当前位置: 仪器信息网 > 行业主题 > >

电压校准仪原理

仪器信息网电压校准仪原理专题为您提供2024年最新电压校准仪原理价格报价、厂家品牌的相关信息, 包括电压校准仪原理参数、型号等,不管是国产,还是进口品牌的电压校准仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电压校准仪原理相关的耗材配件、试剂标物,还有电压校准仪原理相关的最新资讯、资料,以及电压校准仪原理相关的解决方案。

电压校准仪原理相关的资讯

  • 河南研发“无线传输分体式PCR检测仪校准装置” 为战“疫”增添利器
    在感染性疾病的诊断方面PCR技术在感染性疾病中尤其适用于检测一些培养周期长或缺乏稳定可靠检测手段的病原体。PCR的模板可以是DNA,也可以是RNA。模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。多数样品需要经过SDS和蛋白酶K处理。难以破碎的细菌,可用溶菌酶加EDTA处理。所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。PCR检测仪是用于新冠病毒核酸检测的关键设备,核酸检测是根据病毒的基因序列配制出相对应的引物和探针,利用PCR检测仪对待测样本进行扩增。近日,河南计量院研制出无线传输分体式PCR检测仪校准装置,基于自行设计的多通道温度检测模块,应用无线传输技术实现数据采集分析,设计指标满足《JJF 1527-2015 聚合酶链反应分析仪校准规范》的要求。只需将该装置的检测模块置入待校准的PCR检测仪中,工作人员无需进入实验室内部,即可对仪器进行校准,不但能够节约PCR检测实验室的管理运行成本和宝贵的防护资源,还能极大降低计量人员本身的感染风险,具有较好的推广应用价值。 无线传输是利用无线技术进行数据传输的一种方式。无线传输和有线传输是对应的。随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线图像传输作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。无线传输分为:1、模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机解调出原来的视频信号。2、数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,临了还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数据采集分析过软硬件结合,可以记录、显示和分析众多生命科学相关信号,可以完全代替传统的纸带记录仪、绘图仪、XY绘图仪、示波器和电压计。把信号变成便于数字处理的形式,以减少数字处理的困难。无论计算机的容量和计算速度有多大,其处理的数据长度总是有限的,所以要把长时间的序列截断。在截断时,会引入一些误差,所以有时要对截取的数字序列加权,如有必要,还可用专门的程序进行数字滤波。然后把所得到的有限长的时间序列按照给定的程序进行运算。例如作时域中的概率统计、相关分析,频域中的频谱分析、功率谱分析、传递函数分析等。数据采集分析应用领域包括:血流动力学、离体组织灌流、离体器官、灌流、微血管张力测定系统、微循环血流测定(激光多普勒)、新陈代谢研究(运动生理学、心肺功能测定)、电生理系统(细胞内、细胞外、电压钳)、超声血流量测定、植入式生理信号(血压、生物电、神经干放电、体温等)无线遥测、心理学、清醒动物血氧饱和度测定、人体无创血压、心输出量测定。PCR检测仪是利用聚合酶链反应技术对特定DNA扩增的一种仪器设备,PCR技术的原理类似于DNA的天然复制过程,其特异性依赖于靶序列两端互补的寡核苷酸引物,由变性-退火-延伸三个基本反应步骤构成。PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为百分百,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,使平均效率达不到理论值。PCR扩增仪通常由热盖部件、热循环部件、传动部件、控制部件和电源部件等部分组成。被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。PCR检测仪分类PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。荧光定量PCR仪光学校准方法实时荧光定量PCR仪特异性更强,自动化程度更高,且有效地解决了PCR污染的问题,应用领域及应用量都不断增加。但其设计更为复杂,温度模块和光学系统设计同时影响其性能和实验准确性,为定量PCR仪校准带来了巨大挑战。采用生物试剂等方式对定量PCR仪荧光部分校准缺乏溯源性,无法分析误差来源,存在较大缺陷。采用Cyclertest 3D optical定量PCR仪光学校准系统对ABI 7500 Fast Real-Time定量PCR仪的温场部分和荧光系统进行了检测并对检测结果进行了分析,结果表明对温度模块和光学系统共同进行检测并分析相关性能够更科学全面地评估定量PCR仪性能,满足定量PCR仪校准需求。
  • 先进简单的多功能过程校准器
    Allerød, Denmark –过程信号在各个行业中都是至关重要的,从控制阀、开关或灯,到测量管道中的压力,再到校准烘焙烤箱中的温度。随着如此重要的参数被广泛使用,确保这些过程信号保持准确是至关重要的。用户对他们使用的校准设备有多种选择,但最重要的因素之一是易用性。因为可能会使用多个过程信号,包括伏特、毫伏、安培或毫安,而每一个都可能有很大的量程差异,大多数用户转向多功能校准以满足所有情况。然而,随着期权的增加,该工具的复杂性也趋于增加。对于新手来说,看似简单的连接接线任务可能都是困难的。JOFRA ASC-400 先进的校准仪具有连接助手的功能。ASC-400现在包括一个内置的帮助功能,提供了一个图形解决方案,根据当前设置提供精确的连接图示。如果测量参数发生变化(例如从V变为mA),连接辅助界面也会发生变化。使用新功能可以显著减少错误和浪费时间。ASC-400多功能过程校验仪读取和输出RTD,热电偶,电流,电压,频率,电阻,脉冲序列等信号。它整合了诸如百分比误差计算、缩放、泄漏测试和开关测试校准等功能到一个手持校准器。大型全彩显示器、带有光标的数字小键盘和功能键有助于简化使用。ASC-400结合APM CPF压力模块实现压力校准. ASC-400结合Jofra干体炉实现温度校准。关于AMETEK STC and JOFRA AMETEK STC 在JOFRA和Crystal品牌下制造和供应温度、压力和过程信号的校准仪器。JOFRA温度校准器以其准确性、稳定性和可靠性闻名于世。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 质检总局发布多项仪器校准规范/检定规程
    p  日前,质检总局发布《动态压力标准器检定规程》等58个国家计量技术规范,其中涉及多项仪器校准规范/检定规程,如平板电泳仪校准规范、PM2.5质量浓度测量仪校准规范、流式细胞仪校准规范、全自动微生物定量分析仪校准规范、汽车排放气体测试仪检定规程、光栅式测微仪校准规范等。/pp  详细内容如下:/ptable cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="19%"p style="TEXT-ALIGN: center"编号/p/tdtd width="27%"p style="TEXT-ALIGN: center"名称/p/tdtd width="17%"p style="TEXT-ALIGN: center"批准日期/p/tdtd width="16%"p style="TEXT-ALIGN: center"实施日期/p/tdtd width="19%"p style="TEXT-ALIGN: center"备注/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1142-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"动态压力标准器检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1143-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"非接触式眼压计检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1144-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"重力加速度式波浪浮标检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1145-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"医用乳腺X射线辐射源检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1146-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"工作扭矩仪检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1648-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"管道消声器测试系统校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1649-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"超声骨密度仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1650-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"超声探伤仪换能器声场特性校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1651-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"20Hz~100kHz水下噪声源校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1652-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"标准撞击器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1653-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"电容式工程测量传声器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1654-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"平板电泳仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1655-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"太阳电池校准规范:光谱响应度/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1656-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"磁力式磁强计校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1657-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"落锤式冲击力标准装置校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1658-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"电压失压计时器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1659-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"PM2.5质量浓度测量仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1660-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"宽波段辐照计校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1661-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"微弱紫外辐照计校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1662-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"时钟测试仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1663-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"激光测微仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1664-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"温度显示仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1665-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"流式细胞仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1666-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"全自动微生物定量分析仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1667-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"工频谐波测量仪器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1668-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"塑料管材耐压试验机校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1669-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"三轴转台校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1670-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"质量法油耗仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1671-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"机动车驻车制动性能测试装置校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1672-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"电快速瞬变脉冲群模拟器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1673-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"电压暂降、短时中断和电压变化试验发生器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1674-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"苯气体检测报警器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1675-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"惯性技术计量术语及定义技术规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1676-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"无源医用冷藏箱温度参数校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1677-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"频率分配放大器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1678-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"射频和微波功率放大器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1679-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"ZigBee综合测试仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-2-20/p/tdtd