当前位置: 仪器信息网 > 行业主题 > >

火焰原子钙检测

仪器信息网火焰原子钙检测专题为您提供2024年最新火焰原子钙检测价格报价、厂家品牌的相关信息, 包括火焰原子钙检测参数、型号等,不管是国产,还是进口品牌的火焰原子钙检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合火焰原子钙检测相关的耗材配件、试剂标物,还有火焰原子钙检测相关的最新资讯、资料,以及火焰原子钙检测相关的解决方案。

火焰原子钙检测相关的方案

  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中钙
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中钙
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 普析:火焰原子吸收光谱法测定饲料中钙
    建立了利用测定饲料中磷的样品溶液,采用火焰原子吸收光谱法测定饲料中钙的分析方法。
  • 火焰原子吸收光谱法测定饲料中钙(四)
    建立了利用测定饲料中磷的样品溶液,采用火焰原子吸收光谱法测定饲料中钙的分析方法。
  • 火焰原子吸收检测水中的铜金属元素含量
    通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。
  • 火焰原子吸收检测水中的Zn金属元素含量
    通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。
  • 火焰原子吸收快速扫描法测定微量全血中铜锌铁镁钙
    摘 要: 全血中微量元素水平能直接反映人体健康营养状况,本文以一种全新的扫描测量方式,采用火焰原子吸收法快速测定全血中铜锌铁镁钙的含量,本方法简易、快速、实用,结果准确,回收率高,仅需40uL血即可获得五种生命元素的满意结果。关键词: 快速扫描 火焰原子吸收 全血随着分析检测技术及医学技术的发展,微量元素与人体健康的关系已日益为人们所重视。血液中微量元素的含量能及时反映人体的 健康水平,其含量的变化更能体现出微量元素在人体中的平衡状态,为疾病临床诊断、治疗提供科学准确的信息[1]。但是血液中微量元素测定,尤其对采集少体积的标本测定方法不尽完善,以往为了增加样品的易消化程度,常采用大体积强酸试剂分解样品,工作强度大,干扰大,易污染,结果不稳定。针对此情况,本文采用东西分析仪器的全血专用稀释剂,取少量血样于小体积中,直接在原子吸收分析仪上进行测定,此法快速、准确、方便、实用,具有较高灵敏度,对日常检测工作,特别是大批量血样分析具有较大的作用。......(未完)下载全文(pdf文档),请点击页面上方链接
  • 微波消解-火焰原子吸收法测定催化剂中的钙含量
    采用微波消解-火焰原子吸收方法可以快速有效的测定催化剂中的钙含量,而且微波消解具有酸用量小,安全环保空白低等优点。
  • 火焰原子吸收检测水中的镉金属元素含量
    通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。
  • 火焰原子吸收检测水中的锌金属元素含量
    通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。
  • 火焰原子吸收检测水中的铜、铅、锌、镉金属元素含量
    通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。
  • 铁矿─钙镁含量的测定─火焰原子吸收光谱法
    镁含量的测定─火焰原子吸收光谱法1范围本推荐方法用火焰原子吸收光谱法测定铁矿中钙镁的含量本方法适用于天然铁矿铁精矿烧结矿和球团矿中0.03%(m/m)1.50%(m/m)的钙0.005%(m/m)1.20%(m/m)的镁含量的测定2原理试样用盐酸.硝酸分解融钙422.7nm镁285.2nm处以空气.