林大学10月14日2022年12月意向原文214视频级生物型原子力显微镜330吉林大学10月14日2022年11月意向原文215场发射透射电子显微镜950吉林大学10月14日2022年11月意向原文216电镜拉曼一体化显微镜联用分析系统647.9吉林大学10月14日2022年12月意向原文217激光差动共焦显微镜120吉林大学10月14日2022年11月意向原文218超分辨共聚焦扫描显微镜368吉林大学10月14日2022年11月意向原文219超高分辨率激光共聚焦显微镜360吉林大学10月14日2022年11月意向原文220资源环境学院 拔尖创新人才培养平台建设15兰州大学10月14日2022年11月意向原文221中国科学院大学物理科学学院原子力显微镜采购项目198中国科学院大学10月14日2022年10月意向原文222超声波扫描显微镜采购项目141中山大学10月14日2022年11月意向原文223场发射电子显微镜采购项目440中山大学10月14日2022年11月意向原文224西南交通大学聚焦离子束扫描电子显微镜和场发射扫描电子显微镜购置项目1500西南交通大学10月14日2022年11月意向原文225生物医学科学与工程学院-超高分辨率倒置荧光显微镜320华南理工大学10月14日2022年11月意向原文226双转盘激光共聚焦高内涵系统550华南理工大学10月14日2022年11月意向原文227中山医学院高分辨率激光共聚焦显微镜(倒置型)采购480中山大学10月13日2022年11月意向原文228中山医学院全自动玻片扫描系统采购250中山大学10月13日2022年11月意向原文229中山医学院大组织样本光片显微镜采购435中山大学10月13日2022年11月意向原文230化学学院压电力显微镜采购项目300中山大学10月13日2023年3月意向原文231中山医学院高通量活细胞功能分析系统采购200中山大学10月13日2022年11月意向原文232中山医学院数控剪切流活细胞自动分析系统采购240中山大学10月13日2022年11月意向原文233中山医学院透射电子显微镜采购495中山大学10月13日2022年11月意向原文234飞秒激光-聚焦离子束三束电子显微镜采购800中山大学10月13日2022年11月意向原文235肖特基场发射扫描电子显微镜采购193中山大学10月13日2022年11月意向原文236中山医学院激光共聚焦显微镜(正置型)采购420中山大学10月13日2022年11月意向原文237超景深视频显微镜70中山大学10月13日2022年12月意向原文238中山医学院高分辨率荧光成像系统(倒置型)采购120中山大学10月13日2022年11月意向原文239中山医学院转盘共聚焦显微镜(倒置型)采购495中山大学10月13日2022年11月意向原文240中山医学院数字化组织原位多组学分析系统采购450中山大学10月13日2022年11月意向原文241双球差校正透射电子显微镜采购4300中山大学10月13日2022年11月意向原文242共聚焦显微镜采购182中山大学10月13日2022年11月意向原文243中山医学院多光谱组织成像分析系统采购400中山大学10月13日2022年11月意向原文244激光共聚焦显微镜700中山大学10月13日2022年11月意向原文245中山医学院激光共聚焦显微镜(正置型)采购320中山大学10月13日2022年11月意向原文246中山医学院高分辨率场发射扫描电子显微镜采购495中山大学10月13日2022年11月意向原文247中山医学院高分辨率激光共聚焦显微镜(正置型)采购480中山大学10月13日2022年11月意向原文248中山医学院高分辨率荧光成像系统(正置型)采购120中山大学10月13日2022年11月意向原文249高通量低电压透射电子显微镜467北京理工大学10月13日2022年11月意向原文250压电力显微镜180北京理工大学10月13日2022年11月意向原文251中国药科大学共聚焦显微镜项目500中国药科大学10月13日2022年11月意向原文252低压超快原子分辨透射电镜2600吉林大学10月13日2022年11月意向原文253多用途场发射透射电镜720吉林大学10月13日2022年11月意向原文254生命科学学院全自动数字玻片扫描系统采购项目210中山大学10月13日2022年11月意向原文255生命科学学院晶格层光显微镜采购项目980中山大学10月13日2022年11月意向原文256线扫描激光共聚焦显微镜450浙江大学10月13日2022年11月意向原文257球差校正电子显微镜3146吉林大学10月13日2022年11月意向原文258双球差校正透射电子显微镜3000吉林大学10月13日2022年11月意向原文259双束拉曼一体化显微镜联用分析系统647.9吉林大学10月13日2022年12月意向原文260微纳光学成像工作站557华南理工大学10月13日2022年11月意向原文261球差矫正透射电子显微镜5000华南理工大学10月13日2022年11月意向原文262超高分辨率原位动态显微成像系统575华南理工大学10月13日2022年11月意向原文263双光子激光共聚焦显微镜1000华南理工大学10月13日2022年11月意向原文264生物医学科学与工程学院-扫描探针及激光共聚焦成像系统600华南理工大学10月13日2022年11月意向原文265测试中心原子力显微镜(AFM)采购项目500中山大学10月12日2022年11月意向原文266测试中心生物型原子力显微镜采购项目443中山大学10月12日2022年11月意向原文267测试中心原子力显微镜-红外光谱联用采购项目795中山大学10月12日2022年11月意向原文268生态学院倒置荧光显微镜设备采购项目22兰州大学10月12日2022年11月意向原文269生物医学工程学院透射电子显微镜(120kV)采购项目440中山大学10月12日2022年11月意向原文270生物医学工程学院激光共聚焦显微镜(正置型)采购项目275中山大学10月12日2022年11月意向原文271生物医学工程学院桌面型扫描电镜采购项目110中山大学10月12日2022年11月意向原文272测试中心显微微区荧光寿命成像系统采购项目98中山大学10月12日2022年11