当前位置: 仪器信息网 > 行业主题 > >

差示扫描热量计

仪器信息网差示扫描热量计专题为您提供2024年最新差示扫描热量计价格报价、厂家品牌的相关信息, 包括差示扫描热量计参数、型号等,不管是国产,还是进口品牌的差示扫描热量计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差示扫描热量计相关的耗材配件、试剂标物,还有差示扫描热量计相关的最新资讯、资料,以及差示扫描热量计相关的解决方案。

差示扫描热量计相关的论坛

  • 选购热分析仪或差式扫描热量计(DSC)

    本人欲选购一台热分析仪或差式扫描热量计(DSC),用于测量聚乙烯(PE)原料及产品的氧化诱导期,因本人不懂这方面测试,希望有熟悉相关设备的朋友帮忙。也希望设备厂家介绍或寄资料并报价。E-mail:xatwa@sohu.com

  • 水流式热量计测定热量的操作步骤

    (1)试验准备工作 ①用标准容量瓶校正湿式气体流量计,得出校正系数f1流。量计中的水温与室温相差应不大于0.5℃。 ②将热量计(量热仪)垂直放好,并装上空气湿润器。 ③将温度计插入热量计中水流转弯中心处,水银球不应与内壁接触,烟气温度计插人深度应使水银球在排烟管的中心线上。 ④装好整个系统,按规定在燃气稳压器、燃气及空气湿润器中加水。 ⑤燃气系统气密性检验。在工作压力下,持续5min压力应不下降。 ⑥排放燃气系统中的空气。打开阔门,从燃烧器向外放气,使气体流量计转一圈并确认流量计中只有燃气后,点燃燃烧器。 ⑦调节燃烧器的一次空气调节板,使火焰具有清晰的内焰锥且稳定燃烧。 ⑧调节燃气稳压器上的重块或燃气阀门,使热量计的热负荷应保持标定时的热负荷。 ⑨调节空气湿润器的空气调节门,使热量计入口空气湿度应为80%大于或小于5%的要求。 ⑩打开进水阀并将热量计的进水调节阀放在中间位置,装入已点燃的燃烧器,当出口水温上升后,拨动调节阀,使热量计的进、出口水的温度差达到8~12℃的要求。 ⑩调节热量计的排烟阀,使热量计的排烟温度与进口水的温度差0~2℃。 (2)操作步骤 ①将热量计出水口切换阀指向排水口。 ②热量计运行30min后,当进、出口水温达到稳定,冷凝水出口处凝结水均匀下落时,方可进行测定。 ③用放大镜试读进、出口水温度,读数应精确到小数点后二位。 ④测出盛水器净重,读数应精确到克。 ⑤当气体流量计指针指零时,记下流量计初读数并把冷凝水量筒放在热量计的冷凝水出口下方,开始测定。 ⑥当流量计指针指向某预定读数时,转动出水口切换阀,使水流至盛水器中。当燃气流过预定体积v后,再将切换阀转回原位。在此期间读出并记录l0次以上进、出口水温(t1与t2),并记下流过的燃气量V与相应的水量w,读数应精确到5g。 ⑦重复⑥操作步骤,记下第二次的w、V及tl、t2。 ⑧当流量计指针指到某预定终读数时,将冷凝水量筒取出称重,并记录冷凝水量W,读数应精确到0.5ml,同时记下流量计的终读数,计算出与w相对应的燃气消耗量V’。 ⑨根据以上两次测得的w、v及tl、t2值,求得两个高位热值GwQ1与GwQ2,当其差值大于1%时,结果无效应重测。 ⑩重复⑤~⑪条规定的操作步骤,取第二组测试结果。 ⑪根据第一组与第二组测试结果,求得两个低位热值QDwl与QDw2,当其差值大于1%时,结果无效,应重测。