乙炔火焰进行钙和镁的测定蒸干以碳酸钠熔酸不溶残渣经氢氟酸处理之后与主液合并波长于原子吸收光谱仪以氯化锶为释放剂在一定酸度下3试剂3.1 碳酸钠无水3.2 盐酸r 1.19g/mL3.3 盐酸135953.4 硫酸113.5 氢氟酸r 1.15g/mL3.6 氯化锶(SrCl2×6H2O)溶液100g/L称取50g优级纯氯化锶(SrCl2×6H2匀混O)以适量水溶解后以水稀释至500mL如所用氯化锶非优级纯可按下法进行提纯取约150g氯化锶(SrCl2×6H2O)(分析纯或化学纯)于500mL烧杯中以尽可能少的约60水在搅拌下使其全溶以中速滤纸过滤于600mL烧杯中稍做洗涤在室温下放置至有少量结晶析出然后一边加乙醇约100mL出现以较大耐酸漏斗进行减压过滤并以乙醇充分洗涤45次然后移到适宜器皿中于洁净环境下晾干贮存于瓶中备用此时有大量氯化锶晶体一边搅拌3.7 钠溶液100gNa2CO3/L称取50g无水碳酸钠于600mL烧杯中加水约250mL溶解在搅拌下缓缓加入盐酸(11)(约需155mL)直至pH值达约4(pH试纸检查)微沸23min除去二氧化碳冷却以水稀释至500mL混匀也可进行适当稀释在应用时3.8 铁溶液10g/L称取10g高纯铁于300mL烧杯中加50mL盐酸温热溶解后小心滴加硝酸至氧化作用停止在80左右蒸至稠浆状沿杯壁加入40mL盐酸(13)使之全溶冷却移入1000mL容量瓶中以水稀释至刻度混匀在应用中也可进行适当稀释但须补足相应盐酸(13)的量3.9 钙标准溶液3.9.1 钙贮备液0.70mg/mL称取0.4370g预先在105烘干1h并已于干燥器中冷却的碳酸钙(高纯试剂)于300mL烧杯中完全后微沸片刻冷至室温移入250mL容量瓶中以水稀释刻度混匀此溶液1mL含0.70mg钙加水约100mL缓缓溶解小心滴加10mL盐酸复以表皿3.9.2 钙标准溶液70gmg/mL分取50.00mL钙贮备液(0.70mg/mL)于500mL容量瓶中以水稀释至刻度混匀此溶液1mL含70gmg钙3.10 镁标准溶液3.10.1 镁贮备液0.60mg/mL称取0.2487g预先在800灼烧过并已于干燥器中冷却的氧化镁(高纯试剂)于300mL烧杯中复以表皿加10mL盐酸(13)溶解移入250mL容量瓶中以水稀释至刻度混匀(也可用0.1500g高纯金属镁代替氧化镁但溶解时须缓慢进行)此溶液1mL含0.60mg镁3.10.2 镁标准溶液6mg/mL以水稀释至刻度混分取5.00mL镁贮备液(0.60mg/mL)于500mL容量瓶中匀此溶液1mL含6mg镁4仪器原子吸收光谱仪
  • 北京瀚时:铁矿─钙含量的测定─火焰原子吸收光谱法
    镁含量的测定─火焰原子吸收光谱法1范围本推荐方法用火焰原子吸收光谱法测定铁矿中钙镁的含量本方法适用于天然铁矿铁精矿烧结矿和球团矿中0.03%(m/m)1.50%(m/m)的钙0.005%(m/m)1.20%(m/m)的镁含量的测定2原理试样用盐酸.硝酸分解融钙422.7nm镁285.2nm处以空气.乙炔火焰进行钙和镁的测定蒸干以碳酸钠熔酸不溶残渣经氢氟酸处理之后与主液合并波长于原子吸收光谱仪以氯化锶为释放剂在一定酸度下3试剂3.1 碳酸钠无水3.2 盐酸r 1.19g/mL3.3 盐酸135953.4 硫酸113.5 氢氟酸r 1.15g/mL3.6 氯化锶(SrCl2×6H2O)溶液100g/L称取50g优级纯氯化锶(SrCl2×6H2匀混O)以适量水溶解后以水稀释至500mL如所用氯化锶非优级纯可按下法进行提纯取约150g氯化锶(SrCl2×6H2O)(分析纯或化学纯)于500mL烧杯中以尽可能少的约60水在搅拌下使其全溶以中速滤纸过滤于600mL烧杯中稍做洗涤在室温下放置至有少量结晶析出然后一边加乙醇约100mL出现以较大耐酸漏斗进行减压过滤并以乙醇充分洗涤45次然后移到适宜器皿中于洁净环境下晾干贮存于瓶中备用此时有大量氯化锶晶体一边搅拌3.7 钠溶液100gNa2CO3/L称取50g无水碳酸钠于600mL烧杯中加水约250mL溶解在搅拌下缓缓加入盐酸(11)(约需155mL)直至pH值达约4(pH试纸检查)微沸23min除去二氧化碳冷却以水稀释至500mL混匀也可进行适当稀释在应用时3.8 铁溶液10g/L称取10g高纯铁于300mL烧杯中加50mL盐酸温热溶解后小心滴加硝酸至氧化作用停止在80左右蒸至稠浆状沿杯壁加入40mL盐酸(13)使之全溶冷却移入1000mL容量瓶中以水稀释至刻度混匀在应用中也可进行适当稀释但须补足相应盐酸(13)的量3.9 钙标准溶液3.9.1 钙贮备液0.70mg/mL称取0.4370g预先在105烘干1h并已于干燥器中冷却的碳酸钙(高纯试剂)于300mL烧杯中完全后微沸片刻冷至室温移入250mL容量瓶中以水稀释刻度混匀此溶液1mL含0.70mg钙加水约100mL缓缓溶解小心滴加10mL盐酸复以表皿3.9.2 钙标准溶液70gmg/mL分取50.00mL钙贮备液(0.70mg/mL)于500mL容量瓶中以水稀释至刻度混匀此溶液1mL含70gmg钙3.10 镁标准溶液3.10.1 镁贮备液0.60mg/mL称取0.2487g预先在800灼烧过并已于干燥器中冷却的氧化镁(高纯试剂)于300mL烧杯中复以表皿加10mL盐酸(13)溶解移入250mL容量瓶中以水稀释至刻度混匀(也可用0.1500g高纯金属镁代替氧化镁但溶解时须缓慢进行)此溶液1mL含0.60mg镁3.10.2 镁标准溶液6mg/mL以水稀释至刻度混分取5.00mL镁贮备液(0.60mg/mL)于500mL容量瓶中匀此溶液1mL含6mg镁4仪器原子吸收光谱仪
