当前位置: 仪器信息网 > 行业主题 > >

瓶坯应力仪原理

仪器信息网瓶坯应力仪原理专题为您提供2024年最新瓶坯应力仪原理价格报价、厂家品牌的相关信息, 包括瓶坯应力仪原理参数、型号等,不管是国产,还是进口品牌的瓶坯应力仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合瓶坯应力仪原理相关的耗材配件、试剂标物,还有瓶坯应力仪原理相关的最新资讯、资料,以及瓶坯应力仪原理相关的解决方案。

瓶坯应力仪原理相关的资讯

  • 输液瓶偏光应力仪的应用与重要性
    输液瓶偏光应力仪在制药包装行业的应用与重要性在现代制药包装行业中,玻璃输液瓶作为常见的药品包装容器,其质量和安全性直接关系到药品的稳定性和患者的用药安全。因此,对玻璃输液瓶的质量检测,特别是对其内应力的测定,显得尤为重要。本文将首先介绍玻璃输液瓶的种类及其在制药包装行业的应用,随后阐述使用偏光应力仪的重要性和必要性,并详细介绍该仪器的测试原理和应用范围。一、玻璃输液瓶的种类与制药包装行业应用玻璃输液瓶根据其用途和特性,可以分为多种类型,如普通的钠钙玻璃输液瓶、硼硅酸盐玻璃输液瓶等。这些玻璃输液瓶因其良好的化学稳定性、透明度高、易于消毒等优点,在制药行业中被广泛应用。它们不仅能够保证药品在存储和运输过程中的安全性,还能有效防止药品与外界环境的接触,确保药品的质量和纯度。二、偏光应力仪的重要性和必要性在玻璃输液瓶的生产过程中,由于温度、压力等工艺参数的变化,玻璃内部可能会产生应力。这些内应力如果过大,不仅会影响玻璃输液瓶的外观质量,还可能导致其在存储和运输过程中发生破裂或泄漏,从而影响药品的安全性和有效性。因此,对玻璃输液瓶的内应力进行准确测定,是确保其质量和安全性的重要手段。偏光应力仪作为一种专门用于测定玻璃内应力的仪器,具有定性和定量测试玻璃内应力的能力。通过使用该仪器,可以及时发现玻璃输液瓶内部存在的应力问题,并采取相应的措施进行改进和优化,从而确保玻璃输液瓶的质量和安全性。三、偏光应力仪的测试原理偏光应力仪采用偏振光干涉原理来检查玻璃内应力或晶体双折射效应。该仪器备有灵敏色片,并应用1/4波片补偿方法,能够根据偏振场中的干涉色序,定性或半定量地测量玻璃的光程差。配合CHY-B壁厚测厚仪,可以准确定量地测量出玻璃内应力数值。四、偏光应力仪的适用范围偏光应力仪不仅适用于玻璃输液瓶的内应力测定,还广泛应用于各种玻璃器皿、玻璃计量量具、玻璃容器、药用和食品包装用玻璃瓶等玻璃制品的内应力值测定。其设计小巧新颖,操作简便,结果直观,可直接在液晶屏上读取。因此,该仪器在制药企业、玻璃制品厂、质检等单位得到了广泛应用。综上所述,偏光应力仪在制药包装行业中具有重要的作用和地位。通过使用该仪器对玻璃输液瓶等玻璃制品进行内应力测定,可以确保这些产品的质量和安全性,为制药行业的发展提供有力保障。
  • 满足4003标准 药典玻璃瓶内应力测定仪
    满足4003标准 药典玻璃瓶内应力测定仪2024年2月,国家药典委发布了《4003 玻璃容器内应力测定法-第二次公示稿》,此标准预计将体现在2025版中国药典的药包材部分。该标准基于2015版YBB药包材标准YBB00162003-2015内应力测定法修订而来,是国内较为完善的药包材玻璃容器内应力测定方法。内应力的重要性内应力是指物件因外因(如受力、湿度、温度变化等)变形时,内部各部分之间产生的相互作用力。当外部载荷消除后,这些应力仍可能残存于物体内部。内应力的存在会降低玻璃的机械强度,增加药品包装在生产、使用及储存过程中的破裂风险。因此,内应力的测定对于药用玻璃容器退火质量的控制至关重要。测定原理玻璃容器内应力的测定通常基于偏振光干涉原理。当玻璃存在内应力时,它会表现出各向异性,产生光的双折射现象。通过偏光应力仪测量双折射光程差,可以定量地表示产品内应力的大小。仪器配备的灵敏色片和1/4波片补偿方法,使得仪器能够根据偏振场中的干涉色序,定性和半定量地测量玻璃的光程差。而玻璃瓶内应力测定仪也符合的标准技术要求,例如在使用偏振光元件和保护件进行观察时,光场边沿的亮度不小于120 cd/m2,所采用的偏振光元件应保证亮场时任何一点偏振度都不小于99%;偏振场不小于85 mm;在起偏镜和检偏镜之间能分别置入565 nm的全波片(灵敏色片)及四分之一波片,波片的慢轴与起偏镜的偏振平面成90°;检偏镜应安装成能相对于起偏镜和全波片或四分之一波片旋转,并且有旋转角度的测量装置。其中4003标准中需要注意的是,基于目前市面上,有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,玻璃瓶内应力测定仪可以同时显示应力旋转角度和光程差,满足各种标准要求。玻璃瓶内应力测定仪作为药品包装玻璃容器检测仪器的专业生产商,紧跟国家标准要求,参与了部分国家药包材标准的制定工作。目前推出的玻璃瓶内应力测定仪,不仅满足《4003 玻璃容器内应力测定法》标准,而且适用于各种玻璃器皿、玻璃计量量具、玻璃容器、药用和食品包装用玻璃瓶等玻璃制品内应力值的测定。产品特点高精度测量:能够精确测量内应力值。直观显示:配备液晶屏,可直接读取测试结果,操作简便快捷。设计新颖:仪器设计小巧,便于使用,适用于多种工作环境。广泛应用:广泛应用于制药企业、玻璃制品厂、质检等单位,满足不同行业的需求。适用范围本仪器适用于玻璃量具、药用玻璃瓶、口服液瓶、安瓿瓶、塑料瓶胚、石英、宝石制品以及其他玻璃容器内应力值的测定,以准确定量地测量出玻璃内应力数值,为玻璃制品的质量控制提供有力支持。通过上述整合,我们提供了关于内应力测定法的背景信息,还详细介绍了玻璃瓶内应力测定仪的产品特点和应用范围,使其更加符合用户的需求。
  • 赛成发布触摸屏偏光应力仪新品
    一、触摸屏偏光应力仪产品简介YLY-H偏光应力仪(玻璃制品应力检查仪)是应用偏振光干涉原理检查玻璃的内应力或晶体双折射效应的仪器。执行 YYB003320O2、 YBBO○ 162003标 准。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力的等级。本仪器适含光学仪器厂、玻璃制晶厂、 实验室作测量光学玻璃、 玻璃制晶及其它光学材料的应力值,二、触摸屏偏光应力仪产品特点l 定性、 定量两种试验模式, 试验空间可调,适用范围广l 仪器可存储200组数据,每组数据 50个测量值l 采用高精度jue对式角度编码器进行测量,测量精度优于2.0nml 触摸屏显示,可同时显示测量角度及光程差数值,用户可直观获得所需数据,使测量直观易读。l 暗视场无需校准,采用了jue对式编码器,偏振场的暗视场总是处于零角度点,因此无需用户校对零点,避免了人为校对暗视场造成的误差。l 绿色节能,采用了更加节能环保的LED光源,相对传统光源节能80%以上。l 配备微型打印机,方便打印输出试验数据l 配备USB接口,可接PC软件控制仪器运行l 自动保存历史试验记录,本地查询,并可导出至电脑端EXCEL格式保存l 触屏端操作用户三级权限设置,完全满足GMP权限认证l 测试记录审计、追踪功能l 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览。l 本地数据与云端数据双重备份,确保数据不会丢失三、技术指标项目特点仪器示值0.1毫微米测量精度2毫微米偏振场直径150亳米捡偏振片旋转角度-180 ~+180度数据保存200组每组数据50个测量值光场边沿亮度120cd/m2可调测量距离范围280mm外形尺寸220mm(L)×350mm(B)×580mm(H)净重12Kg电源AC 220V 50Hz使用环境温度10—40 oC创新点:YLY-H偏光应力仪(玻璃制品应力检查仪)是应用偏振光干涉原理检查玻璃的内应力或晶体双折射效应的仪器。执行 YYB003320O2、 YBBO○ 162003标 准。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力的等级。本仪器适含光学仪器厂、玻璃制晶厂、 实验室作测量光学玻璃、 玻璃制晶及其它光学材料的应力值,
  • 2025《中国药典》4003 公示稿 | 玻璃容器内应力测定法及偏光应力仪应用
