当前位置: 仪器信息网 > 行业主题 > >

氮气分析仪原理

仪器信息网氮气分析仪原理专题为您提供2024年最新氮气分析仪原理价格报价、厂家品牌的相关信息, 包括氮气分析仪原理参数、型号等,不管是国产,还是进口品牌的氮气分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮气分析仪原理相关的耗材配件、试剂标物,还有氮气分析仪原理相关的最新资讯、资料,以及氮气分析仪原理相关的解决方案。

氮气分析仪原理相关的资讯

  • 膜分离或变压吸附?氮气发生器的原理对比
    克里斯.哈维,总经理-毕克气体仪器贸易(上海)有限公司众所周知,毕克科技拥有当前市场上最广泛的氮气发生器种类,同时,我们不断地研发出新的产品满足日新月异的氮气的需求,来给新的应用设备供气。我们不仅仅有市面上种类最多的氮气发生器来满足液质联用仪的用气需求,同时,我们给气相色谱仪,总有机碳分析仪,傅里叶红外光谱仪,样品蒸发仪,通风橱,手套式操作箱,电感耦合等离子体光谱仪,核磁共振仪,蒸发光散射检测仪等实验室设备供气的气体发生器种类也很全面和广泛-实际上,你实验室里几乎是所有需要用气的设备,都可以让我们的气体发生器来供气。为什么我们的气体发生器能够覆盖您的实验室里大部分应用设备?因为,我们二十年如一日,专注于实验室里气体发生器的研发和生产,专心于给您提供稳定可靠的实验室气源。另外一个广为人知的事实就是:我们所采用的气体分离技术成熟可靠。在我们的氮气发生器上,我们用膜分离技术和变压吸附技术来生产氮气,如果我们的顾客对某一种技术青睐有加,我们可以根据客户的喜好来推荐合适的型号。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。膜分离技术让压缩空气通过中空纤维膜,当空气通过膜的时候,空气中的氧气,二氧化碳,一氧化碳和水蒸汽 会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大尺寸的氮气分子和惰性气体氩气都收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。分离提取出来的氮气最高纯度能达到99.5%,不含任何杂质。变压吸附技术是通过固体介质来分离气体混合物中的单一组分,用变压吸附技术来分离空气中的氮气,所需的固体介质是碳分子筛,碳分子筛对空气中的氧气选择性吸附,从而在加压的情况下分离了空气中的氮气和氧气。 碳分子筛其实就是多孔疏松的棒状碳颗粒,当对填充满了碳分子筛颗粒的氮气纯化密封柱中充入压缩空气(主要成分是氮气,氧气和惰性气体氩气和少量水汽)时,碳分子筛会吸附水汽,氧气,但是,氮气不会被吸附。这主要是因为氮气和氧气的分子尺寸不一样,碳分子筛颗粒上的小孔能让分子尺寸小的氧气进入,却不能让氮气进入,因为氮气的分子尺寸大于氧气;从而,氮气和氧气被分离开了。变压吸附这一过程包含两个步骤和阶段:1.吸附阶段,压缩空气中氧气,水汽,二氧化碳被碳分子筛柱子吸附,氮气被收集起和储藏起来。2.重生阶段,将碳分子筛柱的压力释放到大气中去,吸附了氧气,二氧化碳,水汽的碳分子筛颗粒释放掉吸附的氧气,二氧化碳和水汽,从而为下一次吸附做好准备。变压吸附这一个过程需要维持一个稳定的温度,这个温度通常情况下和实验室的环境温度接近(20-25℃)。变压吸附技术生产出来的氮气,纯度最高能达到99.999%,纯度越高,生产过程中需要消耗的空气就越多。变压吸附技术和膜分离技术来生产氮气,各有利弊。具体使用哪种方法来生产氮气要取决于应用和流速要求。在市面上,某些人说氮气膜和碳分子筛是消耗品,需要定期更换,这是不对的。如果用户的除油和除水过滤器效果不佳,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。液质联用仪应用对于液质联用仪而言,氮气纯度高于95%就可以大多数的质谱仪的用气要求了,即使一些非常高端和灵敏的质谱仪也没有问题。关键是气体里面不能含有任何粉尘,水汽和碳氢化合物及油滴,所以,高性能的过滤系统尤为重要,过滤系统的除尘规格要小于0.01微米,同时,油滴和水汽也必须除掉。由于过滤系统一旦饱和,它们的过滤吸附效果也会大打折扣,所以,每年对过滤器进行维护也十分有必要。对于液质联用仪而言,分别利用膜分离技术和变压吸附技术来生产氮气的产品我们都有,但是,对于一些小型和中型的实验室而言,选用膜分离的氮气发生器有一些非常明显的优势维护和服务膜分离技术涉及到很少的移动部件,通常情况下,一台氮气发生器里面的氮气膜重3公斤(而变压吸附模块的重量能达到100公斤),这就让维护变得十分简单。目前,毕克中国的服务团队能保证在48小时内97%的首次修复率。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。氮气膜的工作无需很多电子部件的管理和控制,那么,我们可以将更多的电子部件用于监控核心技术参数,同时,让我们的工程师在维修时可以更快找到症结。尺寸和重量由于氮气膜尺寸小,重量轻,这也就意味着我们能设计出更轻盈小巧,结构更紧凑的气体发生器,同时,让发生器能放在标准实验台下,发生器机底脚轮设计,方便移动。这些气体发生器对于那些空间很有限的实验室而言,无疑是完美的选择。噪音水平膜分离技术不产生任何噪音,变压吸附技术在碳分子筛柱泄压放气的时候,会有很大的放气的声音产生,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作。无需将发生器放在另外一个房间,从而增加了管道延长所产生的额外费用。变压吸附技术对于大型实验室而言,优势十分明显,在我们的iFlow产品里,我们应用变压吸附技术,它能:生产出更高流速的氮气在一些拥有20-30台质谱仪的大型实验室里,我们已经安装了一些利用变压吸附技术来生产氮气的发生器。一台氮气发生器就足够给整个实验室来供气了。将成本降至最低由于一台氮气发生器的氮气流速就足够给实验室里所有的应用设备来供气,这种集中供气方案无疑比单台小流量气体发生器给单台应用设备来供气的性价比要高很多。气相色谱仪应用利用变压吸附技术所生产出来的氮气,非常适合给气相色谱仪来供应载气。给气相色谱仪做载气,不仅要求氮气的纯度特别高,还要求氮气中的碳氢化合物含量特别低。利用碳分子筛变压吸附技术来生产氮气是唯一的选择,在空气进入到碳分子筛之前,空气经过过滤,然后再经过催化裂解炉将所有的微量碳氢化合物催化氧化除掉。所生产出来的氮气纯度特别高,能给所有的气相色谱仪做载气,包括电子捕捉检测器所需要用到的载气。这不是变压吸附技术应用的典型案例,我们所采用的碳分子筛变压吸附技术,能将移动部件的数量降到最低,同时,变压吸附柱在工作时没有噪音,在发生器出现故障时,维修也很方便。毕克在全世界各地售出的气体发生器超过5万台,有4000台在实验室。我们所有的气体发生器都经过知名质谱仪和气相色谱仪生产商的检验和认证,同时,OEM供应商可以销售我们的气体发生器。基于我们对气体发生器的专注和丰富的经验,我们开发出来了很多优秀的产品,诸如NM32LA,NM3G, AB3G,Precision 系列氢气发生器,零级空气和氮气发生器,以及IFlow系列产品。若您想了解与您的应用相匹配的气体发生器和实验室集中供气,欢迎联系我们。
  • 全新出击|红外CO/CO2分析仪支持氮气校零和催化校零
    红外CO/CO2分析仪是一种专门用于分析气体中一氧化碳(CO)和二氧化碳(CO2)含量的仪器。这种仪器利用红外光谱技术来测量气体中的CO和CO2浓度。 红外CO/CO2分析仪的主要作用是检测环境空气、工业废气、燃烧气体等中的CO和CO2含量。通过使用这种仪器,我们可以快速、准确地了解气体中的CO和CO2浓度,进而评估其对环境和人类健康的影响。 产品链接https://www.instrument.com.cn/netshow/SH104275/C520219.htm红外CO/CO2分析仪通常采用非分散红外光谱技术,能够测量气体中的多种组分,如CO、CO2、水蒸气、氮气等。这种仪器具有高精度、高灵敏度、快速响应等优点,可以准确地测量气体中的微量组分。 此外,红外CO/CO2分析仪还可以用于研究环境科学、大气化学、工业过程控制等领域。通过使用这种仪器,我们可以了解大气中CO和CO2的来源、分布、转化等过程,为环境保护和气候变化研究提供重要的技术支持。 总之,红外CO/CO2分析仪是一种非常重要的分析仪器,它可以帮助我们更好地了解气体中的CO和CO2含量及其对环境和人类健康的影响,为环境保护、工业生产和科学研究提供重要的技术支持。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 热机械分析仪原理简介
    p   热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。 /p p   热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title=" 热机械分析仪结构示意图.jpg" width=" 400" height=" 339" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 339px " / /p p style=" text-align: center " strong 热机械分析仪结构示意图 /strong /p p style=" text-align: center " 1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样 /p p   TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title=" TMA常用测量模式示意图.jpg" width=" 400" height=" 134" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 134px " / /p p style=" text-align: center " strong TMA常用测量模式示意图 /strong /p p strong 压缩或膨胀 /strong /p p   两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。 /p p strong 针入模式 /strong /p p   这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。 /p p strong 三点弯曲 /strong /p p   这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。 /p p strong 拉伸模式 /strong /p p   适合薄膜或纤维。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 典型的TMA测量曲线 /span /strong /p p strong 热膨胀系数测量曲线 /strong /p p   热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。 /p p   大多数材料在加热时膨胀。线膨胀系数α定义如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title=" TMA-1.jpg" / /p p 式中,dL为由温度变化dT引起的长度变化 L sub 0 /sub 为温度T sub 0 /sub (通常为室温25℃)时的原始长度 α单位为10 sup -6 /sup K sup -1 /sup 。 /p p strong 玻璃化转变的TMA测量曲线 /strong /p p   测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。 /p p strong 测量杨氏模量的DLTMA曲线 /strong /p p   如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。 /p p   从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。 /p
  • 从原理到应用,6大类元素分析仪大比拼