月意向原文273基于高通量成像筛选设备150清华大学10月12日2022年11月意向原文274高分辨率光片系统470清华大学10月12日2022年11月意向原文275原位冷冻超分辨激光共聚焦系统400清华大学10月12日2022年11月意向原文276高分辨在体双光子激光扫描共聚焦成像系统680清华大学10月12日2022年11月意向原文277智能超灵敏活细胞超分辨显微镜480清华大学10月12日2022年11月意向原文278超高分辨三维(3View)扫描电子显微镜870四川大学华西医院10月12日2022年11月意向原文279草业科学国家级实验教学示范中心一流草学人才培养平台建设项目43兰州大学10月12日2022年11月意向原文280生命科学学院生物学野外实习科教一体化平台-农作物生长箱等设备采购项目85兰州大学10月12日2022年11月意向原文281生命科学学院细胞、免疫及显微技术科教一体化平台-荧光相差显微成像系统采购项目126兰州大学10月12日2022年11月意向原文282医学实验中心十人共览显微镜采购项目28兰州大学10月12日2022年11月意向原文283数字病理切片扫描仪120四川大学华西医院10月12日2022年11月意向原文284惰性气氛下锂电池界面表征用布鲁克原子力显微镜350华北电力大学10月12日2022年11月意向原文285超高分辨场发射扫描电子显微镜360华北电力大学10月12日2022年10月意向原文286200kV冷场发射透射电镜1600华南理工大学10月12日2022年11月意向原文287聚焦离子束场发射扫描电子显微镜800华南理工大学10月12日2022年11月意向原文288环境扫描电子显微镜400山东大学10月11日2022年11月意向原文289眼科手术显微镜20南京农业大学10月11日2022年11月意向原文290高级正置显微镜(含成像系统)5南京农业大学10月11日2022年11月意向原文291显微镜5南京农业大学10月11日2022年11月意向原文292耳科显微镜100四川大学华西医院10月11日2022年11月意向原文293微纳米尺度红外光谱成像系统725华南理工大学10月11日2022年11月意向原文294扫描隧道显微镜185华南理工大学10月11日2022年11月意向原文295四川大学华西第二医院11-12月专业设备采购4391四川大学华西第二医院10月11日2022年11月意向原文296大组织样本激光片层扫描显微镜430清华大学10月11日2022年11月意向原文297高分辨率激光片层扫描显微成像系统490清华大学10月11日2022年11月意向原文298高通量快速转盘共聚焦成像分析系统350清华大学10月11日2022年11月意向原文299公共卫生学院+核酸鉴定平台150兰州大学10月11日2022年12月意向原文300公共卫生学院+蛋白鉴定平台180兰州大学10月11日2022年12月意向原文301化学化工学院针尖增强拉曼光谱成像系统采购项目450兰州大学10月10日2022年11月意向原文302化学化工学院受激拉曼散射显微成像系统采购项目500兰州大学10月10日2022年12月意向原文303化学化工学院/分析测试中心成像质谱显微镜设备采购项目850兰州大学10月10日2022年10月意向原文304化学化工学院高效型激光共聚焦显微镜350兰州大学10月10日2022年11月意向原文305基础医学院双光子激光共聚焦成像系统设备采购项目500兰州大学10月10日2022年11月意向原文306护理学基础研究平台采购项目160兰州大学10月10日2022年12月意向原文307医学实验中心倒置荧光显微镜采购项目204兰州大学10月10日2022年11月意向原文308医学实验中心激光共聚焦采购项目330兰州大学10月10日2022年11月意向原文309医学实验中心360度全息无标记3D荧光显微镜采购项目98兰州大学10月10日2022年11月意向原文310电子增益探测正置光学显微系统160华南理工大学10月10日2022年11月意向原文3113D单分子定位显微镜260华南理工大学10月10日2022年11月意向原文312双光子激光微纳加工系统480华南理工大学10月10日2022年11月意向原文313超快高分辨原子力显微镜560华南理工大学10月10日2022年11月意向原文314超快激子扩散四维成像显微镜1050华南理工大学10月10日2022年11月意向原文315研究级倒置显微镜系统100华南理工大学10月10日2022年11月意向原文316冷冻场发射(生物)扫描电子显微镜450清华大学10月10日2022年11月意向原文317先进能源学院荧光显微镜采购项目120中山大学10月10日2022年11月意向原文318集成电路学院场发射扫描电镜(SEM)采购391.7中山大学10月10日2022年11月意向原文319集成电路学院高精度光学显微镜采购84中山大学10月10日2022年11月意向原文320集成电路学院原子力显微镜采购228中山大学10月10日2022年11月意向原文321集成电路学院金相显微镜采购80中山大学10月10日2022年11月意向原文322集成电路学院操作显微镜采购12中山大学10月10日2022年11月意向原文323高分辨场发射透射电镜2500哈尔滨工业大学10月10日2022年11月意向原文324离子/电子双束系统1400哈尔滨工业大学10月10日2022年11月意向原文325多场耦合原位微纳米力学可视化测试系统1350哈尔滨工业大学10月10日2022年11月意向原文326高分辨场发射扫描电子显微镜590哈尔滨工业大学10月10日2022年11月意向原文327高分辨镓离子双束电镜-二次离子质谱一体化系统1210哈尔滨工业大学10月10日2022年11月意向原文328扫描电镜原位高通量荧光纳米力学测试装置605哈尔滨工业大学10月10日2022年11月意向原文329西南交通大学分析测试中心测试能力提升建设项目采购120西南交通大学10月10日2022年10月意向原文330兰州大学中长期贷款项目投资估算表-拔尖创新人才培养平台60兰州大学10月10日2022年11月意向原文331兰州大学药学院荧光光学倒置显微镜采购项目45兰州大学10月10日2022年11月意向原文