  • 氧弹式热量计

    有哪位大虾知道用氧弹式热量计检测食品中热量的方法;用哪种型号的热量计呢

  • 热量计````````````````

    热量计的功用是测量在热力网中用户所取用的热量。热量的测量方法是测量送、回水管路中的水量及温差,并将这些 量相乘和进行积分。 热量可根据下列方程式计算:http://images.admin5.com/forum/201305/06/102247umw0nr2rtw7wrtwv.jpg 式中 q——热量,大卡; c——水的比热,大卡/公斤·度; G——流量,公斤/时; tl——送水管路中的水温,度; t2——回水管路中的水温,度; T——时间,小时。 热量针是个复杂的仪表,它包括水量测定仪,温差测定仪以及积分装置。 图16-23所示是一种T9B-14型热量计,它由:a)测量水量的装置;6)测量进、出口温差的装置;b)水量与温差乘积装置;i)测量和积算装置等四部分元件组成。http://images.admin5.com/forum/201305/06/102319upjyr0p9jr0y0jn9.jpg 1-放大器;2-可逆电机;3-流量表;4-凸输;5-发送器;6、10-滑线电阻;7-测量电桥;8、9-出入口电阻温度计; 11-可逆电机;12-放大器;13-热量表。 水量的测量是采用节流元件(例如孔板)和按差动变压器系统工作的薄膜盖压计。当水量改变时,差动变压器中产生的不平衡电压送到电子放大器1的输入端,放大器的输出端连接着可逆电动机2,它带动凸输4和可变电阻6。凸输旋转时,移动二次仪表线圈5的铁心,使系统恢复平衡。与此同时,电动机还转动流量表的刻度盘。 送、回水的温差是由两个电阻温度种8和9进行测量。这两个电阻构成测量电桥7的两个桥臂,测量电桥的电压是12伏,由电子放大器12的变压器线圈取得,井且在共供电回路中接入变压器6。 在测量电桥对角线上接入变阻器10,变阻器10上如以变压器专用线圈供应的0.3伏的电压。电桥的不平衡电压与变阻器10上所取得的合成电压送到电子放大器l2的输入端。在放大器的输出端连接着可逆电动机11,它带动变阻器10的滑键和热量计13的刻度盘。 当水量改变时,可逆电动机11一方面移动流量表的刻度盘3,同时移变交阻器6的滑键,改变测量电桥7的供电电压,从而改变了测量电桥的不平衡电压。当水温差改变时,由于电阻温度计8和9的数值的改变,也会改变测量电桥不平衡电压。 测量电桥不平衡电压改变时,可逆电动机11便转动,它一方面带动热量计的刻度盘13,同时带动变阻器10的滑键,改变所取出的补偿电压的数值,使系统恢复平衡。 测量电桥的不平衡电压是与电桥桥臂的比值及与电压的相乘积成正比,故热量计电子放大器输入的信号是与水量和温童的乘积,即与耗热率(大卡/秒)成正比。 如果热量表上带有类似流量表上的那种职算装置,那么积算装置的积算就是消耗的热量,大卡。 热量表具有两个旋转刻度盘,一个量水量0—500立方米/时,另一个是耗热率0-20兆卡/秒。仪表的误差不超过±1%。

  • 【分享】什么叫热量计的热容量?为什么要标定热量计的热容量?什么情况下要重新标定热量计的热容量?

    热量计的热容量是指该仪器的量热仪系统温度每升高1℃所需要吸收的热量,以J/K(或J/℃)表示。    要想根据试样燃烧后水温的升高来计算试样的发热量,必须首先知道水温升高1℃需要吸收多少热量。因热量计的量热系统中,除了水吸收热量外,氧弹、内筒、温度计和搅拌器等都会吸热,而且各自的吸热情况不一样(各种材料的比热容不同),因素比较复杂,不可能依靠简单的数学计算获得,只能采用已知热值的基准物如苯甲酸来实际标定出量热系统温度每升高1℃所要吸收的热量,也即标定出热量计的热容量。    热容量标定的有效期为3个月,但有如下情况发生时应立即重新标定:    (1)测定发热量时的内筒水温与热容量标定时的平均内筒水温相差5℃以上时;    (2)更换量热温度计;    (3)更换氧弹的较大部件,如氧弹盖、连接环等;    (4)热量计经过较大的搬动。