    p   元素定义:是 strong span style=" color: rgb(0, 0, 0) " 具有相同质子数(核电荷数)的同一类原子的总称 /span /strong ,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种. /p p   元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。 /p p   明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。 /p p style=" text-align: center " strong span style=" text-align: center color: rgb(0, 112, 192) " 主要元素分析仪器 /span /strong /p p    strong span style=" color: rgb(0, 0, 0) " 1.紫外\可见光分光光度计(UV) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   2.原子吸收分光光度计(AAS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   3.原子荧光分光光度计(AFS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   4.原子发射分光光度计(AES) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   5.质谱(MS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   6.X射线分光光度计(XRF ) /span /strong /p p   常见分析仪器的归属类型: /p p   ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /p p   ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /p p   FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 各种元素分析仪器分析过程、特点及应用 /span /strong /p p    strong span style=" color: rgb(192, 0, 0) " 紫外\可见光分光光度计(UV) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong 2.原理: /strong /p p   利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。 /p p    strong 3.主要特点 /strong strong : /strong /p p   (1)灵敏度高 /p p   (2)选择性好 /p p   (3)准确度高 /p p   (4)适用浓度范围广 /p p   (5)分析成本低、操作简便、快速、应用广泛 /p p    strong span style=" color: rgb(192, 0, 0) " 原子吸收和荧光分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong 2.原子吸收光谱法原理: /strong /p p   原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。 /p p   公式:A=KC /p p   式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。 /p p   原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。 /p p    strong 3.原子吸收主要特点: /strong /p p   (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /p p   (2)原子吸收谱线简单,选择性好,干扰少。 /p p   (3)操作简单、快速,自动进样每小时可测定数百个样品 /p p   (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10% /p p   (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。 /p p    strong 4.原子荧光主要特点: /strong /p p   (1)有较低的检出限,灵敏度高。 /p p   (2)干扰较少,谱线比较简单。 /p p   (3)仪器结构简单,价格便宜。 /p p   (4)分析校准曲线线性范围宽,可达3~5个数量级。 /p p   (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。 /p p    strong span style=" color: rgb(192, 0, 0) " 原子发射分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em " strong 2.原理 /strong /p p   原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。 /p p   发射的光波长为: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title=" 0.png" alt=" 0.png" / /p p   每个元素有自己独特的特征光谱,从而进行元素定性分析。 /p p    strong 3.主要特点 /strong /p p   (1)高温,104K /p p   (2)环状通道,具有较高的稳定性 /p p   (3)惰性气氛,电极放电较稳定 /p p   (4)具有好的检出限,一些元素可达到10-3~10-5ppm /p p   (5)ICP稳定性好,精密度高,相对标准偏差约1% /p p   (6)基体效应小 /p p   (7)光谱背景小 /p p   (8)自吸效应小 /p p   (9)线性范围宽。 /p p    span style=" color: rgb(192, 0, 0) " strong 质谱分析法 /strong /span /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p    strong 2.原理 /strong /p p   使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。 /p p    strong 3.主要特点: /strong /p p   (1)质量测定范围广泛 /p p   (2)分辨高 /p p   (3)绝对灵敏度,可检测的最小样品量。 /p p    strong span style=" color: rgb(192, 0, 0) " X荧光光度计(XRF) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p    strong 2.原理: /strong /p p   受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 /p p    strong 3.主要特点: /strong /p p   (1)快速,测试一个样品只需2min-3min /p p   (2)无损,测试过程中无需损坏样品,直接测试 /p p   (3)含量范围广 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 几种元素分析仪器对比 /span /strong /p p    strong 1.工作范围 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p    strong 2.无机分析产品的检出限 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p    strong 3.干扰 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p    strong 4.费用 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title=" 9.jpg" alt=" 9.jpg" /    /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/818.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 医用原子吸收光谱仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/646.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 金属多元素分析仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/476.html" target=" _self" style=" text-decoration: underline color: rgb(192, 0, 0) " span style=" color: rgb(192, 0, 0) " 有机元素分析仪会场 /span /a /p
  • 热重分析仪操作规程
    热重分析仪是一种广泛应用于材料科学、化学、生物学等领域的仪器,它通过测量物质的质量变化与温度的关系,帮助研究者了解样品的热性质和反应动力学。本文将介绍如何使用热重分析仪。在操作热重分析仪之前,需要先了解其基本原理。热重分析仪主要基于热力学原理,通过测量样品质量随温度变化的关系,推导出样品的热性质和反应动力学参数。热重分析仪主要由加热系统、称重系统、控制系统和数据处理系统组成。上海和晟 HS-TGA-101 热重分析仪使用热重分析仪需要按照以下步骤操作:开机:先打开电脑,再打开热重分析仪,等待仪器自检完毕。设置温度:根据实验需要设定升温速率、起始温度和终止温度等参数。放置样品:将待测样品放置在样品盘上,确保样品均匀分布在样品盘上。开始实验:点击开始按钮,仪器开始升温并记录样品质量随温度变化的关系。数据处理:将实验数据导入计算机,通过软件进行数据处理和分析。使用热重分析仪时需要注意以下事项:保护气体的纯度:实验过程中需要使用高纯度的氮气等保护气体,以避免样品被氧化。实验前的预处理:对待测样品需要进行预处理,如干燥、脱气等,以去除样品中的水分和气体,确保实验结果的准确性。仪器的维护:定期对热重分析仪进行维护和保养,以保证其正常运行。通过对热重分析仪测量的结果进行分析,可以判断设备的正常运行。例如,如果样品的质量随温度变化关系呈现规律性变化,说明仪器正常运行。如果变化关系异常,则需要检查仪器是否出现故障。总之,热重分析仪是一种重要的实验仪器,通过正确操作和使用可以有效地帮助研究者了解样品的热性质和反应动力学参数。在使用过程中需要注意保护气体的纯度、实验前的预处理以及仪器的维护等方面,以确保实验结果的准确性和设备的正常运行。
  • 药品包装顶空气体分析仪的概述
    药品包装顶空气体分析仪在现代制药工业中,药品包装的密封性与内部环境控制是保障药品质量与延长其有效期的重要环节。尤其是对于需要特殊存储条件的粉针剂、生物制剂等药品而言,西林瓶作为其主要包装容器,其内部的氧气含量直接关联到药品的稳定性和有效性。为此,济南三泉中石DKY-03S的药品包装顶空气体分析仪应运而生,成为制药企业、质检机构等不可或缺的实验室设备,特别是在精准测量西林瓶中残氧含量方面展现出卓越性能。西林瓶西林瓶以其良好的密封性和化学稳定性,成为众多敏感药品的首选包装。为了进一步延长药品的保质期,防止氧化反应的发生,制药企业通常会在西林瓶内充入氮气,以排除或减少瓶中的氧气含量。这一过程虽然有效,但确保氮气填充后瓶内残氧含量达到标准,仍需依靠精密的检测手段,这便是药品包装顶空气体分析仪优势之处。济南三泉中石DKY-03S药品包装顶空气体分析仪的工作原理药品包装顶空气体分析仪的工作原理是当需要对西林瓶中的残氧含量进行检测时,仪器首先通过精密的取气泵,将西林瓶内的气体样本安全、无损地抽取至仪器内部的传感器中。这些高精度传感器能够迅速且准确地捕捉到气体中的氧气(O2)以及其他可选测组分如二氧化碳(CO2)的浓度信息。随后,仪器内置的微处理器会迅速处理传感器输出的信号,通过复杂的算法计算出气体样本中O2和(如选配)CO2的具体比例。一旦达到预设的试验结束条件,仪器将自动停止测试,并准确记录并显示试样内被测气体的O2含量数据。这一过程不仅高效快捷,而且结果精确可靠,为药品质量的评估提供了坚实的数据支持。广泛应用:从制药到质检的全面覆盖济南三泉中石DKY-03S药品包装顶空气体分析仪的应用远不止于西林瓶,它同样适用于安瓿瓶、铝箔袋、真空袋等多种包装形式的药品及食品。在制药企业中,该仪器是控制药品包装质量、优化生产工艺、确保产品合规性的重要工具;在质检机构,它则是评估药品保质期、验证包装密封性的关键设备。药品包装顶空气体分析仪以其高精度的测量能力、广泛的应用范围,在保障药品质量和延长有效期方面发挥着不可替代的作用。