332兰州大学药学院荧光正置显微镜及成像系统采购项目60兰州大学10月10日2022年11月意向原文333基础医学院显微数码互动教学实验室采购项目144兰州大学10月10日2022年11月意向原文334基础医学院显微数码互动教学实验室采购项目192兰州大学10月10日2022年11月意向原文335开办费实验室设备购置第二包322.2中国医学科学院病原生物学研究所10月9日2022年11月意向原文336单分子成像和捕获系统530华南理工大学10月9日2022年11月意向原文337多势阱光镊操控系统190华南理工大学10月9日2022年11月意向原文338STED超分辨成像系统620华南理工大学10月9日2022年11月意向原文339北京大学人民医院国家创伤医学中心经费项目购转盘共聚焦显微镜185北京大学人民医院10月9日2022年11月意向原文340兰州大学生命科学学院荧光相差显微成像系统采购项目126兰州大学10月9日2022年11月意向原文341兰州大学生命科学学院红外相机等采购19.48兰州大学10月9日2022年11月意向原文342兰州大学生命科学学院激光聚焦扫描显微镜采购项目240兰州大学10月9日2022年11月意向原文343傅里叶红外光谱/红外显微镜400哈尔滨工程大学10月9日2022年11月意向原文344超快超高压原子级扫描透射电子显微镜3600哈尔滨工程大学10月9日2022年11月意向原文345氦离子束显微镜1100哈尔滨工程大学10月9日2022年11月意向原文346单光子计数共聚焦显微镜1500哈尔滨工程大学10月9日2022年11月意向原文347全通道激光共聚焦显微镜800哈尔滨工程大学10月9日2022年12月意向原文348口岸检疫查验能力提升项目20.5中华人民共和国济南机场海关10月9日2022年11月意向原文349兰州大学生命科学学院超高分辨率显微成像系统设备采购项目730兰州大学10月9日2022年10月意向原文350兰州大学生命科学学院全自动电动荧光显微镜设备采购项目68兰州大学10月9日2022年10月意向原文351物理学院/量子钻石原子力显微镜设备350兰州大学10月9日2022年11月意向原文352兰州大学生命科学学院双光子显微成像系统设备采购项目450兰州大学10月9日2022年10月意向原文353兰州大学生命科学学院激光共聚焦显微镜设备采购项目480兰州大学10月9日2022年10月意向原文354兰州大学生命科学学院高速转盘式共聚焦成像显微镜设备采购项目350兰州大学10月9日2022年10月意向原文355兰州大学生命科学学院激光片层扫描成像系统设备采购项目570兰州大学10月9日2022年10月意向原文356生命科学学院植物生理实训平台采购项目45南京农业大学10月9日2022年11月意向原文357生态学院研究级正置显微镜设备采购项目35兰州大学10月8日2022年11月意向原文358生态学院共聚焦扫描成像显微镜采购项目130兰州大学10月8日2022年11月意向原文359生态学院基因编辑与显微注射平台设备采购项目38.6兰州大学10月8日2022年11月意向原文360药学院激光共聚焦显微镜233.7中山大学10月8日2022年11月意向原文361数字PCR、多通道全自动扫描成像系统、石英晶体微天平、全自动活细胞荧光显微镜成像系统690中国医学科学院肿瘤医院10月8日2022年11月意向原文362双光子激光共聚焦显微镜680南京农业大学10月8日2022年11月意向原文363激光片层扫描显微系统410南京农业大学10月8日2022年11月意向原文364免疫荧光显微系统60南京农业大学10月8日2022年11月意向原文365Spinning disk激光共聚焦荧光显微镜500南京农业大学10月8日2022年11月意向原文366原子力显微镜350南京农业大学10月8日2022年11月意向原文367光电联用激光共聚焦显微镜400南京农业大学10月8日2022年11月意向原文368受激发射损耗显微镜620南京农业大学10月8日2022年11月意向原文369体视显微镜26南京农业大学10月8日2022年11月意向原文370全内反射荧光显微镜175南京农业大学10月8日2022年11月意向原文371荧光倒置显微镜48南京农业大学10月8日2022年11月意向原文372人文与社会发展学院金相显微镜100南京农业大学10月8日2022年12月意向原文373人文与社会发展学院扫描电子显微镜100南京农业大学10月8日2022年12月意向原文374人文与社会发展学院生物显微镜100南京农业大学10月8日2022年12月意向原文375自旋科技研究院购置激光共聚焦荧光显微镜设备项目380华南理工大学10月8日2022年11月意向原文376自旋科技研究院购置扫描探针显微镜项目294华南理工大学10月8日2022年11月意向原文377自旋科技研究院购置金刚石NV色心扫描显微镜系统项目460华南理工大学10月8日2022年11月意向原文378自旋科技研究院购置电子束曝光系统项目498华南理工大学10月8日2022年11月意向原文379双光子扫描光遗传学显微镜500北京大学10月8日2022年11月意向原文380植物保护学院教学中心仪器设备采购项目680南京农业大学10月8日2022年11月意向原文381教务处、国家级实验教学中心显微互动系统采购项目383.7南京农业大学10月8日2022年11月意向原文382中国药科大学场发射电子探针显微分析仪(SEM)项目600中国药科大学10月8日2022年11月意向原文383中国药科大学扫描电镜项目500中国药科大学10月8日2022年11月意向原文384中国药科大学光片显微成像系统项目600中国药科大学10月8日2022年11月意向原文385中国药科大学超高分辨率激光共聚焦项目560中国药科大学10月8日2022年11月意向原文386动物科技学院显微操作系统等仪器采购项目249.7南京农业大学10月8日2022年11月意向原文387全自动活细胞荧光显微镜成像系统165中国医学科学院肿瘤医院10月8日2022年11月意向原文388动物科技学院显微镜等仪器采购项目248.9南京农业大学10月8日2022年11月意向原文389白激光共聚焦显微镜490清华大学10月8日2022年11月