width="19%"/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1680-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"定向耦合器及驻波比电桥校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG796-1992/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1681-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"声级计型式评价大纲/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG188-2002br/ 型式评价部分/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG188-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"声级计检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG188-2002br/ 检定部分/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG277-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"标准声源检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替 br/ JJG277-1998/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG991-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"测听设备 耳声阻抗/导纳测量仪器检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG991-2004/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG798-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"骨振器测量用力耦合器检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG798-1992/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG340-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"1Hz~2kHz标准水听器检定规程(密闭腔比较法)/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG340-1999/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG482-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"实验室标准传声器检定规程(自由场互易法)/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG482-2005/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG920-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"漫透射视觉密度计检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG920-1996/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG62-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"塞尺检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG62-2007/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1020-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"平板式制动检验台检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替br/ JJG1020-2007/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG688-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"汽车排放气体测试仪检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替br/ JJG688-2007/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG185-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"500Hz~1MHz标准水听器检定规程(自由场比较法)/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替br/ JJG185-2005/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG1045-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"泥浆密度计检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替br/ JJG1045-2008/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG502-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"合成信号发生器检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替br/ JJG502-2004/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJG961-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"医用诊断螺旋计算机断层摄影装置(CT)X射线辐射源检定规程/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"替代JJG961-2001br/ JJG1026-2007/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1237-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"SDH/PDH传输分析仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJF1237-2010/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1174-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"矢量信号发生器校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJF1174-2007/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1682-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"光栅式测微仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替JJG989-2004/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1683-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"抖晃仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替 br/ JJG47-1990/p/td/trtrtd width="19%"p style="TEXT-ALIGN: center"JJF1684-2017/p/tdtd width="27%"p style="TEXT-ALIGN: center"轴承圆锥滚子直径、角度和直线度比较测量仪校准规范/p/tdtd width="17%"p style="TEXT-ALIGN: center"2017-11-20/p/tdtd width="16%"p style="TEXT-ALIGN: center"2018-5-20/p/tdtd width="19%"p style="TEXT-ALIGN: center"代替 br/ JJG380-1995/p/td/tr/tbody/tablep /p
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 有了校准平台,氡观测仪预测地震更准
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c4daea1a-4bfe-48df-b7dd-8713187b4c4f.jpg" title="2.jpg"/ /pp 近日,科技日报实习记者随全国人大常委会防震减灾法执法检查小组赴江西考察,参观了2016年建成的地震行业首个氡平台。该平台由氡观测仪校准实验室和氡观测仪检测(比测)实验室两部分组成,分别设在江西省地震应急指挥中心和九江地震台。校准实验室以东华理工大学自主研制的氡室为检定装置,配备国际认可的PQ2000PRO作为传递溯源仪器,向上溯源至中国计量院的国家一级氡计量基准,向下传递到各观测点。检测实验室有氡平台团队自主设计的水气综合处理系统、豁免级测氡仪校准器、高低温湿热箱和步入式恒温恒湿箱等一整套检测系统。/pp 记者了解到,校准实验室和比测基地在2017年专家验收过程中得到肯定。但这个系统的设计方案最初遭遇的几乎都是质疑:“建立一个这样的检测平台,在地震局系统尤其是地下流体学科还是首次,技术难度及工程难度非常大。”/ppbr//pp数百台测氡仪监测数据参差不齐/pp 氡气是一种惰性气体。研究发现,地震前岩石中氡值会有明显变化,就此可对地壳活动作出研判。“假设地震前地下裂隙发生错动挤压,地下水随之冒上来,我们取出地下水,再使水中的氡气脱离并对氡值进行测量,最终可预测地震。”九江地震台负责人肖健接受记者采访时介绍了氡观测仪的原理。/pp 氡观测是国际上普遍认可的地震监测手段之一,也是我国地震观测台网中最重要的测项之一。目前,我国地震前兆氡观测网有300多个氡测点,测氡仪数百台。地震行业氡观测仪主要采用固体氡源进行校准,其观测数据在监测区域地球物理场变化中发挥着重要作用。但固体氡源属国家严格监管的放射类源,存在运输不便、操作严格等问题,造成氡观测仪无法实现全国统一校准,严重影响观测资料质量。“地震行业监测仪器一直面临设备老化、稳定性和可靠性较差的问题,观测的数据都不准确,谈何地震预测呢?”肖健称,“由于监测仪器标准不统一,A地区测出的氡气含量100Bq/L可能跟B地区测出的50Bq/L是一回事。测出的数据应该形成一张氡观测网,能在标准一致的前提下相互比对,不然观测就没有意义。”/pp 仪器稳定可靠是获取准确数据的第一步,进而为地壳活动的研判提供依据。我国环保部门、国土资源部门、核工业等建有满足本行业需求的氡观测技术检测平台及相关标准氡室,主要服务于大气、环境、地表水或铀矿探测等非连续氡观测设备的检测与校准。而地震行业氡仪器主要是对深层地下水(或温泉)、断裂带气体等氡浓度连续观测,具有浓度高、量值变化范围宽、样品湿度大等特点,行业外氡室难以满足地震氡观测台网高精度氡仪器的校准需要。因此地震行业需要开展各类测氡仪器的中试、入网性能检测、脱气装置效能检验等工作,统一观测仪器的标准。/ppbr//pp职能好比汽车质检中心/pp 肖健告诉记者,检测平台负责给仪器质量把关。“我们的职能好比汽车质量检测中心,目的在于检测氡观测仪有没有毛病。”如果被测试的仪器与标准仪器数据统一,就能发往全国。同时,检测平台也对与标准仪器存在相对差的观测仪进行校准。经过校准和比测,仪器所测出的数据就变得稳定、可靠。此外,仪器有生老病死,老化仪器维修后也要进行检测和校准。/pp 据悉,九江地震监测氡观测仪器检测平台的地下自流水系统能满足监测、检测、生活三种用水需求,且互不干扰。其中,监测用水直接通过井管底部接出,供地下流体监测设备使用,数据实时传到中国地震台网中心;检测用水从井管上部导水口流入恒流装置,在稳流区经过三次缓流后液面基本稳定,最后进入供水区,通过三路水管接到检测单元,用于检测和实验。恒流装置稳流后多余的水流入储水箱,供台站生活使用。/pp 九江地震台工程师黄仁桂称:“作为完整的观测系统,地震氡观测由观测仪器、恒流、脱气、集气装置等构成,每个环节都会对观测数据产生影响。”/pp “检测平台目前检测的内容包括检测准确度、设备可靠性、环境适应性。”黄仁桂介绍道,人通过验血检查身体的异常,氡观测仪器则通过观察水氡来监测地壳异常。工程师李雨泽称,他们设定了三个氡的浓度值,待水流稳定后进行氡测量。通过在三种浓度间切换来测量氡检测仪器的响应时间,响应速度太慢就要维修或被淘汰。/ppbr//p
  • 气相分子吸收光谱仪的计量校准方法