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 普洛帝药典0903不溶性微粒分析仪光阻法检测原理解读
    不溶性微粒分析仪阻法检测原理药典规定检测原理—光阻法满足《美国药典》、《中国药典》、《药包材标准》及输液器具 GB8368-2018 等要求。待测液体流过流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直 穿过流通池,照射在光陷阱上。若待测液体中没有微粒,则光电探测器接收不到光信号;若液体中有微粒,与液体流向垂直的入射光,由于被微粒阻挡而减弱,因此由传感器输出的信号降低,这种信号变化与微粒的截面积成正比。根据信号的幅度和个数可以对液体中的微小微粒进行计数检测。图.光阻法检测原理示意图PULUODY 的创新型双激光窄光微粒检测技术不仅对微粒的探测范围宽广更具有精度高、重复性好的特点,让任何微粒无处遁形。
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 国瑞力恒发布GR2015红外CO/CO2分析仪新品
    1. 产品概述 GR2015型环境空气红外气体分析仪(以下简称分析仪)是我公司针对公共场所、工作场所的空气中的有毒有害物质进行检查的高精度仪器,仪器采用非分散红外原理测量空气中的一氧化碳、二氧化碳浓等的浓度,具有测量精度高,使用寿命长,交叉干扰小等优点,是环境监测领域,职业卫生监测领域的必备仪器。2. 适用范围本仪器被广泛应用于环保、环监、卫生监督、职业卫生、疾病控制和科研院所。3. 采用标准JJG635-2011《一氧化碳、二氧化碳红外气体分析器》HJ965-2018《环境空气 一氧化碳的自动测定 非分散红外法》GB/T18204.2-2014《公共场所卫生检验方法第2部分:化学污染物》GBZ/T 300.37-2017《工作场所空气有毒物质测定 第37部分:一氧化碳和二氧化碳》GB 9801-1988 《空气质量一氧化碳的测定非分散红外法》4. 技术特点1) 采用彩色触摸屏,测量数据具有数字显示和仪表盘显示两种模式,界面美观,操作简单;2) 采用高精度红外传感器,测量精度高、响应速度快、预热时间短;3) 支持氮气校零和催化校零两种方式;4) 仪器内部具有小时均值,8小时均值,日均值显示,存储功能;5) 具有机内恒温加热功能,适合户外低温环境下运行;6) 具有微机通讯功能,测量可实时传输到电脑;7) 内置调零过滤器,可在不用外接零气的条件下进行传感器调零,使用方便;8) 内置通路切换电磁阀,调零、测量自动切换;9) 可同时测量CO和CO2,测量传感器量程可选择 10) 独创的温湿度补偿修正算法,消除温湿度变化对测量数据的影响 11) 海量数据存储,可存储5000组测量数据 12) 采用进口采样泵,负责能力强,使用寿命长; 13) 内置高能锂电池,一次充电工作4小时以上; 14) 具有温湿度测量功能 15) 具有灵活的数据计算保存方式,满足各种数据前处理需求;16) 具有声、光警告功能,报警限值可设定;17) 具有PPM、mg/m3单位主动切换功能;18) 选配备蓝牙无线打印功能。 5. 技术指标表1技术指标主要参数参数范围分辨率准确度CO浓度测量值0~50 PPM0~200 PPM0.1 PPM优于±2%FSCO2(可选)0~5000PPM 0~50000PPM1PPM优于±2%FS重复性1.0 %FS零点漂移<1%FS/h量程漂移<1%FS/h响应时间CO≤95%,无冷凝数据存储能力5000组电池工作时间大于4小时仪器噪声整机重量 GR-2015型环境空气红外气体分析仪采用非分散红外原理测量空气中的一氧化碳、二氧化碳浓等的浓度,具有测量精度高,使用寿命长,交叉干扰小等优点,可同时测量CO和CO2,测量传感器量程可选择 具有微机通讯功能,测量可实时传输到电脑;支持氮气校零和催化校零两种方式;5) 具有机内恒温加热功能,适合户外低温环境下运行 GR2015红外CO/CO2分析仪
  • 微孔分析是用氮气还是氩气
    氩气是惰性气体,并且是球形单原子分子。氮气是非球形双原子分子,并且四极距可能导致局部吸附,特别是具极性的吸附剂。除了氮气会在极性点上发生吸附,氩气和氮气在分子大小和吸附热上很接近。标准压力下氩气的沸点是87.29K,氮气的沸点是77.35K。 对于微孔分析,使用液氩温度下氩气吸附要好于液氮温度下氮气吸附或氩气吸附。氩气作为惰性气体与固体表面特定作用少,且液氩温度高于液氮温度,可缩短平衡时间。除此之外,填充微孔的氩气压力高于氮气压力,更容易测量精确。
  • 泉科瑞达2024新款顶空气体分析仪——带有氧化锆传感器
    在现代工业与生活中,包装顶空气体分析仪以其高精度和多功能性,在食品、药品、电子产品等多个领域发挥着重要作用。其中,氧化锆传感器作为其核心部件,更是以其卓越的性能,确保了检测的准确性和可靠性。本文将深入探讨包装顶空气体分析仪中氧化锆传感器的应用,以及它如何精准检测各类产品。一、氧化锆传感器的技术原理与优势技术原理氧化锆传感器主要由氧化锆(ZrO2)和护套组成,分为加热式和非加热式两种。加热式氧化锆传感器通过内置的加热元件,使锆管内的温度保持在约700°C,从而确保传感器的稳定工作。在这种高温下,氧化锆成为氧离子导体,通过测量氧分压差产生的电动势,可以精确计算出被测气体中的氧含量。优势特点高灵敏度:氧化锆传感器对氧气的检测极为敏感,能够在极低的浓度下准确测量。快速响应:传感器反应迅速,能够在短时间内完成检测,提高生产效率。稳定性好:长期使用下,氧化锆传感器的性能稳定,测量结果可靠。寿命长:由于结构坚固,抗氧化腐蚀能力强,氧化锆传感器的使用寿命较长。二、氧化锆传感器在食品包装中的应用即食食品包装即食食品如方便面、即食米饭等,其包装内部的氧气含量直接影响产品的保质期和口感。使用包装顶空气体分析仪配合氧化锆传感器,可以快速准确地检测包装内的氧气含量,确保产品新鲜度。奶粉包装奶粉行业的残氧分析至关重要。残氧过高会导致奶粉氧化变质,影响产品质量。氧化锆传感器能够精确测量奶粉包装内的残氧量,为生产厂家提供关键数据支持,确保产品安全。肉类包装肉类产品在包装过程中需要严格控制氧气含量,以防止细菌滋生和氧化变质。包装顶空气体分析仪通过氧化锆传感器,实时监测包装内的氧气浓度,为肉类产品的保鲜提供有力保障。气调包装气调包装通过调节包装内的气体成分来延长食品的保质期和保持其口感。在这一过程中,氧化锆传感器发挥着不可或缺的作用。它能够精确监测并调整包装内氧气、二氧化碳及氮气等气体的比例,确保食品处于最佳的储存环境中。例如,在果蔬气调包装中,通过减少氧气含量并增加二氧化碳和氮气的比例,可以抑制果蔬的呼吸作用,延缓其新陈代谢,从而有效延长保鲜期。三、氧化锆传感器在药品包装中的应用药品稳定性测试药品在储存和运输过程中,包装内的氧气含量是影响其稳定性的关键因素之一。氧化锆传感器能够精确监测药品包装内的氧气浓度,帮助制药企业评估药品在不同氧气环境下的稳定性,从而制定更为科学合理的包装方案,保障药品的有效性和安全性。无菌包装验证对于需要无菌保存的药品,如注射剂、生物制品等,包装过程中的氧气含量控制尤为重要。氧化锆传感器能够实时检测包装密封后的氧气残留情况,确保包装的无菌状态,防止药品因氧化而失效或受到微生物污染。四、氧化锆传感器的未来发展趋势随着科技的不断进步和工业生产的日益精细化,氧化锆传感器在包装顶空气体分析仪中的应用将更加广泛和深入。未来,我们可以期待以下几个方面的发展:智能化与自动化:传感器将与物联网、大数据等技术相结合,实现远程监控、智能预警和自动调节等功能,提高生产效率和产品质量。高精度与长寿命:通过材料科学和微纳技术的不断创新,氧化锆传感器的灵敏度和稳定性将得到进一步提升,同时延长其使用寿命,降低维护成本。多气体检测:未来的氧化锆传感器可能具备同时检测多种气体成分的能力,满足更复杂、更多样化的工业需求。综上所述,包装顶空气体分析仪中的氧化锆传感器以其卓越的性能和广泛的应用前景,正成为现代工业中不可或缺的检测工具。随着技术的不断进步和市场的不断拓展,我们有理由相信,氧化锆传感器将在未来发挥更加重要的作用,为各行各业带来更加精准、高效的检测解决方案。以上内容由山东泉科瑞达仪器设备有限公司发布,关注泉科瑞达公众号了解更多
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 国瑞力恒发布红外一氧化碳分析仪(CO)新品
    GR-2015 环境空气红外气体分析仪1. 产品概述 GR-2015型环境空气红外气体分析仪(以下简称分析仪)是我公司针对公共场所、工作场所的空气中的有毒有害物质进行检查的高精度仪器,仪器采用非分散红外原理测量空气中的一氧化碳、二氧化碳浓等的浓度,具有测量精度高,使用寿命长,交叉干扰小等优点,是环境监测领域,职业卫生监测领域的必备仪器。2. 适用范围本仪器被广泛应用于环保、环监、卫生监督、职业卫生、疾病控制和科研院所。3. 采用标准JJG635-2011《一氧化碳、二氧化碳红外气体分析器》HJ965-2018《环境空气 一氧化碳的自动测定 非分散红外法》GB/T18204.2-2014《公共场所卫生检验方法第2部分:化学污染物》GBZ/T 300.37-2017《工作场所空气有毒物质测定 第37部分:一氧化碳和二氧化碳》GB 9801-1988 《空气质量一氧化碳的测定非分散红外法》4. 技术特点1) 采用彩色触摸屏,测量数据具有数字显示和仪表盘显示两种模式,界面美观,操作简单;2) 采用高精度红外传感器,测量精度高、响应速度快、预热时间短;3) 支持氮气校零和催化校零两种方式;4) 仪器内部具有小时均值,8小时均值,日均值显示,存储功能;5) 具有机内恒温加热功能,适合户外低温环境下运行;6) 具有微机通讯功能,测量可实时传输到电脑;7) 内置调零过滤器,可在不用外接零气的条件下进行传感器调零,使用方便;8) 内置通路切换电磁阀,调零、测量自动切换;9) 可同时测量CO和CO2,测量传感器量程可选择 10) 独创的温湿度补偿修正算法,消除温湿度变化对测量数据的影响 11) 海量数据存储,可存储5000组测量数据 12) 采用进口采样泵,负责能力强,使用寿命长; 13) 内置高能锂电池,一次充电工作4小时以上; 14) 具有温湿度测量功能 15) 具有灵活的数据计算保存方式,满足各种数据前处理需求;16) 具有声、光警告功能,报警限值可设定;17) 具有PPM、mg/m3单位主动切换功能;18) *选配备蓝牙无线打印功能。 5. 技术指标表1技术指标主要参数参数范围分辨率准确度CO浓度测量值0~50 PPM0~200 PPM0.1 PPM优于±2%FSCO2(可选)0~5000PPM 0~50000PPM1PPM优于±2%FS重复性1.0 %FS零点漂移<1%FS/h量程漂移<1%FS/h响应时间CO5000组电池工作时间大于4小时仪器噪声主机尺寸(mm )255×165×340功耗20W 创新点:高灵敏度,检出限低,自带小时均值和日均值存储,标配通讯软件 红外一氧化碳分析仪(CO)
  • 大昌华嘉将举办日本拜尔BEL比表面和孔隙度分析仪用户培训
