热电偶工作原理

仪器信息网热电偶工作原理专题为您提供2024年最新热电偶工作原理价格报价、厂家品牌的相关信息, 包括热电偶工作原理参数、型号等,不管是国产,还是进口品牌的热电偶工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶工作原理相关的耗材配件、试剂标物,还有热电偶工作原理相关的最新资讯、资料,以及热电偶工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热电偶工作原理相关的仪器

  • 热电偶冷端 400-860-5168转1973
    热电偶冷端简单介绍 热电偶冷端TRU938提供了一个稳定、准确的0℃,(或者提供一个45℃~70℃之间的参考温度)TRU938采用了帕尔帖原理,具有快速温度反应的特性,甚至在高温环境下也可以在10分钟内达到稳定。 热电偶冷端详细介绍 热电偶冷端TRU938 具有温度报警系统,当参考温度偏离0.2℃时便会报警提示。 热电偶冷端产品特点 ★ 适用于实验室或大容量应用程序★ 可以在*高65℃的环境下工作★ 可靠的固态设计 热电偶冷端技术指标
    留言咨询
  • 一、产品介绍:电子冰点器热电偶专用是为热电偶冷端提供稳定而精确的零摄氏度设备。恒温器关键部件以热管制作,由半导体致冷器配置精密控制电路,使热管工作在零摄氏度,具有工作温度稳定,精度高、使用方便等特点。为取代冰水混合物取得零摄氏度方法的更新产品,是校验各类热电偶时必备的试验设备。热电偶电子冰点器广泛适合于科研、计量、工矿企业等各单位使用。二、技术参数:1、 稳定度: ±0.05℃/30min(更高精度可定制) ;2、 温控仪分辨率:0.001℃ ;3、 测孔数及孔径:6-φ9 ;4、 测孔深度:220 mm ;5、 测孔均匀度:±0.005℃ ;6、 径向温场:±0.01℃;7、 轴向温场:从阱底向上≥40mm处有±0.01℃ 的温场;8、 电源:单向交流220V , 最大功率50W ;9、 工作环境条件:环境温度0℃-32℃湿度 10%-80% ;10、 重量:12KG ;11、 外形尺寸:(长×宽×高)390×230×400mm 。三、符合标准:符合JJG 75-1995 标准热电偶检定规程符合JJG 141-2013 工作用贵金属热电偶检定规程符合JJG 351-1996 工作用廉金属热电偶检定规程四、工作原理电子冰点器热电偶专用的工作原理图如图所示五、校准方法:1.试验条件:室温25℃±3℃,二等标准铂电阻温度计,0.005级六位半数字繁用表。2.校准方法:将二等标准铂电阻温度计插入到零度恒温器的插孔中,并接入测试系统。打开电源开关,40分钟后进行测量,测出和零度恒温器的实际温度和零度的偏差,并观察其稳定度。3.