  • 热量计使用的10点常识

    热量计是用量热标准物质标定,以系统内热量变化减去作功方式所传递的能量来计量热量的仪器,目前已经成为国民生产、生活必不可少的一部分,其产销量近年来也一直保持着稳定的增长率,用户量也越来越多,热量计用户在使用的中必须知道以下10点常识问题: 1、热量测定用的燃烧皿最常用的是不锈钢燃烧皿,而最能保证煤样燃烧完全的是铂燃烧皿。 2、氧弹由不锈钢(优质)精加工而成,它能耐受压力为20Mpa的水压试验。 3、恒温式热量计的主要特点是在测热时外筒水温基本保持恒定。同时该热量计结构简单、价格较低,这也是其主要优点。 用恒温式热量计测定煤的发热量时,内筒水温一般要调节到比外筒水温略低1℃左右,这样煤样完全燃烧后外筒水温要比内筒水略高,以保证在测定终点时内筒水温得以下降。 4、标定热容量的苯甲酸,燃烧前应先干燥及压饼。 5、弹筒发热量减去硫酸与二氧化硫生成热之差及硝酸生成热,就得到高位发热量。 6、高位发热量减去煤中水和煤中氢燃烧生成的水的汽化潜热,就得到低位发热量。 7、热容量标定时,也可用棉纱线点火,其要求是原白纯棉线及准确称量。 8、热量计量热系统升高1℃吸收到的热量,称为热容量,它的单位是J/℃。

  • 大功率测量——热量计

    大功率的测量通常是:把微波功率全部转换为热能,然后用热量计测量热量就可知道微波功率。最常用的水负载功率计如下图所示。http://images.admin5.com/forum/201305/09/154541fdmlvr47zktn5gud.jpg 水负载与波导匹配,微波功率全部被水吸收而转换成热量。所测得的功率为 P=cvΔT 式中,c为比热容【J/(kg·K)】;v为水的单位时间流量(kg/s);△T=T2-T1为出水与入水的温差(K)。水流量的测量可用流量计,也可用量筒和秒表直接测量。温度的测量可用水银温度计,也可用经校准的温差热电堆。 这是一种直接测量法,其缺点是不可避免的热量散失导致测得的温差小于应有的温差。克服这一缺点可用工频比较法,即在水负载中放一根电热丝,用工频电流加热,使水升温,当水的流量相同,且所达到的温差与微波加热相同时,则工频功率等于微波功率,测量工频功率就知道微波功率。也可用两个完全相同的水负载,一个加微波功率,另一个加工频功率,将两者进行比较。 当被测的微波功率为脉冲状态时,用以上方法测出的只是平均功率。脉冲峰值功率可由下式计算http://images.admin5.com/forum/201305/09/154602hv7cuxvrdkvkuygl.jpg 式中,芦为平均功率;r为脉冲宽度,单位为s;f为脉冲重复频率。单位为Hz。