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。/span/pp  气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。/pp  气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。/pp  1.气相分子吸收光谱仪工作原理及特点/pp  气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。/pp  2.校准用主要仪器与试剂/pp  气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /pp  盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /pp  柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /pp  磷酸:10%水溶液 /pp  过氧化氢:30% /pp  实验所用试剂均为分析纯 /pp  实验用水为高纯水 /pp  校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。/pp  /pp style="TEXT-ALIGN: center"img title="01.png" src="http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg"/ /pp  3.校准条件/pp  3.1环境条件/pp  环境温度:15~35℃ 环境相对湿度:≤85%。/pp  室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。/pp  3.2仪器安装及工作条件/pp  仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。/pp  工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。/pp  /pp style="TEXT-ALIGN: center"img title="02.png" src="http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg"//pp  4.校准项目和校准方法/pp  每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。/pp  参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。/pp /pp /pp style="TEXT-ALIGN: center"img title="03.png" src="http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg"//pp  4.1检出限/pp  将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。/pp  检出限按式(1)计算:/pp  cL=3s/b(1)/pp  式中:b——工作曲线的斜率 /pp  s——空白样测定值的标准偏差,mg/L /pp  cL——测量检出限,mg/L。/pp  4.2校准曲线绘制/pp  4.2.1亚硝酸盐氮的测定/pp  用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.2硫化物的测定/pp  用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.3氨氮的测定/pp  用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度/pp  x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。/pp  4.3定量重复性/pp  将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。/pp  /pp style="TEXT-ALIGN: center"img title="04.png" src="http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg"/ /pp  5.不确定度评定/pp  气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。/pp  5.1实验数据/pp  3种标准物质的实验数据列于表4、表5。/pp style="TEXT-ALIGN: center"img title="05.png" src="http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg"//pp  5.2不确定度评定/pp  仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。/pp  5.2.1重复性测量引入的标准不确定度u(s)/pp  输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度:/pp  /pp style="TEXT-ALIGN: center"img title="06.png" src="http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg"//pp /pp /pp  5.2.2校准曲线引入的标准不确定度u(b)/pp  校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。/pp  /pp style="TEXT-ALIGN: center"img title="07.png" src="http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg"//pp /pp /pp  式中2%为标准物质的定值不确定度。/pp  /pp style="TEXT-ALIGN: center"img title="08.png" src="http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg"/ /pp  5.2.3合成标准不确定度的评定/pp  由式(2)求得s的灵敏度系数:/pp  c1=3/b=3/0.0625=48(mg/L)/pp  同样斜率b的灵敏度系数:/pp  c2=–3s/b2=–0.0819(mg/L)/pp  根据式(2)求得检出限测量的不确定度:/pp style="TEXT-ALIGN: center"img title="09.png" src="http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg"//pp  5.2.4扩展不确定度的评定/pp  取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度:/pp  U=kuc=2× 0.0032=0.0064(mg/L)/pp  参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。/pp style="TEXT-ALIGN: center"img title="10.png" src="http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg"//pp  6结语/pp  结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。/pp  参考文献/pp  [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999./pp  [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4./pp  [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20./pp  [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57./pp  [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367./pp  [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33./pp  [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002./pp  [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]./pp  [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]./pp  [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]./pp  [11]JJF1094–2002测量仪器特性评定[S]./pp style="TEXT-ALIGN: right"  施江焕,李蓓蓓/pp style="TEXT-ALIGN: right"  (宁波市计量测试研究院,浙江宁波315103)/p
  • 《锡膏厚度测量仪校准规范》发布实施
    近日,在广东省市场监管局指导下,由广东省计量院主持起草的JJF1965-2022《锡膏厚度测量仪校准规范》获国家市场监督管理总局批准发布实施。本规范的颁布实施,有效解决了锡膏厚度测量仪的量值一直无法获得有效溯源,不同仪器上测量结果差异较大的技术难题,进一步完善了精密几何量领域国家计量技术规范体系,促进了行业技术标准的统一,有利于集成电路产业、企业相关技术能力的提升。  据了解,锡膏厚度测量仪是一种被广泛用于检测集成电路板上锡膏印刷质量的仪器,它采用非接触式的光学测量原理,能快速、无损地测量锡膏的厚度、面积、体积等参数,其中,厚度是判断锡膏印刷质量的关键核心指标。以往由于缺乏相关的计量技术规范,各生产厂家在校正仪器时采用的方法和计量标准存在差异,导致测量结果的复现性较差,不利于产品质量的控制和不同企业间的产品验收。  针对上述问题,在广东省市场监管局的指导下,广东省计量院和国家计量院、山东院、苏州院等单位专家组成规范起草组,对目前市场上锡膏厚度测量仪的生产厂家和用户开展广泛调研,深入了解仪器技术原理、客户需求和实际使用情况,经过反复论证和实验,确定了仪器校准的主要技术指标、操作方法和计量标准器要求等,并最终由广东省计量院主持完成校准规范的起草和报批。目前,该院联合研发了配套的多种规格计量标准器,并已为香港生产力促进局等多家粤港澳大湾区的客户提供了校准服务。
  • 美国Q-lab创新性万能校准仪
    【翁开尔是美国Q-LAB一级指定代理商,40年专业代理美国Q-LAB系列产品】美国Q-LAB万能校准仪Universal CalibratorUC(Universal Calibrator)万能辐照度校准仪是一款创新的产品,适用于所有Q-lab公司耐候试验箱产品,如QUV,Q-SUN。UC(Universal Calibrator)万能校准仪美国Q-lab公司推出全新的通用辐照度校准仪,一种新型手持设备, 能用于校准所有 Q-Lab老化试验箱的温度和辐照度。与其他方法相比,UC万能校准仪的"智能传感器 "具有廉价、模块化和可抛弃的特点,大大简化了校准和降低了用户的使用成本。如果您需要做更多的测试标准,只购买一个UC和光过滤片就可以啦~工作原理UC万能辐照度校准仪被设计用于校准任何集成有SOARY EYE辐照度校准功能的QUV紫外老化试验箱或者Q-SUN氙灯老化试验箱产品。其本身携带了一个手持式的触摸屏以及各种传感器,内置的电池可用于在未接电情况下记录各种数据。独立的辐照度传感器和温度传感器在使用时可自动识别辐照度或者温度,并且自动进行校准。特点优势1. 独立的手持触屏显示器 (UC1) 使用第7代TFT彩色触摸屏;2. 模块化的辐照度和温度智能传感器将总的使用成本降至最低;3. 独立的辐照度智能传感器 (340 nm、420 nm 或 TUV) 可以校准多种 (UV) 滤光片配置;4. 当需要更换 (或重新校准) 智能传感器时,会在屏幕上进行提醒;5. 价格优廉的智能传感器在过了有效期后,用户可以选择更换或重新校准;6. 八种语言可供选择: 英语、西班牙语、德语、法语、意大利语、中文、韩语和日语;【翁开尔是美国Q-LAB一级指定代理商,40年专业代理美国Q-LAB系列产品】,请联系我们
  • 仪器分析方法通则暨校准规范步入新时代
    仪器信息网讯2018年7月23-25日,第二十四届高校分析测试中心研究会年会在内蒙古包头召开。会上,华南理工大学医疗器械研究检验中心副主任徐昕荣博士介绍了“JY/T《现代分析仪器分析方法通则》的制修订完成情况,并汇报了JJF《仪器校准规范》的最新进展。华南理工大学医疗器械研究检验中心副主任徐昕荣博士报告现行的教育部现代分析仪器方法通则实施于1997年,包含成分分析、结构分析、表面及微区形貌分析等26个现代分析仪器原理及分析方法。为了满足分析仪器和测试方法发展演变的需要,2015年,高校评审组联合高校分析测试中心研究会,通过教育部教育仪器标准化技术委员会报批,启动分析仪器方法的标准制修订工作。据徐昕荣介绍,此次“JY/T仪器分析方法通则”历时两年半的时间,现已完成。期间共组织41家单位,143名相关专家参与标准制修订,广泛征集了150余名评审专家的意见,涉及107家科研院所,59家仪器厂商。共新制定7个仪器方法通则,修订19个仪器方法通则,共计26项。制修订的详情汇总如下:《现代分析仪器分析方法通则》制修订情况一览表序号标准名称制/修订主编单位1JY/T0565-2017电热原子吸收光谱分析方法通则JY/T023-1996修订四川大学2JY/T0566-2017原子荧光光谱分析方法通则制订中国科技大学3JY/T0567-2017电感耦合等离子体发射光谱分析方法通则JY/T015-1996修订清华大学4JY/T0568-2017电感耦合等离子体质谱分析方法通则制订中山大学5JY/T0569-2017波长色散型X射线荧光光谱分析方法通则JY/T016-1996修订华南理工大学6JY/T0570-2017紫外和可见吸收光谱分析方法通则JY/T022-1996修订南京师范大学7JY/T0571-2017荧光光谱分析方法通则JY/T024-1996修订四川大学8JY/T0572-2017圆二色光谱分析方法通则JY/T024-1996修订上海交通大学9JY/T0573-2017激光拉曼光谱分析方法通则JY/T002-1996修订武汉理工大学10JY/T0574-2017气相色谱分析方法通则JY/T021-1996修订北京师范大学11JY/T0575-2017离子色谱分析方法通则JY/T020-1996修订华东理工大学12JY/T0576-2017氨基酸色谱分析方法通则JY/T019-1996修订上海交通大学13JY/T0578-2017超导脉冲傅里叶变换核磁共振波谱测试方法通则JY/T006,007-1996合并修订北京大学14JY/T0579-2017电子顺磁共振波谱分析方法通则JY/T005-1996修订南京大学15JY/T0580-2017元素分析仪分析方法通则JY/T017-1996修订华南理工大学16JY/T0581-2017透射电子显微镜分析方法通则JY/T011-1996修订南京大学17JY/T0582-2017扫描探针显微镜分析方法制订上海交通大学18JY/T0583-2017聚焦离子束系统分析方法通则制订北京科技大学19JY/T0584-2017扫描电子显微镜分析方法通则JY/T010-1996修订天津大学20JY/T0585-2017金相显微镜分析方法通则JY/T012-1996修订东南大学21JY/T0586-2017激光扫描共聚焦显微镜分析方法通则制订华东理工大学22JY/T0587-2017多晶体X射线衍射JY/T009-1996修订吉林大学23JY/T0588-2017单晶X射线衍射仪测定小分子化合物的晶体及分子结构分析方法通则JY/T008-1996修订北京化工大学24JY/T0589.1-2017热分析方法通则第1部分:差热分析JY/T014-1996修订中国科技大学JY/T0589.2-2017热分析方法通则第2部分:差示扫描量热法JY/T0589.3-2017热分析方法通则第3部分:热重法JY/T0589.4-2017热分析方法通则第4部分:热重-差热分析和热重-差示扫描量热法25JY/T0590-2017旋转流变仪测量方法通则制订东华大学26JY/T0591-2017物性测量系统方法通则直流磁性测试制订北京科技大学JJF仪器校准规范的制定则起步于2017年底,其目的在于对《现代分析仪器分析方法通则及计量检定规程》中计量检定规程的制/修定和方法通则进一步补充完善。拟申请制修订通则/校准规范名录24项(通则6项,校准规范18项),包含《JJF单晶X射线衍射仪校准规范》、《JJF旋转流变仪校准规范》、《比表面及孔径分析仪校准规范》等。徐昕荣表示,目前JJF仪器校准规范和方法通则的初稿及预审工作已完成,之后将进入立项、评审、修改、报批阶段。
  • 明华电子发布明华MH4031型 全自动流量/压力校准仪新品