    大昌华嘉商业(中国)有限公司将于2012年7月6日在上海举办日本拜尔BEL比表面和孔隙度分析仪用户培训。此次培训将由大昌华嘉公司应用专家进行仪器操作和维护技巧的演示及培训,欢迎新老客户届时参与。 大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 日本拜尔有限公司(BEL Japan, Inc.)是一家研究生产容量法气体吸附分析仪的专业制造厂商。公司成立于1988年,秉承&ldquo 事业让生活更享受&rdquo (Business for Enjoy Life)的理念,始发于原创的动力,不断革新,推出一批又一批吸附领域的前沿技术。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 培训内容: 1. 氮气吸附原理 2. 仪器结构/特点 3. 数据分析 4. 维护保养,常见故障排除。 备注: 时间:2012年7月6日9:00 具体地址:上海市虹梅路1801号凯科国际大厦2208室 实验室 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 您希望通过培训,能够解决您的什么问题? 您购买的仪器型号及时间 备注:请填写并E-mail确认 联系人:市场部 胡小姐 联系电话:400-821-0778 邮箱:joyce.hu@dksh.com
  • 制药企业总有机碳TOC分析仪选型的三步比较法
    总有机碳(TOC)分析仪的选型是制药企业使用人员和采购人员需要开展的一项重要工作,通常主要从使用功能、价格、售后服务等多方面进行比较。但制药企业使用的TOC分析仪与普通设备有所不同,在使用过程中更要兼顾其合规性和准确性。美国药典委员会(USP)建立和制定制药(其他相关)公司所需遵守的质量标准和准则,而美国食品药品监督管理局(FDA)通过检查,强制药企执行这些标准。其中涉及到USP ,要求检测制药用水的电导率;USP 要求检测制药用水的TOC。《中国药典》自2010年起也开始向美国药典看齐,要求检测制药用水的TOC,其中对注射用水(WFI)强制要求检测TOC,纯化水则为建议检测TOC。2020年新版《中国药典》自2020年12月30日起开始实施,其分为4个部分,分别为中药、化学药、生物制品以及通则与药用辅料。新版《中国药典》第二部分的“注射用水”项目下,关于“总有机碳TOC”检测项目的规定没有发生变化,规定注射用水中TOC含量不得超过0.50 mg/L。“纯化水”检测项目中,TOC与易氧化物检测任选其一。为了兼顾TOC检测的合规性和准确性,可以从以下3个步骤进行比较选择。第一步了解法律法规药典法规对TOC测定技术的部分具体要求如下:1TOC测定技术应能区分无机碳(溶于水中的CO2和碳酸氢盐分解所产生的CO2)与有机碳(有机物被氧化产生的CO2),并能排除无机碳对有机碳测定的干扰。2应满足系统适用性试验的要求。3应具有足够的检测灵敏度(最低检出限为每升含碳≤0.05 mg/L)。从上述第1条可以看出如果一台TOC分析仪无法区分无机碳和有机碳,无法排除干扰,仅仅是检测氧化前和氧化后有机物引起的差异,在法规的符合性上是存在瑕疵的,其易受有机卤化物的干扰,无法作为检测的标准方法。第二步了解验证文件《中华人民共和国药品管理法》第四十三条:从事药品生产活动,应当遵守药品生产质量管理规范,建立健全药品生产质量管理体系,保证药品生产全过程持续符合法定要求。《药品生产质量管理规范》第一百四十条:应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)性能确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准。分析仪器属于检验设备,属于上述(四)中的设备范畴,而PQ(Performance Qualification)的含义属于性能确认,一台没有做性能确认,或者虽然做了性能确认,但所作项目并不完整的仪器设备是不符合法规要求的。使用这样的仪器设备存在法律风险。药企质量管理部门的工作职责就是评估风险并将其降到最低,因此IQ/OQ/PQ是否资料齐全且全面认证,是制药企业选择TOC分析仪时要考虑的一个非常重要的因素。第三步了解工作原理如果从TOC工作原理中的检测方法上进行分析,主流机型分为Non-Dispersive InfraRed(NDIR)非色散红外传感器和电导率检测法两种。其中NDIR是以非散布法来测量红外线的吸收,其光源所发出的红外线是两道平行的光线,一道通过样品池,另一道通过参比池。样品池内的气体来自于样品气体,红外线通过时会被样品气体中的CO2吸收;而参比池内的气体为高纯氮气,红外线可以完全通过,不被吸收。其工作原理如图1所示。该方法的工作原理来自于朗伯-比尔定律,是描述物质对某一波长光吸收的强弱与吸光物质的浓度及其液层厚度间的关系,即吸光度A与吸收层厚度B和吸光物质的浓度C成正比,即A=KBC。其中符号A表示吸光度;K表示吸光系数;B表示吸收层厚度;C表示吸光物质的浓度。朗伯-比尔定律在使用稀溶液(低浓度)时,吸光度A和浓度C才呈现线性关系,而使用高浓度溶液时,吸收成分之间与平均浓度之间的距离会减少,使得临近质点间电荷分布相互受到影响,改变了其对特定辐射的吸收能力,最后使得A-C的线性关系产生偏离。浓度越高则偏差越大。尽管有些制药企业用NDIR方法的仪器来检测低浓度的样品,但到了极低浓度时,红外法载气的纯度不够,其背景值会影响CO2的检测,因此,NDIR方法并不适用于极低浓度CO2的检测。电导率检测法另一种检测方法是电导率检测法。该技术能够通过测量水中的CO2,使用UV灯将水样中的有机物转化成CO2,CO2溶解在水中形成碳酸根离子,由于电导率传感器能检测到离子,从而间接检测了TOC。因为是物理检测,其速度既快,测量又准。电导率检测法又分为两种方法:直接电导率法和薄膜电导率检测法(又称选择性膜电导率法)。采用两种电导率法的TOC分析仪校验结果都很稳定,检测精度高。这两种技术主要的区别在于,直接电导率法比较容易受杂酸性、卤化有机物等的干扰;而薄膜电导率检测技术抗干扰性更佳。其中电导部分的工作原理如图2所示。 图3 薄膜电导率检测法,可区分有机碳与无机碳一般而言,制药企业制水系统的注射用水通常只有几十个ppb, 纯化水通常在100多个ppb左右, 所以只要电导率的传感器精度足够高,加之卓越的软件算法,就能确保在极低浓度的情况下测量TOC的准确性,而NDIR由于其工作原理的天然特性,无法准确测量极低浓度的TOC。综上所述,随着我国制药行业的快速发展,GMP检查也越来越严格,三步比较法是制药企业TOC分析仪选型的理想方法。原文刊登于《流程工业 制药业》杂志2021年第6期作者:扬子江药业集团江苏海慈药业有限公司 陈雅男 于小琴苏伊士Sievers分析仪 王欣了解更多!
  • 热烈祝贺美国麦克仪器公司全自动多站比表面积和孔隙度分析仪获奖
    2010年4月9日,在由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网(www.instrument.com.cn)联合主办,中国分析测试协会协办的2010年中国科学仪器发展年会(ACCSI 2010)上,我公司的全自动多站比表面积和孔隙度分析仪荣获&ldquo 2009科学仪器优秀新产品&rdquo 奖。 我公司的TriStarII 3020是一款公司新近推出的仪器,自面世以来被广泛应用于各种研究领域,有着庞大的用户群体,在用户群中好评颇多,被认为是比表面积和孔隙度分析仪类产品中的标准性仪器。 在本次年会中,该仪器更是得到了评委和用户的一致好评和认可,从一同参展的众多同类产品中脱颖而出,得到了唯一一个比表面积类仪器的科学仪器优秀新产品奖。 TriStarII 3020是TRISTAR3000全面升级后的完全自动化、三个分析站和六个脱气站的比表面积和孔隙度分析仪,以合理的成本提供高品质的数据。 作为新一代全自动比表面积和孔隙度分析仪, TriStarII 3020借助于气体吸附原理(典型为氮气),可进行等温吸附和脱附分析,用于确定比表面积,微孔孔体积和孔面积,中孔体积和面积,总孔体积等。仪器配置了液氮液面保持装置---液氮等温夹,以确保整个分析过程中等温夹套以下的温度恒定,可同时进行三个样品的分析,满足测试量大的用户,每个分析站都配有独立的传感器,保证三个分析站分析的同时进行。大容量杜瓦瓶,结合专利的液氮等温夹,保证至少60小时无人介入操作,最大无上限的连续分析。同时仪器软件也包含了目前所有的数据处理方法,方便用户使用。仪器面板无任何手动按键,所有的操作程序均由计算机来控制选配的多种脱气站(样品制备),用户可根据实际情况选择。 (下图为TriStarII 3020) 如需了解更多资料,请登陆美国麦克公司中国区网站www.mic-instrument.com.cn或致电中国区各办事处 美国麦克仪器公司中国区总部 地址:北京市海淀区紫竹院路31号华澳中心嘉慧苑1025,100089 电话/传真:010-68489371,68489372 上海办事处: 地址:上海市静安区新闸路831号丽都新贵15M,200041 电话:021-62179208 传真:021-62179180 广州办事处: 地址:广州市天河区中山大道华景路华晖街四号沁馥佳苑B3-1301,510630 电话:020-85560307 传真:020-85560317 西安办事处: 地址:西安市莲湖区北大街一号宏府嘉会广场B座7017室,710002 电话/传真:029-87408879
  • 元素分析仪的几种分析方法
    麒麟公司生产的元素分析仪是分析有机元素的自动化仪器。配备微计算机和微处理机进行条件控制和数据处理,方法简便迅速。 碳、氢、氮分析仪 测定方法有4种: ①示差热导法。又称自积分热导法。样品的燃烧部分采用有机元素定量分析的碳、氢、氮分析方法。在分解样品时通入一定量的氧气助燃,以氦气为载气,将燃烧气体带过燃烧管和还原管,二管内分别装有氧化剂和还原铜,并填充银丝以除去干扰物(如卤素等),最后从还原管流出的气体(除氦气外只有二氧化碳、水和氮气)通入一定体积的容器中混匀后,再由载气带入装有高氯酸镁的吸收管中以除去水分。在吸收管前后各有一热导池检测器,由二者响应信号之差给出水含量。除去水分的气体再通入烧碱石棉吸收管中,由吸收管前后热导池信号之差求出二氧化碳含量。最后一组热导池测量纯氦气与含氮气的载气信号之差,提出氮的含量。 ②反应气相色谱法。这种元素分析仪由燃烧部分与气相色谱仪组成,燃烧装置与上述相似,燃烧气体由氦气载入填充有聚苯乙烯型高分子小球的气相色谱柱,分离为氮、二氧化碳、水3个色谱峰,由积分仪求出各峰面积,从已知碳、氢、氮含量的标准样品中求出此3元素的换算因数,即可得出未知样品的各元素含量。 ③电量法。又称库仑分析法。 ④电导法。后两种方法都只能同时测定碳、氢,其应用不如前两种方法广泛。
  • HORIBA新一代磁压式防爆型气体分析仪MPA-51d/51p产品发布
    HORIBA磁压式防爆型气体分析仪MPA-51d/51p主要测量O2,51d采用隔爆型防爆构造,51p采用内压防爆构造。 测定原理: 因为氧气带有强烈的恒磁性,在不均匀的磁场中若存在氧气,氧气则会被磁场中的较强的一方所吸引,因而该部位的压力会随之发生变化(上升)。 将此时的压力上升,通过非磁力性体的比较气体(氮气)导出为磁场外的气压上升,并用检测器测量出该气压的变化,并转换称电气信号。为了能平稳地获取并传送出信号,要交互对电磁石进行励磁,用交流信号来处理。因此样气中不存在氧气时,信号就为零,也就没有零位移,因此具有长期稳定性。另外,输出和氧气浓度是线性关系,因此可以测定出较广的浓度范围。
  • 在线分析仪器在石油化工中的应用——CIOAE 2011报告系列