    2025《中国药典》4003 公示稿 | 玻璃容器内应力测定法及偏光应力仪应用一、内应力测定的重要性内应力是指物体在受到外力或环境因素(如湿度、温度变化)作用下产生的变形,进而在物体内部各部分之间产生的相互作用力。当这些外力消除后,物体内部仍可能残存应力。这种应力的存在会降低玻璃的机械强度,尤其在药品包装的生产、使用及储存过程中,容易导致破裂等问题。因此,内应力的测定对于药用玻璃容器退火质量的控制至关重要。二、内应力测定法根据2024年2月发布的《4003 玻璃容器内应力测定法-第二次公示稿》,以及2025版中国药典的药包材部分所采纳的标准,内应力的测定主要采用偏光应力仪。该仪器利用偏振光干涉原理,通过测量双折射光程差来定量分析玻璃内应力的大小。当玻璃存在内应力时,其表现为各向异性,产生光的双折射现象。通过旋转检偏镜,可以测得双折射光程差,进而计算出单位厚度的光程差δ,即内应力值。而内应力的测定对于药用玻璃容器的质量控制至关重要。通过二次退火处理,虽然可以显著降低玻璃瓶内应力的水平,但不可避免地会有一定量的残余应力存在。关键在于将这些残余应力控制在一个较低的范围内,以确保产品的质量和性能。对于大多数药品包装用的玻璃容器而言,内应力值应控制在40nm/mm以下,以满足药品质量和安全性的要求。基于目前有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,而三泉中石实验仪器的偏光应力仪,可以同时显示应力旋转角度和光程差,满足各种标准要求。三、偏光应力仪的技术要求偏光应力仪应满足以下技术要求:光场边沿的亮度不小于120 cd/m² ,偏振光元件的偏振度不低于99%,偏振场不小于85 mm。此外,仪器应能在起偏镜和检偏镜之间置入全波片及四分之一波片,且检偏镜可旋转并配备有测量装置。四、偏光应力仪的产品介绍YLY-03S偏光应力仪,是一种设计小巧新颖,操作简便的仪器,广泛应用于制药企业、玻璃制品厂、质检等单位。它不仅可以定性和定量测试玻璃内应力,而且液晶屏可直接读取测试结果,大大提高了测试效率和准确性。该仪器适用于各种玻璃器皿、玻璃计量量具、玻璃容器、药用和食品包装用玻璃瓶等玻璃制品内应力值的测定。五、测试原理与适用范围偏光应力仪采用偏振光干涉原理,配备灵敏色片和1/4波片补偿方法,能够根据偏振场中的干涉色序,定性或半定量地测量玻璃的光程差。结合CHY-B壁厚测厚仪,可以准确定量地测量出玻璃内应力数值。该仪器的适用范围广泛,包括但不限于玻璃量具、药用玻璃瓶、口服液瓶、安瓿瓶、塑料瓶胚、石英、宝石制品以及其他玻璃容器内应力值的测定。六、结论随着国家标准的不断完善和更新,偏光应力仪作为测定玻璃内应力的重要工具,其精确性和便捷性对于保证药品质量和玻璃制品的安全性具有不可替代的作用。我们紧跟国家标准的步伐,参与标准的制定,为药品包装检测领域的发展贡献力量。
  • 赛成发布智能偏光应力仪 YLY-H新品
    产品特点◎ 定性、定量两种试验模式,试验空间可调,适用范围广。 ◎ 仪器可存储200组数据,每组数据 50个测量值。 ◎ 触摸屏显示,可同时显示测量角度及光程差数值,用户可直观获得所需数据,使测量直观易读。 ◎ 绿色节能,采用了更加节能环保的LED光源,相对传统光源节能80%以上。 ◎ 配备微型打印机,方便打印输出试验数据。 ◎ 配备USB接口,可接PC软件控制仪器运行。 ◎ 自动保存历史试验记录,本地查询,并可导出至电脑端EXCEL格式保存。 ◎ 触屏端操作用户三级权限设置,完全满足GMP权限认证。 ◎ 测试记录审计、追踪功能。 ◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览。 ◎ 本地数据与云端数据双重备份,确保数据不会丢失。测试原理YLY-H内智能偏光应力仪应用偏振光干涉原理检查玻璃内应力或晶体双折射效应的仪器。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力数值。测试标准YLY-H依据标准:JJG196-2006《常用玻璃量具检定规程》GB/T4545 《玻璃瓶罐内应力检验方法》GB/T12415 《药用玻璃容器内应力检验方法》 YBB00032005-2005 《钠钙玻璃输液瓶》YBB00332002-2015 《低硼硅玻璃安瓿》应用领域基础应用适用于玻璃输液瓶、玻璃管制(模制)药瓶、管制(模制)注射剂瓶、安瓿瓶、口服液体瓶等偏光内应力测试; 还可以应用于啤酒瓶、白酒瓶等玻璃容器内应力测试。技术指标项目指标仪器示值0.1nm测量精度≤2nm偏振场直径150mm捡偏振片旋转角度-180 ~+180°光场边沿亮度>120cd/m2起偏镜至检偏镜间可调范围280mm光场的光亮度≥800lux数据保存200组每组数据50个测量值外形尺寸220mm(L)×350mm(B)×580mm(H)使用环境温度10—40 oC电源AC 220V 50Hz净重12 kg仪器配置标准配置主机、电源线选购件通讯线缆、专业软件创新点:◎ 定性、定量两种试验模式,试验空间可调,适用范围广。 ◎ 仪器可存储200组数据,每组数据 50个测量值。 ◎ 采用高精度绝对式角度编码器进行测量,测量精度优于2.0Nm。 ◎ 触摸屏显示,可同时显示测量角度及光程差数值,用户可直观获得所需数据,使测量直观易读。 ◎ 暗视场无需校准,采用了绝对式编码器,偏振场的暗视场总是处于零角度点,因此无需用户校。对零点,避免了人为校对暗视场造成的误差。 ◎ 绿色节能,采用了更加节能环保的LED光源,相对传统光源节能80%以上。 ◎ 配备微型打印机,方便打印输出试验数据。 ◎ 配备USB接口,可接PC软件控制仪器运行。 ◎ 自动保存历史试验记录,本地查询,并可导出至电脑端EXCEL格式保存。 ◎ 触屏端操作用户三级权限设置,完全满足GMP权限认证。 ◎ 测试记录审计、追踪功能。 ◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览。 ◎ 本地数据与云端数据双重备份,确保数据不会丢失。 智能偏光应力仪 YLY-H
  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 注射剂瓶胶塞穿刺力测试仪的原理与应用
    注射剂瓶胶塞穿刺力测试仪的原理与应用在现代医疗与制药行业中,注射剂瓶作为药物传输的关键容器,其密封性与安全性直接关系到患者的健康与生命安全。而注射剂瓶的胶塞,作为连接瓶体与外部世界的“门户”,不仅需具备良好的密封性能,还需在药物输送过程中承受各种穿刺操作而不失效,确保药物的无菌、无污染传递。因此,使用三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02对其进行穿刺力测试,成为了保障药品质量与患者安全不可或缺的一环。注射剂瓶胶塞的使用用途与重要性注射剂瓶胶塞,作为药品包装系统的重要组成部分,其主要功能在于提供可靠的密封屏障,防止药品在储存和运输过程中受到外界污染,同时确保在药物使用过程中(如注射给药)能够顺利穿刺而不泄漏。其材质多为橡胶或热塑性弹性体,需具备良好的弹性、耐化学性、生物相容性及适当的硬度,以适应不同药物的存储需求和穿刺操作。穿刺力测试的必要性与意义随着医疗技术的不断进步和药品包装的多样化发展,对注射剂瓶胶塞的性能要求也日益严格。穿刺力测试作为评估胶塞质量的重要手段之一,旨在模拟实际使用过程中穿刺针或输液针等医疗器械对胶塞的穿刺行为,通过量化分析穿刺过程中的力值变化与位移变化,评估胶塞的耐穿刺性能、密封保持能力及可能的破损风险。这对于确保药品在传输过程中的完整性和无菌性至关重要,直接关系到患者的用药安全与治疗效果。注射剂瓶胶塞穿刺力测试仪的测试原理与技术应用济南三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02采用力学测试技术,将试样装夹在测试仪器的两个夹头之间,通过精密控制的相对运动,使标准要求的穿刺针以恒定速度或预设条件刺入试样。在此过程中,仪器实时记录并显示穿刺力(即刺破试样所需的最大力)和拔出力(即将穿刺针从试样中拔出时所需的力)等关键参数。这些数据不仅反映了胶塞的物理强度特性,还能揭示其潜在的密封失效风险,为产品设计与质量控制提供科学依据。注射剂瓶胶塞穿刺力测试仪的广泛应用领域由于穿刺力测试技术的广泛适用性和重要性,其应用范围已远远超出了注射剂瓶胶塞本身,涵盖了各种薄膜、复合膜、电池隔膜、人造皮肤、药品包装用胶塞、组合盖、口服液盖以及各类医疗穿刺器械(如注射针、穿刺针、输液针、采血针等)的穿刺力强度试验。这些测试在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位得到了广泛应用,成为保障产品质量、提升生产效率、降低安全风险的重要工具。总之,三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02作为现代医疗与制药领域的一项重要检测设备,通过科学、精准的测试手段,为药品包装与医疗器械的安全性与有效性提供了坚实保障。
  • 口服液瓶壁厚测厚仪的应用与原理