    MH4031型全自动流量/压力校准仪(以下简称校准仪)采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。 校准器内置自动校准协议,仅需一根数据线就可实现流量全自动校准的功能,如本公司生产的MH1200系列采样器,后续会陆续开放本公司MH1205恒温恒流大气颗粒物采样器和MH3300型烟气烟尘颗粒物浓度测试仪的自动校准功能,校准器同时也开放外部接口协议,其他公司生产的采样器若采用该协议,亦可实现流量的全自动校准。执 行 标 准HJ/T 368-2007《标定总悬浮颗粒物采样器用的孔口流量计》主 要 特 点功耗低,噪音小,重量轻,超小型化设计,结构紧凑,外形美观,携带方便;多路大范围流量校准,包括两路(10~300)mL/min,两路(0.3~3)L/min,一路(5~130)L/min,一路(200~1200)L/min;大范围自动加压,微压:(0~4000)Pa,表压:(-30.00~+30.00)Kpa;常用PT100烟温标定(包括0℃、80℃、100℃、120℃、200℃以及500℃);孔板集成于仪器内部,在进行流量校准时,不需要频繁的更换孔板;超大7寸触摸电容屏,触感更优,简单明了的界面风格,操作简单易学;内置电池,可供仪器连续工作4小时以上。应 用 领 域环境监测及环境评价卫生防疫及劳动安全科研院所采样分析大专院所教学仪器创新点:与同类产品相比,MH4031型全自动流量/压力校准仪采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。而且本仪器体积小,便于携带。明华MH4031型 全自动流量/压力校准仪
  • 两项生物分析仪器国家校准规范通过立项评审
    近日,全国生物计量技术委员会(MTC20)召开2024年国家计量技术规范立项评审会,上海计量院主导《氨基酸序列分析仪校准规范》《动物口鼻式吸入暴露系统校准规范》顺利通过评审。氨基酸分析仪,是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。进行氨基酸分析前,必须将蛋白质及肽水解成单个氨基酸。它是基于阳离子交换柱分离、柱后茚三酮衍生、光度法测定的离子交换色谱仪。氨基酸分析仪由色谱柱、自动进样器、检测器、数据记录和处理系统组成。氨基酸分析仪的基本原理为流动相(缓冲溶液)推动氨基酸混合物流经装有阳离子交换树脂的色谱柱,各氨基酸与树脂中的交换基团进行离子交换,当用不同的pH缓冲溶液进行洗脱时因交换能力的不同而将氨基酸混合物分离,分离出的单个氨基酸组分与茚三酮试剂反应,生成紫色化合物或黄色化合物,用可见光检测器检测其在570 nm、440 nm的吸光度。这些有色产物对应的吸收强度与洗脱出来的各氨基酸浓度之间的关系符合朗伯-比尔定律。据此,可对氨基酸各组分进行定性、定量分析。氨基酸分析仪也可利用阴离子交换分离后经积分脉冲安培法检测,该检测方法无需将待测氨基酸进行柱前或柱后衍生。氨基酸序列分析仪用于测定蛋白质/多肽N末端氨基酸序列,评估蛋白质/多肽药物N末端氨基酸一致性。对于评估药效、药物安全性、批次一致性,以及类似药相似性水平具有重要意义。《氨基酸序列分析仪校准规范》确保检测结果溯源性、可靠性、可比性,进一步提高生物药物研发水平、保证其质量和安全性,促进我国生物医药产业创新竞争力。动物口鼻式吸入暴露系统是一种将动物置于特定体积的暴露仓中,通过自主呼吸将药物的气溶胶吸入肺部的设备。该系统是吸入剂临床前安全评价基础设备,被广泛应用于药物评价、疾病造模与研究、环境与健康吸入暴露研究、农药与化学品吸入研究等领域。《动物口鼻式吸入暴露系统校准规范》有效保障我国吸入制剂药物安全性评价、疾病造模与研究结果的可靠性。两项国家校准规范的制定对于推动生物医药领域发展具有重要意义,为相关领域提供可靠计量技术支撑。
  • 中图仪器参与起草的《螺纹量规扫描测量仪校准规范》正式发布
    由中国计量科学研究院和深圳中图仪器等单位起草的《JJF1950-2021螺纹量规扫描测量仪校准规范》发布,将于2022年6月28日正式实施。螺纹检测问题是一直困扰世界机械工业的一大难题,是阻碍我国机械行业质量提高的一大瓶颈。随着中图仪器SJ5200系列螺纹综合测量机的推出,其采用接触扫描式原理,接触式螺纹检测技术颠覆了传统的螺纹检测方法,其突破性、历史性地解决了螺纹单参数综合检测的方法,能较真实、全面地综合反映螺纹的各项几何参数指标。接触式测量是利用扫描针与被测螺纹表面进行轴向截面轮廓的接触扫描,由测量系统获得螺纹轴向轮廓的形貌,按螺纹参数的相关定义直接进行分析与计算,获得螺纹的综合几何参数,其测量、计算完全符合螺纹参数的定义,并且其拥有的数据库能自动进行螺纹的合格性判断。整个过程仅需2分钟,一次测量就能全自动获得圆柱和圆锥螺纹的作用中径、单一中径、中径、大径、小径、螺距、牙型角、牙型半角、牙侧直线度、螺纹升角、锥度等参数,非常适合各等级螺纹的检测。《JJF1950-2021螺纹量规扫描测量仪校准规范》的正式发布对我国螺纹量值的准确可靠具有重要意义,将促进我国螺纹产业高质量发展。中图仪器目前已参与起草制定10余部国家、地方标准和校准规范,促进了我国计量、测量行业技术发展。未来我们将承担越来越多的标准、校准规范的制定和修订任务,全面实施质量强企和标准化战略,进一步提升公司品牌影响力!
  • 新品上市!Cole-Parmer移液器校准仪
    ATMOS 移液器校准仪ATMOS 移液器校准仪是一种精确测量气体位移的仪器,不需要借助液体和其他设备。基于和移液器内部气体腔室做比较得出移液器当前容量结果。同时它还可以得出移液器的泄漏率。移液器受环境和操作所造成的系统误差极其明显,最终可能导致检测结果的偏离;定期的期间核查,可使检测仪器始终处于受控状态,从而确保仪器的稳定,保证测量结果的可靠性。操作界面简洁易懂结果统计界面清晰明了产品参数产品名称ATMOS 1000 移液器校准仪尺寸12.5 x 8.5 x 3 cm电源5V DC, 2A重量420g建议运行温度环境10 ℃~ 40℃电池2000 mAh 锂电池订购信息货号产品描述ATMOS1000适配移液器容量范围:20-1000ul其他容量范围和 8 道移液器问题敬请咨询移液器定期核查的必要性移液器现已广泛应用于科研及食品、药品检测分析方法中。但是,微小的误差对取样总量的影响非常大,合格可调移液器使用一段时间后,由于磨损、弹簧弹力变化等原因导致准确度和精密度下降,必须进行校准。在设备的两次校准之间或仪器维修后投入使用前进行期间核查,验证设备是否保持校准时的状态,确保检验结果的准确性和有效性。正确理解期间核查一般的理化实验室常规理解的期间核查:是指对测量仪器在两次校准或检定的间隔期内进行的核查;但正确的理解应为保持设备校准状态的可信度,而对设备示值(或其修正值或修正因子)在规定的时间间隔内是否保持其规定的最大允许误差或扩展不确定度或准确度等级的一种核查。也就是说,期间核查实质上是核查设备示值的系统误差,或者说核查系统效应对设备示值的影响。期间核查的内容移液器主要用于在实验或生产中作液体的取样或加液用。它利用空气排放原理进行操作,以活塞在活塞套内移动的距离确定移液器的容量。传统的核查需要专业人员并使用天平温度计和计时器等设备,流程复杂繁琐。常见问题&bull 我可以使用 ATMOS 来校正我的移液器吗?ATMOS可用于每天监测移液器的准确性。ATMOS会通过屏幕告知客户移液器准确性是否有问题。这可以让您将有问题的移液器暂时停用避免造成实验结果不准确。您可以通过ATMOS来重新调整移液器,以防准度偏移(可调移液器都有专门的自带工具来调整标准容量)。&bull 什么是泄漏率?ATMOS是测量移液器在其使用过程中的空气泄漏率。高泄漏率可能与移液管活塞损坏或密封部件连接缺陷有关。泄漏率以每秒体积损失的百分比表示。泄露率不高于1%对于实验室是可以接受的。&bull ATMOS 精度与重力测量方法相比如何?ATMOS读数的随机误差与在实验室环境的重力测量中读到的误差非常接近。ATMOS的绝对精度保持在测量体积的±1%(20-1000ul量程) 。&bull ATMOS 是否需要重新校准服务? ATMOS是通过与内部固定体积腔进行比较来测量移液管分配的体积。该参考体积由金属制成,在工厂校准精度在0.1%以内。ATMOS不需要重新校准。&bull 是否可以导出数据?ATMOS被设计为与自动化平台兼容,并可以连接到任何计算机系统 (windows, Mac, Linux或其他)。连接到micro USB端口允许直接接口,可用于移液器校准。Read ATMOS程序(Mac OSX和Windows)允许提取数据。
  • “你真的了解电子天平吗?”之三——大有讲究的“校准”术
    前情回顾在本系列上一期关于电子天平水平调节的分享中,小编主要针对水平调节的必要性、原理、以及调节方法等方面进行了详细的梳理和通俗易懂的阐述,特别是就容易搞错的调节规则与手法为大家总结了详细的法则,相信小编手把手式的经验传授应该能为大家的实际操作起到实质性的帮助吧。水平调节的话题告一段落,本期小编将搬上天平的前期准备工作中最重要也是最有讲究的一环——校准,那么在天平的校准中,又有哪些值得关注的点呢? 老司机也难免会混淆的微妙概念 早在中学物理课本里,我们就学过物体的重量G=mg(m为物体的质量,g为重力加速度),对于同一个物体,无论把它放置在地球上的任一位置,它的质量都是不会发生变化的。然而,重力加速度g的值在地球上的不同地方是会有微小差异的,因此同一物体在不同地方的重量是不相同的。而电子天平则是采用电磁力与被测物体的重力相平衡的原理来测量物体的重量,并经过内部程序计算和显示出物体的质量,这与托盘天平的称量原理是不同的,所以就会出现同一台电子天平在不同地方称量同一个物体会显示不同的质量结果。此外,诸如温度、湿度等环境因素也会影响电子天平的传感器,导致称量结果的误差。 为了避免不确定因素带来的不良影响,就需要在使用电子天平之前进行校准,并在使用周期中进行定期的校准,特别是在对称量结果准确度和精确度敏感的应用中。校准(Calibration),是通过一组称量活动,来检测天平的各项计量性能,包括误差和不确定度的分析等。作为一种良好的称量习惯,校准能够有效地保证称量的可靠性。通过校准,能够检测出天平的工作性能,避免物料浪费、返工、过渡使用后的产品召回,定期校准并执行日常测试是降低相关风险的最佳方法。 然而,对于一字之差的“校正”,含义却有微妙的差别。校正(Adjustment),又称标定,是在测量系统中进行的一组操作,提供与将要测量的数量的给定值一致的规定指示。天平在投入使用前、工作一段时间以后、或者变更位置后,都需要进行校正,以消除重力加速度、环境干扰因素等导致的称量误差。通常,需要使用高精度的标准砝码来对天平进行量程校正。综上所述,通过定期的校准和校正,可以减少天平的称量误差,并且对天平的计量性能有一个全面的把握,确保称量结果满足实验和生产的要求。 在日常工作中,大家往往比较容易混淆“校准”和“校正”的概念,对于这种严格意义上微妙差别,习惯上大家会有一定程度的通用性,校正也可以被认为是狭义上的校准,本文接下来的内容主要是在此基础上进行讨论。 走近极致考究的校准术A. 关于砝码的学问谈到校准,起到至关重要作用的就是砝码。砝码是具有一定物理特性和计量特性且能够复现质量值的一种实物量具,关于其形状、尺寸、材料、表面状况、密度、磁性、质量标称值、最大允许误差等指标都有非常严格的规定。作为标定、校验衡器的最普遍也是最重要的工具,国际法制计量组织(OIML)对砝码进行了明确的等级划分,共分为9个等级:E1、E2、F1、F2、M1、M1–2、M2、M2–3、M3,等是按照不确定度来分,等砝码有修正值;级是按照示值误差来分,级砝码没有修正值,只要其示值误差在此范围内都是认为合格的。在砝码的众多指标当中,和校准关联度最高的就是最大允许误差(MPE)了,国际相关法规条款对各个等级的砝码的MPE有明确的规定,以下表格是对电子天平所常用质量标称值砝码MPE的说明(误差值以毫克为单位): 从上图可看出,在相同质量标称值的情况下,MPE的大小跟砝码等级的高低成反比;在相同砝码等级的情况下,MPE的大小跟质量标称值的大小成正比。 同时,在国家标准的相关规定里,根据检定分度值e和检定分度数n将电子天平分为四个准确度级别,由高到低依次为特种Ⅰ、高Ⅱ、中Ⅲ、普通Ⅳ准确度级。结合砝码MPE的变化趋势可得出,准确度越高的天平需要用越高等级的砝码进行校准,这样校准天平的数据就越精准。比如十万分之一和万分之一天平应选用E级系列砝码校准,千分之一天平应选用E2或F1级砝码进行校准,以此类推。B. 校准的分类从校准的用途上来讲分为“量程校准”和“线性校准”,在制造和维修过程中需要结合两种校准方式共同实施,而日常使用过程一般只需做量程校准。 量程校准主要是在当前称量环境下对天平进行赋值,通过称量一个已知质量的砝码,来获得实际值和显示值之间的比例关系,作为以后称量显示值计算的系数,目的是消除不同纬度及海拔高度对称量结果的影响、环境温度变化对称量结果的影响,以及天平使用一段时间后积累的误差。通常,量程校准采用比较简单的两点校准法,第一个点为零点,第二个点为天平的最大量程,日常操作起来比较容易,能够使天平快速适应当前的称量环境,保证整个量程范围内的称量准确,是实验室工作人员一种普遍的校准方法。 线性校准主要是通过对全量程范围内的多个点的称量结果的线性化来消除误差,使得显示称量结果与参考质量的比例接近相同。一般来说是在3个点设置电子天平,即零点、半量程和最大量程。天平经过线性校准后,其全量程线性误差通常表现为S型,即在零点、半量程、满量程3个校准点误差很小,在1/4,3/4满量程点误差相对较大。为获得更好的线性,可以采取多点修正的方式,比如制造过程中往往采用更科学的5点线性法。当然数学修正只是辅助的,天平的示值误差还是取决于其本身的真实性能。 以上两图描述了电子天平在实际载荷m和称量示值W之间的线性关系,左图的直线为理想线性特征曲线,右图为实测曲线(非线性曲线)与理想直线的对比,其中非线性就是指不按比例、不成直线的关系,且函数的一阶导数不为常数。m0处的NL为称量示值与实际负载间的非线性误差。在天平的称量规格说明书中,线性通常表述为在不断增加负载的测试中得到的最大误差值(以克为质量单位),误差值越小,说明线性度越高,称量越准确。 由于线性校准采用的是分段误差比较,节点越多,非线性误差就越小,实测曲线就越接近于理想的拟合直线,因此线性校准是保证每一个称量范围都做到最大程度的准确,从而对校准的条件会有更加严格的要求。通常,线性校准过程在恒温恒湿的环境下,由机械手自动完成。校准时需准备相应的多个砝码,非专业人员严禁私自进行操作,否则不能恢复原有程序,影响天平的正常使用。 综上所述,量程校准和线性校准各有各自的特点和用途,将二者结合能够有效提升校准的质量。 从校准的方法上来讲分为内校和外校。内校是指利用电子天平内部安装的校准砝码并遵循内部标准程序进行校准。校准时只需按一下校准键,电机会驱动带内置砝码的升降装置,对天平进行加载,从而实施并完成校准。 外校是指利用外部砝码对天平本身误差进行修正的方式进行校准。事先需检查外部砝码是否通过检定,并在检定有效期内,主要是为了确保砝码满足相关标准对实物量具的控制要求。开始校准时先按下校准键,再通过手动把指定量程的砝码放到电子天平秤盘上,来完成校准过程。 通常,外部砝码可能会受到灰尘沾染、日常磨损和酸碱腐蚀等自然因素的不良影响,所以为了保证计量工作的准确性,外部砝码也需要定期进行校准,常常需付费请省(市)级计量院做测试;再加上人为拿错砝码的可能性,因此外校型天平对人为操作的要求会更加苛刻。而内置砝码的天平一般不会出现这些情况,并可以通过修改天平的校正程序参数来修正偏差。综上所述,内校可以有效避免不确定因素所造成的误差,相比外校是一种更加节约成本的方法。 无论是内校还是外校,电子天平在使用之前都必须进行预热(万分之一位天平需要至少1个小时的预热),其次进行水平调节,之后就可以开始进行校准了(以下步骤为传统校准方法,具体不同品牌和型号的天平会有一定的差异): 第一,确保秤盘上没有称量物品时应稳定地显示为零位。 第二,按“CAL”键,启动电子天平的校准功能。 第三,内校型天平的显示器由“C”变成零位时,表示校准结束;外校型天平的显示器上首先显示需要准备的砝码的质量值,其次将与天平准确度级别相对应等级的标准砝码放在天平的秤盘上。当屏幕显示值不变时,取出砝码,屏幕显示“Done”之后说明已经完成校准。 第四,如果在校准中出现错误,电子天平显示器将显示“Err”,或“Time out”,应重新进行校准。 校准术的变革——奥豪斯AutoCal™ 全自动校准技术怎么样,看过了上面的详细介绍,你有没有发现校准是一门相当有技术含量的学问呢?其实,随着称量技术日新月异的发展,校准手段也越来越趋于人性化。如果你还在为传统校准方法中麻烦的人为操作而发愁,那不妨来看看为天平校准带来全新变革的奥豪斯AutoCal™ 全自动校准技术吧! 奥豪斯AutoCal™ 是针对环境温度漂移和时间触发的专业全自动校准技术,在传统的内校基础上进行了全新的改良,在温度漂移值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,避免了未进行定时校准或手动校准砝码不当等造成天平称量不准确的潜在因素。 目前,AutoCal™ 全自动校准系统在庞大的奥豪斯天平家族里有广泛的应用,特别是Explorer准微量天平采用了两组内置砝码,同时拥有量程校准和线性校准功能。在校准过程中,通过同时加载砝码m1和m2,以及分别加载砝码m1和m2校准半载点的方法,可测试天平的线性并自动进行线性校准。 此外,Explorer系列十万分之一以下的分析和精密天平以及Adventurer™ AX系列天平的AutoCal™ 通过配备的一个内置砝码,可进行量程校准功能,用户可根据具体的使用需求做灵活的选择! 听了小编全面细致的讲解,你是不是摸到了校准的门道呢?是不是也想马上动手操作感受一下AutoCal™ 技术的强大之处?如果你有更多关于天平校准的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议。最后,小编再次祝大家在旺旺狗年生活幸福吉祥,工作顺心顺意!