    仪器信息网讯 2011年11月9-10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心隆重召开。本次论坛吸引了600余名观众参加,50余家在线分析仪器厂商参展。本次论坛设有多个分会场,40余名来自石化、环保、食品等行业的专家学者做了报告。   为让广大网友更有针对性的了解本次论坛报告的内容,仪器信息网根据报告的内容,对报告进行分类,并将报告内容整理成文,以飨读者。以下是本次论坛中众多专家学者针对“在线分析仪器在石油化工中的应用”所作报告的合集。 中国石化工程建设公司 孙磊女士 报告题目:石油化工在线分析仪的现状及发展   孙磊女士在报告中介绍到在线分析仪表在石油化工领域的应用现状。在线分析仪表在石油化工装置中得到了广泛的应用,对石油化工企业的正常运行起到了非常大的作用。在线分析仪表投资高,约占仪表设备投资费用的9%-11%,但这些仪表因为采样处理设计不合理、分析仪表选型不合理、仪表维护费用昂贵、售后技术支持落后、高素质经验丰富的维护人员缺失等原因,其投用率却不到90%。   孙磊女士也希望在线分析仪表生产企业在未来能严把设计关,规范分析仪系统的设计,促进在线分析仪表在石油化工行业中的应用。 西门子(中国)有限公司 杨飞先生   报告题目:MicroSAM——开创了过程分析仪器的新世界   杨飞先生详细介绍了西门子的在线色谱MicroSAM的结构与技术特点、在各行业的应用等方面。   在线色谱经历了从简单到复杂、再从复杂到简单的发展过程,未来在线色谱仍会朝着更简单的方向发展。西门子MicroSAM采用MEMS技术,实现了仪器的模块化,同时又可以根据用户的需求进行个性化的定制。由于该产品采用了串行多检测器技术,可达成零死体积、分析快速的分析优势,且使得在线色谱的维护更简单,甚至可以实现免维护。其与西门子的MAXUM互为补充,为用户提供最佳的解决方案。   赛默飞世尔科技 Peter J Traynor先生   报告题目:乙烯裂解炉的实时优化   Peter J Traynor先生在报告中介绍了乙烯裂解炉运行面临的挑战以及扫描磁质谱在乙烯裂解炉运行优化中发挥的巨大作用。   通过对乙烯裂解炉进行优化,可更好的控制裂解深度和选择性,确保经济效益高的气体组份能被输送到下游的分离和回收工段。扫描磁质谱运用到乙烯裂解炉的优化中,能提供超一流的精度,在合理的时间内扩展分析,具有较高的适用性。其相比于在线色谱具有很大的成本优势。   中石化镇海炼化分公司 傅泽宏先生   报告题目:激光分析仪在石化业硫磺回收SRU的应用   傅泽宏先生在报告中详细介绍了激光分析仪的部件构成、性能优点及其在石化业的应用情况。   原位测量必须解决三个问题,即不受背景气体交叉干扰,不受测量现场粉尘等颗粒物干扰,不受气体参数变化的影响。激光现场气体在线分析仪采用半导体激光器作为光源,全固态设计,无运动部件,无易损件,无周期性消耗替换。具有高灵敏度、高精度、高稳定度、快速响应(时间小于1秒)、容易安装、坚固耐用等优点。此类仪器已经在美国、欧洲、日本等全球50多个国家的石化行业得到广泛的使用。   赛默飞世尔科技 Doug Frye先生   报告题目:总硫分析仪在催化剂保护和燃料油调和过程中的应用   Doug Frye 先生在报告中介绍了总硫分析的必要性及主要的分析方法。硫元素广泛应用于化工等诸多产业中,但是基于产品质量和催化剂保护等原因,监测装置进料和产品中总硫的含量已成为每一个企业和整个社会关注的重点。其中脉冲紫外荧光法是今天最受欢迎的总硫测量方法。   赛默飞世尔科技(Thermo Fisher)提供的SOLA II在线总硫分析仪,采用热裂解工艺和脉冲紫外荧光检测器测量总硫有非常宽的动态测量范围和优异重复性,能够同时检测脱硫装置进料和产品种的总硫含量。SOLA II以其卓越的品质和性能,众多经过验证的业绩,为石化、化工、制药等行业提供了完美的解决方案。   石油化工科学研究院 许玉棚先生   报告题目:在线近红外光谱分析技术在混合生产过程中的应用   许玉棚先生在报告中主要介绍了在线近红外光谱技术在石油化工等行业的混合加工过程的应用情况,并给出了我国在近红外光谱分析技术研发方面的一些建议。   从分析应用角度来看,我国当务之急仍是高性能近红外光谱仪器的研发,包括专用测量附件,例如用于固体测量的积分球等,并根据相关技术的发展不断提升仪器的性能指标和附件的可用性。从仪器的分光原理来看,傅里叶型的近红外光谱仪具有较为明显的优势,主要体现在波长的准确性和重复性上,这是保证仪器长期稳定性和仪器之间一致性的基本条件。对于在线近红外光谱产品,需要组建专业化的公司,针对不同的应用对象,研发高性能的取样与预处理系统,与光谱仪和化学计量学软件集成,形成完整成套的分析技术。在这一方向上尚有大量的工作要做,随着我国工业管理水平的提高,其应用推广前景也是诱人的。   横河电机(中国)有限公司 王继富高工   报告题目:GC8000在线色谱仪在石油化工中的应用   王继富高工在报告中主要介绍了工业色谱仪家族的最新成员GC8000的特点和及应用方面的内容。GC8000具有独特的GCM(GC单元)概念使多柱箱更加灵活 12.1英寸彩色触屏使操作更像平板电脑 采用以前色谱仪验证过的硬件技术确保其可靠性更好 虚拟技术员软件可以预测维护功能减少意外停机时间。   最后,报告中还谈到了GC8000在天然气、甲醇合成、乙烯装置等方面的应用。   中沙(天津)石化有限公司 柴明举先生   报告题目:PH计预处理系统在裂解装置上的应用   柴明举先生介绍了他所在的企业乙烯装置裂解炉PH计预处理系统的问题,针对高压汽包水质样品高温、高压的情况下进行了相应的改造。此改造达到了预期效果,样品经过新增换热器和原换热器两级降温后,满足了PH计的使用条件,既提高了仪表可靠性,又保证了样品分析数据的实时性,使之可以长周期运行,降低了日常维护成本以及维护量,为工艺的平稳生产提供了可靠的保障,同时也为相关设备、机组的腐蚀情况提供了参照。   通力分析自控技术有限公司 罗海涛先生   报告题目:石油炼制过程在线分析的意义及研究应用的未来趋势分析   罗海涛先生在报告中谈到石化企业是国家的支柱性产业,是高科技和新技术集中的载体,生产过程参量的在线化是必然的趋势。体现当今最新技术及方法的在线分析技术及产品主要有近红外在线成分分析和及核磁共振在线成分分析等。   不过,国内各炼厂装置馏出口等投用在线分析仪的厂家尚数极少数,国外品牌在线分析仪产品和技术全面进军国内市场,发展国产石化过程在线分析仪器势在必行。最后报告还介绍了发展国产石化过程在线分析仪器目前需要解决的问题及未来研究应用的趋势等。   中国石油化工股份有限公司北京燕山分公司研究院 段宝军先生   报告题目:核磁共振在线分析系统在常压蒸馏装置上的应用   段宝军先生在报告中介绍了核磁共振在线分析系统在常压蒸馏装置上的应用情况。核磁共振分析技术成功的应用于炼油工艺中原油调和,常减压蒸馏装置,催化裂化、加氢裂化装置,重整装置,烷基化装置,成品油调和工艺,以及乙烯裂解装置原料的实时在线分析中。   核磁共振在生产上可以为控制提供原料的前馈信息和产品质量的反馈信息,以保证生产装置工艺的稳定,并配合控制最大化的提高高附加值产品的收率,达到提高经济效益的目的。核磁共振技术实时在线快速原油评价,可以提高原油的管理水平,并摆脱对原油产品的依赖,降低原油的采购成本。   赛默飞世尔科技 王清华先生   报告题目:在线质谱仪对干扰组份中一氧化碳分析的改善   王清华先生在报告中说到:在钢铁、化工等行业,CO测量是众多质谱仪应用中需要分析的关键组份,它的测量也需要面对众多干扰组份的挑战。   赛默飞世尔科技的Prima Pro通过优化离子源的设计和质谱仪的运行环境能过增强CO测量的精度,达到很好的线性与重复性 将来如果能够了解导致质谱个体差异的原因,那么其性能还可以进一步改善。   中国石油化工股份有限公司北京化工研究院燕山分院 代武军先生   报告题目:在线质谱仪在环氧乙烷银催化剂评价中的应用   代武军先生介绍了质谱仪在银催化剂微反评价装置的应用、质谱仪与色谱仪的比较、磁扇式质谱仪的工作原理以及质谱仪在线分析ppm级组分(EDC)中的应用。   他在报告中指出:经过长期的实践,磁扇式质谱仪在北化院燕山分院银催化剂微反评价装置使用期间其精度达到实验要求 质谱仪在银催化剂微反评价装置的应用提高了工作效率,实现了自动化控制,加快了银催化剂的研发速度。   美国哈希公司 Satoshi Arakawa先生   报告题目:能量分散型X-射线荧光法(EDXRF)总硫分析仪   Mr.Satoshi Arakawa 在报告中比较了几种总硫分析方法的优缺点,并指出X-射线荧光分析法是目前最好的油品中总硫分析方法。能量分散型X-射线分析法不仅结构简单,而且能节省运行成本。   Mr.Satoshi Arakawa通过重油输送线的应用案例向大家介绍了SCA-200及HSCA-2000两种在线总硫分析仪。其中前者适用于重油的总硫分子,具有耐腐蚀性、耐高压等特点,后者适用于汽油、煤油等低硫浓度的应用。   美国PAC公司 John Ho先生   报告题目:MicroDist 在线馏程分析仪在石化行业中的应用   John Ho先生在报告中讲到在石油炼制过程中,馏程是控制炼油装置操作条件的重要判断依据,并介绍了目前国际上常用的几种在线馏程分析技术。随后后根据国际上的使用情况,着重介绍了新颖的在线馏程仪—MicroDist,MicroDist馏程仪采用ASTM D7345微馏程法原理设计,具有分析速度快、准确度高、维护量低、操作容易、可靠性高等优点。根据实际的使用效果来看,可以更快、更准、更方便的满足用户在线分析的需要。   中石化管道储运分公司 肖勇先生   报告题目:石油管线自动取样器国产化的探讨   肖勇先生在报告中从实用的角度选取了当前国内市场上有代表性进口和国产两种机型进行比对,阐明了发展促进石油管线自动取样器实用型国产化必要性。   石油管线自动取样器不仅要确保所取油样具有良好的代表性,机器本身的易操作性、安全性、良好性价比等诸多因素也被用户所关注。国外石油管线自动取样器不适应中国石油石化企业实际工作需要,不仅价格昂贵,而且不适用于高凝高粘、杂质多的原油。国内管线自动取样器生产企业有流通渠道少,间接费用低的优势,能够做到即时按用户需求调整产品结构,并且有可靠及时的售后服务,被石油石化企业认可,成为我国管线自动取样器的主流产品。   Extrel CMS公司 Jian Wei博士   报告题目:Quantitative Analysis with Process Quadrupole Mass Spectrometer   Jian Wei Ph.D.在报告中主要介绍了过程四级质谱仪的定量分析原理及其应用。报告中通过详实的数据和丰富的图表分析介绍了过程质谱分析方法的测量精度和响应线性度是过程控制质谱仪重要的性能参数。   中国寰球工程公司 王雪梅女士   报告题目:在线分析仪表及分析小屋在乙烯装置中的应用  王雪梅女士在报告中首先介绍了在线分析仪表及在线分析系统的构成,随后就乙烯装置中主要的分析仪表类型作了详细的介绍。   在报告中王女士结合乙烯工厂着重介绍了色谱、红外线分析仪、氧化锆、微量水、热值仪等在线分析仪表在乙烯装置内的应用和实施方案。最后介绍了在线分析仪表的样品预处理系统及分析小屋的设计等方面的内容。   重庆川仪分析仪器有限公司 梁明燕女士   报告题目:PS6600型过程分析成套系统在高炉炉顶煤气分析中的应用   梁明燕女士代熊彬烽先生作此报告。梁女士在报告中首选介绍了公司的主要产品系列:在线气体分析仪器及成套系统、在线水质分析仪器及成套系统、环境保护检测产品、实验室分析仪器等六大系列。   之后详细介绍了PS6600型过程分析成套系统在高炉煤气分析中的应用,主要介绍了系统的构成和原理。PS6600型过程分析成套系统解决了高炉炉顶高温、多尘、含湿极端恶劣条件下长期、稳定在线连续运行的难题。最后还简单介绍了该系统在应用中的问题和解决方法。   武汉华敏测控技术有限公司 孙阳总经理   报告题目:高炉炉顶煤气在线分析系统技术综述   孙阳总经理在报告中介绍了高炉炉顶煤气在线分析系统对于高炉生产的指导意义,阐述了两种不同的成分分析模式在生产实践中的应用,并对高炉炉顶煤气在线分析系统的工作原理等进行了阐述。   随后特别介绍了高炉炉顶煤气在线分析系统最核心的技术“海绵合金过滤器”,此技术采用的是“疏导、吸附、清除”的过滤方式,对于像高炉煤气这样杂质含量高,成分复杂的气体的过滤效果很好,再生能力很强。此外还介绍了非常规的“水稀释处理法”、多级过滤、就地排放等用于预处理的关键技术。   中国石油化工股份有限公司北京北化院燕山分院 梁汝军先生   报告题目:DCS与工业在线分析仪之间基于Modbus协议的串行通讯   梁汝军先生在报告中介绍了在银催化剂中试评价装置中通过利用MODBUS协议的RS-485串行通讯方式,可以实现DCS控制系统与质谱仪之间的数据通讯的数字化。并依此为基础,在银催化剂工业侧线评价装置上成功运用独特的双寄存器存储数据技术,提高DCS控制系统与质谱仪两套系统之间数据传输准确性和可靠性。实现了DCS控制系统对装置各系统的统一监控、控制、管理等功能,提高了装置的自动化水平和管理水平。   无锡康宁防爆电器有限公司 季海平先生   报告题目:BHVAC防爆加热通风空调机组在分析小屋上的应用   季海平先生在报告中介绍了分析小屋BHVAC防爆加热通风空调机组与普通防爆空调+防爆风机系统的应用比较,BHVAC防爆加热通风空调机组在线现场使用的技术特点。   目前国内在线分析系统的分析小屋,一般采用防爆空调,配以排气风扇,没有正压保护和室内换气要求,但由于没有强制正压和新风置换保护,一旦出现氮气泄漏或有毒气体泄漏,小屋内作业人员的生命就会受到威胁。石化企业安全生产始终受到各方重视,HVAC在现场分析小屋的应用体现了安全、健康、节能、环保理念和价值观。目前,国内石化企业分析小屋使用HVAC尚处在起步阶段,观念的转变需要一个过程。
  • 某政府采购论证意见公布:微波消解仪到核酸检测分析仪等23类国产仪器设备被评“难满足要求”!