当温度升至校准温度后,按下位于温控表下部最左端的 键,几秒钟后,即弹出一菜单 ,继续按 键,在pv窗口下为“SC”时,可用? . ▲ . ▼ 键调整SV窗口的数值。用标准铂电阻温度计测定零度恒温器的实际温度,当温控表的显示值高于此温度时,将“SC”值增加二者的差值,反之亦然。4.热电偶电子冰点器出厂前已经过校准。用户亦可参照上述方法进行校准。六、常见故障及处理方法。当使用时出现以下异常现象,并不完全是零度恒温器出现故障,请在送出维修前,再仔细检查一次。故障现象 可能原因处理方法电子冰点器不显示 无法升(降)温未接通电源。 未打开控温仪开关。 3.未打开电源开关。 插紧电源插头。 2.打开温控仪开关。 3.打开电源开关。 电子冰点器不稳定1.有漏电现象安全接地电子冰点器断电保险丝损坏及时更换保险丝(保险丝在底部)
    留言咨询
  • TC Wafer晶圆测温系统,TC Wafer热电偶,晶圆硅片测温热电偶TC Wafer晶圆测温系统是一种用于在半导体生产过程中测量晶圆温度的设备。它的主要作用是确保晶圆在制造过程中的温度稳定性,从而保证产品的质量和性能。首先,TC Wafer晶圆测温系统的设计和制造是非常关键的。它通常由高精度的温度传感器、数据采集模块和软件控制系统组成。温度传感器通常采用热电偶或热电阻等技术,具有高精度和稳定性。同时,系统还需要具备良好的隔离和屏蔽性能,以避免外界干扰对温度测量结果的影响。其次,TC Wafer晶圆测温系统的工作原理是基于热传导原理进行的。当晶圆进入测温系统时,温度传感器会与晶圆接触,通过测量传感器与晶圆之间的温度差来计算晶圆的温度。同时,系统还会根据需要进行温度校准和补偿,以提高测量的准确性和可靠性。另外,TC Wafer晶圆测温系统具有高度的自动化和智能化特性。它通常配备有触摸屏或计算机控制界面,操作人员只需按照指示进行操作即可完成测温过程。同时,系统还可以实时监测和记录晶圆的温度变化,通过数据分析和处理,为生产过程的优化和控制提供参考依据。最后,TC Wafer晶圆测温系统在半导体生产中具有重要的应用价值。在半导体制造过程中,晶圆的温度对产品的性能和质量有着重要的影响。通过使用TC Wafer晶圆测温系统,生产厂商能够实时监测和控制晶圆的温度,避免温度波动对产品质量的影响,提高产品的一致性和稳定性。总的来说,TC Wafer晶圆测温系统在半导体生产中扮演着重要的角色。它通过测量晶圆的温度,确保生产过程中的温度稳定性,为产品的质量和性能提供保障。随着半导体技术的不断发展和应用的不断拓展,TC Wafer晶圆测温系统的设计和制造将不断完善,为半导体行业提供更加可靠和高效的温度测量设备。参数要求硅片尺寸:2,3,4,5,6,8,12寸测温点数:1-64点温度范围:-200-1200度数据采集系统:1-32路定制分析软件晶元测温仪,多路晶元测温系统、TC WAFER晶圆热电偶温度传感器
    留言咨询