    口服液瓶壁厚测厚仪的应用与原理在制药包装行业中,口服液瓶作为药品的主要包装形式之一,其质量直接关系到药品的安全性和有效性。口服液瓶不仅需要具备良好的密封性能,以保持药品的稳定性,还需要有适当的壁厚,以确保在运输和使用过程中的耐用性和安全性。口服液瓶的应用口服液瓶广泛应用于液体药品的包装,包括但不限于口服溶液、糖浆、注射液等。这些瓶子的设计和制造必须符合严格的行业标准和法规要求,以保证药品在储存和使用过程中的质量和安全。壁厚测试的重要性壁厚是口服液瓶质量控制的关键参数之一。过薄的瓶壁可能导致瓶子在运输或使用过程中破裂,影响药品的完整性和安全性。而壁厚不均则可能影响药品的储存稳定性,甚至在极端情况下,可能导致药品泄漏或污染。口服液瓶壁厚测厚仪的作用为了确保口服液瓶的壁厚符合标准,需要使用专业的测厚仪器进行精确测量。口服液瓶壁厚测厚仪是一种专门用于测量口服液瓶壁厚的高精度设备,它能够快速、准确地检测出瓶子的壁厚,帮助制药企业及时发现和解决壁厚问题。容栅传感技术的应用口服液瓶壁厚测厚仪采用先进的容栅传感技术,这是一种机械接触式测量方法,通过测量表头与瓶壁之间的距离来确定壁厚。这种方法提高了测量的准确性和可靠性。测量原理口服液瓶壁厚测厚仪仪的工作原理基于容栅传感器的响应。当测量表头接触到瓶子时,传感器会采集相应的数据。这些数据随后被传输到系统中,通过计算得出瓶壁或瓶底的厚度值。这种测量方式不仅快速,而且可以提供高精度的测量结果。结论口服液瓶壁厚测厚仪是制药包装行业不可或缺的工具。它通过采用容栅传感技术,提供了一种高效、准确的测量方法,帮助企业确保口服液瓶的质量和安全性,从而保障药品的质量和患者用药的安全。本文简要介绍了口服液瓶在制药包装行业中的应用,以及壁厚测试的重要性和测厚仪的作用。通过使用这种高精度的仪器,制药企业可以更好地控制产品质量,确保药品的安全性和有效性。
  • 速普仪器发布【SuPro】薄膜应力测试仪FST2000新品
    基于经典基片弯曲法Stoney公式测量原理,采用先进的矩阵激光点阵扫描方式和探测技术,以及智能化的操作,使得FST2000薄膜应力仪特别适合于晶圆类光电薄膜样品的曲率半径和应力测量。独特的双模扫描模式方便适应不同应用场景下需求:Mapping不同区域的薄膜应力分布或快速表征样品整体平均残余应力。 创新点:1.半导体薄膜、光电薄膜专用残余应力测试仪器; 2.兼容区域性薄膜应力分布mapping结果和快速表征样品整体平均残余应力; 3.通过独特对减模式算法,可数据处理校正原始表面不平影响。 【SuPro】薄膜应力测试仪FST2000
  • 实验室全自动洗瓶机的清洗原理和流程,你知道吗?
    实验室全自动洗瓶机是一种专为清洗实验室玻璃瓶皿和其他容器而设计的设备。通过一系列的清洗程序和先进的技术,它能够有效地去除瓶子内部的残留物、污垢,确保瓶子的清洁度和安全性。下面将详细介绍实验室全自动洗瓶机的清洗原理与流程。一、清洗原理1. 高温高压喷水技术:全自动洗瓶机采用高压喷水技术,将水流以极高的压力从喷头喷出,冲击瓶子内部表面。这种高压水流能够剥离并冲刷掉残留物和污垢,确保瓶子内部的洁净。2. 化学清洗:根据需要,全自动洗瓶机还可以添加特定的酸碱清洗液,与瓶子内部的残留物发生乳化剥离作用,使其更容易被清除。二、清洗流程预处理:在开始清洗之前,首先对瓶子进行预处理,包括倒空瓶子、检查瓶身有无破损等。装载:将待清洗的瓶子放入全自动洗瓶机的指定位置,确保瓶子摆放整齐、稳定。启动程序:选择相应的清洗程序或预设的清洗模式,启动洗瓶机。喷水清洗:高压喷水技术开始工作,水流冲击瓶子内部表面,剥离并冲刷掉残留物和污垢。漂洗:使用纯水进行进一步漂洗。 烘干:最后,洗瓶机进行烘干程序,去除瓶子表面的水分,确保瓶子干燥。取出:完成清洗和烘干后,瓶子可以从洗瓶机中取出,备用。实验室全自动洗瓶机的清洗原理和流程是实现高效、自动化清洗的关键。可以清除瓶子内部的残留物、污垢,确保瓶子的清洁度和安全性。这大大提高了实验室的工作效率,降低了操作风险,并节省了人力资源和水资源。转载自:www.hzxpz.com
  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • 微区X射线残余应力仪
    成果名称 微区X射线残余应力仪 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 基于毛细管的微区X射线残余应力仪样机 国内首台基于毛细管X光透镜的应力仪样机研制成功,并在第三届全国喷丸强化学术会议中成功展示,吸引了广大国内国外学者的关注,成为了本次大会的一大亮点,填补了我国微区便携式残余应力仪的空白,相关实验成果被国外杂志Instrumentsand Experimental Techniques接收。 研发关键 现有国产X光残余应力仪的X光源焦斑尺寸大大超过常规衍射仪的焦斑尺寸,毛细管传输X射线的效率要大大降低。在如此苛刻的条件下完成提高应力仪的光强增益,必定要经过毛细管几何参数的优化设计。具体而言,要先建立正确的光源计算模型;根据光束焦斑尺寸,确定透镜的后焦距;透镜的前焦距、透镜长度和外形曲线,以出射光强最大化为基准依次确定。 研究出低粗糙度的毛细管制作工艺条件是另一项研发关键。通过对拉丝温度、拉丝温度梯度分布、送料速度和拉丝速度等多种参数对毛细管内表面粗糙度的影响研究,以获得宽波段、高效率传输大面积发散X光束的最佳制备工艺条件,可使毛细管的效果发挥至最佳。 仪器创新点 可归纳为以下两方面: 微区X射线残余应力仪是首次使用X射线聚焦元件,真正实现微区的残余应力测定功能的技术产品。 在残余应力测定技术方面,通过毛细管X光透镜的使用,首次在国际上提供以发散和会聚为主要光束成分的两种入射X射线,为研究和发展残余应力测定技术提供了新手段。 性能指标 在微区X射线残余应力仪工作距离160mm处,由金属刀口扫描法测量的微分曲线结果显示,该处的光斑尺寸(FWHM)约0.38mm,光斑全宽约0.9mm。计算得到照射在样品的FWHM面积约为0.113,整个光斑面积约为0.636,达到了微区照射效果。 当使用微区X射线残余应力仪测量直径&Phi 2.5mm的钱江弹簧轴向应力(微曲面样品)时,对比常规X射线残余应力仪(配备&Phi 0.63mm光阑准直器),在不同计数时间下&psi 0° 方向衍射峰高增强10.66倍。同理,衍射强度在&psi 0° 方向增强13.45倍。 当使用微区X射线残余应力仪测量直径&Phi 4mm钢珠(曲面样品)的应力时,应力值测量效果良好,平均应力值在-1295.6MPa左右。而使用常规X射线残余应力仪(配备&Phi 0.4mm光阑准直器)测量样品残余应力则预估值偏差较大,平均应力值仅为-261.8MPa。 应用研发 目前国外品牌X射线残余应力仪产品是以提供微焦斑作为其产品的核心支撑,其优势在于它的焦斑面积小,可使单位面积上的光子数增多,进而提高相对光强。如加拿大PROTO公司旗下诸多产品,焦斑大小仅在0.5mm*0.5mm左右。未来结合微焦斑光源,毛细管X光透镜的优势将得以完全发挥。为此,毛细管X光透镜在微区残余应力方面的研究也会逐步向微焦斑类应力仪倾斜,有望达到微区光强增益在20倍以上。目前已有的实验效果来看,经反复进行优化设计的毛细管X光透镜将很有希望完成这一新目标,前景乐观。 应用前景: 微区X射线残余应力仪将重点应用在轻质合金,细焊缝加工件及弹簧,钢珠等工件的应力测试分析上,涉及领域则既包括高新技术,同时又涵盖常规制造业。如在现代航空航天制造业中,轻质合金部件研制的先进性和可靠性等因素决定着轻质合金材料在现代航空航天制造业中的应用,因此测试分析过程显得尤为必要。而弹簧及其它曲面零件的应力测定,则对确保我国汽车、内燃机、火车、飞机等整机的安全与可靠性,具有极为重要的工程应用价值。 掌握窄焊缝、高应力梯度的残余应力分布规律,需将测试面积控制在极小范围,但这对本身衍射强度极低的钛合金等轻质合金而言,几乎是无法实现的。从国际上最新的测试手段看,中子衍射强度高较为可行,但其运行依赖于中子反应堆,目前仅在法国及德国建有实验基地。因此在我国现有条件下,经济实惠地解决该类问题,微区X射线残余应力仪则是较好的发展方向。而且,随着现代机械领域的迅猛发展,弹簧制造行业无论在生产规模还是产量方面均获得了极大促进,弹簧服役条件的苛刻要求与日俱增,急需研究新的弹簧质量检测方法,微区X射线残余应力仪无疑将成为新选择。 知识产权及项目获奖情况: &ldquo 一种应力仪&rdquo ,专利号ZL201320272397.0, 授权时间:2013年11月06日.
  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 药典玻璃容器内应力测定仪要求