  • 【原创】 浅谈氧弹热量计内筒水的获取对测量结果的影响

    浅谈氧弹热量计内筒水的获取对测量结果的影响 氧弹热量计是用于测定固体、液体燃料热值的计量仪器。基本原理是:一定量的燃烧热标准物质苯甲酸在热量计氧弹内燃烧,放出的热量使整个量热体系(包括内筒、内筒中的水或其它介质、氧弹、搅拌器、温度计等)由初态温度TA 升到末态温度TB ,然后将一定量的被测物质再与上述相同条件进行燃烧测定。由于使用的热量计相同,而且量热体系温度变化又一致,因而可以得到被测物质的热值。 氧弹热量计从量热原理可分为等温型氧弹热量计和绝热型氧弹热量计。在此,我们仅讨论前者。量热体系被充满水(或其它介质)的外筒所包围,当样品在热量计的氧弹内燃烧使量热体系温度上升时,如果外筒温度保持不变,此类型热量计即为等温型热量计(以下简称热量计)。在我们进行热量计检定的过程中,发现许多用户很注意以下条件,如:环境温度是否恒定、样品称量的准确与否、所用的点火丝的种类和质量是否一致以及内、外筒温度的控制等等,但是,测量数据依然很难平行,要重复多次,并且数据可靠性不高,后来发现他们对内筒水的质量准确与否却不太重视,表现在:(1)配置的天平精度不够 (2)使用2000ml容量瓶这种量入式容器作为量水的工具。下面我们就此问题展开一些讨论。按照JJG672-2001《氧弹热量计检定规程》(以下简称规程)第5.1.1.2条规定,内筒水必须用称量5kg,分度值不大于1g的天平进行称量。现行国内生产的热量计其内筒水的质量大部分定为2000g,下面就以此量值为例加以分析。通过试验,我们知道,取约1g的苯甲酸依照规程规定的条件和步骤检定仪器的热容量,每次试验前后内筒水的温差均在2.8K左右,由于1g的水在温度每升高1K,所需要的热量约为4.18J,由表1可见,由于水的称量误差对仪器热容量带来的影响。表1 水的称量误差引起的热容量的变化水的称量误差(g)123…引起热容量的变化(J/K)4.28.412.5…规程第3.2条:在规定条件下,用燃烧热标准物质苯甲酸检定热量计的热容量5次,按不同的平均热容量,其极差不大于表2的规定。这一性能指标是计量部门判定仪器合格与否的最主要的依据,也是使用单位定期进行自较的唯一依据。因此,内筒水的称量如果不准确,测量许多次也得不到重复的数据,大大降低工作效率,特别是那些测量值处于第3.2条边缘的仪器,极易产生误判, 可见,应严格按规程要求配置天平,否则,易出具错误的数据,引起误判。表2 热容量检定技术指标 J/K热容量<15009000~1100014000~15000极差94060另外,在称量时,要注意将天平托盘及内筒的外壁擦干,不要挂水,不然,影响称量。我们在实际检定过程中,发现有些用户由于暂时没有大的称量天平,而使用2000ml容量瓶(经检定合格符合A级标准)作为量水的工具。容量瓶是一种量入式量器,而用户是用来作为量出式量器使用的,这样,就带来了一些问题,如每次用容量瓶量取水后,倒入内桶,瓶中剩余量多少?每次残留量是否相同?为此,我们做了一些实验,取一该规格的容量瓶,将其清洗干燥后,用电子天平称量、去皮,再将其装水至标线,保持壁干燥,内壁标线以上部分擦干,然后将水倒出,成滴流状态时倒置等待30秒钟,称量,即为剩余量。如此重复多次,数据见表3。可见,多次测量间的极差为0.3 g, 小于1g, 平均残留量为1.52g ,因此,每次量取内桶水时,均需采用分度吸管加入1.5ml水,才可基本消除残留量带来的影响.表3 水的残留量测量次数12345678910平均值测量量(g)403.67403.65403.85403.55403.64403.68403.61403.69403.79403.72403.68残留量(g)1.501.481.681.381.471.511.441.521.621.551.52(干燥状态下,该容量瓶的质量为402.17g)再者,由于水在不同温度时,其密度是各不相同,质量也将有所区别。表4列出了水温为(20±2)℃时,水的密度及质量为2000 g的水所对应的体积。表4 不同温度下水的密度及体积温度(℃)1819202122水的密度(g/ml)0.99860.99840.99820.99800.99782000 ml水所对应的质量(g)1997.21996.81996.41996.01995.6引起的热容量误差(J/K)11.713.415.016.718.4再者,由于温度不同,玻璃的膨胀系数也不一致,因而,体积也不相同,……。由此可见,温度影响是不可忽视的。综上所述,用容量瓶获取内筒水,容易产生误差,影响测量的准确度,且不符合规程要求,应避免采用。许多用户在意识到内筒质量的重要性后,配置了合格的称量天平,准确称取内筒水,事实证明,原来较难平行的数据,现在较易实现,提高了工作效率,保证了数据的准确、可靠。 江苏省计量测试技术研究所 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=42030] 浅谈氧弹热量计内筒水的获取对测量结果的影响[/url]