热电偶工作原理相关的方案

热电偶工作原理相关的论坛

  • 热电偶的工作原理

    热电偶的工作原理  热电偶的工作原理(热电偶原理) 什么叫热电偶?这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B:热电偶工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2:热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。常用的热电偶材料有:热电偶分度号热电极材料 正极负极S铂铑10纯铂R铂铑13纯铂B铂铑30铂铑6K镍铬镍硅T纯铜铜镍J铁铜镍N镍铬硅镍硅E镍铬铜镍  1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应(Seebeck effect)”。  Thomas Johann Seebeck(1780~1831)  〔发现者〕托马斯·约翰·塞贝克(也有译做“西伯克”)1770年生于塔林(当时隶属于东普鲁士,现为爱沙尼亚首都)。塞贝克的父亲是一个具有瑞典血统的德国人,也许正因为如此,他鼓励儿子在他曾经学习过的柏林大学和哥廷根大学学习医学。1802年,塞贝克获得医学学位。由于他所选择的方向是实验医学中的物理学,而且一生中多半时间从事物理学方面的教育和研究工作,所以人们通常认为他是一个物理学家。  毕业后,塞贝克进入耶拿大学,在那里结识了歌德。德国浪漫主义运动以及歌德反对牛顿关与光与色的理论的思想,使塞贝克深受影响,此后长期与歌德一起从事光色效应方面的理论研究。塞贝克的研究重点是太阳光谱,他在1806年揭示了热量和化学对太阳光谱中不同颜色的影响,1808年首次获得了氨与氧化汞的化合物。1812年,正当塞贝克从事应力玻璃中的光偏振现象时,他却不晓得另外两个科学家布鲁斯特和比奥已经抢先在这一领域里有了发现。  1818年前后,塞贝克返回柏林大学,独立开展研究活动,主要内容是电流通过导体时对钢铁的磁化。当时,阿雷格(Arago)和大卫(Davy)才发现电流对钢铁的磁化效应,贝塞克对不同金属进行了大量的实验,发现了磁化的炽热的铁的不规则反应,也就是我们现在所说的磁滞现象。在此期间,塞贝克还曾研究过光致发光、太阳光谱不同波段的热效应、化学效应、偏振,以及电流的磁特性等等。  1820年代初期,塞贝克通过实验方法研究了电流与热的关系。1821年,塞贝克将两种不同的金属导线连接在一起,构成一个电流回路。他将两条导线首尾相连形成一个结点,他突然发现,如果把其中的一个结加热到很高的温度而另一个结保持低温的话,电路周围存在磁场。他实在不敢相信,热量施加于两种金属构成的一个结时会有电流产生,这只能用热磁电流或热磁现象来解释他的发现。在接下来的两年里时间(18222~1823),塞贝克将他的持续观察报告给普鲁士科学学会,把这一发现描述为“温差导致的金属磁化”。  赛贝壳的实验仪器,加热其中一端时,指针转动,说明导线产生了磁场  塞贝克确实已经发现了热电效应,但他却做出了错误的解释:导线周围产生磁场的原因,是温度梯度导致金属在一定方向上被磁化,而非形成了电流。科学学会认为,这种现象是因为温度梯度导致了电流,继而在导线周围产生了磁场。对于这样的解释,塞贝克十分恼火,他反驳说,科学家们的眼睛让奥斯特(电磁学的先驱)的经验给蒙住了,所以他们只会用“磁场由电流产生”的理论去解释,而想不到还有别的解释。但是,塞贝克自己却难以解释这样一个事实:如果将电路切断,温度梯度并未在导线周围产生磁场。所以,多数人都认可热电效应的观点,后来也就这样被确定下来了。(来自:以色列·希伯莱大学网站,陈忠民译)  〔应用〕热电效应发现后的1830年,人们就为它找到了应用场所。利用热电效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度!  热电偶的两种不同金属线焊接在一起后形成两个结点,如图(a)所示,环路电压VOUT为热结点结电压与冷结点(参考结点)结电压之差。因为VH和VC是由两个结的温度差产生的,也就是说VOUT是温差的函数。比例因数α对应于电压差与温差之比,称为Seebeck系数。  热电偶测温原理  图(b)所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的结点。本例中,每个开路结点与铜线电气连接,这些连线为系统增加了两个额外结点,只要这两个结点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热结点与冷结点温差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热结点的实际温度,冷结点温度必须是已知的。冷结点温度为0℃(冰点)时是一种最简单的情况,如果TC=0℃,则VOUT=VH。这种情况下,热结点测量电压是结点温度的直接转换值。不过,在实际应用中这是难以实现的。为此,美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表,所有数据均基于0℃冷结点温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热结点温度。

  • 热电偶温度计的应用范围及工作原理介绍

    热电偶是一种感温元件。它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。下面我们来了解下热电偶温度计的工作原理及应用范围。  一、热电偶温度计的工作原理及应用范围    热电偶温度计的工作原理丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。国能仪表专业生产压力表:压力表,精密压力表,不锈钢压力表,双针压力表,膜盒压力表,隔膜压力表、耐震压力表,电接点压力表,防爆电接点压力表等系列压力表。    二、热电偶温度计的应用范围    采用双金属温度计、热电偶或热电阻一体化温度变送的方式,既满足现场测温需求,亦满足远距离传输需求,可以直接测量各种生产过程中的-80-+500℃范围内液体、蒸气和气体介质以及固体表面测温。    用途:用于测量各种温度物体,测量范围极大,远远大于酒精、水银温度计。它适用于炼钢炉、炼焦炉等高温地区,也可测量液态氢、液态氮等低温物体。    上述的内容就是热电偶温度计的工作原理及应用范围,常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