    近日,为进一步加强政府采购进口产品管理,提高进口产品审核效率,四川省发布《省级2021-2022年政府采购进口产品清单论证意见公示(医疗卫生设备类)》,四川省财政厅会同医疗卫生行业主管部门统一组织专家论证(论证专家组由2名主任医师、1名副主任医师、1名主任药师、1名律师组成),形成进口产品统一论证清单。其中,新增省级政府采购进口产品23项,多数为医疗卫生实验室仪器类设备,包括全自动核酸检测分析仪、基因测序仪、自动化多通道移液工作站、全自动动物血常规分析仪、全自动凝血分析仪(动物)、吹扫捕集装置、热脱附仪、气相色谱多功能进样器、苏玛罐系统、微波消解装置、顶空进样装置、氢气发生器、氮气发生器、毛细管电泳仪、全自动酶免分析系、大容量冷冻离心机、全自动化学发光免疫分析仪、细胞计数仪等。这些国产设备论证结论基本可归纳为:与进口存在差距,难以满足医疗卫生实验室要求。具体专家论证结论如下:1.断层DR摄影系统 用于透视造影、DR摄影、长骨拼接、血管介入等检查 国产与进口产品区别:国内DR类产品均为普通拍片功能,无断层功能。 选择进口产品的理由:DR系统在一次扫描下获得连续多层面的高清晰断层图像,应用于骨科解决普通平片检查所难以显示的复杂结构,明确诊断。对于有外固定和金属植入物的部位,可避免伪影,显示细微结构。2.加速器质控设备对直线加速器设备进行准确度控制和校准,是保障加速器安全有效运行的必备设备 国产与进口产品区别:进口产品在测量时稳定性强,不会出现国产产品常出现的读数跳动的问题,可以更为准确的得到检测所需要的数据。而且进口产品的年平均数值的稳定性强,且不会随着年份的推移发生改变,国产产品随着年份的增加稳定性会进一步变得更差。同时,进口产品早操作方便性、安全性、故障率、使用寿命等方面均远优于国产设备。 选择进口产品的理由:进口产品准确度高,运行稳定,为保障放射卫生技术服务检测工作的顺利开展,以及患者检测的成功率、准确性和时效性,建议允许购买进口产品3.全自动核酸检测分析仪 围绕核酸快速自动化检测、基因突变和SNP分析的需求,构建集核酸提取、扩增以及实时荧光检测一体化的新型自动化核酸分析系统,建立一种操作简单、分析速度快、样本使用量低的核酸分析平台,满足生命科学研究、检验检疫和临床检测的需求。 国产与进口产品区别:1)进口设备全自动一体化,对PCR实验室要求低;FFPE切片或血浆可直接上样,不需要提取和扩增,不要额外试剂和耗材,不需要专业的PCR操作人员进行操作,也不存在污染问题。国内同类产品由于涉及实验步骤繁琐,故对PCR实验室条件要求严格,很多医院病理科,分子科或者检验科不具备开展肿瘤分子检测的条件;国产产品需要专业的PCR操作人员,分步进行核酸提取和扩增后再上样进行检测,人力成本较高,试剂耗材较多。 2)进口设备整体检测时间2h左右,检测快速,很短的报告周期能够满足临床紧急的用药需求。国产设备目前检测时间较长(5个工作日),而且存在污染等问题。 3)进口设备只需要常温运输和常温保存,给检测科室代来极大的便利性。国产产品检测试剂大多需要冷链运输,且低温保存,存在需要占地较大的冰箱,物流需要冷链等问题。选择进口产品的理由:进口产品对实验室、操作人员要求较低,且使用成本、检测速度、检测试剂明显优于国产设备 4.基因测序仪 用于测定DNA片段的碱基顺序、种类和定量的仪器。主要应用在人类基因组测序、人类遗传病、传染病和癌症的基因诊断、法医的亲子鉴定和个体识别、生物工程药物的筛选、动植物杂交育种等方面。 国产与进口产品区别:进口产品在测量速度、稳定性、便利性、准确度等方面明显优于国产设备 选择进口产品的理由:基因测序要求精确度及稳定性较高,国产产品相比于进口产品还有一定差距5.手术动力系统 用于术中需要切割/切开、削磨、钻孔、锯开骨质和其他组织的外科手术 国产与进口产品区别:国产产品的稳定性及持久性相比进口产品差距较大 选择进口产品的理由:手术用器具要求稳定性、持久性高,进口产品更能保障患者安全6.自动化多通道移液工作站 用于从不同来源(EP管、储液槽、孔板及多层板等)到不同目标(6-386孔板、1.5及2 mL EP管、离心管等)的移液操作,移液间距可变,并搭载液面探测,可自动、高效完成样本移液操作,并具备单道移液功能,配置了离心管架和分液器,能够完成样品前处理、液体分装、浓度均一化等工作。 国产与进口产品区别:国产的移液站不可变间距,只能整板加样。而进口产品移液器各通道间距可在一定范围内任意设置,可根据吸液、移液对象自动变换。方便地进行离心管、样本管、深孔板、PCR板、96孔细胞板等实验容器之间的液体转移。而且可适配4、6、8、12、16通道道电动移液器移液,能实现从不同来源(EP管、储液槽、孔板及多层板等)到不同目标(6-386孔板、1.5及2 mL EP管、离心管等)的移液操作,多达10种移液头选项可轻松切换,以满足各种应用对通道数和量程范围的不同需求。 选择进口产品的理由:进口产品还具有加样精度高 、稳定性强、密封性高、扩展性强、紧凑小巧移动方便等优点,能够有效消除操作员之间的变异性和人为错误,增强实验过程的可控性,提高实验准确度。7.全自动动物血常规分析仪 用于动物血液与体液分析检测,包括但不限于大鼠、小鼠、兔、猴等动物。 国产与进口产品区别:1)进口检测速度可达200测试/小时以上,国产设备只能达到60测试/小时; 2)进口产品有相匹配的溯源质控品和校准品,国产仪器暂时不能满足需求; 3)由硬件故障导致结果异常、初检可信度低等情况,进口产品仪器能自动重新检测。而国产动物血常规分析仪暂时不能满足需求。选择进口产品的理由:进口产品能更好的应对大样本数据的快速处理,且能很好的对使用的校准项目进行精准溯源,保证实验数据的溯源性和准确性。 8.全自动凝血分析仪(动物) 用于实验动物凝血检测及分析。 国产与进口产品区别:1)国产产品检测参数不急进口产品广泛,如SD大鼠等实验动物PT、APTT、FIB、D-Dimer、VWF等参数不能全覆盖,不能满足实验室对所有项目的检测需求。 2)国产的凝血分析仪检测通道仅能支持4或者6通道,进口的可以满足16通道。 3)因标本保存有时效性,需大样本量检测,要求处理能力大于200样本/小时,进口仪器可达到≥400测试/小时,而国产用于动物凝血参数检测仪器一般只能达到200测试/小时。4)因实验室结果需要进行组间比较,故需要无中断的连续装载、卸载样本和试剂,保证实验分析的连续性和及时性,国产设备多为半自动,无法满足需求。选择进口产品的理由:进口凝血分析可保证全参数检测项目的进行和快速处理测试样本的能力,可有效提高实验效率及准确性。 9.吹扫捕集装置吹扫捕集是用于从液体或固体样品中分离低沸点的挥发性或半挥发性有机物,具有富集功能,是痕量有机检测的重要前处理方式。国产与进口产品区别:1)捕集管是吹扫捕集装置的重要核心部件,其吸附剂的质量是影响回收率、灵敏度和可捕集物种类的重要因素。国产设备的性能尚存在差距。2)待测物在捕集管的解吸不充分及管路的残留是引起交叉污染的重要原因之一。国产设备在某些化合物的交叉污染控制上尚不能完全满足要求。3)部分样品在吹扫时可能发生起泡现象。高效除泡设备,能够解决样品大量起泡的问题。国产设备尚不能完全满足要求。 选择进口产品的理由:公共卫生实验室利用吹扫捕集装置检测的痕量有机物种类多、含量低、样品基体复杂、数据要求高。因国产设备尚不能完全满足要求,故选择进口产品。 10.热脱附仪  热脱附仪是用加热和惰性气体吹扫将挥发物从采样管中解吸出来,并在捕集管中富集的一种脱附方法,是痕量有机检测的重要前处理方式。国产与进口产品区别:1)捕集管是热脱附仪的重要核心部件,其吸附能力是影响回收率、灵敏度和重复性的重要因素。国产设备的性能尚存在差距。2)待测物在捕集管的解吸不充分及管路的残留是引起交叉污染的重要原因之一。国产设备在某些化合物的交叉污染控制上尚不能完全满足要求。3)解吸效率是热脱附仪的重要性能指标,直接影响待测物的回收率。国产设备对部分化合物特别是高沸点化合物的解吸效率尚不能完全满足要求。 选择进口产品的理由:公共卫生实验室利用热脱附仪检测的痕量有机物种类多、含量低、数据要求高。因国产设备尚不能完全满足要求,故选择进口产品。 11.气相色谱多功能进样器 在集成化平台上整合多种进样方式,用于挥发性有机物定性定量分析。国产与进口产品区别: 1)气相色谱多功能进样器可整合液体进样、在线衍生、固相微萃取、液液萃取、顶空进样等多种前处理和进样方式。国产设备在整合功能上不能完全满足要求。 2)气相色谱多功能进样器要求X,Y,Z三轴步进式马达控制精准,不掉瓶、不撞针、重复性好、可靠度高,适合持续性大量样品自动前处理及自动进样分析。国产设备尚不能完全满足要求。 选择进口产品的理由:公共卫生实验室的气相色谱检测方法中涉及多种进样方式,多功能进样平台具有集成优势,大大提升检测便捷性和效率。因国产设备尚不能完全满足要求,故选择进口产品。 12.苏玛罐系统用于采集存储VOCs气体(挥发性有机化合物)的一种空气采样罐及其附属装置,是突发事件应急检测的重要装备。国产与进口产品区别: 1)苏玛罐在采集平均时段样品时,需控制气样进入采样罐的流速,使气体在整个采样期间以等流量进入罐中,对流量均匀性控制要求较高。国产设备尚不能完全满足要求。2)苏玛罐内部的惰性涂层质量对多种VOCs样品空白值、回收率、留样稳定性、控制交叉污染都有重要影响。国产设备成熟度尚不够。 选择进口产品的理由:公共卫生实验室承担有突发事件应急职责。因国产设备尚不能完全满足要求,故选择进口产品。 13.微波消解装置 消解各类样品,是重金属分析的重要前处理手段。国产与进口产品区别: 进口微波消解装置主要具有国内产品尚难以满足的特点:1)可消解大质量样品。 2)可同时消解多种不同性质的样品。 3)可大通量消解。 选择进口产品的理由:公共卫生实验室需要检测食品、化妆品、土壤、生物样品等多种复杂基质中的重金属。因国产设备尚不能完全满足要求,故选择进口产品。 14.顶空进样装置  通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,是痕量有机检测的重要前处理方式。国产与进口产品区别: 1)控温精度是顶空进样装置的重要性能指标,其对重复性有重要影响。国产设备的性能尚存在差距。 2)待测物在管路的残留是引起交叉污染的重要原因之一。国产设备在某些化合物的交叉污染控制上尚不能完全满足要求。选择进口产品的理由:公共卫生实验室需要检测水、化妆品、土壤、生物样品等多种复杂基质中的挥发性物质。因国产设备尚不能完全满足要求,故选择进口产品。 15.氢气发生器 为气相色谱的火焰离子化检测器(FID)提供氢气。国产与进口产品区别: 进口氢气发生器主要具有国内产品尚难以满足的特点: 1)氢气纯度大于99.999%。 2)气体产气量可大于200mL/min。 3)压力及流量稳定性好。 4)无故障工作时间长。 选择进口产品的理由:因国产设备尚不能完全满足实验要求,故选择进口产品。 16.氮气发生器为液相色谱串联质谱仪(LC-MS/MS)提供氮气。国产与进口产品区别: 进口氮气发生器主要具有国内产品尚难以满足的特点 1)氮气纯度大于99.5%。 2)气体流量大于30L/min。 3)压力及流量稳定性好。 4)无故障工作时间长。 选择进口产品的理由:因国产设备尚不能完全满足实验要求,故选择进口产品。 17.毛细管电泳仪用于微生物实验室PCR核酸产物的分析 国产与进口产品区别:进口产品通量高、检测速度快、检测精度高。 选择进口产品的理由:微生物实验室在分子分型和溯源上对DNA/RNA片段分析有较高精度要求。同时由于分析量大,应急样本及时性要求高,需采用全自动进样系统以减少检验时间,以完成大量样本的分析工作。18.全自动酶免分析系用于献血者标本酶免项目(包括乙肝表面抗原、抗丙肝抗体、抗艾滋抗体、抗梅毒螺旋体抗体)的检测国产与进口产品区别: 1)进口产品即使有当相同模块出现故障时,可以用替代的模块继续进行工作,最大程度保障系统不停机;国产设备的功能模块无法替换,一旦某个功能出现故障会导致整个实验停摆,影响工作效率;2)进口设备孵育系统、试剂耗材成本、洗板、读数分辨率等关键性能指标上具有明显优势。 选择进口产品的理由:目前国内同类产品在技术指标上存在差距,不能满足工作需要。19.大容量冷冻离心机 主要用于制备各类成分血国产与进口产品区别: 国产设备最大容量为6*400ml;设备不具备人机功效,不能自动关门;不平衡容忍度不超过50g。而国外同类产品设备容量大,最大甚至可达16*500ml,极大的提高了成分血制备的效率,避免造成血液浪费;且进口设备具备人机功效,能自动开、关门,可有效降低工作人员,尤其是女性工作人员的劳动强度;进口设备的不平衡耐受度更高,可达125g,可以更有效的保护离心机在不平衡状态下不损害驱动轴;此外,进口设备在腔门开启时压缩机能自动关闭,达到节能降耗。 选择进口产品的理由:目前国内同类产品在技术指标上存在差距,在工作效率、自动化、安全和节能方面较落后,不能满足工作需要。20.釆血秤 用于采集血液时称量、匀浆、终止、报警、记录等国产与进口产品区别: 进口设备具备缓冲防震技术、多重供电保障、采集预设量在小区范围内进行调整和自动标签核对功能等国产设备不具备的功能 选择进口产品的理由:采血称是血液采集的主要精密设备,是血液工作的最前沿,做为血液制备的源头,血液采集质量也直接影响成分血的质量。目前国内产品无法保证在釆血车等移动工作场所长期稳定运行。21.血细胞分离机 将全血进行不同血液成分的分离,以便于根据需要采集其中部分血液成分 国产与进口产品区别:在采集过程中献血者离体血量、抗凝剂管理、献血不良反应、白细胞混入量等方面,进口设备更优于国产设备;进口设备有红细胞预警监测机制,可有效防止红细胞混入现象,更能达到《全血与成分血质量要求(2012版)》。 选择进口产品的理由:进口设备更符合本单位日常机采工作的要求,保证血液质量,确保献血者安全。22.全自动化学发光免疫分析仪 用于血液标本中的传染性指标的抗原、抗体进行定性或定量检测。 国产与进口产品区别:国产设备尚未成熟,进口产品全自动程度和抗原、抗体检测种类及准确度远高度国产设备 选择进口产品的理由:能够提高实验工作效率和准确性。23.细胞计数仪 用于细胞、细菌、藻类、微泡等颗粒的粒度和数目检测,作为生命科学研究的必备仪器,广泛应用于制药、肿瘤研究、细胞生物学、蛋白质组学、疫苗等研究领域。 国产与进口产品区别:进口产品采用的库尔特计数原理在测试过程中不受待测样品颜色、形状、成份和折光率的影响,可准确获得实时的细胞大小、数目、浓度等分布,能更为准确的进行样品数据分析,国产设备目前在功能、性能上无法达到。 选择进口产品的理由:能够提高实验工作效率和准确性。