    药典玻璃容器内应力测定仪要求2024年2月国家药典委发布了“4003 玻璃容器内应力测定法-第二次公示稿”。此标准最后会体现在2025版中国药典的药包材部分。此标准是在2015版YBB药包材标准上YBB00162003-2015内应力测定法修订而来,对《中国药典》2020年版四部4003玻璃内应力测定法进行修订。应该算是国内较为完善的药包材玻璃容器内应力测定方法。标准解释了玻璃瓶内应力的存在原因:内应力系指物件由于外因(受力或湿度、温度变化等)而变形时,在物件内各部分之间会产生相互作用的内力,以抵抗这种外因的作用,当外部载荷消除后,仍残存在物体内部的应力。它是由于材料内部宏观或微观的组织发生了不均匀的体积变化而产生的,如果玻璃容器中残存不均匀的内应力,将会降低玻璃的机械强度,在药品包装的生产、使用及储存中易出现破裂等问题。内应力的测定主要用于药用玻璃容器退火质量的控制。玻璃瓶内应力的二次退火能有效降低内应力的存在,但是仍有部分残余应力的存在。只不过控制在较低的应力范围即可保证产品质量,例如大部分药品保证玻璃容器要求的应力值低于40nm/mm。结果表示上:基于目前有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,YLY-03S偏光应力仪可以同时显示应力旋转角度和光程差,满足各种标准要求。作为专业从事药品包装玻璃容器检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 速普仪器取得光电版薄膜应力仪国产化突破
    近日,深圳市速普仪器有限公司在西安交通大学创新港校区顺利交付光电版薄膜应力测量仪FST2000。该项目系速普仪器今年继安徽某OLED显示屏公司和宁波大学两套已交付后的第三套FST2000,另外还有三套待交付及若干套即将执行采购。成功实现业界主流光电版薄膜应力仪的国产化替代。 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术(2000年代技术,曾获业界R&D100大奖),抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。做一个比喻,丘陵地貌,尽管整体平均地面是平整的,但是局部是起伏的。因此,第一种路线线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,第二种激光点阵技术路线具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。作为国内同类产品的唯一供货商,速普仪器创造性的提出同时兼容测试效率和细节精度的方案,即激光点阵Mapping面扫模式(适合分析局部应力分布)和L-D线扫模式(适合快速QC质检)。并采用具有自主知识产权(CN201911338140.9)的新型光路设计(更简单可靠)。FST2000薄膜应力仪采用经典的激光曲率法,利用5×5激光点阵对样品表面进行扫描测量,自动获取样品表面曲率半径数值,并自动代入内置Stoney公式获取薄膜应力数值。FST2000薄膜应力测试范围:5MPa-5GPa;曲率半径/薄膜应力重复精度:<1%(曲率半径<20m),<3%(曲率半径<100m);扫描步长:Min. 0.1mm;扫描数据点:Max. 1万点;可视化2D/3D显示。另外,针对不平整表面样品,本仪器具有对减功能模式,即镀膜前后数据点阵根据坐标点逐点对减获得真实薄膜曲率半径和应力分布,通过数据处理校正样品原始表面不平整的影响。同时,本仪器还具有直观且简单的操作界面。本地化技术团队能够提供便捷的售后服务。 深圳市速普仪器有限公司简介:
  • 输液玻璃瓶轴偏差测试仪:守护安全的关键工具
    输液玻璃瓶轴偏差测试仪:守护安全的关键工具在医药包装领域,输液玻璃瓶作为直接关联患者生命安全的重要容器,其品质控制至关重要。输液玻璃瓶种类繁多,包括但不限于普通输液瓶、西林瓶(即硼硅玻璃注射剂瓶)、安瓿瓶等,它们广泛应用于医院、诊所及家庭护理中,用于盛装各类药液、注射液及营养液,确保药物安全、稳定地输送到患者体内。输液玻璃瓶的重要性与多样性输液玻璃瓶不仅要求具有良好的化学稳定性和生物相容性,还需具备足够的机械强度以承受运输、存储及使用过程中可能遇到的各种物理应力。其独特的设计,如瓶肩的强化结构、瓶口的密封设计等,均旨在提高使用的便捷性和安全性。轴偏差测试的必要性与意义轴偏差,即瓶身或瓶口在垂直方向上的偏移量,是衡量输液玻璃瓶制造质量的重要指标之一。过大的轴偏差不仅影响包装的美观度,更重要的是,它可能导致密封不严、药液泄露、瓶身破裂等严重问题,直接威胁到患者的用药安全和药品的有效性。因此,对输液玻璃瓶进行轴偏差测试,是确保药品包装质量、维护患者健康权益的必要环节。输液玻璃瓶轴偏差测试仪的工作原理与应用为精准高效地检测输液玻璃瓶的轴偏差,济南三泉中石实验仪器的玻璃瓶轴偏差测试仪应运而生。该仪器通过巧妙的设计,将瓶底加持固定在水平旋转盘上,确保测试过程中的稳定性。瓶口则与高精度千分表接触,随着旋转盘的匀速旋转360°,千分表实时记录瓶口在垂直方向上的最大与最小偏移量。二者之差的1/2即为该瓶的垂直轴偏差数值,这一数值直接反映了瓶身的垂直度精度。玻璃瓶轴偏差测试仪采用的三爪自定心卡盘,以其高同心度特性确保了测试的准确性;而自由调节高度和方位的支架系统,则赋予了测试仪广泛的适用性,能够轻松应对不同尺寸、形状及材质的瓶容器,包括塑料瓶、玻璃瓶等,覆盖了从食品饮料、化妆品到药品玻璃容器等多个行业。广泛适用,助力品质管控输液玻璃瓶轴偏差测试仪的应用范围极为广泛,它不仅适用于各类医疗用玻璃瓶的检测,还可延伸至食品饮料行业的矿泉水瓶、饮料瓶,以及化妆品行业的各类包装瓶等。对于质检中心、瓶厂、瓶用户及科研单位而言,这款仪器是检测瓶垂直度偏差、提升产品质量、保障市场信誉的重要工具。总之,输液玻璃瓶轴偏差测试仪以其高精度、高效率和广泛适用性,成为了现代包装质量检测体系中不可或缺的一部分。它不仅有助于企业提升产品质量控制水平,更是守护患者安全、促进行业健康发展的有力保障。
  • 150万!清华大学X射线应力分析仪采购项目
    项目编号:清设招第20221304号(0873-2201HW3L1024)项目名称:清华大学X射线应力分析仪采购项目预算金额:150.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1X射线应力分析仪1套150是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.采购用途:用于教学科研。以上货物的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 热机械分析仪原理简介
    p   热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。 /p p   热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title=" 热机械分析仪结构示意图.jpg" width=" 400" height=" 339" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 339px " / /p p style=" text-align: center " strong 热机械分析仪结构示意图 /strong /p p style=" text-align: center " 1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样 /p p   TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title=" TMA常用测量模式示意图.jpg" width=" 400" height=" 134" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 134px " / /p p style=" text-align: center " strong TMA常用测量模式示意图 /strong /p p strong 压缩或膨胀 /strong /p p   两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。 /p p strong 针入模式 /strong /p p   这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。 /p p strong 三点弯曲 /strong /p p   这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。 /p p strong 拉伸模式 /strong /p p   适合薄膜或纤维。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 典型的TMA测量曲线 /span /strong /p p strong 热膨胀系数测量曲线 /strong /p p   热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。 /p p   大多数材料在加热时膨胀。线膨胀系数α定义如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title=" TMA-1.jpg" / /p p 式中,dL为由温度变化dT引起的长度变化 L sub 0 /sub 为温度T sub 0 /sub (通常为室温25℃)时的原始长度 α单位为10 sup -6 /sup K sup -1 /sup 。 /p p strong 玻璃化转变的TMA测量曲线 /strong /p p   测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。 /p p strong 测量杨氏模量的DLTMA曲线 /strong /p p   如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。 /p p   从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。 /p