意向原文390高分辨扫描电镜600华南理工大学10月8日2022年11月意向原文391环境电子显微镜及制样设备5200华南理工大学10月8日2022年11月意向原文392超高能量分辨率多功能谱学专用电镜3000华南理工大学10月8日2022年11月意向原文393自旋科技研究院购置自旋电子材料表征设备项目1330华南理工大学10月8日2022年11月意向原文394超高分辨球差矫正磁成像透射电镜4000华南理工大学10月8日2022年11月意向原文395兰州大学草地农业科技学院显微数码互动系统采购108兰州大学10月7日2022年11月意向原文396形状测量激光纤维系统138厦门大学10月7日2022年11月意向原文397场发射扫描电镜360厦门大学10月7日2022年11月意向原文398水生动物疫病专业实验室建设项目734.6华中农业大学10月7日2023年1月意向原文399正置全样品双超分共振快速成像系统350清华大学10月7日2022年11月意向原文
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 2021年高校成为扫描电子显微镜主要采购主体
    扫描电子显微镜行业主要公司:目前国内扫描电子显微镜行业的公司主要有中科科仪、聚束科技、国仪量子、泽攸科技和善时仪器等。  本文核心数据:扫描电子显微镜市场规模、扫描电子显微镜消费量、扫描电子显微镜细分市场需求规模(按采购主体)  1、需求规模增长较快,2020年增速接近10%  我国扫描电子显微镜行业起步较晚,于1975年方才由中国科学仪器厂(中科科仪股份有限公司前身)研制出首台扫描电子显微镜。但我国对于科研创新重视程度较高,由于扫描电子显微镜在各科研领域的物质微观形貌表征观察方面应用较为广泛,故其市场需求仍在稳步增长。  结合全球扫描电子显微镜典型厂商日本电子于其决策说明会披露的全球电子显微镜、扫描电子显微镜市场规模和Grand View Research披露的中国电子显微镜市场规模,基于图表1中的基础假设和测算逻辑测算,2017-2020年中国扫描电子显微镜市场规模如下所示。 由此可知,近年来,中国扫描电子显微镜市场规模呈现逐年增长的态势,且增长速度较快,均在10%左右。2020年,中国扫描电子显微镜市场规模实现16.72亿元,受新冠疫情影响,2020年各单位对于扫描电子显微镜等科学仪器的采购预算增幅有所下调,故其同比增长率较2018年与2019年略有下滑,仅为9.21%。2、产品单价高昂,年需求量尚以百计   扫描电子显微镜属于高精密仪器,其产品单价相对高昂。根据对2018-2021年3月中国政府采购网上扫描电子显微镜中标/成交项目的统计,共有361台/套扫描电子显微镜列明了中标/成交金额。这361台/套扫描电子显微镜的中标/成交金额合计为10.67亿元,按该金额计算得到,2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均每台/套的单价约为296.51万元。   我国政府采购的扫描电子显微镜种类宽泛,价格公允,故将2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均价格作为中国扫描电子显微镜市场的平均价格,并根据“需求数量=市场规模/产品价格”的逻辑计算,得到中国扫描电子显微镜产品需求数量如下图所示。   由此可知,2017-2020年,中国扫描电子显微镜产品需求数量不断增长。2020年,中国扫描电子显微镜产品需求数量在564台左右。3、采购主体主要为高校、企业与科研机构   中国扫描电子显微镜的采购主体主要为高校、企业与科研机构。根据赛默飞旗下的飞纳品牌对其在中国销售的1000+台扫描电子显微镜采购主体的统计,以及2018-2021年第一季度3月中国政府采购网上扫描电子显微镜中标/成交项目的统计数据及科研设施与仪器国家网络管理平台披露的扫描电子显微镜保有情况的印证,中国扫描电子显微镜市场45%的采购主体为高校,企业和科研机构各占39%。即2020年,16.72亿元的中国扫描电子显微镜市场中,高校、企业和科研机构分别采购了约7.52亿元、6.52亿元和2.68亿元。 综合来看,我国扫描电子显微镜需求规模逐年增长,但由于价格高昂,年需求量不足千台。从其下游采购主体来看,对扫描电子显微镜存在需求的主要为高校、企业和科研机构,其中高校的需求占比较高,在45%左右。
  • 《中国电子显微镜市场研究报告(2021版)》发布
    电子显微学是近代物理学、生命科学、材料科学,尤其是纳米科学研究的重要手段,诸多重要材料、纳米材料、生命科学的科技突破,都离不开电子显微学的贡献。在各领域前沿科技的发展、生产企业对产品质量要求的提高等多方终端市场需求不断增长背景下,电子显微镜市场竞争日趋激烈。在欧美高端科学仪器市场逐渐放缓背景下,中国已经成为最大的单一市场。2018年,仪器信息网(instrument.com.cn)曾发布《中国电子显微镜市场研究报告(2018版)》,三年来,全球电子显微镜进口市场经历了近六年的首次下滑,加之新冠疫情影响,全球电子显微镜市场风云变幻;另一方面,中国市场电镜及周边国产技术逐渐涌现,不断有国产品牌加入中国电子显微镜产业赛道。此背景下,仪器信息网进一步整理发布《中国电子显微镜市场研究报告(2021版)》,以期对中国电子显微镜市场最新动向全面梳理,对当下中国电子显微镜市场现状、用户需求、电镜企业竞争格局等进行调研分析,为电镜企业在中国市场的战略决策及资本市场投融资提供参考。《中国电子显微镜市场研究报告( 2021版)》内容包含了电子显微镜技术发展概述,近20年全球电子显微镜及相关附件/零部件进出口贸易数据分析、2020-2021年中标分析、中国电镜用户调研分析、中国电镜配置分析、主流电镜企业分析等。《中国电子显微镜市场研究报告( 2021版)》详细统计分析了近20年全球130余国家电镜相关贸易数据、中国近5年电镜相关贸易数据, 3000余电镜用户调研信息,近一年1000余项电镜招中标信息、4000余国内配置电镜信息等。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=253欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部报告目录1 研究报告概述 1.1 电子显微镜概述 1.2 电子显微镜技术发展简史 1.3 报告分析数据说明 2 全球与中国电子显微镜市场规模分析 2.1全球电子显微镜市场规模分析 2.2近20年全球贸易数据看全球电子显微镜市场格局2.3近5年中国海关数据看中国电子显微镜市场格局 3 2021年中国电子显微镜保有市场及用户分析 3.1 2021年中国科研领域电子显微镜配置现状分析 3.2 2021年中国电子显微镜用户分析 4 2020-2021年中国电子显微镜采购分析 4.1 2020-2021年中国电子显微镜采购用户端分析 4.2 2020-2021年中国电子显微镜采购中标品牌分析 5 中国市场主流电子显微镜企业分析 5.1 主流进口品牌分析5.2 国产企业分析6 总结 6.1 关于全球电镜市场格局 6.2 关于中国市场6.3 关于国产品牌