  • 火焰原子吸收法测定燃料乙醇生产工艺中的钾钠钙镁
    K+、Na+、Ca2+、Mg2+的浓度不同,对酶制剂、酿酒酵母的作用效应也不同,即可起到水解及增殖的激活作用,也可具有强烈的抑制作用。常规火焰原子吸收法测定这四种金属离子,存在电离干扰及共存离子的抑制,影响结果的准确性。本文通过在待测试中,加入消电离剂和释放剂配成的混合溶液的方式;经检测验证,取得了理想的实验效果。且方法简单快捷,可为燃料乙醇生产的发酵工艺及时出具科学数据。
  • 火焰原子吸收光谱法测定水中重金属
    采用火焰原子吸收法测试水样中的钾钠钙镁铁锰具有检出限低,灵敏度高,光谱干扰少,分析速度快,应用范围广的特点,在水质金属元素监测中广泛使用。采集好的水样经酸化调整pH值为2.0,用0.45μm滤膜过滤,测定水样中可溶态金属含量。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Zn
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Mn
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中锌
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中镁
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中锌
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 微波消解-火焰原子吸收测铅精矿中的铜
    铅精矿是指铅含量在40%-70%的原矿,是生产金属铅、铅合金、铅化合物等的主要原料。铅精矿化学成分应符合规定,按化学成分分为7个品级,以干矿品位计算,其中第一二三级要求杂质铜含量不大于1.5%。我们参考《GB/T8152.7-2006 铅精矿化学分析方法 铜量的测定 火焰原子吸收光谱法》,采用微波消解法对铅精矿样品样品进行前处理,采用火焰炉原子吸收分光光度计检测其中的铜含量。
  • 解决方案|火焰原子吸收法测定焊锡中的Cu、Fe、Ni、Ag金属元素
    焊锡中元素的检测常用方法是ICP-AES法、原子吸收光谱法也有报道。本文对火焰原子吸收光谱法测定焊锡的工作条件及样品前处理方法进行了摸索与优化,该方法能够满足焊锡测定的要求。
  • 欧罗拉生物:火焰原子吸收光谱法测定水中重金属
    采用火焰原子吸收法测试水样中的钾钠钙镁铁锰具有检出限低,灵敏度高,光谱干扰少,分析速度快,应用范围广的特点,在水质金属元素监测中广泛使用。采集好的水样经酸化调整pH值为2.0,用0.45μm滤膜过滤,测定水样中可溶态金属含量。
  • 岛津AA6300火焰原子吸收法测定水样中铁的含量
    原子吸收分光光度法的优点1、灵敏度高,检出限低:火焰原子吸收光谱法检出限可达10-6g· L-1,无火焰原子吸收检出限可达10-9g· L-1。 2、准确度高:火焰原子吸收光谱法的相对误差小于1%,无火焰原子吸收光谱法为3%~5%。 3、选择性好,干扰小:由于分析方法不同元素时选用不同的元素灯作辐射源,吸收对该元素来说是特征性的。 4、应用范围广:可测定的元素达70多种,几乎包括所有金属元素和一些类金属元素(如,As、Se、Sb等)。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Fe
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Mg
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Cu
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中铁
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中钾
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制