  • HALT/HASS试验箱原理概述
    p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 0 引言 /strong /span /p p style=" text-align: justify text-indent: 2em " 随着科技的发展,电子设备的集成度越来越高,升级换代的速度越来越快,随之而来的可靠性问题也越来越突出。传统的可靠性试验已经很难满足发展的要求,因此近些年越来越多机构开始引进高加速寿命试验(HALT:Highly Accelerated Life Testing)/高加速应力筛选(HASS:Highly Accelerated Stress Screening)试验方法,用于克服传统的可靠性试验存在的周期长、成本高和效率低等问题。 /p p style=" text-align: justify text-indent: 2em " a)HALTHALT主要应用于产品的研制阶段,是为了得出产品的设计裕度和极限承载能力(破坏或损伤极限)而设计的一种试验,主要试验步骤有: /p p style=" text-align: justify text-indent: 2em " 1)低温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 2)高温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 3)温度循环试验(温度变化速率为60℃/min,5个循环); /p p style=" text-align: justify text-indent: 2em " 4)振动步进应力试验(以5 Grms为步长); /p p style=" text-align: justify text-indent: 2em " 5)综合应力试验(第3)和第4)步综合试验)。 /p p style=" text-align: justify text-indent: 2em " b)HASS /p p style=" text-align: justify text-indent: 2em " HASS应用于产品量产阶段,目的是在极短的时间内发现批量生产的成品是否存在生产质量上的隐患。HASS试验剖面的选择主要是依据HALT的结果、产品性能测试所需要的时间、 产品试验过程中所施加的应力和产品产量等,其一般试验如下所述。& nbsp /p p style=" text-align: justify text-indent: 2em " 1)温度循环 /p p style=" text-align: justify text-indent: 2em " 试验温度一般取工作极限温度范围的80%,试验温度保持时间一般取决于样品温度到达平衡所需要的时间和测试样品工作状态所需要的时间,温度变化速率为40~60℃/min。 /p p style=" text-align: justify text-indent: 2em " 2)振动应力 /p p style=" text-align: justify text-indent: 2em " 振动量级一般取破坏极限的50%,如果超过工作极限,则取工作极限的80%。以上是开展HALT/HASS的基本要求,能满足HALT/HASS试验要求的试验设备要求如下:温度范围为-100~+200℃,温度变化速率为40~60℃/min,气动式三轴六自由度振动台(可产生多轴连续的超高斯宽带伪随机振动信号)的振动频率为5 Hz~10 kHz,振动方向包括X、Y、Z轴向的线加速度和转动加速度。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 1 设备介绍& nbsp /strong /span /p p style=" text-align: justify text-indent: 2em " 基于上述试验要求,需要有一套试验设备才能满足HALT/HASS试验的开展。现以广五所研制的HALT/HASS试验箱来阐述其实现原理。本试验箱可用于电子、电工和军工产品按国标、国军标和行业标准进行上述单项环境应力或多环境综合应力组合的可靠性与模拟环境试验。 /p p style=" text-align: justify text-indent: 2em " strong 1.1 技术指标和性能 /strong /p p style=" text-align: justify text-indent: 2em " a)标称内容积:1.0 m sup 3 /sup 。 /p p style=" text-align: justify text-indent: 2em " b)温度范围:-100~+200℃。 /p p style=" text-align: justify text-indent: 2em " c)温度波动度:≤2 ℃。 /p p style=" text-align: justify text-indent: 2em " d)温度最大变化速率: /p p style=" text-align: justify text-indent: 2em " 1)≥70℃/min(标准负载下,-80~+150℃,全程平均,试验空间入风区控制点测量); /p p style=" text-align: justify text-indent: 2em " 2)≥60℃/min(标准负载下,-100~+200℃,全程平均,试验空间入风区控制点测量)。 /p p style=" text-align: justify text-indent: 2em " e)标准负载:10kg铝锭。 /p p style=" text-align: justify text-indent: 2em " f)气锤振动台:采用三轴6个自由度的随机振动,频率范围为5~10 kHz。 /p p style=" text-align: justify text-indent: 2em " g)振动能量:100 Grms,90%的振动能量集中在5 Hz~4 kHz低频范围内。 /p p style=" text-align: justify text-indent: 2em " h)振动稳定度:± 1 Grms(达到稳定设定值1 min内)。 /p p style=" text-align: justify text-indent: 2em " i)控制精度:± 1 Grms(稳定1 min后),最小1 Grms起振,步进1 Grms。 /p p style=" text-align: justify text-indent: 2em " j)台面振动均匀度:振动台面振动均匀度在30%以内。 /p p style=" text-align: justify text-indent: 2em " strong 1.2 主要特点 /strong /p p style=" text-align: justify text-indent: 2em " a)适用于温度、振动应力综合试验。 /p p style=" text-align: justify text-indent: 2em " b)控制方式:液氮比例控制阀控制冷量,可实现温度变化速率无级可调,高效节能,控制精度高。 /p p style=" text-align: justify text-indent: 2em " c)结构紧凑,占地面积少。 /p p style=" text-align: justify text-indent: 2em " d)噪声低。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 2 试验箱结构及控制原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 试验箱主要由试验箱体、振动机构、液氮机构和电气控制系统组成。