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 实验室仪器的校准目的、校准周期如何确定?
    1、设备定期校准的主要目的 实验室对设备进行定期校准的主要目的有:1)建立、保持和证明设备的计量溯源性;2)改善设备测量值与参考值之间的偏差及不确定度;3)提高设备不确定度的可信性;4)确定设备性能是否发生变化,该变化可能引起实验室对之前所出具结果的准确性产生怀疑。 2、设备初始校准周期如何确定 设备初始校准周期的确定应由具备相关测量经验、设备校准经验或了解其它实验室设备校准周期的一个或多个人完成。确定设备初始校准周期时,实验室可参考计量检定规程/校准规范、所采用的方法和仪器制造商建议等信息。此外,实验室可综合考虑以下因素:1)预期使用的程度和频次;2)环境条件的影响;3)测量所需的不确定度;4)最大允许误差;5)设备调整(或变化);6)被测量的影响(如高温对热电偶的影响);7)相同或类似设备汇总或已发布的测量数据。 3、设备校准周期的调整 ISO/IEC 17025:2017 中 6.4.7 规定:【实验室应制定校准方案,并进行复审和必要的调整,以保持对校准状态的信心】实验室制定校准方案后,应在后续使用中结合设备的使用情况和性能表现作出必要的调整。设备的校准周期以及后续校准周期的调整一般应由实验室(或设备使用者)确定,并以文件化的形式规定。如果设备的校准证书中给出了校准周期的建议,实验室可根据自身情况决定是否采用。 4、设备后续校准周期调整需考虑的因素 设备后续校准周期的调整,一般应考虑以下因素:1)实验室需要或声明的测量不确定度;2)设备超出最大允许误差限值使用的风险;3)实验室使用不满足要求设备所采取纠正措施的代价;4)设备的类型;5)磨损和漂移的趋势;6)制造商的建议;7)使用的程度和频次;8)使用的环境条件(气候条件、振动、电离辐射等);9)历次校准结果的趋势;10)维护和维修的历史记录;11)与其它参考标准或设备相互核查的频率;12)期间核查的频率、质量及结果;13)设备的运输安排及风险;14)相关测量项目的质量控制情况及有效性;15)操作人员的培训程度。
  • 新标准实施丨生物安全柜的校准有“法”可依
    生物安全柜(biosafety cabinet,BSC)是一种负压过滤排风柜,可防止操作者和环境暴露于实验过程中产生的生物气溶胶污染。被广泛应用于医疗卫生、疾病预防与控制、食品卫生、生物制药、环境监测,以及各类生物实验室等领域。目前,Ⅱ级生物安全柜因应用广泛倍受追捧而产生了较大的市场。尽管国产的Ⅱ级生物安全柜基本能满足我国生物制药等行业的需求,但市场发展依然存在诸多弊端。为了规范生物安全柜市场,使其健康有序发展,国家市场监督管理总局于2020年1月17日发布了JJF1815-2020 《Ⅱ级生物安全柜校准规范》,该标准已于2020年4月17日起正式实施。根据NSF/ANSI 49-2018《生物安全柜:设计,制作,性能和行业认证》以及YY 0569-2011 《Ⅱ级生物安全柜》中的说明,可将生物安全柜分为三级:Ⅰ级生物安全柜、Ⅱ级生物安全柜和Ⅲ级生物安全柜。Ⅰ级生物安全柜可保护工作人员和环境而不保护样品。其气流原理和实验室通风橱基本相同,不同之处在于排气口安装有HEPA过滤器,将外排气流过滤进而防止微生物气溶胶扩散造成污染。Ⅰ级生物安全柜本身无风机,依赖外接通风管中的风机带动气流,由于不能保护柜内产品,目前已较少使用。Ⅱ级生物安全柜是目前应用最为广泛的柜型。根据循环排风机制和排风选择的不同以及内部结构设计可分为5种类型:A1型,A2型,B1型,B2型和C1型,Ⅱ级生物安全柜的分型及其特点见表1。所有的Ⅱ级生物安全柜都可提供工作人员、环境和产品的保护。Ⅲ级生物安全柜专为高度传染性微生物媒介和其他危险操作设计,可为环境和工作人员提供的保护,其柜体完全气密,工作人员通过连接在柜体的手套进行操作,俗称手套箱,试验品通过双门的传递箱进出安全柜以确保不受污染,适用于高风险的生物试验,如进行SARS、埃博拉病毒相关实验等。关于JJF1815-2020 《Ⅱ级生物安全柜校准规范》中规定的计量特性、对应指标、相关方法及对应仪器设备,汇总见下表2。表2 Ⅱ级生物安全柜校准项目及对应设备青岛众瑞结合自身技术储备,有针对性的对校准项目中的三项给出了解决方案。具体项目及对应仪器设备如下表3所示。表3 众瑞产品对应校准项目汇总ZR-4000型 气流流形测试仪利用专利技术的超声波雾化器产生10微米左右的高可见度及无污染的水雾,用于洁净厂房、局部洁净环境的气流流形摄影及录像。根据ISO14644-3及GMP对洁净厂房验收需要对气流方向进行评价,可适用于半导体,制药类洁净车间。ZR-6010型 气溶胶光度计是根据Mie散射理论设计的,用于检测高效过滤器是否有泄露的一套专用检测设备。仪器符合相关国家和行业标准,可快速实现高效过滤器的气溶胶上游和下游浓度检测,并在手持采样设备和主机上同时实时显示高效过滤器的泄漏率,可快速准确的确定高效过滤器漏点的位置。适于洁净房、层流台、生物安全柜、手套箱、HEPA吸尘机、HVAC系统、HEPA过滤器、负压过滤装置、手术室、核子过滤系统、汇集保护过滤器等的泄露检测。ZR-1300A型 气溶胶发生器是利用Laskin喷嘴产生DOP气溶胶的专用仪器,内置调节阀可调节使用4个或10个喷嘴工作,输出的气溶胶浓度在1.4m3/min-56.6m3/min空气流量下,可以达到10μg/L-100μg/L,气溶胶性能指标符合国家标准,适用于医疗器械检验所、疾病预防控制中心、医院、制药企业、高效过滤器生产厂家等对洁净室及高效过滤器的检漏。ZR-1012型 智能生物安全柜生物检测仪采用生物法对II级生物安全柜安全防护性能进行测试,符合《YY0569 -2011.II级生物安全柜》等相关标准,具备人员保护、产品保护、交叉污染保护三种工作模式,主要用来确定气溶胶是否停留在安全柜内,外部的污染物是否进入到安全柜的工作区域,以及安全柜中装置之间的气溶胶污染是否减到最小,适用于医疗器械检测中心、疾控中心、计量检定部门和科研院所等部门对II级生物安全柜安全防护性能的检测。ZR-1100型 全自动菌落计数仪是针对微生物菌落分析和微颗粒粒度检测开发的高新技术产品,利用其强大软件图像处理功能和科学的数学分析方法对微生物菌落分析和微颗粒粒度检测,计数迅速准确。适用于医院、科研院所、卫生防疫站、疾病控制中心、检验检疫、质量技术监督、环境检测机构以及制药、食品饮料、医疗卫生用品行业等的微生物检测。
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 家用PM2.5测量仪校准规范有望今年出台
    “室外的PM2.5浓度530μ g/m3,家里只有15μ g/m3,空气净化器效果很好。”北京的蔡女士一手拿着手机,上面显示的是北京市环境质量发布平台发布的北京空气中PM2.5浓度的最新数据 另一手拿着一台家用手持PM2.5测量仪,上面显示蔡女士家中PM2.5浓度的实时测量数值。“我们在购买空气净化器的同时,也在网上买了这款家用PM2.5测量仪,打开开关,显示屏上就能显示出家里空气中PM2.5的浓度,很方便。”  2016年冬天,雾霾侵袭了包括北京在内的中国多座北方城市,使用方便、价格适中的各种家用PM2.5测量仪也成了很多消费者追捧的对象。那么,家用PM2.5测量仪测得到底准不准?我国目前PM2.5测量仪是否拥有统一的国家校准规范?  测量仪进入寻常百姓家  在淘宝网上输入“PM2.5测量仪”,可搜索出检查官、阿格瑞斯、汉王等品牌共100多件商品,价格从90多元到上千元不等。在各产品的网页上,“超高精度专业仪器”“实时精准检测”等各种宣传广告语很是吸引眼球。商家都将PM2.5测量作为卖点,有的还称自己的产品能同时测量PM2.5、PM10、甲醛、苯等各种空气污染物。中国质量报记者看到,“激光检测法”是多数测量仪采用的测量方法。例如,汉王霾表N1的网页介绍说,“采用PM2.5激光检测设备,精确度可以达到0.01μ g/m3”。阿格瑞斯的一款测量仪网页上写着:“激光传感器是新一代技术,检测更快,更精准,媲美气象局发布的数据。”但也有商家宣称产品采用的是“半导体技术,测量准确率达99.5%。”这些产品由于体积小、便于操作,数据实时显示、可视性强,得到不少网友的肯定。  专业测量仪不用光散射法  青岛众瑞智能仪器有限公司是一家专业研发生产高端环境监测仪器及安全检测仪器的高新技术企业。该公司生产的专业PM2.5测量仪运用在我国环保监测领域。公司高级工程师何春雷告诉记者,测量PM2.5的方法主要有3种:β 射线吸收法、微量振荡天平法和光散射法。“无论是国内还是国外的环保和气象部门,都只采用前两种方法的测量仪器,光散射法并未得到相关部门的权威认可。”据介绍,目前我国环保、气象监测部门都制定了各自的关于PM2.5测量仪的行业标准,对仪器的精度指标、技术参数、测试方法都做出了规定。何春雷透露,一台专业的PM2.5测量仪售价至少十几万元,甚至上百万元。  2016年1月1日开始实施的《环境空气质量标准》,明确规定PM2.5测定的手工分析方法为重量法,自动分析方法为微量振荡天平法和β 射线法,而没有光散射法,也就是说,对专业的环保、气象测量来说,采用光散射法制造的仪器并不被认可。  中国计量科学研究院纳米新材料研究所高级工程师张文阁解释,对PM2.5测量来说,不同的测量方法、不同的测量环境都会影响测量准确度。采用光散射法制成的家用PM2.5测量仪在测量准确度上肯定无法与专业的测量仪相比较。“由于光散射法本身的缺陷,导致这些仪器的测量精度很难保证。”张文阁认为,网上销售的家用PM2.5测量仪不属于专业测试仪器,只能大概测一个数据,对空气质量做一个暂定量测试或者作出一个趋势性判断,离PM2.5的概念相差太远。“只能将其作为衡量空气是干净还是被污染的一个大致参考。”  专业校准规范有望今年出台  早在几年前,中国计量科学研究院就开始进行PM2.5测量溯源性及计量标准装置研究。因为要想获得准确可靠的PM2.5数值,必须保障测量仪本身计量性能的可靠。张文阁说,“PM2.5测量方法与仪器型号很多,但不同原理不同厂家仪器测量结果相差很大,需要准确校准与溯源。”几年以来,张文阁带领的团队以国际通用的重量法为基础,建立了PM2.5质量浓度测量仪国家计量标准。该计量标准与代表欧盟PM2.5最高环保计量水平进行了国际比对,比对结果证明我国的PM2.5测量各项技术指标均达到了等效一致。  “我们已经完成了《PM2.5质量浓度测量仪国家校准规范》的终审并已报批,规范有望2017年正式发布。”张文阁介绍,“我们正在进行PM2.5测量仪器在线校准方法和计量标准装置的研究,为提高国家PM2.5监测水平提供计量技术保障。”  不过,张文阁解释,他们的研究都是为环保、气象部门专业的测量仪服务,而网上售卖的家用测量仪并不在他们的研究范围之内。
  • 科学组合与智能校准 先河网格化监控显神威
    仪器信息网讯 2015年8月,国务院办公厅《生态环境监测网络建设方案》明确提出,坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局,为加快推进生态文明建设提供有力保障。而网格化监管被很多人认为是实现这一目的的不错选择。其实“网格化监管”在我国管理体系中的应用是方方面面的,如公安、水利、计划生育等领域早有应用,此次将网格化管理引入到环保领域,有利于环境监管工作更加精细化。  在我国,较早启动环保领域网格化管理的城市是兰州,兰州将管理辖区划分成1000多个网格,每一个管理网格都有自己的网格员,网格员负责监察辖区内的不规范行为,如工业企业的偷排偷放,居民餐饮油烟排放、垃圾焚烧等。经过几年的实施,“兰州蓝”成为了全国的典范,但也面临了新的问题:一是人力消耗太大:二是随着一次颗粒物排放量的减少,臭氧、挥发性有机物、二次颗粒物等问题单纯靠人防无法监管。  针对这些新问题和新需求,河北先河环保科技股份有限公司(以下简称“先河环保”)提出了以传感器微型站来大面积布点、国标方法监测的小型化设备为支撑的“网格化精准监控”解决方案,打通了环境监测到环境监管的通道。那么,“网格化监控”到底能满足什么需求?对于传感器测量结果不准确的问题,先河环保又是如何解决的呢?带着这些疑问,仪器信息网编辑近日采访了先河环保总裁陈荣强先生。河北先河环保科技股份有限公司总裁陈荣强先生  网格化监控打通环境监测和环境监管的通道  先河环保网格化精准监控系统由高时间分辨率的传感器微型站、基于国标方法原理的小型空气监测站/小型扬尘监测站/标准空气质量监测站等有机组合而成。对于此系统,陈总如此评价说,“此系统更多的是一种应用创新,这种应用创新是将物联网、大数据、环境监测等综合技术应用到环境监管当中”。产品展示  首先,借助物联网、大数据和传感器技术实现“全面布点”。由于传感器成本低、时间分辨率高、可测参数多、布点方便,所以可以实现空间、时间、多参数的三位一体高密度布点。通过与国标法小型化监测设备组合应用,可以厘清特定行政区域及局部空间的环境污染状况,快速、精准锁定污染源头,有效解决污染源监测及管理覆盖不全的问题。  第二,与国内近6000个常规空气质量监测站等组合使用,便于实现“全国联网”。因为现有的空气质量监测站和网格化监控中的国标法小型化设备采用的是国家标准方法,所以其监测数据可以用作行政处罚的依据,而传感器微型站的数据可以与国标法设备的数据实时对比,进行数据监控和趋势研判,因此网格化监控系统可进行有理有据的环境监管。  第三,利用产生的海量数据进行大气污染防治的预警预报和源解析,实现“自动预警、依法追责”。这方面的工作先河环保已经有条不紊地进行,目前已与北大、北师大、清华等高校的专家教授进行多方面合作,先河环保与清华大学还申报了科技部国家重点研发计划“精细网格大气动态污染源清单技术研发及应用示范”项目。此外,先河环保自己也有专业的科学家团队进行源解析数据分析、减排评估分析等工作。  陈总还为我们详细解释了“打通环境监测到环境监管的通道”的意义。以PM10为例,如果一个城市确定了PM10的主要来源为道路扬尘和工地扬尘,就可根据城市的发展和工地布局,安装网格化监控系统,实现24小时监管,可指导污染较重的道路重新规划或者督促工地实行整改。对于此套网格化监控系统,清华大学环境学院院长、中国工程院院士贺克斌评价说:“在功能上,网格化可以科学精准地辅助监管部门对污染点源进行有效定位和预警,发挥抓手作用。”  如何保证数据质量?三级修正、四级校准的全生命周期质控体系  网格化监控系统的诸多应用都是基于数据,而传感器在一定程度上存在零漂、时漂、温漂等问题,其数据可靠性备受业内专家和用户质疑。对于此问题,先河环保是如何解决的呢?陈总说:“随着传感器产业的发展,传感器本身的精度和稳定性都有了极大提高,但是仍不能完全满足环境监管的需要。为此,先河环保创新提出了‘三级修正、四级校准’的全生命周期质控体系,来保证数据的可靠性。”  网格化监控系统的仪器要经过严格的三级数据修正。通过三级数据修正之后的传感器设备,可以极大提升数据的准确性,达到对传感器本身的筛选、研判、数据基因变量修正的作用,提升传感器设备数据与准确数据的相关性。  网格化监控系统的设备还需经过四级校准,保证传感器在出厂前后的数据稳定性和准确性。第一级校准是标物校准。将传感器设备放进专业的实验室,采用固定浓度的标准气体进行校准,并实时查看传感器的浓度值,筛选出合格的传感器,达到微型站基本的品质保证。第二级是组网驯化校准,在不同的温度、湿度等不同的气象条件,以及不同的污染浓度等外界环境下,使传感器设备与国标法设备进行严格的深度学习、比对,形成每个传感器数据独有的基因变量。其数据能与空气质量监测站数据匹配即为合格。第三级是自适应校准,通过结合现场安装情况,利用先进的云平台在数据发生漂移时对仪器进行自动校准。第四级是传递校准。采用移动监测车或者便携式国标法校准设备,可对一定范围内的传感器数据进行实时在线比对、验证、校准,消除各地传感器设备因本底污染浓度值差异以及传感器漂移造成的监测数据漂移的问题。  以臭氧为例,经校准后,传感器微型站与空气质量自动监测站(符合国家标准)的数据相关性从0.7797提高到了0.93以上。O3校准前、后比较  当然,这四种校准方式是互相配合使用的。先河环保的运营人员还专门配备了“传感器综合管理平台手机端APP”,为售后人员的设备安装、维护、维修、数据查询工作提供了便利条件。加上运营人员定期的现场维护以及数据管理中心24小时数据远程管理、质控,保证了传感器设备全生命周期的数据准确可靠。先河环保还投资近200万建设了环境监测传感器质控实验舱,极大提高了“数据质控校准”的效率。二级校准现场用于网格化质控校准的环境实验舱  一台仪器要想得到市场的认可,最重要是满足客户的需求  先河环保网格化监控系统目前已迅速在全国多地进行了应用,受到了客户的广泛欢迎。网格化监控系统已在河北的衡水、石家庄、保定、沧州等市实施。同时,在县级及乡镇如石家庄所辖井陉矿区、高邑县、无极县、正定县(含村镇)、赵县及廊坊市永清县等也快速铺开。省外,已在山东、河南、广西、湖北、新疆等市陆续落地,为当地环保部门提供了一套科学有效的监测、监管、预警、指挥、执法的工具和抓手。  在环境监测监察事权上收的大背景下,对于市、县(区)以及乡镇一级的地方政府,将网格化监控系统作为一种自我检查、自我监管并提升空气质量的手段也是不错的选择。先河公司创新的质控手段,引领了行业的发展,也希望能将系统推广到更多的地区和用户,同时希望更多的代理商能加盟此项事业,共助我国环境空气质量改善。