  • 《中国电子显微镜市场研究报告|2018版》正式发布
    电子显微学是近代物理学、生命科学、材料科学,尤其是纳米科学研究的重要手段,近年来许多重要材料、纳米材料、生命科学的科技突破,都离不开电子显微学的贡献。在各领域前沿科技的发展、生产企业对产品质量要求的提高等多方终端市场需求的不断爆发式增长背景下,电子显微镜生产商的无形竞争也日趋激烈,从争相广泛寻求最新技术合作,以抢占前沿技术商机 到不断资本整合,以完善产品线短板 再到全球潜在市场上没有硝烟的营销战场。在欧美高端设备市场逐渐走向饱和的情况下,大兴科技建设的中国便成为主流电镜商们必争的市场所在。  在长期的技术发展与资本整合之下,当前主流电镜品牌以进口为主,格局明了,但基于中国市场特殊性,高校、企业等新老用户分布广泛,需求层次错综复杂,不同品牌之间多重交叉,信息需求难以及时互通。不便于广大用户及电镜厂商的共同发展,在此背景下,仪器信息网(http://www.instrument.com.cn)特组织了“中国电子显微镜市场调研”活动,以期从终端用户市场及电镜配置现状的角度,对中国电子显微镜市场做更全面的梳理,对当下中国电子显微镜市场现状、用户需求、电镜品牌现状、市场拓展等信息进行调研分析,为电镜商在中国市场的市场营销及推广提供决策参考。  《中国电子显微镜市场研究报告(2018版)》内容包含了电子显微镜技术发展概述,2018中国电子显微镜及相关附件/零部件进出口海关数据分析、2018年中标分析、中国电镜用户调研分析、电镜热点应用领域分析、主流电镜品牌市场分析等。  《中国电子显微镜市场研究报告(2018版)》得到了广大调研用户、相关企业以及业内专家的大力支持。495位(有效461位)来自高校院所、企业研发、企业QA/QC、第三方检测机构、事业机构等领域的电镜用户参与在线调研。结合仪器信息网大数据平台,还对近三年所有电镜相关仪器专场用户大数据、相关电镜商在线营销大数据、行业应用栏目相关电镜解决方案大数据等进行了统计分析。同时,报告详细统计分析了2018年近500条电镜相关中标信息、500余篇电镜表征相关国内核心期刊文献,以及400余项电镜相关标准整理。在此,谨对报告所有参与者表示最衷心的感谢!  报告链接:《中国电子显微镜市场研究报告(2018版)》  欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部  报告节选:  第一章电子显微镜概述  ......  第二章2018年中国电子显微镜市场规模分析  2.1由2018年海关数据看中国电子显微镜及零部件进出口情况  ......  表2017年全年电镜进出口数据汇总表商品名称计量单位进口出口12个月数量同比(%)12个月金额(万美元)同比(%)12个月数量同比(%)12个月金额(万美元)同比(%)显微镜(光学显微镜除外);衍射设备台........................显微镜(光学显微镜除外)及衍射设备的零件千克........................  ......  2.1.12018年1-12月海关电子显微镜进出口数据整体分析  ......  表电镜相关产品2018年1-12月海关进出口金额统计表货品名称进口数量进口总额/元出口数量出口总额显微镜(光学显微镜除外)及衍射设备............显微镜(光学显微镜除外)及衍射设备的零件............  ......  2.1.22018年1-12月海关电子显微镜各省进出口数据分析  图1-12月海关电子显微镜各省进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各省进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各省出口数据分布图  ......  2.1.32018年1-12月海关电子显微镜各国家进出口数据分析  图1-12月海关中国进口来源的各个国家的电子显微镜数据分布图  ......  图1-12月海关中国电子显微镜出口至各国家数据分布图  ......  图1-12月海关电子显微镜零部件/附件各国家进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各国家出口数据分布图  ......  2.1.42018年1-12月海关电子显微镜各月份进出口数据分析  ......  图1-12月海关电子显微镜各月份进出口金额分布图  ......  图1-12月海关电子显微镜零部件/附件各月份进出口金额分布图  ......  2.2由多方行业数据看中国电子显微镜市场规模情况  2.2.1由SDI报告数据看中国电子显微镜市场规模  表2015-2020年全球电子显微镜市场数据表(数据摘自SDI报告)201520162017201820192020GAGR市场容量/百万美元2015-2020电子显微镜.....................  ......  2.2.2由历史数据看中国电子显微镜市场历史演变  根据历史资料及多方参考数据,整理我国近二十年电镜保有量情况如下表:  表我国近20年电镜历史保有量数据表(数据摘自国内已发表历史文献)年份电镜台数TEM/台SEM/台国产份额1997............2004............2009............2015............2016............2018............  ......  第三章中国电子显微镜市场情况分析  3.1中国主流电镜品牌及2018电镜新品发布统计  目前,中国电镜品牌以进口为主,主要进口电镜生产商包括:赛默飞(FEI、飞纳)、日立高新、日本电子、蔡司、泰思肯、库赛姆等,国产电镜生产商包括中科科仪、聚束科技、善时仪器等。本小节将对部分主流生产商概况及2018年发布的15款电镜新品信息等进行分别简单分析介绍。  3.1.1赛默飞...3.1.2日立高新...3.1.3日本电子....3.1.4蔡司...3.1.5泰思肯...3.1.6...  3.2由2018年电子显微镜中标数据看中国电镜市场分布  3.2.1统计样本电镜采购用户画像  ......  图统计样本采购单位性质分布图  ......  3.2.2统计样本电镜采购行为月份分布分析  ......  图统计样本采购台数及采购金额不同月份分布图  ......  图统计样本中标平均单价随月份变化图  ......  3.2.3统计样本电镜中标类型分布分析  ......  图中标电镜明细分类数量分布图  ......  图中标电镜明细分类平均单价分布图  3.2.4统计样本电镜中标品牌分布分析  ......  图统计样本中标品牌金额与数量分布图  ......  3.3由2018年中标数据看中国球差/冷冻高端电镜市场分布  ......  表2018年冷冻电镜/球差校正电镜采购中标详表采购单位中标设备名称型号中标金额/万元中标品牌A............B............C............D............E...........................  ......  第四章中国电子显微镜用户调研分析  4.1.1调研电镜用户地域分布情况  图调研电镜用户地图分布图(数字代表有效问卷份数)  ......  图调研电镜用户单位性质分布图  图调研电镜用户职业性质分布图  4.2调研用户电镜配置及使用状况分析  4.2.1调研用户配置电镜情况分析  ......  图调研用户配置电镜类型分布图  图调研用户配置电镜台数分布图  ......  4.2.2调研用户电镜使用情况分析  图调研用户电镜电镜平均使用年限分布图  图调研用户电镜使用使用频率分布图  ......  4.3调研用户电镜品牌分布及电镜使用评价分析  4.3.1调研用户配置电镜品牌分布情况  图调研用户电镜品牌分布情况  ......  4.3.2调研用户对电镜品牌影响力认知度分析  图调研用户对主流电镜品牌的品牌影响力综合评分情况  ......  4.3.3调研用户对配置电镜使用评价分析  图调研用户对配置电镜评分情况图  ......  4.4调研用户采购行为及其他问题反馈分析  4.4.1用户采购品牌选择的影响因素分析  图调研用户电镜采购关注因素分布条形图  ......  4.4.2用户采购方式及采购周期分析  图调研用户电镜采购方式分布图  图调研用户电镜采购周期分布图  ......  4.4.3用户电镜实验室搬迁、环境改造项目需求分析  ......  图4.15调研用户电镜实验室搬迁、环境改造项目需求分布图  4.4.4用户近期电镜采购需求分析  图4.16调研用户电镜采购需求意向分布图  ......  第五章中国电子显微镜应用领域分析  5.1由中国相关电镜标准实施情况看电镜应用领域  表电镜相关标准发布情况  ......  图我国电镜标准归口单位分布图  ......  图统计标准中明确应用领域的标准的领域分布图  ......  5.2中国电镜热点应用领域之锂电行业应用分析  (1)显微镜品类分布...(2)品牌分布...(3)各品牌地区市场分布...(4)各地区不同品牌市场渗透率...(5)部分品牌主流产品型号分布  ......  第六章仪器信息网大数据看近三年中国电镜市场晴雨表  ......  6.1仪器信息网大数据之近三年电镜用户活跃度晴雨表  ......  图6.1仪器信息网大数据之近三年电镜用户活跃度分布图  ......  6.2仪器信息网大数据之近三年电镜厂商线上营销晴雨表  图主流电镜厂商线上营销活跃度分布图  图主流电镜厂商线上产品及品牌认可度分布图  6.3仪器信息网大数据之近五年电镜厂商关注领域晴雨表  图近五年电镜相关解决方案行业领域分布图  图近13年电镜相关解决方案电镜类型分布图  第七章总结  正文目录:   第一章电子显微镜概述  1.1电子显微镜定义及分类......6  1.2电子显微镜技术发展简史......6  第二章2018年中国电子显微镜市场规模分析  2.1由2018年海关数据看中国电子显微镜及零部件进出口情况......15  2.2由多方行业数据看中国电子显微镜市场规模情况......26  第三章中国电子显微镜市场情况分析  3.1中国主流电镜品牌及2018电镜新品发布统计......28  3.2由2018年电子显微镜中标数据看中国电镜市场分布......35  3.3由2018年中标数据看中国球差/冷冻高端电镜市场分布......41  第四章中国电子显微镜用户调研分析  4.1调研电镜用户样本情况分析......50  4.2调研用户电镜配置及使用状况分析......54  4.3调研用户电镜品牌分布及电镜使用评价分析......56  4.4调研用户采购行为及其他问题反馈分析......59  第五章中国电子显微镜应用领域分析  5.1由中国相关电镜标准实施情况看电镜应用领域......64  5.2中国电镜热点应用领域之锂电行业应用分析......67  第六章仪器信息网大数据看近三年中国电镜市场晴雨表  6.1仪器信息网大数据之近三年电镜用户活跃度晴雨表......74  6.2仪器信息网大数据之近三年电镜厂商线上营销晴雨表......75  6.3仪器信息网大数据之近五年电镜厂商关注领域晴雨表......76  第七章总结  7.12018年中国电子显微镜市场规模......80  7.22018年中国电子显微镜主流厂商行为分析......80  7.32018年中国电子显微镜用户行为分析......81