  • 热重分析仪密封性能对实验结果影响的研究
    p   热分析仪器炉体是否密封良好?对测试结果将产生什么影响?氮气是否起到保护作用? /p p   热重法测试炭黑含量的基本流程是:在氮气保护条件下,将样品升温至高温区某一温度,恒温5分钟,后通入氧气,继续保持恒温至样品重量不再损失。 /p p   热重分析仪天平在称重时,支架不能与其他物体接触,因此目前部分常规热重分析仪的炉体为非密封状态。在需要通入氮气进行保护的实验中,空气进入非密封的炉体,会使样品与空气中的氧气或其他气体发生反应,从而导致样品测试结果失真,表现为氮气保护段重量损失偏大,氧气氧化段(即炭黑含量)重量损失偏小。 /p p   上海盈诺精密仪器有限公司依据客户提出的测试需求:“热重法测试炭黑含量”,而研发的一款TGA-C系列热重分析仪,增加了密封系统、天平恒温系统,避免空气进入的影响,使测试炭黑含量更加准确。 /p p   TGA-C系列热重分析仪、ZH-C系列综合热分析仪的成功研发,弥补了炉体漏气的问题,实验中通入氮气时,空气不能进入炉体,从而使样品的升温过程处于氮气的保护之下,避免了炭黑的提前氧化。 /p p   为了探讨密封系统对实验结果的影响,分别在两种不同结构的设备上进行了对比实验(样品为2016年江阴某单位提供的色母粒): /p p   使用该样品进行实验的原因是由于其炭黑含量高。当炉体漏气时,炭黑与空气中的氧气发生反应,生成灰分,残渣中会出现一部分灰白色组分。可依据其判断炉体是否密封完好,是否有空气的进入 也可根据残渣中灰分的含量,判断其密封效果。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e6dbede3-4c9f-4fde-982c-2ee4d7048b63.jpg" title=" 图1 未进行实验的色母粒颗粒样品.png" alt=" 图1 未进行实验的色母粒颗粒样品.png" width=" 400" height=" 406" border=" 0" vspace=" 0" style=" width: 400px height: 406px " / /p p style=" text-align: center " strong 图1 未进行实验的色母粒颗粒样品 /strong br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/d0a402a9-9d13-4a63-872c-6b70de810873.jpg" title=" 图2色母粒在两种不同型号设备上进行实验后的残渣.jpg" alt=" 图2色母粒在两种不同型号设备上进行实验后的残渣.jpg" width=" 400" height=" 533" border=" 0" vspace=" 0" style=" width: 400px height: 533px " / /p p style=" text-align: center " strong 图2 色母粒在两种不同型号设备上进行实验后的残渣 /strong br/ /p p   从图2中可以看出,在两种型号设备上进行的三次实验中,残渣出现灰分的量有显著差异。 /p p   TGA-A/B系列产品在不通气实验条件下,残渣中可观察到大量灰分,说明样品氧化程度较高 /p p   TGA-A/B系列产品在通入氮气进行实验时,存在少量灰分,说明仅有部分样品被氧化,实验中有部分空气进入,与不通气时的结果进行对比,灰分减少,证明该设备在通入氮气时,对样品反应起到一定的保护作用,但并未完全保护 /p p   TGA-C系列产品实验后的残渣均为黑色粉末,未发现炭黑被氧化,证明该设备密封性良好,达到氮气保护的作用。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/ee4c17f3-8478-4115-a1fa-464e465d2460.jpg" title=" 图3 常规热重分析仪TGA-1000B(TGA-AB系列)未通入气体条件下的热重曲线.png" alt=" 图3 常规热重分析仪TGA-1000B(TGA-AB系列)未通入气体条件下的热重曲线.png" / /p p style=" text-align: center " strong 图3 常规热重分析仪TGA-1000B(TGA-A/B系列)未通入气体条件下的热重曲线 /strong br/ /p p   TGA-A/B系列产品在未通气条件下,样品重量持续损失,结合图2可知,持续失重的部分是炭黑,炭黑与空气中的氧反应,生成CO sub 2 /sub ,使样品的重量损失。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/24edb85a-ba9c-44a5-b5d8-4d294069ce02.jpg" title=" 图4常规热重分析仪TGA-1000B(TGA-AB系列)在氮气保护条件下的热重曲线.png" alt=" 图4常规热重分析仪TGA-1000B(TGA-AB系列)在氮气保护条件下的热重曲线.png" / /p p style=" text-align: center " strong 图4 常规热重分析仪TGA-1000B(TGA-A/B系列)在氮气保护条件下的热重曲线 /strong br/ /p p   TGA-A/B系列产品在通氮气条件下,样品重量缓慢损失,结合图2与图3可知,由于空气进入量少,样品的氧化较慢。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/ec2d328f-633e-4f0a-9e5e-7813a438bdaf.jpg" title=" 图5 加密封系统热重分析仪TGA-1000C(TGA-C系列)在氮气保护条件下的热重曲线.png" alt=" 图5 加密封系统热重分析仪TGA-1000C(TGA-C系列)在氮气保护条件下的热重曲线.png" / /p p style=" text-align: center " strong 图5 加密封系统热重分析仪TGA-1000C(TGA-C系列)在氮气保护条件下的热重曲线 /strong br/ /p p   TGA-C系列产品在通氮气条件下,从图5可以看出,重量保持稳定,结合图2中残渣的外观,未观测到炭黑被氧化,证明该设备密封性良好,可以起到氮气保护的作用。 /p p   注:实验条件为:起始温度为室温,终止温度为650℃,在650℃保持恒温30分钟(参照炭黑含量测试仪“垂直燃烧法”中热解实验条件进行)。 /p p   结语:根据以上信息说明,如果样品中存在易被氧化的成分(或含有易与空气中某气体反应的成分),实验条件要求通入氮气或其他非腐蚀性气体保护,或要求切换实验中的惰性气体与其他气体,建议根据对实验结果误差大小的要求,选择TGA-A/B或者TGA-C系列设备: br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/7802aae7-a166-49fa-a4f0-6a44a2fc8e47.jpg" title=" TGA系列.png" alt=" TGA系列.png" width=" 400" height=" 241" border=" 0" vspace=" 0" style=" width: 400px height: 241px " / /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 83" valign=" top" style=" border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" strong span style=" font-size:13px line-height: 125% font-family:宋体" 产品系列 /span /strong strong /strong /p /td td width=" 170" valign=" top" style=" border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: none padding: 0px 7px " p style=" text-align:center line-height:125%" strong span style=" font-size:13px line-height: 125% font-family:宋体" 特点与精度 /span /strong strong /strong /p /td td width=" 315" valign=" top" style=" border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: none padding: 0px 7px " p style=" text-align:center line-height:125%" strong span style=" font-size:13px line-height: 125% font-family:宋体" 产品型号 /span /strong strong /strong /p /td /tr tr td width=" 83" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-A /span /p /td td width=" 170" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:宋体" 国产普通天平, /span span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 0.1mg /span /p /td td width=" 315" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-1000A,TGA-1250A,TGA-1450A,TGA-1550A /span /p /td /tr tr td width=" 83" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-B /span /p /td td width=" 170" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:宋体" 国产优质天平, /span span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 0.01mg /span /p /td td width=" 315" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-1000B,TGA-1250B,TGA-1450B,TGA-1550B /span /p /td /tr tr td width=" 83" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-C /span /p /td td width=" 170" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:宋体" 国产优质天平, /span