  • 众瑞科普 生物安全柜校准方案
    01JJF1815-2020《Ⅱ级生物安全柜校准规范》生物安全柜(Biosafetycabinet,BSC)是一种负压过滤排风柜,可防止操作者和环境暴露于实验过程中产生的生物气溶胶污染。被广泛应用于医疗卫生、疾病预防与控制、食品安全、生物制药、环境监测,以及各类生物实验室等领域。目前,Ⅱ级生物安全柜因应用广泛倍受追捧而产生了较大的市场。尽管国产Ⅱ级生物安全柜基本能满足我国生物制药等行业的需求,但因存在型号种类繁多、性能质量参差不齐、标准规范缺失、校准项目和参数不尽相同、检测操作和不确定度评定存在差异等诸多弊端,严重影响了市场发展。为了规范生物安全柜市场,使其健康有序发展,国家市场监督管理总局于2020年1月17日发布了JJF1815-2020《Ⅱ级生物安全柜校准规范》,该标准于2020年4月17日起正式实施。根据NSF/ANSI49-2018《生物安全柜:设计,制作,性能和行业认证》以及YY0569-2011《Ⅱ级生物安全柜》中的说明,可将生物安全柜分为三级:Ⅰ级生物安全柜、Ⅱ级生物安全柜和Ⅲ级生物安全柜。Ⅰ级生物安全柜可保护工作人员和环境而不保护样品。其气流原理和实验室通风橱基本相同,不同之处在于排气口安装有HEPA过滤器,将外排气流过滤进而防止微生物气溶胶扩散造成污染。Ⅰ级生物安全柜本身无风机,依赖外接通风管中的风机带动气流,由于不能保护柜内产品,目前已较少使用。Ⅱ级生物安全柜是目前应用最为广泛的柜型。根据循环排风机制和排风选择的不同以及内部结构设计可分为5种类型:A1型,A2型,B1型,B2型和C1型,Ⅱ级生物安全柜的分型及其特点见表1。所有的Ⅱ级生物安全柜都可提供工作人员、环境和产品的保护。Ⅲ级生物安全柜专为高度传染性微生物媒介和其他危险操作设计,可为环境和工作人员提供最大的保护,其柜体完全气密,工作人员通过连接在柜体的手套进行操作,俗称手套箱,试验品通过双门的传递箱进出安全柜以确保不受污染,适用于高风险的生物试验,如进行SARS、埃博拉病毒相关实验等。关于JJF1815-2020《Ⅱ级生物安全柜校准规范》中规定的计量特性、对应指标、相关方法及对应仪器设备,汇总见下表2。表2Ⅱ级生物安全柜校准项目及对应设备青岛众瑞结合自身技术储备,有针对性的对校准项目中的三项给出了解决方案。具体项目及对应仪器设备如下表3所示。表3众瑞产品对应校准项目汇总02众瑞产品应用人员、产品和交叉污染保护ZR-1012型智能生物安全柜生物检测仪ZR-1012型智能生物安全柜生物检测仪采用生物法对II级生物安全柜安全防护性能进行测试,符合《YY0569-2011.II级生物安全柜》等相关标准,具备人员保护、产品保护、交叉污染保护三种工作模式,主要用来确定气溶胶是否停留在安全柜内,外部的污染物是否进入到安全柜的工作区域,以及安全柜中装置之间的气溶胶污染是否减到最小,适用于医疗器械检测中心、疾控中心、计量检定部门和科研院所等部门对II级生物安全柜安全防护性能的检测。技术特点: / ZIGBEE无线控制台可遥控检测仪主机的工作状态; / 集六路撞击采样器、两路狭缝采样器、一路气溶胶喷雾发生于一体; / 两路狭缝采样头内置培养皿30分钟匀速旋转一周; / 仪器支架上下高度、左右宽度可调,适合检测不同规格的安全柜; / 专用菌液喷雾器,喷雾流量大小可设定,雾化效果好; / 嵌入式高速工业微电脑控制; / 8寸工业级高亮度彩色触摸显示屏; / USB接口,支持U盘数据转存; / 支撑、移动两用脚轮; / 可拆装式支架; / 专用仪器附件箱。ZR-1013型智能生物安全柜质量检测仪ZR-1013型生物安全柜质量检测仪,是采用碘化钾法,对II级生物安全柜质量进行检定。可进行人员保护测试、产品保护测试和交叉污染保护测试技术特点: / 采用8寸高清液晶触摸屏,中文显示,内容直观,操作简单; / 配备专用气溶胶捕集采样头,捕集效率高,且无需调节压力稳定流量。 / 配备专用碘化钾气溶胶发生器,经校准计量。 / 采样支架独立调整高度,无需外部连接管路。 / 四路独立高寿命高精度采样模块,自动控制流量, / 具备USB、蓝牙打印机,可导出数据和实时打印。 / 供液系统自由设置,可调节供液稳定性。 / 具备气溶胶发生器自动控制接口,实时反馈发生器转速, / 人员保护测试、产品保护测试和交叉污染保护测试三种模式设置,可实现一键启动和独立启动。 / 内置锂电池,可满足仪器查询、打印和导出等相关功能。气流模式ZR-4000型气流流形测试仪ZR-4000型气流流形测试仪利用专利技术的超声波雾化器产生10微米左右的高可见度及无污染的水雾,用于洁净厂房、局部洁净环境的气流流形摄影及录像。技术特点: / 持续30分钟以上发雾; / 透明喷雾软管,方便观察及弯折; / 喷雾管可以延长至1米; / 储水水位显示; / 缺水保护功能; / 超纯净喷雾,无污染;高效/超高效过滤器检漏ZR-6010型气溶胶光度计ZR-6010型气溶胶光度计是根据Mie散射理论设计的,用于检测高效过滤器是否有泄露的一套专用检测设备。仪器符合相关国家和行业标准,可快速实现高效过滤器的气溶胶上游和下游浓度检测,并在手持采样设备和主机上同时实时显示高效过滤器的泄漏率,可快速准确的确定高效过滤器漏点的位置。适于洁净房、层流台、生物安全柜、手套箱、HEPA吸尘机、HVAC系统、HEPA过滤器、负压过滤装置、手术室、核子过滤系统、汇集保护过滤器等的泄露检测。技术特点: / 长寿命激光光源; / 高精度光电倍增管检测; / 可设置PAO、DOP等多种类型气溶胶; / 点阵式彩色显示屏,中文菜单化操作; / 配备专用手持仪,实现控制、显示和采样功能; / 大容量数据存储,实时保存采样数据; / 超过设定报警值时声光报警; / 可通过U盘导出或热敏打印机打印历史数据; / 可实时打印泄漏率等监测数据; / 通过专用软件,可将采样数据实时导入PC机; / 故障检测自动保护。ZR-1300A型气溶胶发生器ZR-1300A型气溶胶发生器是利用Laskin喷嘴产生DOP气溶胶的专用仪器,内置调节阀可调节使用4个或10个喷嘴工作,输出的气溶胶浓度在1.4m3/min-56.6m3/min空气流量下,可以达到10μg/L-100μg/L,气溶胶性能指标符合国家标准,适用于医疗器械检验所、疾病预防控制中心、医院、制药企业、高效过滤器生产厂家等对洁净室及高效过滤器的检漏。ZR-C03型微生物气溶胶发生器ZR-C03型微生物气溶胶发生器是ZR-1012检测仪专用配件,其工作原理为在喷气口高速气流的作用下,菌液喷出口形成负压,把发生器里的菌液吸至喷嘴处,又被喷气口高速气流碎裂或分散成无数的气溶胶粒子,经喷雾口喷出。该气溶胶发生器有两个外接口,一个是连接气源的供气接口,另一个是注液和喷雾两用接口。该发生器为玻璃材质,可配备专用的固定支架。ZR-1100型全自动菌落计数仪ZR-1100型全自动菌落计数仪是针对微生物菌落分析和微颗粒粒度检测开发的高新技术产品,利用其强大软件图像处理功能和科学的数学分析方法对微生物菌落分析和微颗粒粒度检测,计数迅速准确。适用于医院、科研院所、卫生防疫站、疾病控制中心、检验检疫、质量技术监督、环境检测机构以及制药、食品饮料、医疗卫生用品行业等的微生物检测。 / 自带仪器标定,以及多种图形标注、测量功能; / 单色菌落识别、多种颜色菌落同时自动识别等检测方式; / 自动粘连分割、手动分割,计数回退功能,计数结果准确快速; / 强大的图像处理软件; / 高分辨率彩色工业相机; / 选择区域统计,高效快速,瞬间输出菌落直径、圆度、周长、面积、数目等数据; / 数据保存、查询功能; / 报表数据可直接导出EXCEL格式数据,或直接打印; / 标配图像处理PC机一台。
  • 《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目汇总
    近日,工信部将2021年申请立项的《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目和项目建议书予以公示,截止日期为2021年4月9日。这125项项目中,包括石化行业(26项)、有色金属行业(7项)、建材行业(14项)、机械行业(20项)、纺织行业(9项)、兵工民品行业(14项)、电子行业(15项)、通信行业(8项),目录如下表所示。附:《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目建议书.zip2021年行业计量技术规范申报项目汇总表 行业:石化 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域1JJFZ(石化)001-2021激光甲烷遥测仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院、济宁市计量所石油化工2JJFZ(石化)002-2021磷化氢气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工3JJFZ(石化)003-2021柴油十六烷值机校准规范制定/2023中国石油和化学工业联合会中石化(洛阳)科技有限公司、山东省计量科学研究院石油4JJFZ(石化)004-2021乙醇气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工5JJFZ(石化)005-2021丙酮气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工6JJFZ(石化)006-2021石油产品定氮仪(化学发光法)校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工7JJFZ(石化)007-2021润滑油蒸发损失测定仪(诺亚克法)校准规范制定/2023中国石油和化学工业联合会中国计量科学研究院石油8JJFZ(石化)008-2021开路式红外可燃气体探测器校准规范制定/2023中国石油和化学工业联合会中国石油化工股份有限公司青岛安全工程研究院石油化工9JJFZ(石化)009-2021恒温振荡培养箱校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院石油化工10JJFZ(石化)010-2021涂料耐溶剂擦拭仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料11JJFZ(石化)011-2021涂膜、腻子膜打磨性测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料12JJFZ(石化)012-2021厚漆、腻子稠度测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料13JJFZ(石化)013-2021二氧化氮气体检测报警器校准规范制定/2023中国石油和化学工业联合会中国石油天然气股份有限公司吉林石化分公司石油化工14JJFZ(石化)014-2021管状输送带试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶15JJFZ(石化)015-2021汽车同步带疲劳试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶16JJFZ(石化)016-2021橡胶软管外覆层耐磨耗性能试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶17JJFZ(石化)017-2021润滑脂锥入度测定器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工18JJFZ(石化)018-2021激光甲烷气体检测报警器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工19JJFZ(石化)019-2021帘线干热收缩仪校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶20JJFZ(石化)020-2021橡胶压缩屈挠试验机校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶21JJFX(石化)021-2021直读式橡胶密度计校准规范修订JJG(化)106-912023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶22JJFZ(石化)022-2021石油产品盐含量测定仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油23JJFZ(石化)023-2021甲醛气体检测报警器校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油化工24JJFZ(石化)024-2021氧化性固体重量试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定25JJFZ(石化)025-2021撞击感度试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定26JJFZ(石化)026-2021易燃液体持续燃烧试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定2021年行业计量技术规范申报项目汇总表 行业:有色金属 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域27JJFZ(有色金属)001-2021隔热型材用高温持久试验机校准规范制定/2023中国有色金属工业协会广东省科学院工业分析检测中心力学28JJFZ(有色金属)002-2021闭路循环法铝及铝合金液态测氢仪校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司工艺29JJFZ(有色金属)003-2021电热恒温水浴锅校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度30JJFZ(有色金属)004-2021电子式温湿度计校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度31JJFZ(有色金属)005-2021有色金属材料用循环腐蚀试验箱校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀32JJFZ(有色金属)006-2021铜合金冲刷腐蚀试验机校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀33JJFZ(有色金属)007-2021非接触式引伸计标定器校准规范制定/2023中国有色金属工业协会西安汉唐分析检测有限公司力学2021年行业计量技术规范申报项目汇总表 行业:建材 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域34JJFZ(建材)001-2021水泥企业用转子计量秤现场校准规范制定/2023中国建筑材料联合会建筑材料工业技术监督研究中心水泥35JJFZ(建材)002-2021垂直安装的成束电线电缆火焰垂直蔓延试验装置校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司、国家建筑防火产品安全质量监督检验中心防火性能测试36JJFZ(建材)003-2021电线电缆热释放测试装置校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司、国家建筑防火产品安全质量监督检验中心等防火性能测试37JJFZ(建材)004-2021便携式气相色谱仪用微型气相色谱柱校准规范制定/2023中国建筑材料联合会中国科学院空天信息创新研究院、建筑材料工业技术监督研究中心等室内环境监测38JJFZ(建材)005-2021室内有害气体监测用微型阵列金属氧化物气体传感器校准规范制定/2023中国建筑材料联合会中国科学院空天信息创新研究院、建筑材料工业技术监督研究中心等室内环境监测39JJFZ(建材)006-2021卫生陶瓷包装跌落试验装置校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷40JJFZ(建材)007-2021智能坐便器检测用供水装置校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷41JJFZ(建材)008-2021水泥快速养护箱校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司水泥42JJFZ(建材)009-2021砂浆凝结时间测定仪校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司水泥制品43JJFZ(建材)010-2021低温柔度仪校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司建筑防水44JJFZ(建材)011-2021卫生陶瓷包装抗压、堆码性能试验机校准规范制定/2023中国建筑材料联合会台州市产品质量安全检测研究院、台州方圆质检有限公司建筑卫生陶瓷45JJFZ(建材)012-2021非接触给水器具水击试验机校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷46JJFZ(建材)013-2021便器水效测试系统校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷47JJFZ(建材)014-2021淋浴器水效测试系统校准规范制定/2023中国建筑材料联合会中国建材检验认证集团(陕西)有限公司建筑卫生陶瓷2021年行业计量技术规范申报项目汇总表 