  • 动力煤按发热量计价的有关说明

    (1)动力煤按发热量计价目前限于供电厂和铁路机车用煤。冶炼精煤、其它精煤、民用煤和其它工业用煤仍按灰分计价。(2)为了保证动力煤的热值,凡洗煤产品(除褐煤外)收到基低位发热量低于14.5MJ/kg时,按洗中煤品种计价;褐煤收到基低位发热量低于10.5MJ/kg时,内蒙东三盟不收出区加价费。(3)原煤、混煤、洗选粒级煤、末煤和粉煤按实际全水分计量和计价;洗混,洗末和洗粉煤按原煤实际水分规定的计量水分计量和计价,发热量也按折算的含计量水分发热量计算。如果实际全水分低于或等于计量水分时,按实际全水计量,不再折算。(4)挥发分的比价是以浮煤干燥无灰基挥发分划分的,一是为了排除煤中矿物质对挥发分的干扰;二是为表征其燃烧特征。动力煤干燥无灰基挥发分低于20%时,一般较难燃烧(燃点达360-420摄氏度),挥发分高的煤不仅容易燃烧(燃点260-360摄氏度),而且火焰长,炉膛温度均匀,燃烧稳定,飞灰中固定碳含量低。因此,在发热量计价中挥发分越高,其比价也越高。 另外,褐煤虽然是低热值燃料,但其开采成本与其它动力煤没有多大差别。为了合理开发利用这部分煤炭资源,将其挥发分比价订为最高限,是政策性的调节。(5)动力煤按发热量计价,必须严格执行有关采样、制样,化验的国家标准和行业标准。为此要求:1、检测单位的采、制、化设施必须齐全,要有备用量热仪,所有量具、仪表必须定期校验,经计量部门鉴定合格;2、采、制、化人员,必须经过专业培训并经考核取得合格证,方能上岗操作;3、为了确保发热量测定值的准确性,需要定期检定量热仪运转情况及已标定的量热仪的热容量。量热仪检定与热容量标定可同时进行。检定结果作为仲栽发热量测定值的重要依据。

  • 氧弹热量计有检出限吗?

    本人用的是上海昌吉的氧弹热量计(型号:XRY-1C),请教各位大神,这款仪器有检出限吗?如果有,是怎么测的呢?

  • 热量计的燃烧和测量温度的实验

    将氧弹放入热量计盛水桶内,将用加冰方法调好低于外桶水温1℃左右的水,用容量瓶准确量取调好温度的水3000mL倒人盛水桶内,用0.1温度计精确测量量热计外套水温,以保证外套水温在燃烧曲线的中点,如相差太大需重调水温。装好搅拌马达,盖好盖子,将设置好的数字贝克曼温度计的探头插人水中,将控制器与氧弹电极相连。特别注意将控制器的“振动与点火”开关先设在“振动”档,打开总电源,开动搅拌马达。待温度稳定上升后,计时开关放在1min的档上,每隔1min读一次数字贝克曼温度计的读数,10min后,迅速将“振动与点火”开关拨至点火档,并将计时开关同时拔在半分钟一次档上,若控制台指示灯亮,温度迅速上升,表示点火成功,试样已燃烧,再将“振动与关火”开关拨至振动档,每30s读一次数。待温度上升较慢后,将计时开关按至1min档,再记录l0次,然后停止实验。若指示灯亮后不熄,表示点火丝未烧断,应立即加大点火电流。若指示灯根本不亮或加大电流也不熄灭,温度也未迅速升高,则点火不成功,应打开氧弹找原因。停止实验后,取出氧弹,放出余气,景后打开氧弹。若无未燃尽的剩余物(Ni丝除外)表示燃烧完全,称取剩余镍丝质量。若发现有未燃尽的剩余物,则表示燃烧不完全,实验失败。倒出内桶里的水用干毛巾把各部位一一擦干,备用。按同样方法,用苯甲酸试样再重复一次实验。

  • 氧弹热量计燃烧结束出现这样的情况,求解?

    氧弹热量计燃烧结束出现这样的情况,求解?

    呼叫群里的大仙,新购置的氧弹热量计煤样燃烧后出现这样的情况大家分析一下?1次是煤样灰白,典型燃烧不完全?1次是有圆珠型的物质?何故请看图http://ng1.17img.cn/bbsfiles/images/2012/08/201208042027_381594_2448117_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208042030_381595_2448117_3.jpg