  • 港城大成为全球首家自行设计及生产电子显微镜的大学
    4月20日,香港城市大学(以下简称“港城大”)“高时空分辨率电子显微镜”全球新闻发布会在港城大及港城大深圳福田研究院同步举行。港城大署理校长陈志豪教授、深圳市福田区委书记黄伟、福田区人民政府副区长欧阳绘宇及深圳市科技创新委员会等出席本次活动。  港城大深圳福田研究院高时空分辨电镜研究部所研发制造的高时空分辨率电子显微镜是我国首台自有知识产权的高时空分辨率电子显微镜,也是世界上第一台同时具备低电压、场发射、扫描透射一体化模式的紧凑型电子显微镜。港城大的研究团队率先研发先进技术,自主设计及生产电子显微镜,是全球首家拥有相关科研实力的大学。团队得到福田区政府支持,是唯一成功制造多个高端电子显微镜的大学研究团队。(左起)城大署理校长陈志豪教授、材料科学及工程学系讲座教授、高时空分辨电子显微中心(TRACE)主任及深圳福田研究院院长陈福荣教授、TRACE研究员薜又俊博士  在港城大材料科学及工程学系材料工程讲座教授、高时空分辨电子显微中心主任及深圳福田研究院院长陈福荣教授带领下,团队研发出的电子显微镜系统包括脉冲电子源、超快相机、分段抽气真空系统及像差校正器。团队的最终目标是研发出一款小型高时空分辨「量子」电子显微镜,用以研究光束灵敏材料的原子动态。  由于电子显微镜能以明显高于光学显微镜的分辨率成像,并提供微纳米甚至原子尺度的测量及分析,因此在多个研究行业中广受欢迎,尤其在医学、生命科学、化学、材料学、集成电路和其他研究领域。  不过,目前的电子显微镜未能解决长久以来有关幅射损害及静态图像样本的樽颈问题,窒碍研究微小原子及电子光束灵敏的材料。此外,现行电子显微镜的体积也难以应用于空间有限的环境,例如太空穿梭机、深海及深地研究船及器具。  为克服上述问题,港城大团队设计出可供高时空分辨率电子显微镜使用的脉冲电子源和快速相机。在快速相机上加装偏向器,令成像速度不再受制于成像输出时间,这一概念在高时空分辨率电子显微镜系统上首次得到证实。此外,团队设计的像差校正器更进一步提升成像的解像度。由于团队拥有相关的知识产权,并可自由设计系统,因此未来将可用较低成本生产特定的小型电子显微镜。例如,六硼化镧(LaB6)桌面电子显微镜将可以目前市场同类产品的六成价格出售。  陈教授说:“高端仪器微型化是工业发展无可避免的趋势。”团队现正研发高时空分辨率扫描/透射一体化桌面电子显微镜,将利用脉冲空心圆锥体,在室温及液态状况下观察及重构立体的蛋白质结构。目前要观察蛋白质的结构,只能在极低温度下以冷冻电子显微镜进行,团队的研究将突破这方面的局限。  团队下一步的计划是在大湾区建立一个世界领先的电子光学设计和制造中心,集中研究电子光学技术,并进行技术转移。  陈教授说:“该中心旨在将电子光学的相关技术转移至营运中及新成立的公司。”中心的目标是要在仪器及科学领域上,保持较全球其他电子显微镜设施领先15年的技术。  中心将以创新的电子光学技术,专注研发目前未能在不同外部环境(例如电场、激光、高温、低温)下进行的人工光合作用、量子材料及水科学等相关应用科技,提供一系列高时空分辨电子显微镜服务。  陈教授指出,该中心将在量子器件、未来能源、生命科学及医学等领域作出突破性的研究,并将团队的科研成果转化为应用,造福社会,并促进业界与学界的合作。  港城大深圳福田研究院副院长陈俊铎提到,港城大深圳福田研究院基于河套合作区的独特优势,采用“一院两区”的模式共享深港两地的科创资源,引进香港高层次人才前来福田进行科研工作。作为从高校科研团队产出的科研成果,高时空分辨率电子显微镜的成功研发充分体现了深港科技创新合作区“协同创新”的优良氛围与深港合作的高度融合。  陈俊铎说:“香港城市大学是第一个在河套合作区注册的香港高校,接下来我们将推出福田研究院的二期规划,利用深港两地优势共同推动科研发展,既有世界一流的成果,又能与当地的产业相结合,形成正向的科创生态。”  未来,港城大通过利用本校国际人才、知识与技术创新交汇的地缘优势,结合深圳的产业基础与应用创新优势,将大力推动高时空分辨率电子显微镜产业国产化,建设全球电子显微学创新高地和高端精密仪器装备制造产业基地,支撑电子信息、半导体、生物医药等相关产业高速发展。
  • 组图:电子显微镜带你开启人体微观之旅
    电子显微镜(electron microscope,电镜)是利用电子与物质作用所产生之讯号来监定微区域晶体结构,微细组织,化学成份,化学键结和电子分布情况的电子光学装置,常用的有透射电子显微镜(TEM)和扫描电子显微镜(SEM)。  在实验室中,SEM是一款很常见的仪器。平常,我们经常用它来观察材料、生物物质等的形貌和微观结构,常常会有一些让我们叹为观止的景观。但是你想过我们的人体在电子显微镜下会是什么样子吗?  据悉,在扫描隧道电子显微镜下观察到的人体微观结构,可以分辨1-5纳米(1纳米相当于10亿分之一米)直径的细节,让人一睹难得一见的身体细节。  日前,腾讯科技发布了一组利用扫描电子显微镜拍摄的人体微观图,借助SEM的力量将让你开启人体的发现之旅,在这里你将看到从未见到过的景象。  这里几乎所有的这些照片都来自于扫描电子显微镜(SEM)。借助SEM的力量将让你开启人体的发现之旅,在这里你将看到从未见到过的景象。上图是许多精子试图为卵子授精的近距离照片。  这张照片中的物体看起来就像肉桂糖果,但它们事实上是人体中最常见的血细胞&mdash &mdash 红血球。这些两面凹的细胞承担着将氧气送往身体各处的任务。  定期修剪和良好的护理应当不会让你的头发末端出现照片中的这种难看状态。  在你大脑的千亿神经元中,普肯野神经元是其中最大的。这些细胞是小脑皮层中的运动协调大师。酒精和锂等有毒物、自体免疫系统疾病以及基因突变都能够对人类的普肯神经元产生消极影响。  这是人耳内毛细胞静纤毛的近视图。这些静纤毛能够探测机械运动对声音振动做出反应。  在这张照片中,着色的视网膜血管从黑色的视神经盘背景中凸显出来。  这张色彩强化的照片显示的是舌头上的味蕾。人类舌头上大约有1万个味蕾用于探测酸甜苦辣等味道。  经常刷牙吧,因为不刷牙在牙齿表面就会形成玉米状斑块。  这是当那些相同的红血细胞紧密集合成血凝块时的样子。  这张色彩强化照片展现的是肺内表面的样子。那些空腔就是肺泡,也就是与血液交换气体的地方。  这张照片中反常的肺癌细胞与之前健康的肺部形成了鲜明的对比。  小肠内的绒毛增加了肠道的表面积,这就帮助肠道进行食物吸收。近距离观察,你可以看到一些食物粘附在缝隙当中。  这张是人类卵细胞的色彩强化照片,卵细胞的表面附着着透明带状物&mdash &mdash 糖蛋白,糖蛋白不仅能保护卵细胞,还能够帮助它捕获精子。  这看起来就像是一个战场,但是它事实上是受精5天后的一颗卵子。这张荧光照片是借助一台共焦显微镜拍摄的。  生命循环的再一次开始:这是6天大的胚胎开始进入子宫内膜的情景。