热电偶工作原理相关的耗材

  • 快速测温热电偶
    快速测温热电偶一、快速测温热电偶用途和工作原理快速测温热电偶用于测量钢水、铁水及其他高温熔融金属的温度,属消耗式热电偶。它的工作原理是根据金属的热电效应,利用热电偶两端所产生的热电势测量钢水、铁水及高温熔融金属的温度。二、快速测温热电偶的结构快速测温热电偶主要由测温偶头与大纸管构成。偶头主要有正负偶丝焊接在补偿导线上,补偿导线穿嵌在支架上,支架外套有小纸管,偶丝以石英支撑和保护。外装有防渣帽,全部零组件集中装入泥头中并以耐火填充剂粘合成一整体,而不可拆卸,故为一次性使用。三、快速测温热电偶的使用方法1、根据测量的对象和范围,选择不同型号的热电偶和适当长度的保护纸管及适用的测温杆。2、把快速热电偶套装在测温杆杆上并插紧,使二次仪表指针(或数显器)回零,这时说明接触良好,可以进行测量。3、快速热电偶插入高温熔融金属的深度约100mm为宜,测量时不要测到炉壁或渣子上,做到:快、稳、准,当二次仪表得到结果时,应立即提杆,快速热电偶在高温熔融金属中浸渍时间不得超过5秒,否则易烧坏测温杆。4、测温杆从高温熔融金属内提出后,取下使用过的热电偶,并装上新的,停顿几分钟,准备下次测量。不得连测连拆,否则会造成测量不准确和易损坏测温杆。
  • 马弗炉热电偶
    马弗炉,高温炉,箱式炉,台车炉,退火炉,管式炉,升降路中的热电偶有K型、S型、R型 B型…等等不同规格,两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶测温的应用原理 热电偶是工业上zui常用的温度检测元件zhi一。其优点是: 测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶zui低可测到-269℃(如金铁镍铬),zui高可达+2800℃(如钨-铼)。 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势, 应该注意以下基本概念: 热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这热电偶的热电势仅是工作端温度的单值函数。   常用热电偶丝材及其性能 1、铂铑10-铂热电偶(S型,也称为单铂铑热电偶)Orton使用的就是这种热电偶 该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂;它的特点是: 热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂; 精度高,它是在所有热电偶中,准确度等级zui高的,通常用作标准或测量较高的温度; 使用范围较广,均匀性及互换性好; 主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。 2、镍铬-镍硅(镍铝)热电偶(K型) 该热电偶的正极为含铬10%的镍铬合金,负极为含硅3%的镍硅合金(有些国家的产品负极为纯镍)。可测量0~1300℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200℃,长期使用温度为1000℃,其热电势与温度的关系近似线性,价格便宜,是目前用量zui大的热电偶。 K型热电偶是抗氧化性较强的jian金属热电偶,不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶的缺点: 热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000℃)往往因氧化而损坏; 在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中,其热电势示值不一样,其差值可达2~3℃; 负极在150~200℃范围内要发生磁性转变,在室温至230℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; 长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 3、镍铬硅-镍硅热电偶(N型) Orton的低温膨胀仪上使用的就是这种热电偶 该热电偶的主要特点是:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较硬难于加工。 4、铂铑30-铂铑6热电偶(B型) 该热电偶的正极是含铑30%的铂铑合金,负极为含铑6%的铂铑合金,在室温下,其热电势很小,故在测量时一般不用补偿导线,可忽略冷端温度变化的影响;长期使用温度为1600℃,短期为1800℃,因热电势较小,故需配用灵敏度较高的显示仪表。 B型热电偶适宜在氧化性或中性气氛中使用,也可以在真空气氛中的短期使用;即使在还原气氛下,其寿命也是R或S型的10~20倍;由于其电极均由铂铑合金制成,故不存在铂铑-铂热电偶负极上所有的缺点、在高温时很少有大结晶化的趋势,且具有较大的机械强度;同时由于它对于杂质的吸收或铑的迁移的影响较少,因此经过长期使用后其热电势变化并不严重、缺点价格昂贵。
  • K型热电偶补偿导线
    K型热电偶补偿导线 型  号: TT-K-30-SLE 品  牌: 美国OMEGA 价  格: 基本货期: K型热电偶补偿导线TT-K-30-SLE主要技术指标: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ K型热电偶补偿导线TT-K-30-SLE详细技术指标: 介 绍: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ 主要性能:线芯直径为2*0.255mm,负极:红(镍-铬),正极:白(镍-铝合金),绝缘材料:聚四氟乙烯,单位:每卷1000英尺 特点:外表绝缘层为聚四氟乙烯,具有耐水性,耐磨性,柔软度良好,极高精度,多用于线路板制造,电脑,显示器,无尘设备,电子元器件等行业的精密温度测试.   K型系列详细参数 Insulation AWG No. Model Number Type Wire Insulation   Max. Temp   Nominal Size Wt.