行业:机械 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域48JJFZ(机械)001-2021圆度仪谐波标准器校准规范制定/2023中国机械工业联合会上海市轴承技术研究所机械49JJFZ(机械)002-2021氢燃料电池系统及电堆测试台架校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车50JJFZ(机械)003-2021汽车安全气囊点爆装置校准规范制定/2023中国机械工业联合会上海机动车检测认证技术研究中心有限公司汽车51JJFZ(机械)004-2021汽车风窗玻璃除雾试验用蒸汽发生器校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车52JJFZ(机械)005-2021汽车风窗玻璃除霜试验用喷枪校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车53JJFZ(机械)006-2021汽车排放试验环境监测设备(气象站)校准规范制定/2023中国机械工业联合会中汽研汽车检验中心(天津)有限公司汽车54JJFZ(机械)007-2021车辆气压制动响应时间测试仪校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车55JJFZ(机械)008-2021乘用车后端目标物校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车56JJFZ(机械)009-2021车辆悬架运动特性(K&C)试验台校准规范制定/2023中国机械工业联合会襄阳达安汽车检测中心有限公司汽车57JJFZ(机械)010-2021机动车变温密闭蒸发舱校准规范制定/2023中国机械工业联合会上海机动车检测认证技术研究中心有限公司汽车58JJFZ(机械)011-2021机动车辅助驾驶检测设备(动态转向参数)校准规范制定/2023中国机械工业联合会洛阳西苑车辆与动力检验所有限公司汽车59JJFZ(机械)012-2021SPD动作负载测试装置校准规范制定/2023中国机械工业联合会甘肃电器科学研究院电气60JJFZ(机械)013-2021互感器开路电压峰值测试仪校准规范制定/2023中国机械工业联合会甘肃电器科学研究院电气61JJFZ(机械)014-2021钢珠抛射试验装置校准规范制定/2023中国机械工业联合会上海电动工具研究所(集团)有限公司电气62JJFZ(机械)015-2021电缆或光缆在受火条件下火焰蔓延、热释放和产烟特性试验装置校准规范制定/2023中国机械工业联合会上海国缆检测中心有限公司电气63JJFZ(机械)016-2021塑料烟生成--单室法测定烟密度试验装置校准规范制定/2023中国机械工业联合会上海国缆检测中心有限公司电气64JJFZ(机械)017-2021变压器消磁检测仪校准规范制定/2023中国机械工业联合会许昌开瑞自动化仪器设备检测有限公司电气65JJFZ(机械)018-2021隔膜式压力表校准规范制定/2023中国机械工业联合会机械工业洛阳计量测试中心站机械66JJFZ(机械)019-2021冲击试样缺口投影仪校准规范制定/2023中国机械工业联合会上海材料研究所机械67JJFZ(机械)020-2021变压器综合测试仪校准规范制定/2023中国机械工业联合会上海电动工具研究所(集团)有限公司电气2021年行业计量技术规范申报项目汇总表 行业:轻工 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域68JJFZ(轻工)001-2021低温保存箱热学性能校准规范制定/2023中国轻工业联合会中国家用电器研究院家电69JJFZ(轻工)002-2021家用真空吸尘器最大吸入效率检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电70JJFZ(轻工)003-2021家用洗衣机磨损率和漂洗率检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电71JJFZ(轻工)004-2021家用干衣机能效水效检测装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电72JJFZ(轻工)005-2021纸尿裤吸收性能测试仪校准规范制定/2023中国轻工业联合会中轻纸品检验认证有限公司造纸73JJFZ(轻工)006-2021皮革、毛皮测厚仪校准规范制定/2023中国轻工业联合会中国皮革制鞋研究院有限公司皮革机械74JJFZ(轻工)007-2021皮革、毛皮收缩温度仪校准规范制定/2023中国轻工业联合会中国皮革制鞋研究院有限公司皮革机械75JJFZ(轻工)008-2021电器安全防触电检测用试具校准规范制定/2023中国轻工业联合会中国家用电器研究院家电76JJFZ(轻工)009-2021消声室内反射平面装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电77JJFZ(轻工)010-2021加湿器加湿效率测试装置校准规范制定/2023中国轻工业联合会中国家用电器研究院家电78JJFZ(轻工)011-2021蒸汽挂烫机用标准叠布机校准规范制定/2023中国轻工业联合会中国家用电器研究院家电79JJFZ(轻工)012-2021电子锁具耐久性试验机校准规范制定/2023中国轻工业联合会中国家用电器研究院家电2021年行业计量技术规范申报项目汇总表 行业:纺织 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域80JJFZ(纺织)001-2021口罩呼吸阻力测试仪校准规范制定/2023中国纺织工业联合会浙江省计量科学研究院、浙江省轻工业品质量检验研究院(浙江省纺织计量站)、国家纺织计量站其他81JJFZ(纺织)002-2021通气阻力测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验检测院、纺织工业科学技术发展中心等其他82JJFX(纺织)003-2021八篮烘箱校准规范修订JJF(纺织)011-20102023中国纺织工业联合会国家纺织计量站上海分站、纺织工业科学技术发展中心等通用83JJFX(纺织)004-2021毛细管效应仪校准规范修订JJF(纺织)056-20132023中国纺织工业联合会广州纤维产品检测研究院、纺织工业科学技术发展中心等通用84JJFZ(纺织)005-2021棉花短纤维率测试仪校准规范制定/2023中国纺织工业联合会咸阳市纤维检验所、纺织工业科学技术发展中心等纤维85JJFZ(纺织)006-2021织物冲击渗水性测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验研究院、纺织工业科学技术发展中心等织物86JJFX(纺织)007-2021耐洗色牢度试验机校准规范修订JJF(纺织)026-20102023中国纺织工业联合会河北省纤维质量监测中心(河北省纺织纤维计量站)、温州方圆仪器有限公司、南通宏大实验仪器有限公司等色牢度87JJFZ(纺织)008-2021锐利尖端测试仪校准规范制定/2023中国纺织工业联合会福建省纤维检验中心、福建省纤维纺织计量站等其他88JJFZ(纺织)009-2021婴幼儿背带燃烧性能测试仪校准规范制定/2023中国纺织工业联合会浙江省轻工业品质量检验研究院、纺织工业科学技术发展中心等其他2021年行业计量技术规范申报项目汇总表 行业:兵工民品 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域89JJFZ(兵工民品)001-2021烟火药爆发点测试仪校准规范制定/2023中国兵器工业标准化研究所中国兵器工业第二〇四研究所民用爆破90JJFZ(兵工民品)002-2021X射线三维尺寸测量机校准规范制定/2023中国兵器工业标准化研究所中国兵器工业标准化研究所机械制造91JJFZ(兵工民品)003-2021履带式车辆扭力轴疲劳试验机校准规范制定/2023中国兵器工业标准化研究所国营第六一八厂机械制造92JJFZ(兵工民品)004-2021全自动布氏压痕测量系统校准规范制定/2023中国兵器工业标准化研究所国营第六一八厂机械制造93JJFZ(兵工民品)005-2021万能比较测量仪校准规范制定/2023中国兵器工业标准化研究所国营第六一七厂机械制造94JJFZ(兵工民品)006-2021短波长特征X射线衍射仪器校准规范制定/2023中国兵器工业标准化研究所中国兵器工业第五九研究所基础材料95JJFZ(兵工民品)007-2021自动滤料分析仪校准规范制定/2023中国兵器工业标准化研究所山西新华防化装备研究院有限公司防护器材96JJFZ(兵工民品)008-2021方管前置镜校准规范制定/2023中国兵器工业标准化研究所西安应用光学研究所光学97JJFZ(兵工民品)009-2021呼吸器综合检测仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司防护器材98JJFZ(兵工民品)010-2021微库仑法氯含量测定仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司化工材料99JJFZ(兵工民品)011-2021盐含量测定仪校准规范制定/2023中国兵器工业标准化研究所黑龙江华安精益计量技术研究院有限公司化工材料100JJFZ(兵工民品)012-2021数显焊缝规校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造101JJFZ(兵工民品)013-202130°楔形防松螺纹塞规校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造102JJFZ(兵工民品)014-2021激光测平仪校准规范制定/2023中国兵器工业标准化研究所山西北方机械制造有限责任公司机械制造2021年行业计量技术规范申报项目汇总表 行业:电子 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域103JJFZ(电子)001-2021固态微波功率器件直流参数测试仪校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备104JJFZ(电子)002-2021光切断法三维轮廓测量仪校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所/广州赛宝计量检测中心服务有限公司测试仪表及专用测试设备105JJFZ(电子)003-2021汽车电子瞬态传导发射测试系统校准规范制定/2023中国电子技术标准化研究院广电计量检测股份有限公司测试仪表及专用测试设备106JJFZ(电子)004-2021空气线校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司关键零部件、元器件107JJFZ(电子)005-2021光采样模块校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所、广州赛宝计量检测中心服务有限公司关键零部件、元器件108JJFZ(电子)006-2021自动扶梯综合检测仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备109JJFZ(电子)007-2021在片微波测试系统散射参数校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院关键零部件、元器件110JJFZ(电子)008-2021偏振依赖损耗模拟器校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所、广州赛宝计量检测中心服务有限公司测试仪表及专用测试设备111JJFZ(电子)009-2021反射式分辨率测试卡校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院关键零部件、元器件112JJFZ(电子)010-2021音视频同步测试仪校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备113JJFZ(电子)011-2021相控阵超声点焊分析仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备114JJFZ(电子)012-2021直流断路器安秒特性测试仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备115JJFZ(电子)013-2021观片灯校准规范制定/2023中国电子技术标准化研究院工业和信息化部电子第五研究所测试仪表及专用测试设备116JJFZ(电子)014-2021离子风机校准规范制定/2023中国电子技术标准化研究院中国电子技术标准化研究院测试仪表及专用测试设备117JJFZ(电子)015-2021输电线路工频参数测试仪校准规范制定/2023中国电子技术标准化研究院广州广电计量检测股份有限公司测试仪表及专用测试设备2021年行业计量技术规范申报项目汇总表 行业:通信 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域118JJFX(通信)001-2021通信信号分析仪校准规范修订JG(YD)054–20062023通信计量技术委员会中国信息通信研究院信息通信119JJFZ(通信)002-2021无线局域网Wi-Fi数据网络测试仪校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信120JJFZ(通信)003-2021同步以太网漂移分析仪校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信121JJFZ(通信)004-2021雷达回波模拟器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信122JJFZ(通信)005-2021电子校准件校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信123JJFZ(通信)006-2021功率分配器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信124JJFZ(通信)007-2021混频器校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信125JJFZ(通信)008-2021光纤反射镜校准规范制定/2023通信计量技术委员会中国信息通信研究院信息通信
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 采用新型球杆仪校准机床正合医疗设备制造商心意