  • 两年内中国电子显微镜市场容量将居世界首位
    2010年全国电子显微会议暨第八届两岸电子显微学学术研讨会在杭召开  仪器信息网讯 为加强交流电子显微学及相关仪器技术的基础研究与应用研究最新进展,同时为庆祝中国电子显微镜学会成立30周年,2010年10月9日,由中国电子显微镜学会主办,国家自然科学基金委员会、浙江大学及浙江大学材料科学与工程系协办的“2010年全国电子显微会议暨第八届两岸电子显微学学术研讨会”在浙江省杭州市隆重开幕。会议现场北京工业大学固体微结构与性能研究所韩晓东教授主持会议  会议开幕式由北京工业大学固体微结构与性能研究所韩晓东教授主持,300余位来自国内外的电子显微学领域的专家、厂商、用户出席了闭幕式,包括30余位台湾的专家学者。浙江大学材料科学与工程系张泽院士致辞  大会主席张泽院士在会上致辞。张泽院士在致辞中说到:“在这30年来,中国电子显微镜学会不断的努力与创新,有力地推动了我国电子显微镜的学术发展与国际交流,也储备了大量的专业人才。目前,我国电子显微镜市场每年以近百套的数量在增长,可以预期,在未来两年内中国电子显微镜市场容量将居世界首位。”最后,张泽院士预祝大会能够取得圆满成功。台湾中央研究院物理研究所胡宇光教授致辞  胡宇光教授致辞到:“几年前,台湾电镜学会已经更名为台湾显微镜学会,而更名的目的是希望能够吸收更多的显微镜人才,为推动两岸电子显微镜技术的交流做出应用贡献。这次我们来参加此次大会,就是希望延续已经举办七届的两岸电子显微学学术研讨会,很好地与大陆的电子显微专家学者沟通交流,共同促进两岸的电子显微镜技术的发展。”浙江大学校长杨卫教授致辞  作为会议的协办方,杨卫教授首先代表浙江大学对与会者表示欢迎。同时,杨卫教授还表示:“在中国电子显微学会成立30周年之际,浙江大学很荣幸地能有机会协办此次会议,并与国内外知名人士共同分享交流电子显微的最新技术成果。2010年3月,浙江大学开始筹建新的电镜中心,此次会议的召开将促进浙江大学电镜中心的建设与相关学科的发展。”国家自然科学基金委员会数理科学部物理一处张守著处长致辞  张守著处长对于此次大会的顺利召开表示祝贺,并指出中国电子显微学会对于我国电子显微事业的发展起到了重要的组织与指导作用。同时,为了促进电子显微及相关学科的发展,张守著处长鼓励专家学者勇于创新,积极申请与电镜相关的科研项目,国家自然基金委员会将会给予大力支持。美国Gatan公司潘明先生致辞  潘明先生表示:“中国电子显微学会在30年内取得成绩是瞩目的,通过中国电子显微学会提供的这个平台,各大厂商把越来越多的电镜新产品带进中国。目前,我国拥有世界上最先进的电镜设备,造就了一大批科研人才,并取得了丰硕的学术成果,中国已成为世界上的电镜大国。”  开幕式上,国际知名电子显微学家桥本初次郎先生发来视频表示祝贺,并展示了很多珍贵的历史照片,与大家共同回顾了中国电子显微镜学会30年来的工作成绩。参会人员合影留念  本次会议还邀请了国内外近百位知名学者与厂商代表作了精彩的大会报告与分会场特邀报告。报告内容包括:透射电子显微镜、扫描电子显微镜、微束分析、扫描探针显微镜(包括STM、AFM等)、激光共聚焦显微镜等在物理学、材料科学、纳米科技、生命科学、化学化工、环境科学、地学等领域中的基础和应用研究成果 显微学相关仪器的理论、技术和实验方法的发展与改进 电镜及其它显微学仪器的使用、改进与维修经验的交流等。仪器厂商展览Poster展览  另外,大会还邀请了国内外20家仪器厂商做电镜和其它相关仪器最新进展的介绍及产品展示。会议同期还将举办2010年首届中国电子显微学摄影大赛,并颁布“钱临照奖”、“桥本奖”、优秀论文奖、优秀Poster奖。日本电子招待晚宴  备注:仪器信息网将跟踪报道2010年全国电子显微会议暨第八届两岸电子显微学学术研讨会,敬请关注!
  • AEM:通过原位/操作电子显微镜观察反应条件下的多相催化剂
    清洁能源和环境的进步在很大程度上取决于在广泛的非均相催化反应中开发高效催化剂,这得益于透射电子显微镜技术在确定原子级形态和结构方面的作用。然而,催化反应条件下的形貌和结构决定了催化剂的性能,这引起了人们在多相催化中开发和应用原位/原位透射电子显微镜技术的兴趣。纽约州立大学宾汉姆顿分校钟传建教授和复旦大学车仁超教授、Cheng Han-Wen(助理)教授等人发表评述性文章。本综述的主要主题是强调使用原位/操作透射电子显微镜技术在相关反应条件下对非均相催化剂的一些最新见解。本综述不是对原位/操作技术的基本原理进行全面概述,而是侧重于深入了解在多相催化、电催化和光催化反应下从单组分到多组分催化剂的各种催化剂的原子级/纳米级细节涉及气固界面和液固界面的条件。在样品环境、支架和电池以及催化剂类型或电催化反应方面,在固体催化剂上与气体(上图)和液体(下图)反应物/产物的非均相反应条件下催化剂的原位/操作 TEM 研究说明。这一侧重点与原子、分子和纳米级形态、组成和结构与反应条件下催化性能的相关性的讨论相结合,揭示了设计用于清洁和可持续能源应用的纳米结构催化剂的挑战和机遇。文献链接:Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. DOI:10.1002/aenm.202202097
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为100或111取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为310取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制