&dagger lb/1000' Conductor Overall ° F ° C Ceramic** 14 XC-K-14 Solid Nextel Ceramic Nextel Ceramic 2000 1090 .140 x .200 38 20 XC-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .135 x .190 16 20 XT-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .105 x .155 15 20 XL-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .095 x .135 14 24 XC-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .115 x .175 12 24 XT-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .088 x .132 11 24 XL-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .078 x .11610 Vitreous Silica* 20 XR-K-20 Solid Refrasil Refrasil 1600 870 .115 x .180 14 Silica* 14 XS-K-14 Solid Silica Silica 2000 1090 .140 x .200 3520 XS-K-20 Solid Silica Silica 1800 980 .105 x .155 12 24 XS-K-24 Solid Silica Silica 1600 870 .088 x .132 10 High Temp. Glass** 20 HH-K-20 Solid High Temp. Glass High Temp. Glass 1300 704 .060 x .105 9 24 HH-K-24 Solid High Temp. Glass High Temp. Glass 1300 704 .055 x .090 5 Glass 20 GG-K-20 Solid Glass Braid Glass Braid 900 482 .060 x .095 9 20 GG-K-20S 7 x 28 Glass Braid Glass Braid 900 482 .060 x .100 9 24 GG-K-24 Solid Glass Braid Glass Braid 900 482 .050 x .080 5 24 GG-K-24S 7 x 32 Glass Braid Glass Braid 900 482 .050 x .085 5 26 GG-K-26 Solid Glass Braid Glass Braid 900 482 .045 x .075 4 28 GG-K-28 Solid Glass Braid Glass Braid 900482 .045 x .070 3 30 GG-K-30 Solid Glass Wrap Glass Braid 900 482 .045 x .070 3 36 GG-K-36 Solid Glass Wrap Glass Braid 900 482 .045 x .070 2 Teflon® Glass 30 TG-K-30 Solid PFA Glass Braid 500 260 .034 x .047 2 36 TG-K-36 Solid PFA Glass Braid 500 260 .028 x .038 2 40 TG-K-40 Solid PFA Glass Braid 500 260 .026 x .035 2 Teflon® Neoflon PFA (HighPerformance) 20 TT-K-20 Solid PFA PFA 500 260 .068 x .116 11 20 TT-K-20S 7 x 28 PFA PFA 500 260 .073 x .126 11 22 TT-K-22S 7 x 30 PFA PFA 500 260 .065 x .133 9 24 TT-K-24 Solid PFA PFA 500 260 .056 x .093 6 24 TT-K-24S 7 x 32 PFA PFA 500 260 .063 x .102 6 30 TT-K-30&dagger &dagger Solid PFA PFA 500 260 .024 x .040 2 36 TT-K-36&dagger &dagger Solid PFA PFA 500260 .019 x .030 2 40 TT-K-40&dagger &dagger Solid PFA PFA 500 260 .017 x .026 2 Teflon® Neoflon FEP 20 FF-K-20 Solid FEP FEP 392 200 .068 x .11611 24 FF-K-24 Solid FEP FEP 392 200 .056 x .092 6 Polyvinyl 24 PR-K-24 Solid Polyvinyl (Rip Cord) 221 105 .050 x .086 5 24 PP-K-24S 7 x 32 Polyvinyl (Polyvinyl) 221 105 .080 x .130 5 ^线轴和线的重量入到整数磅 (不包括包装材料). ^^Overall color clear *护套和导体上有分度号颜色线 **护套和正极线有分度号颜色线 相关技术文章 · 工业热电偶型式、基本参数及尺寸介绍 · 热电偶种类及其工作原理 · 热电偶的结构形式 · 热电偶入门知识· 热电偶的正确使用 · 传感器的技术参数详解 · 常用热电偶 · 热电偶常见故障及处理 · 电化学知识解释热电偶工作原理 · 热电偶如何选择 · 热电偶基础知识 · 热电偶的选择与安装 · 比较热电偶和热电阻的区别 · 热电偶冷端的温度补偿

热电偶工作原理相关的资料

热电偶工作原理相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制