  • 差示扫描量热法(DSC)在胶粘剂和涂料行业的应用

    差示扫描量热法(DSC)是在程序控温条件下,测量在升温、降温或恒温过程中输入到试样和参比物的热流量差或功率差与温度或时间的关系。提供物理、化学变化过程中有关的吸热、放热、热容变化等定量或定性的信息。 动态零位平衡原理:样品与参比物温度,不论样品是吸热还是放热,两者的温度差都趋向零。DSC测定的是维持样品与参比物处于相同温度所需要的能量差,反映了样品热焓的变化。 差示扫描量热法(DSC)广泛应用于塑料、橡胶、涂料、胶粘剂、医药、石油化工等不同领域,主要用于高分子材料的定性、定量分析,包括测试熔点、玻璃化转变温度、结晶度、熔融热、结晶热、纯度、反应动力学参数、比热、相转变温度、不同材料的相容性等。 根据DSC曲线,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、结晶度以及样品纯度等。 各种介绍差示扫描量热法(DSC)原理的文章有很多,大家可以通过各种方法轻易获取。本文主要罗列一下差示扫描量热法(DSC)在胶粘剂和涂料行业的实际应用: 测量固化时间(固化速度):利用等温固化曲线,在特定温度下测定反应放热结束时间。选定固化温度:在程序升温条件下,确定最佳固化温度及固化条件。测量固化反应放热:测定固化反应放热量,可以指导配方设计。了解特定温度下固化反应速率:在ΔH-T曲线上,某点的的斜率可以清晰反映特定温度下的固化反应速率,可以指导配方设计。固化度(固化转化率)的测量:根据某个特定条件下的放热量和总放热量来计算固化度,对于固化体系及固化条件的选择有参考作用。产品质量一致性检验:将相同配方不同批次的产品DSC指纹图谱对比,容易发现产品质量的波动,有利于监控产品的质量。玻璃化转变温度(Tg)的测定:Tg是固化物从玻璃态转变为高弹态的温度。在Tg时,固化物的比热容、热膨胀系数、折光率、自由体积、弹性模量等物理参数都要发生突变,所以在配方设计时要考虑固化物的Tg。差示扫描量热法(DSC)可以根据比热容的变化来测定固化物的Tg点。固化物分解温度的测定:不同配方体现固化物的分解温度不同,差示扫描量热法(DSC)可以方便测试固化物的分解温度,体现固化物的热稳定性。原材料的质量监控:很多原材料的质量问题都能在差示扫描量热法DSC的图谱上反应出来,例如熔点、软化点、结晶度、水分含量、相容性、热分解温度、氧化分解温度等。可以根据材料的特性,利用差示扫描量热法DSC的高分辨率和高灵敏度,设计出多种监控原材料质量的测试方法和内控标准。特别是对于潜伏性固化剂质量的监控,大多数厂家生产的潜伏性固化剂在化学组成和结构上不会提供明确的信息,所以质量监控比较麻烦,我们就可以差示扫描量热法(DSC)在程序升温的条件下观察DSC图谱,根据DSC图谱反应出来的相变、自反应热以及热分解温度等信息来监控潜伏性固化剂的质量。

  • 【求助】DSC计量检定

    在《示差扫描热量计检定规程》中,有两个问题:1)热流或功率差的单位是mJ/s,没有见过,请问是什么意思呢,怎么得到呢?针对现在用的单位W/g和mW怎么转换?2)基线噪声的测量怎么得到和计算?[em0810]

  • 【转帖】发热量的表示

    发热量的表示方法介绍:在试验室内,由热量计直接测得的发热量,叫做煤的弹筒发热量,用符号Qb表示;煤在氧弹中燃烧和煤在工业上实际燃烧时,无论从燃烧产物、放出的热量都不一样。煤在空气中燃烧时,煤中的硫形成二氧化硫逸出,而在弹筒中却形成硫酸,这样就多出了二氧化硫形成三氧化硫的生成热和三氧化硫形成硫酸的生成热;煤中的水,无论是吸附水、结晶水或是热解水,当煤在空气中燃烧时,都成为水蒸气逸走,而在弹筒内,煤燃尽后都成了液态水,显然水蒸气变为液态水,又放出这部分气化时吸收的热量;煤在空气中燃烧时,氮成游离状态逸出,而在弹筒内,氮都成了硝酸,这里又有热量的放出。因此弹筒所测得的发热量要比实际工业上燃烧时的发热量高。为了使测得的发热量接近工业上燃烧煤的热值,把测得的弹筒发热量减去形成硫酸和硝酸所放出的热量,这样的发热量叫做煤的高位发热量。用符号Qgr表示。本文所探讨的就是煤的高位干基发热量(Qgr.d)和煤的干基灰分(Ad)的相关性分析。