    无线操作有助于在小型防护罩中使用,方便进行快速检查,而且最大程度上减少运行中断。空间精度测试增加了新的维度。 美国印第安纳州韦恩堡 &mdash 球杆仪分析是一种经证明在测定机床功能方面行之有效的方法,也是评估数控机床轮廓精度最实用、最便捷且最全面的工具。虽然球杆仪在精密加工操作中已经普及应用20多年,但在对小型机床进行快速功能检查以及制定机床的空间精度基准方面,一家总部位于美国中西部的医疗设备制造商展示了最新的无线球杆仪技术如何发挥举足轻重的作用。 作为Avalign Technologies集团的一个分部,Nemcomed是为医疗设备原始制造商提供植入体、 普通外科器械、刃具、专业外科器械、器械盒和托盘的全方位服务供应商。Avalign的战略是为整形设备、脊椎和创伤领域的原始设备供应商提供&ldquo 一站式&rdquo 服务,旨在供应医师开展植入手术所需的全部工具。确保机床和过程能够按照规格生产零件是所有客户和该公司450多名员工以及联邦监管机构的共同目标。&ldquo 显然,我们必须达到FDA和ISO的要求,&rdquo Nemcomed的制造工程师Eric Arnold说,&ldquo 而且,我们还要考虑到客户的特殊要求以及个人兴趣和自尊,因为我们的产品可能最终要植入人体。也许有一天我们自己也会成为患者,因此我们希望尽可能生产出最优质的零件。&rdquo QC20-W无线球杆仪设定 监管环境和客户要求 作为医疗设备制造商,Nemcomed必须同时遵守FDA 21 CFR Part 820《质量体系法规》和《ISO 13485医疗器械标准》。为保证机床质量合格,该公司过去一直采用雷尼绍传统的QC10有线球杆仪。&ldquo 我们测试XY、YZ和XZ平面,而QC10需要针对各个平面进行设置,因此我们的设置时间大约为一个半小时。&rdquo Arnold说。 该公司在2010年采购了雷尼绍的新款QC20-W无线球杆仪后,对零件质量和公司利润产生了立竿见影的积极影响。新款球杆仪保留了采用数控机床圆检验程序的原理和功能强大的软件,因此能够快速诊断和量化机床位置误差,包括伺服不匹配、爬行误差、反向间隙、重复性、比例不匹配和几何精度误差,同时还提供总体圆度误差值。同时它也增加了新功能。&ldquo 无线球杆仪仅需一次设置 &mdash 不超过15分钟,即可测试全部三个平面,&rdquo Arnold说,&ldquo 更重要的是,它不会干扰我们的生产设置,因此当我们恢复生产模式时不需要重新设定机床。我们只要取下球杆仪,插入刀具,就可以重新生产零件,这一切在几分钟内即可完成。&rdquo 无线操作亦是Nemcomed小型机床的理想选择,Arnold补充道。&ldquo 机床制造商了解&lsquo 精益操作&rsquo 对车间空间有多么重要的价值,因此新型机床设计占地面积减小了,&rdquo 他解释道,&ldquo 这样一来,操作有线球杆仪的内部空间也就减小了,因此无线数据传输体现出巨大优势。测试过程中能够完全关闭机床门也提高了安全性。&rdquo 外科手术植入体和器械 Nemcomed制造大约1000种不同的零件 &mdash 有植入手术使用的植入体,也有工具,并且为顶级的整形外科原始设备制造商供应零件。公司生产膝盖、髋关节、肩部、手腕、肘部、手指和脊椎植入体;工具包括手术镊、手术刀以及剪线钳。植入体有一系列型号,每个零件包括五到六个型号,典型批量为30-40件。许多植入体具有复杂特性,比如弯曲组件或球形组件。 Nemcomed零部件 该公司还生产通过内部研发开发出来的专利产品,然后授权客户使用。比如,它的柔性轴 (Flex-Shaft) 和自保持 (Self-Retaining) 技术获得了专利,并在包括脊椎手术和髋关节、肩部及膝盖置换术在内的多种应用中得到运用。柔性轴适用于外科手术螺丝刀、丝锥和钻头。 Nemcomed的专利柔性轴 (Flex-Shaft) 零件一般由不锈钢、钛或钴铬合金制成,一开始以棒材或锻件(植入体)形式出现。原材料通过切割工具进行处理,然后根据复杂程度转到铣床或车削中心。 快速、精准 &ldquo 收到新的球杆仪不久之后,我们有一台机床不符合规格,因此我们对它进行了测试,并且让激光干涉仪操作人员也参与测试,&rdquo Arnold说,&ldquo 球杆仪和激光干涉仪的检测结果完全相同,因此我们完全相信可以通过球杆仪快速准确地测试数控机床。&rdquo 这一快速、精准的测试功能帮助我们赢得了一个注重质量的大客户,他们需要对校准过的机床进行验证。&ldquo 如果对每台机床都进行激光干涉仪测试,零件制造成本将使我们难以承受,&rdquo Arnold解释道,&ldquo 我们向客户展示了球杆仪和激光干涉仪测试的结果,他们认为球杆仪测试符合他们的验证要求。从根本上说,QC20-W只需检测两台机床就可以收回投资回报。&rdquo 空间测试制定新的性能基准 新型球杆仪设计在测试三个正交平面方面具有独特的优势,它只需一个参考点,经过一次设置之后,随附软件即可对三个平面加以综合考虑,对空间位置精度进行典型测量。Arnold解释说,该空间精度基准对Nemcomed来说很重要,因为位置误差可能会因为勾画轮廓过程中的多轴同步运动而增大。(注:空间精度对大型机床和零件来说也很重要,刀具轨迹偏差会因为机床行程长而增大。) QC20-W部分圆弧测试 2010年8月,Nemcomed将韦恩堡工厂的面积扩大了10 000平方英尺,整合了另外一个工厂的生产操作,并为新机床增加了空间: 五台新型Citizen Swiss机床和一台五轴Fanuc Robodrill完善了原有的Mori-Seiki和Mazak五轴铣床、Fadal三轴铣床、Brother和Fanuc线切割机床以及Samsung三轴车床组成的生产线。公司在20台机床上采用球杆仪,包括所有的数控铣床和线电极电火花加工机床。维修工程师监控预防性维护计划的结果,进行为期3个月的跟踪,以便及早检测出误差,提高安排维护和维修的效率。 球杆仪附带一个系统便携箱,有足够的空间存放最常用的附件,方便运输。&ldquo 我们可以带着它到我们在全球的四个制造工厂,快速安装,并完成我们所需的机床精度验证,&rdquo Arnold说,&ldquo 切削工件之前就了解机床的功能,能够确保我们最大程度上降低废品率并减少机床停机。这在提供优质零件和保持高生产力的同时降低了制造成本。这就是&lsquo 精益制造&rsquo 的精髓所在 &mdash 提高客户价值。&rdquo 公司在11月份完成了第二次扩建,面积增加了14 000平方英尺,Arnold说,随着公司不断扩建,球杆仪的使用也会越来越广泛。 有关我们的校准产品系列的更多信息,请访问www.renishaw.com.cn/calibration
  • 我国研制出新型测量装置 实现二维图形高精度圆度校准
    日前,一种高精度的新型光学二维图形圆度测量装置在中国计量科学研究院研制成功并通过专家验收。该装置首次将圆度测量的标准方法与影像探测技术进行结合,实现二维圆图形高精度圆度校准,准确度达到世界先进水平,解决了高精度影像测头坐标测量机的溯源问题。  据介绍,坐标测量机是一种精密、高效的空间几何量测量仪器。小到五金件的尺寸确定,大到整机、整车的几何量测量,都须借助该设备。然而,我国已引进的高精度坐标测量机影像测头的探测误差达0.5微米,但评定用标准器的不确定度应优于0.15微米。为此,高精度标准圆图形的圆度校准迫切需要建立更高精度的圆度测量装置。  为解决这一难题,中国计量科学研究院长度所研究员王为农带领团队经过攻关,将圆度测量的标准方法与影像探测技术相结合,以自主研制的一维影像传感器作为测头,利用成熟的精密转台和数据处理系统,构成了高精度、可溯源“光学二维图形圆度测量装置”,实现了二维圆图形高精度圆度校准。  据了解,从测量原理上,该装置结合了接触法和影像法的优点,解决了零高度二维图形的圆度测量问题。同时,该装置误差来源简单,与传统测量的评价方法一致,量值溯源途径清晰,解决了光学系统数值孔径、光学传感器噪声等对分辨力和测量能力的限制等难题。  业内专家认为,该成果可用于光学影像测量设备标准器的溯源,为集成电路、印刷电路和机械零件等加工制造行业的光学制版设备和光学成像加工设备的准确度验收提供了新的可能。
  • 电镜学堂丨电镜操作之如何巧妙选择加速电压?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。 今天主要谈一谈如何根据样品类型以及所关注的问题选择合适的加速电压? 这里是TESCAN电镜学堂第9期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。这一期将为大家介绍加速电压的选择。 §1. 加速电压的选择 任何电镜都是加速电压越高分辨率越高,但并不意味着任何试样都是电压越大越好。电压的选择是电镜中各个工作条件中最重要的一个。有各种因素需要考虑,而各个因素之间也有矛盾相悖的,这个时候还需要适当进行综合考虑或者采取其它办法。 ① 样品损伤和荷电因素 选择的加速电压不能对试样产生明显的辐照损伤或者荷电,否则观察到的图像不是试样的真实形貌。如果有荷电的产生,需要将电压降至到V2以下,这点在前面电荷效应中已经详细阐述,这里不再重复。 对于金属等导电导热均良好的试样,可以用较高的电压进行观察,如10kV及以上;对于一些导电性不是很好但是比较稳定的试样,可以中等加速电压,如5kV左右;对一些容易损伤的样品,比如高分子材料、生物材料等,可能需要较低的电压,如2kV或以下。 ② 电子产额因素 对于单相材料来说,因为成分没有差别,我们选择电子产额最大的区间V1~V2即可,但是对于混合物相材料来说,我们希望在有形貌衬度的同时还能有较好的成分衬度,这样的图片显得衬度更好,信息量也最大,往往我们也会认为这样的图片最清晰。因此我们需要选择二次电子产额相差较大的区域进行拍摄。 如图5-13,左图是碳和金的二次电子产额,中间图片是金颗粒在1kV下的二次电子图像,右图是200V下的二次电子图像。显然,在200V下碳和金的产额一样,所以此时拍摄的图像仅呈现出形貌上的差别,而碳和金的成分差异无论怎么调节明暗对比度也不会出现。而在1kV下,碳和金的电子产额差异达到最大,所以除了形貌衬度外,还表现出极好的成分衬度。 图5-13 金和碳在电子产额(左)及1kV(中)、200V(右)电压下的SE图像 对于一些金属材料来说,往往较高的加速电压下有相对较大的产额差异,而对于一些低原子序数试样,较低的电压往往电子产额差异更大。 如图5-14,试样为碳银混合材料。左图为5kV SE图像,右图为20kV SE图像。5kV下不但能表现出比20kV更好的成分衬度,还有更好的表明细节。 图5-14 碳银混合材料在5kV(左)、20kV(右)电压下的SE图像 如图5-15,试样为铜包铝导线截面,左图为5kV SE图像,右图为20kV SE图像。20kV下能够更好的将外圈的铜层和内部的铝层做更好的区分。 图5-15 铜包铝导线截面在5kV(左)、20kV(右)电压下的SE图像 对于有些本身差别很小的物相,如果能找到二次电子产额差异最大所对应的电压,也可将其区分。当然有的产额没有参考曲线,需要经过诸多尝试才能找到。比如图5-16,试样为掺杂半导体基底上的本征半导体薄膜,其电子产额差异在1kV达到最大,对应1kV的图像能将两层膜就行区分,而其它电压则没有太好的衬度。 图5-16 半导体薄膜在不同电压下的衬度对比 ③ 衬度的平衡 虽然通过上一点提到的加速电压的选择可以将成分衬度达到最大,但有时该条件并不是观察形貌最佳的电压。此时我们需要考虑究竟是注重形貌还是注重成分衬度,使用二次电子来进行观察,还是用背散射电子进行观察,或者用折中的办法进行观察。这都需要操作者根据电镜照片想说明的问题来进行选择。 要获得好的形貌衬度图像和原子序数图像所需的电压条件一般都不一样,也有另外的办法可以适当解决。对最佳形貌衬度和最佳原子序数衬度单独拍摄照片,后期在电镜软件中通过图像叠加的方式,将不同的照片(位置需要完全一样)按照一定的比例进行混合,形成一张兼有两者衬度的图片。 ④ 有效放大率因素 一般电镜在不同的电压下都有着不一样的极限分辨率,其对应的有效放大率也随之而改变。拍摄特定倍数的电镜照片,特别是高倍照片,需要选择电压对应的有效放大率能够达到需求。否则,视为图像出现了虚放大。虚放大后,图像虽然也在放大,但是并没有出现更多的信息,而且虚放大而会有更多环境因素的影响。 所以如果出现虚放大,可以提高加速电压,以增加有效放大率;如果电压不能改变,可以考虑增加图像的采集像素,来获得类似放大的效果。此时受环境因素或者样品损伤因素更小。 ⑤ 穿透深度因素 前面已经详细的讲述了加速电压和电子散射之间的关系。加速电压越高,能量越大,电子的散射区域就越大。那么产生的二次电子或背散射电子中,从更深处发射的比例则更多。因此较大的加速电压虽然有更好的水平方向的分辨率,但是却忽略了试样很多的表面细节;而低电压虽然水平方向分辨率相对较差,但是却对深度方向有着更好的灵敏度,可以反映出表面更多的形貌细节。 如图5-17,试样为表面修饰的二氧化硅球,5kV电压看不出任何表面细节,而2kV下则能观察到明显的颗粒。再如图5-18,纳米颗粒粉末在不同电压下的表现,因为颗粒团聚严重,所以在5kV电压下无法将团聚颗粒很好的区分,显得粒径更大,而1kV下则能观察到相对更细小的颗粒。 图5-17 SiO2球在5kV(左)、1kV(右)电压下的图像 图5-18 纳米颗粒在5kV(左)、1kV(右)电压下的图像 当加速电压降低到200V左右的超低水平后,电子束的作用区域变得很小,常规的边缘效应或者尖端效应基本可以去除,如图5-19。 图5-19 200V左右的电压可以消除边缘效应 更多详情内容请关注“TESCAN公司”微信公众号
  • 扫描电镜 | 低电压下如何获取高分辨图像
    随着纳米材料在各个工业领域的应用,推动了超高分辨率的扫描电镜的发展,但这些材料导电性不佳,因此,对低电压下仍具有高分辨率的扫描电镜提出迫切需求。 低电压扫描电镜的主要特点之一是能直接对不导电样品进行观察,同时保持高的分辨率。但是其面临的问题是束流电压降低,信号量会显著下降,同时低电压下扫描电镜像差导致分辨率降低。随着扫描电镜技术的蓬勃发展,这些问题目前都得已大大改善。 为了弥补低电压下信噪比低的问题,赛默飞Apreo 2系列电镜配备了YAG材质背散射探测器(T1)(图1)。YAG(Y3Al5O12:Ce3+)是一种具有高发光效率的闪烁体材料,用掺铈的YAG材料制成的背散射探测器,发光效率更高,亮度更高,更耐离子和电子的轰击,因此几乎不存在随使用时间的累积而导致发光效率下降的问题。Apreo 2系列电镜的T1背散射探测器置于镜筒内靠近极靴下部,这样不仅可以获取大量的信号,而且不会有误操作导致的撞毁风险。同时T1接收的是背散射电子,因此,可以大大改善导电性不佳的样品带来的荷电问题。 图1 Apreo 2 扫描电镜的T1探测器位置示意图 为了减小低电压下像差增加的问题,赛默飞Apreo 2系列电镜发展出了样品台减速模式(图2),以减小透镜色差和提高低电压图像分辨率。减速模式中引入的“着陆电压”的概念,即实际到达样品表面的电压,其计算非常简单,入射电压减去减速电压即为着陆电压。例如,电子束初始加速电压5kV,在样品台上加4kV的减速电压,在样品表面的着陆电压为1kV,采用减速模式后入射到样品上的电压是1kV,在样品内的电子束扩展范围和对样品荷电的减缓同初始加速电压为1kV的情形一致,但其电子束的亮度接近加速电压为5kV的状态。因此,采用减速模式,一方面保持了高加速电压下的亮度和足够的信噪比,以及高分辨率,同时又真正实现了样品表面荷电的有效缓解。减速模式下,还有一个优点,使电子束与样品相互作用产生的信号电子在减速电压的作用下加速,这些信号电子在被探测器探测到时能量更高,从而提高了二次电子或者背散射电子收集效率,增加了信噪比。图2 样品台减速模式工作原理示意图 在实际应用中,我们会将样品台减速模式和T1探测器联合使用,以获取高分辨图像。比如,锂电池隔膜是一种PP或者PE材质的高分子薄膜,其导电性极差,常规的电镜无法解决荷电问题,而使用T1探测器不仅可以解决荷电问题,而且搭配减速模式仪器使用还可以获取高信噪比图像(图3)。稀土氧化物Y2O3粉体是制造微波用磁性材料及军事通讯工程用的重要材料,综合导电性较差,高加速电压容易使表面积累荷电,而且会掩盖颗粒表面细节,因此,我们采用低加速电压搭配减速模式进行高分辨成像(图4)。 图3 锂电池隔膜(加速电压:500V,放大倍数:30000,探测器:T1,减速电压:1kV) 图4 Y2O3粉末颗粒(加速电压:500V,放大倍数:100000,探测器:T1)
  • 宁夏计质院“苯气体检测报警器校准装置”通过高级计量标准考核
    近日,宁夏计量质量检验检测研究院(以下简称宁夏计质院)“苯气体检测报警器校准装置”顺利通过高级计量标准考核,取得计量标准考核证书和社会公用计量标准证书。  苯气体检测报警器是广泛应用于石化、油漆仓储等作业场所环境中检测有毒气体的安全防护类计量器具,其通过常见的光离子化(PID)检测原理将苯气体浓度转化为数值实现现场显示、声光报警的功能,从而确保现场作业环境的安全可靠。  目前,宁夏计质院可开展的气体检测报警器检校项目包括一氧化碳气体检测报警器、电化学氧气体检测报警器、可燃气体检测报警器、硫化氢气体检测报警器、挥发性有机物化合物气体检测报警器、呼出气体酒精含量检测仪等15余项,能够基本满足本地企业对于各类气体检测报警器的检定、校准需求,并为全区气体检测报警器计量监管提供技术支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制