其剖面结构图如图1所示,图中主要功能部件名称为:1. 试验箱体保温层,2. 液氮系统,3. 电机及叶轮,4. 气压平衡口(排气口),5. 加热器,6. 出风口,7. 指示灯,8. 人机界面,9. 控制端子,10. 电控部分,11. 气动部分,12. 气锤振动台,13. 安装座,14. 气锤。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/9afcefb0-fa4e-4345-8b8a-156eb0bfd143.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center " strong 图1 试验箱总体结构 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.1 试验箱体 /strong /p p style=" text-align: justify text-indent: 2em " 试验箱体由外箱、内箱和保温层组成。外箱为双面镀锌钢板,表面喷塑处理,外箱内侧辅以钣金结构件或型材作为骨架加强。各个零件间采用CO sub 2 /sub 气体保护电弧焊、点焊和压铆等工艺进行连接,整体结构牢固美观。内箱材料选用需考虑到满足温度范围、防止生锈、振动和可焊接性等因素,板材方面使用SUS304不锈钢板,具有高的耐蚀性,较好的冷作成型和焊接性,很好的机械性能。在低温、室温和高温下均有较高的塑性和韧性。试验箱体保温层由硬质聚氨脂发泡层和玻璃纤维材料进行绝热保温,硬质聚氨脂板是一种具有保温与防水功能的新型合成材料,其导热系数仅0.022~0.033 W/(m.K)。硬质聚氨脂发泡层通过多异氰酸酯、组合聚醚(多元醇)、阻燃剂、催化剂和发泡剂等其他助剂混合而成,覆盖在外箱内表面。玻璃纤维是一种无机质纤维,具有成型好、体积密度小、热导率低、保温绝热、吸音性能好、耐腐蚀和化学性能稳定等特点。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 电气控制 /strong /p p style=" text-align: justify text-indent: 2em " 本试验箱的电控部分所使用的测量系统、IO模块、HMI和CPU模块都是由广五所研发,使用RS485通讯方式,电控系统的总体框图如图2所示。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/77b077ac-921a-4a77-81e7-40557824311d.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center " strong 图2 试验箱电控总体框图 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.3 温度调节机构及控制 /strong /p p style=" text-align: justify text-indent: 2em " 温度调节结构是温度控制的关键部分,包括加热器、液氮系统和搅拌风机。其中,加热器、液氮雾化喷嘴和搅拌风机按顺序(如图1所示)设置在箱体的气体调节通道内。其工作原理为:采用强制空气对流的方法来进行热量的传递, 以保证试验空间的温度均匀性。 试验箱气体由离心风机叶轮从回风口吸入, 通过导流装置后吹出, 可以使调节通道内的加热器和雾化后的液氮进行充分的热量交换,经过搅拌均匀后的风经导风口吹出进入试验区域, 导风口还可以安装导风管,可以通过导风管使大件样品和散热口不在风流方向的样品内部能以最快的速率实现温度变化。出风口设置有温度测量元件,连接至测量板,测量数据通过通讯电缆传送给CPU单元,算法运算后输出控制量。 /p p style=" text-align: justify text-indent: 2em " 本试验箱要求温度变化速率要超过60℃/min,这是温度控制的关键,升温功能由镍铬丝通电发热实现。镍铬丝具有较高的电阻率,表面抗氧化性好,温度级别高,并且在高温下有较高的强度,有良好的加工性能和可焊性,是现有高效的加热材料,应用时设计为三相平衡。由于机械制冷很难实现这样的降温速率,因此本试验箱采用的是液氮制冷方式。液氮的沸点低,价格相对便宜,常压下液氮的温度为-196℃,1 m3的液氮可以膨胀至696m3、21℃的纯气态氮。虽然液氮汽化后变为氮气,氮气是惰性气体,在大气中重量比75.5%,但是在实验室内,如果试验时氮气不能及时排到室外,可能会造成室内人员缺氧,因此试验箱配有气压平衡装置把氮气排到室外,由于气化过程中压强升高,气体能从试验区顺利排出,避免箱体受压变形,这也是气压平衡装置名称的由来。 /p p style=" text-align: justify text-indent: 2em " 液氮系统是温度调节结构的核心,其结构示意图如图3所示,各个功能部分的名称如下:1.空气压力报警,2.空气调压阀,3.空气电气比例阀,4.液氮比例控制阀,5.液氮管路排气电磁阀,6.液氮压力安全泄压阀,7.液氮压力报警,8.液氮主管路电磁阀,9.保温层,10.液氮雾化喷嘴。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/75049ce4-c225-4da0-8243-899fea2e5ab3.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center " strong 图3 液氮系统图 /strong /p p style=" text-align: justify text-indent: 2em " 液氮由氮气罐接口接入,通过液氮电磁阀控制通断,液氮电磁阀在运行时打开,设备故障或停止时关闭。排气阀的作用是试验前对液氮管路进行排空,保证试验时管路里面都是液态氮,以确保试验的可靠性、稳定性和可重复性。液氮比例控制阀属于节流元件,是控制执行器的关键器件,开度在0~100范围接近线性的输出,以利于大范围的调整,能保证降温时的大流量要求,也可以满足恒定时小流量的需要,具有明显的节能效果。由于液氮在常压下 span style=" text-indent: 2em " 的蒸发温度为-196℃,与试验设定温度相差很大,因而需要精确控制流量才不会造成温度过冲或大幅回升。为了保证对温度的精确控制,就要考虑响应时间的问题,传统的电动执行装置响应时间过长,明显不能满足这个需要。因此本试验箱采用的是气动驱动以保证快速响应。 为了使液氮比例控制阀的响应速率满足要求,我们使用了一个称为电气比例阀的驱动器来控制供气的压强, 它可以把控制输出的模拟电信号转化为压强输出,电气比例阀的输入信号 类型及范围需要和控制输出一致,输出压强范围要和液氮比例控制阀一致,这样才能保证控制精度。为了防止快速升温、降温过程中过冲量过大,还需要做控制算法上的处理,如果不能及时预判当前温差、温度变化的速率,就会造成过冲量大,震荡次数多,或者过早减少输出保证不了速率。针对长距离快速温度变化,对设定曲线增加一些非线性的降温处理,并在降温转恒温阶段由PID控制切换到PI控制。针对短距离步进,使用模糊控制加PID的控制方式,并对输出的范围加以约束。经过液氮比例控制阀的液化氮送到雾化组件进行雾化,雾化组件的核心部件是液氮喷嘴,其作用就是把液氮雾化,喷到通道后快速汽化,雾化后颗粒的大小、喷射角度和流量的多少都要与降温的需要相一致,这样才能保证控制精度。流量决定了降温速率的达成可能性,喷射角度和雾化后颗粒直径决定了换热的效率,颗粒越小越好,喷射角度越大越好。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.3 振动系统及控制 /strong /p p style=" text-align: justify text-indent: 2em " 振动台系统由振动台、供气系统和控制系统组成。 /p p style=" text-align: justify text-indent: 2em " 振动台有两层结构面板,由结构螺丝连接,上层固定待测物,下层锁紧气锤,其特点是台面质量轻,同时增加台面刚性,刚性加强后可以有更好的振动传导特性,低频振动能量较高。频率范围更宽,扩展到5~1 000 Hz,并且90%的能量都集中在5~4 000 Hz范围内,因为大部分电子产品的失效频率都集中在这一频段内,可以有效地快速激发产品故障。 /p p style=" text-align: justify text-indent: 2em " 振动台上表面采用衬垫式的安装螺孔,并有凸起部分,采用此结构的设计理念,一是可以改善振动的传导特性,把更多的振动激励传导到样品上;第二是凸起结构可以使得样品或夹具和台体表面具有一定的空余间隙,风流可以顺利通过样品或夹具底部从而保证样品的上下表面温度更加均匀。 /p p style=" text-align: justify text-indent: 2em " 振动台面增加陶瓷涂层的结构设计,可以抗腐蚀,耐高低温,更好地保护振动平台和气锤,延长使用寿命;还可以保证设备长时间在高低温环境下运行,延长设备的使用寿命。 /p p style=" text-align: justify text-indent: 2em " 气锤分大中小3种不同的型号,多种气锤的组合更有利于台面激励的均匀性,采用高压油雾器对气锤进行润滑,可以降低气锤的故障率,延长气锤的使用寿命。排气时气体统一由消声器排出,降低振动噪音。 /p p style=" text-align: justify text-indent: 2em " 振动台安装在箱内弹簧隔离座上,可起到减震作用,不影响气锤工作时的激励作用。在密封连接处理上,振动台面与试验箱底板采用软连接,需要时可以拆装。 /p p style=" text-align: justify text-indent: 2em " 对振动台的控制其实就是对气锤的控制,也就是对进入气锤的气体压强的控制,有点类似于液氮的控制方法,既需要振动的快速性又需要稳定性,这里也用到了电气比例阀。由于加速度的测量不像温度测量那样稳定,需要用到振动信号的转换板,将其转化为模拟信号或者通过通讯反馈到CPU单元,进行算法运算,输出模拟信号给电气比例阀,控制进入气锤的气体压强,从而控制气锤产生的激励。只要气源压力和供气管路保证流量,正常的负反馈控制都可以实现。这里有两个难点,都属于硬件的固有特性方面的问题。一个是加速度传感器的信号微弱,测量值不够精确稳定,需要在测量时做滤波处理,转换为数字量后还可能需要再次做滤波处理,这两次滤波效果会直接影响控制精度和控制品质;另一个就是气锤在较小能量级时整个台面不太稳定,会造成加速度传感器测量跳动比较大,也会影响控制品质,这时候需要更慢的输出变化。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em " 本文对HALT/HASS试验箱的结构和工作原理进行了阐述,以上系统经多个客户的使用证明完全满足HALT/HASS的要求。通过该试验箱进行HALT/HASS能切实提高电子设备的可靠性, 大大地降低试验成本。此结构简单紧凑,运行噪声小,能耗适中,可靠性高。此类试验设备在国内的产品化对HALT/HASS试验的推进起到了积极作用,可大大地提高电子行业及其他相关行业产品整体的可靠性。 /p p br/ /p
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 6558万元 西工大第二个重大仪器专项获批
    西工大新闻网11月22日电 日前,国家科技部做出批复,由西北工业大学作为牵头单位,经工业和信息化部组织申报的国家重大科学仪器设备开发专项&ldquo 流体壁面剪应力测试仪开发与应用&rdquo 项目正式立项。项目研究周期4年,研究经费6558万元,其中国拨经费3892万元。   国家重大科学仪器设备开发专项是科技部、财政部于2011年启动,旨在推动科学仪器设备开发和应用,提高我国科学仪器设备的自主创新能力,支撑科技创新,服务经济和社会发展的开发专项。重点支持新原理、新方法和新技术的重大科学仪器设备,已有重大科学仪器设备(装置)创新成果的工程化,重要通用科学仪器设备(含核心基础器件)以及其他重要科学仪器设备的开发。   科技部国家重大科学仪器设备开发专项的实施以需求为牵引,以应用为导向,推进政产学研用结合,以市场前景广泛的重大科学仪器设备产品开发和产业化应用为目标,强调面向市场、面向应用、面向产业化。除仪器设备开发单位外,产业化单位、应用单位也全程参与项目的组织实施过程,通过开展技术研究和应用开发,形成&ldquo 皮实耐用&rdquo 、功能丰富的重大科学仪器设备产品,并服务科学研究和经济社会发展。   &ldquo 流体壁面剪应力测试仪开发与应用&rdquo 项目以航空航天飞行器、新型船舶等国家重大工程为背景,以实验流体力学仪器的研究开发为目标,研制具有一定功能的流体壁面剪应力测试仪样机,最终形成具有自主知识产权、功能健全、质量稳定可靠的流体壁面剪应力测试仪。随着该项目的实施,2020年,将达到年产整机150台生产能力,为我国航空、航天、发动机、船舶及水利工程提供测试技术支撑。   流体壁面剪应力是研究边界层流动状态的最直接物理量,是掌握与控制摩擦阻力的最重要依据。由于难度极高,国内外一直没有流体壁面剪应力的有效测试手段(更无专门仪器),这已成为影响领域科技和工业发展的重大问题。西北工业大学经长期攻关,发挥微机电系统(MEMS)技术优势,率先研发出新型微传感器,解决了核心测量器件的瓶颈问题,荣获2010年国家技术发明二等奖。   2013年,国家科技部共批复国家重大科学仪器设备开发专项项目66项,以高校作为牵头单位的项目仅有6项,这也是西工大第二个获此专项资助的项目。
  • 西电科大国家重大仪器项目获批 突破等离子体传输瓶颈
    从西安电子科技大学获悉,西电科大申报的国家自然科学基金委员会国家重大科研仪器研制项目(部门推荐类)“临近空间高速目标等离子体电磁科学实验研究装置”日前获得批准,实现了西电国家重大科研仪器项目零的突破,对解决“黑障”难题、实现临近空间高速飞行器全程测控与可靠探测、拓展等离子体电磁物理学前沿研究、促进临近空间开发、提升空间探索能力具有重要理论意义。  该项目是2016年基金委批准的4个项目之一,也是信息学部今年唯一被批准的项目,获直接资助经费6712.34万元,项目负责人是西安电子科技大学空间科学与技术学院院长包为民院士。该项目联合了浙江大学、哈尔滨工业大学、中国人民解放军空军工程大学、中国科学院合肥物质科学研究院、北京遥测技术研究所等单位共同申报,在通过基金委组织的两轮会议评审脱颖而出后又顺利通过9月份专家现场考察,最终获得立项。据了解,重大科研仪器研制项目(部门推荐类)自2011年立项以来,全国共有40余个项目获批,其中信息学部项目共批准了7项。  据介绍,该项目将开拓等离子体物理学、空气动力学、电磁学、控制与信息传输理论多学科交叉研究能力,以期揭示高速目标等离子体与电磁波相互作用新机理,发展电磁调控等离子体特性新途径,突破高速目标等离子体信息传输及目标探测的理论瓶颈。  国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,加强顶层设计、明确重点发展方向,鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。资助目标为通过关键核心技术突破或集成创新,用于发现新现象、揭示新规律、验证新原理、获取新数据的科研仪器设备的研制。
  • 半导体快速退火炉的原理和应用
    半导体快速退火炉(RTP)是一种特殊的加热设备,能够在短时间内将半导体材料迅速加热到高温,并通过快速冷却的方式使其达到非常高的温度梯度。快速退火炉在半导体材料制造中广泛应用,如CMOS器件后端制程、GaN薄膜制备、SiC材料晶体生长以及抛光后退火等。一、快速退火炉的原理半导体快速退火炉通过高功率的电热元件,如加热电阻来产生高温。在快速退火炉中,通常采用氢气或氮气作为气氛保护,以防止半导体材料表面氧化和污染。半导体材料在高温下快速退火后,会重新结晶和再结晶,从而使晶体缺陷减少,改善半导体的电学性能,提高设备的可靠性和使用寿命。1.1快速退火(RTA)与传统退火相比,快速退火具有更高的加热和冷却速度。通过快速加热和冷却,可以缩短退火时间,提高生产效率。1.2快速热处理(RTP)热处理是半导体制造中的一项关键技术,它可以改变材料的微观结构和性能。在热处理过程中,材料被加热到高温,然后进行保温和冷却。这个过程中,材料内部的原子会发生重新排列,从而改变材料的物理、化学和机械性质。二、半导体退火炉的应用领域1.封装工艺在封装工艺中,快速退火炉主要用于引线的切割和组装。引线经过切割和组装后,可能会产生内应力,影响封装的稳定性和可靠性。通过快速退火处理,可以消除引线内的应力,提高封装的稳定性和可靠性,保证产品的使用寿命。2.CMOS器件后端制程在CMOS器件后端制程中,快速退火炉可用于修复制程中产生的损伤和缺陷,增强器件的电学性能。通过快速退火处理,可以减少CMOS器件中的氧化物陷阱电荷和界面态密度,提高器件的可靠性和寿命。3.GaN薄膜制备GaN是一种重要的宽禁带半导体材料,具有优异的光电性能和稳定性。在GaN薄膜制备过程中,快速退火炉可用于提高薄膜的结晶质量和表面平滑度。通过快速退火处理,可以消除薄膜中的应力,减少缺陷,提高GaN薄膜的光电性能和稳定性。4.SiC材料晶体生长SiC是一种具有高热导率、高击穿电压、高饱和电子速度等优良特性的宽禁带半导体材料。在SiC材料晶体生长过程中,快速退火炉可用于提高晶体生长的质量和尺寸,减少缺陷和氧化。通过快速退火处理,可以消除晶体中的应力,提高SiC材料的晶体品质和性能。5.抛光后退火在半导体材料抛光后,表面会产生损伤和缺陷,影响设备的性能。快速退火炉可用于抛光后的迅速修复损伤和缺陷,使表面更加平滑,提高设备的性能。通过快速退火处理,可以减少表面粗糙度,消除应力,提高材料的电学性能和可靠性。