span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 0.01mg /span /p /td td width=" 315" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-1000C,TGA-1250C,TGA-1450C,TGA-1550C /span /p /td /tr tr td width=" 83" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-QB /span /p /td td width=" 170" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:宋体" 赛多利斯优质天平, /span span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 0.01mg /span /p /td td width=" 315" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-Q1000B,TGA-Q1250B,TGA-Q1450B,TGA-Q1550B /span /p /td /tr tr td width=" 83" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-QC /span /p /td td width=" 170" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:宋体" 赛多利斯优质天平, /span span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 0.01mg /span /p /td td width=" 315" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" text-align:center line-height:125%" span style=" font-size:13px line-height:125% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " TGA-Q1000C,TGA-Q1250C,TGA-Q1450C,TGA-Q1550C /span /p /td /tr /tbody /table p   盈诺进阶的TGA-Q系列热重分析仪、综合热分析,采用德国进口赛多利斯十万分之一克天平,数据更加稳定,性价比更高,仅需5mg微量样品即可进行实验测试数据,包括TGA-QB与TGA-QC系列。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/d4cd0296-1013-4183-96ac-49f32b6cba11.jpg" title=" 图6 搭载赛多利斯天平设备的热重曲线(精度:5mg).bmp" alt=" 图6 搭载赛多利斯天平设备的热重曲线(精度:5mg).bmp" / /p p style=" text-align: center " strong 图6 搭载赛多利斯天平设备的热重曲线( /strong strong 进样量:5mg /strong strong ) /strong /p p   如对文中数据和论点保有问题,欢迎与盈诺联系,进行实验的比对与探讨,期待着各位科研人员的指正。 /p p style=" text-align: right " strong (供稿:上海盈诺) /strong /p p br/ /p
  • 氮气发生器:膜分离or碳分子筛?
    p style=" text-indent: 2em " 氮气发生器作为实验室常用设备之一,作为氮气供气源,用途广泛。其中,对质谱和气相色谱的正常运行起到重要作用。那么,该如何选择合适的氮气发生器呢?膜分离技术和变压吸附技术是现今氮气发生器的两种主要制氮技术。两种制氮技术各有特点和优势。 /p p   strong  膜分离技术 /strong /p p   压缩空气通过中空纤维膜,由于不同气体分子直径不同,当空气通过膜的时候,分子直径较小的氧气、二氧化碳和水蒸汽会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大分子直径的氮气分子和惰性气体氩气都被收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。 /p p style=" text-align: center " img width=" 600" height=" 290" title=" 1.png" style=" width: 600px height: 290px " src=" http://img1.17img.cn/17img/images/201801/insimg/d803fdd2-2206-4450-80dc-2bca9d46ac90.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 膜分离原理图 /strong /p p    strong 变压吸附技术 /strong /p p   变压吸附制氮的填充材料是碳分子筛,是一种多孔疏松的棒状碳颗粒,当压缩空气通过碳分子筛时,同样也是根据气体分子直径的不同,碳分子筛会吸附水汽和氧气,但是,氮气不会被吸附,从而被分离。变压吸附的过程包括吸附解压-重生阶段。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a1c702fc-574d-4de4-82ab-af64d361c199.jpg" / /p p style=" text-align: center " strong 变压吸附原理图 /strong /p p   变压吸附技术和膜分离技术来生产氮气,各有优势。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。具体使用哪种技术更好更合适要取决于应用和流速要求,不能一概而论。而需要强调的是,氮气膜和碳分子筛都不是消耗品,都无需定期更换。 /p p   两种技术对比来说: /p p    span style=" color: rgb(79, 129, 189) " 1. 尺寸和重量 /span /p p   氮气膜尺寸小,重量轻,结构紧凑,更轻盈小巧,甚至发生器能放在标准实验台下,这些对于空间很有限的实验室而言无疑是完美的选择。 /p p    span style=" color: rgb(79, 129, 189) " 2. 噪音 /span /p p   膜分离技术不产生任何噪音,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作,无需将发生器放在另外一个房间,从而减少了管道延长所产生的额外费用,也避免了管道漏气的风险。 /p p    span style=" color: rgb(79, 129, 189) " 3. 纯度 /span /p p   氮气在不同分析仪器中所起的作用不同,所以对纯度的需求也不同,LC-MS所用的氮气主要作为雾化气及保护气,纯度95%就完全能满足需求。理想化状态下,变压吸附所能达到的最大纯度要优于膜分离技术。但变压吸附所产生的氮气纯度与进气量、压力、气源质量都有很大的关系,如果气源不洁净或者气量压力不够,那纯度会大大降低,不能单纯认为变压吸附纯度一定高。 /p p   span style=" color: rgb(79, 129, 189) "  4.露点,含水量 /span /p p   决定氮气露点含水量的因素,除了分离技术外,进气质量和过滤系统也至关重要。对于碳分子筛的变压吸附,如果前端处理不当,不仅除水能力下降,而且会污染碳分子筛,久而久之碳分子筛就失去了吸附的能力。对于膜分离,如果有较好的前端处理和除水设计,同样可以有效除水,降低露点。 /p p   span style=" color: rgb(79, 129, 189) "  5. 空压机的负荷 /span /p p   膜分离和变压吸附对空气气量的需求不同。对于膜分离,纯度越高,需要的空气越多,空压机负荷越大。对于变压吸附,会有反吹现象,所以用气量要远高于理论值,不能简单的按照空氮比得出实际空气量,相应空压机负荷也大于理想情况。 /p p    span style=" color: rgb(79, 129, 189) " 6. 维护保养 /span /p p   膜分离技术移动部件少,所以维护简单。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。另外氮气膜的工作无需很多电子部件的管理和控制,所以可以将更多的电子部件用于监控核心技术参数,保证了发生器的稳定性。变压吸附相对移动部件、电子控件都多,所以维修维护较为繁琐。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" 4.jpg" style=" width: 400px height: 267px " src=" http://img1.17img.cn/17img/images/201801/insimg/caca49db-0fd5-4140-96f8-ad58b3c8b582.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   综上而言,在选择氮气发生器时,不能单一根据是膜分离技术还是变压吸附技术决定好与坏,要根据实际情况和具体应用合理选择。 /p p style=" text-align: center " img width=" 600" height=" 455" title=" 3.jpg" style=" width: 600px height: 455px " src=" http://img1.17img.cn/17img/images/201801/insimg/bef4e3c1-40f2-4e99-8b3f-51de21c7da64.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    span style=" font-family: 楷体,楷体_GB2312, SimKai " strong 毕克 /strong 经过多年的技术积累以及和知名质谱公司的全球合作,根据不同的应用采用最为合理的氮气分离技术,每个环节精益求精,既有膜分离技术的明星产品Genius NM32LA,永不宕机的Genius NM3G等氮气发生器,也有变压吸附技术的Precision Nitrogen氮气发生器和i-Flow大流量制氮系统等产品,根据客户的应用需求提供最合适的解决方案。 /span /p
  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 新品发布 | 得利特气体分析仪器--微量氧分析仪(便携式测氧仪)成功上线
    前段时间,得利特研发团队自行研究,开发了新的气体分析仪器---微量氧分析仪。后期就投入生产,目前全面上线了。 最近销售部的同事对该仪器也有了一定的了解。该仪器采用了高性能的电化学式气体传感器和微处理机技术,具有数字显示、通迅记录等功能。适用于对氮气、氩气、一氧化碳、氢气等还原性气体中的微量氧气浓度连续监测。 本次开发的微量氧分析仪是便携式的有很多功能及特别之处.仪器特点:仪器采用**微量氧检测器;仪器采用大屏幕LCD显示屏;内置大容量电池;实时时钟显示;可联接打印机,实现定时自动打印;具有定时自动存储功能、可随时查看存储数据;具有数据存储、曲线趋势图、打印报表等功能;气路设计别致,有良好的气密性,防渗透性;可用标准气校准。具体技术参数:测量范围:0~10ppm, 0~100ppm,0~1000ppm精度:±5% FS响应时间:T90小于40秒(0~1000ppm)电源:220VAC±22VAC,50Hz±1Hz环境温度:0~40 ℃样气流量:200~400毫升/分进气温度:0~40℃样气压力:小于0.2Mpa(0.05MPa)外型尺寸:240×150×280mm(宽×高×深)仪器重量:3.0kg 得利特公司整合石化科学研究院,中国计量科学研究院,北京铁道科学研究院,计量总站等油品方面、仪器方面、设备方面的专家为技术班底,集思广益,推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等产品,得到用户的广泛赞誉。公司以技术实力为用户提供专业贴心的咨询培训服务,包括设备润滑咨询服务,设备润滑知识培训,润滑系统方案设计、实验室建设方案,第三方油品检测。确保客户解决设备润滑的相关问题!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制