  • MFN访谈丨基于Cos-Alpha法的快速简易X射线残余应力测量前沿技术
    本着“创造新价值”的理念,技术开发公司PULSTEC推出了一款真正便携式快速无损X射线残余应力分析仪。日本PULSTEC Industrial Co., Ltd.利用创新cos-alpha应力分析方法,开发出一种快速、可靠、高度便携的X射线残余应力分析仪。近期,MFN对日本PULSTEC Industrial Co., Ltd.的销售总监Yoshiyuki Aono和全球销售经理Yoshinobu Teramoto进行了采访,本采访全文刊登于MFN 2021 Vol.22。 (?)MFN:先请介绍一下贵公司PULSTEC。 (!) Y. A.:PULSTEC Industrial Co., Ltd.成立于1969年,距今已有52年的历史。公司位于日本静冈县滨松市,差不多位于日本主岛的中心,在东京和大阪之间。滨松是一座工业城市,人口约80万,是雅马哈、本田和铃木等汽车和乐器行业许多知名公司的长期驻地。PULSTEC初作为这些行业的各种测量仪器和系统的开发商和供应商赢得了良好的声誉,经常为客户开发定制产品以满足客户的技术指标需求。凭借过去的研发经历,PULSTEC工程师在电子、机械、软件技术,特别是用于分析微弱电信号和光学技术的测量仪器方面积累了丰富的经验。创业期过后,PULSTEC通过向全球高科技市场推出原创产品,成功拓展了业务领域,并在东京证券交易所上市。我们的业务持续多元化发展,进入了不同的领域,例如钢铁行业、光学测量和医疗器械领域等等。在过去的52年里,我们与日本及其他各地的客户所建立的良好合作关系是我们企业的生存之本。 PULSTEC总部Yoshiyuki Aono,PULSTEC Industrial Co., Ltd.总监(?)MFN:请向我们介绍一下PULSTEC便携式X射线残余应力分析仪。 (!)Y. A.:在过去,残余应力测量装置十分复杂且非常耗时,而且由于所用测量仪器的设计和剂量率等原因,通常只能由接受过专业培训的人员在实验室中使用。我们开发的这款便携式残余应力分析仪辐射曝光低、安装和操作简单,因此残余应力测量变得更快、更轻松。该仪器实现了分析技术的飞跃发展,其中配备了一个专用大面积二维X射线探测器,与X射线管一起安装于小型便携式装置中。此外,全自动cos-alpha测量数据分析方法将操作者对测量的干预降到了低。Cos-alpha分析方法是一位日本教授在1978年提出的。这种测量方法采用了完整的“德拜-谢乐环”(德拜环)数据,这里的德拜环数据由二维探测器在单次短时间X射线曝光后采集获得。在cos-alpha方法发展的早期阶段,必须使用X射线胶片,然后在对曝光的胶片进行显影后方可得到德拜环图像,并通过手动计算来确定残余应力。近期,PULSTEC与该教授合作,大改进了对衍射X射线的检测和分析效果。应用PULSTEC技术,对样品进行单次短时间X射线曝光,随后进行X射线探测、分析,然后立即重置探测器,这些操作可以在几分钟内完成,而且实现了全自动化。我们通过在便携式应力分析仪中使用影像板(IP)代替X射线敏感胶片实现了这一技术,该影像板可重复使用并可自动读取。我们已经在先进研发工程领域,特别是在机械制造和工程结构领域使用cos-alpha方法测量残余应力的应用中获得了很多成功案例。 早在2012年,我们就发布了X射线残余应力分析仪的版本。一开始,有人怀疑该系统是否可以与现有的XRD方法相媲美,比较有代表性的问题就是“是否可以使用如此小巧简单的仪器测量残余应力?”2020年,cos-alpha方法经材料科学学会批准成为了日本学术协会的一项标准,并对该仪器的测量质量进行了立验证。在标准化工作组进行大量循环测试后,他们验证了这种测量方法与现有基于XRD的方法之间的相关性。此外,他们还证实了基于二维探测器和单次低功率短时X射线曝光技术的德拜环残余应力分析方法的实用性和准确性。分析得出的结论是,该项技术在未来可能会得到广泛应用,因此需要考虑将其标准化。感谢您给予机会介绍这项技术!我希望这些信息能够对研究人员和工程师有所帮助。 Yoshiyuki Aono(右)和全球销售经理Yoshinobu Teramoto(左) (?)MFN:目前的业务发展如何? (!)Y. T.:到目前为止,我们已经在各地的各种学术会议和展览中遇到了许多工程师和研究人员,他们的反馈证实了测量工程组件和结构中残余应力的重要性。我们已经了解到了对因该设备的体积小、重量轻而带来的可移动性和便携性有需求的各应用领域;例如,现场应用以及与机器人系统的集成。目前,PULSTEC的工程师已经拥有了丰富的经验,并通过与客户的密切合作提出了各种解决方案以满足客户的需求。目前,PULSTEC已经在17个安装了400多台便携式X射线残余应力分析仪;在本文发表时,可能会达到450台。我们的销售基地位于滨松市,在日本东京和美国加利福尼亚设有分支机构。PULSTEC的客户群遍布全球,因此与诸多代理公司建立合作伙伴关系非常必要。例如,在欧洲,我们的合作伙伴之一是德国创新企业“Sentenso”,该公司在表面增强工程方面拥有丰富的经验。此外,我们的系统也被用于诸多大学和研究实验室中,包括日本、美国、英国、德国、中国和新加坡,以及各大主要汽车制造商和许多其他工程制造企业。我想将我们开发的系统介绍给全更多的人,希望它能够帮助从事研发和生产的人员,特别是诸如汽车、机械、航空航天领域等等各个行业的技术人员。我们相信,这一系统的广泛推广将有助于开发新技术及优质安全产品。 (?)MFN:未来有哪些计划? (!)Y. T.:我们不仅开发了主机系统,还开发了各种测量辅助工具和屏蔽柜等安全设施,这些将作为选件提供给有需求的客户。PULSTEC致力于与我们的客户保持良好的合作沟通关系,倾听他们的需求并为其提供佳解决方案。从以往来看,残余应力测量系统的便携性解决了许多现场测量问题。PULSTEC开发了各种辅助工具来帮助解决现场测试问题。某些情况下,组件形状复杂,有些客户可能需要测量大型物体,而另一些客户则可能需要测量小零件,其中可能是狭窄部位等等。事实证明,使用其他类型的XRD系统进行这类测量很难获得可靠的数据。我们提供的选件之一就是各种孔径的准直器和工具以改变X射线斑点尺寸。同时,我们还提供了多种类型的X射线管。为了充分利用测量速度快这一性能,我们提供了一个自动Mapping选件,可以实现区域应力测量。还有一个显微观察工具选件,用于定位小直径的X射线斑点。其中有一位客户需要对大型零件进行许多测量,我们的工程师设计并制造了一辆推车用来支撑X射线残余应力分析仪。 现场测量显微镜工具 我们在分析金属表面精加工处理引起的应力方面拥有丰富的经验。XRD方法是一种非常合适的表面/次表面残余应力测量手段;但偶尔需要确定应力随零件表面以下深度的变化情况。因此,PULSTEC开发了一款电解抛光机,可用于通过电化学方法对金属做剥层处理,通过重复“抛光-测量”操作,可以得到残余应力随深度变化的分布曲线。增材制造技术是一项新兴技术,通常需要在3D打印中进行残余应力测量。我认为,随着越来越多的制造商使用这种生产方法,表面应力分布图形式的残余应力测量结果将成为许多行业更为重要的参考数据。近期,我们将我们的X射线衍射技术应用到了一种新的测量手段中,即称为“muraR”的“非接触表面硬度变化扫描仪”。这不是单一的X射线点测量,而是对物体表面进行X射线扫描。例如,该扫描仪已用于检测热处理工艺引起的偏差或变化,这种变化增强了晶体结构的变形,且与硬度测量结果有关;类似地,对于更局部化的结构变化,例如在机械烧蚀后,这些变化导致了硬度的局部变化。鉴于其扫描区域大且分析时间短,我们预计该仪器将作为钢铁产品制造质量控制的一部分而用于生产加工中。PULSTEC持续为客户提供优质解决方案。 MFN非常感谢Yoshiyuki Aono和Yoshinobu Teramoto接受此次采访! 原文链接:https://www.mfn.li/archive/issue_view.php?id=2112&kat=6*有删节 编者:QUANTUM DESIGN中国公司于2015年将PULSTEC公司小而轻的便携式X射线残余应力分析仪引进中国,目前已在国内销售安装近百台,客户遍布高校、科研院所及各工业领域。关注Quantum Design China微信公众号,在对话框中输入“残余应力”了解更多信息。
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制