  • GB/T213-2003 煤中发热量的测定方法

    [align=center]GB/T213-2003 煤中发热量的测定方法[/align]测定煤炭热量,常用量热仪,量热仪分自动量热仪,微机量热仪,全自动量热仪,微电脑量热仪,精密量热仪,快速量热仪,微机全自动量热仪。1 范围本标准规定了煤中发[url=http://www.labtool.net/products.php?cid=108][u][color=#0000ff]热量[/color][/u][/url]测定方法--煤的高位发热量的测定方法和低位发热量的计算方法所用的设备-量热仪工作原理。本标准适用于泥炭、褐煤、烟煤、无烟煤、焦炭及碳质页岩。2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。GB/T213-2003 煤中发热量的测定方法(,eqvISO334:1992)3 单位和定义3.1煤炭热量仪单位 hear unit热量的单位为焦耳(J)。1焦耳(J)=1牛顿(N)×1米(m)=1牛米(Nm)发热量测定结果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。3.2弹筒发热量 bomb calorific value单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。注;任何物质(包括煤)的燃烧热,随燃烧产物的终极温度而改变,温度越高,燃烧热越低。因此,一个严密的发热量定义,应对燃烧产物的终极温度有所规定(ISO 1928规定为25)。但在实际发热量测定时,由于具体条件的限制,把燃烧产物的终极温度限定在一个特定的温度或一个很窄的范围内都是不现实的。温度每升高1K,煤和苯甲酸的燃烧热约降低(0.4J/g~1.3J/g)。当按规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵消,而无需加以考虑。3.3 恒容高位发热量 gross calorific value at constant volume单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、液态水以及固态灰时放出的热量。恒容高位发热量即由弹筒发热量减往硝酸天生热和硫酸校正热后得到的发热量。3.4 恒容低位发热量 net calorific value at constant volume单位质量的试样在恒容条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、气态水以及固态灰时放出的热量。恒容低位发热量即由高位发热量减往水(煤中原有的水和煤中氢燃烧天生的水)的气化热后得到的发热量。3.5恒压低位发热量 net calorific at constant pressure单位质量的试样在恒压条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、气态水以及固态灰时放出的热量。3.6 热量计的有效热容量effective heat capacity of the calorimeter量热系统产生单位温度变化所需的热量(简称热容量)。通常以焦耳每开尔文(J/K)表示。4 原理4.1 高位发热量,煤的发热量在氧弹热量计中进行测定。一定量的分析试样在氧弹热量计中,在充有过量氧气的氧弹内燃烧,氧弹热量计的热容量通过在相近条件下燃烧一定量的基准量热物苯甲酸来确定,根据试样燃烧前后量热系统产生的温升,并对点火热等附加热进行校正后即可求得试样的弹筒发热量。从弹筒发热量中扣除硝酸天生热和硫酸校正热(硫酸与二氧化硫形成热之差)即得高位发热量。4.2 低位发热量煤的恒容低位发热量和恒压低位发热量可以通过分析试样的高位发热量诈。计算恒容低位发热量需要知道煤样中水分和氢的含量。原则上计算恒压低位发热量还需知道煤样中氧和氮的含量。5 试验室条件--进行发热量测定的试验室。应单独房间,不得在同一房间内同时进行其他试验项目。--室温应保持相对稳定,每次测定室温变化不应超过1,室温以不超过15~30范围为宜。[align=center]--室内应无强烈的空气对流,因此不应有强烈的热源、冷源和风扇等,试验过程中应避免开启门窗。[/align]--试验室最好朝北,以避免阳光照射,否则热量计应放在不受阳光直射的地方。

  • 差示扫描量仪GT-DSC-054在胶粘剂和涂料行业的应用方案

    差示扫描量仪GT-DSC-054在胶粘剂和涂料行业的应用方案一、 使用仪器信息1、 仪器编号GT-DSC-054(研发型),灵敏度高,内部可控程序降温系统,无需外接制冷装置。2、 适用标准l GB/T 19466.2 - 2004塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定l ISO 11357-2-2013 Plastics - Differential scanning calorimetry (DSC) - Part2: Determination of glass transition temperature and glass transition stepheight,塑料-差示扫描量热法(DSC) -第2部分:玻璃态转变温度和转变阶跃高度的测定l GB/T 19466.3- 2004塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定l ISO 11357-3-2011Plastics - Differential scanning calorimetry (DSC) - Part3: Determination of temperature and enthalpy of melting and crystallization,塑料-差示扫描量热法(DSC) -第3部分:熔融和结晶温度及热焓的测定3、 主要参数l 温度范围: -40℃~500℃l 温度分辨率: 0.1℃l 升温速率: 0.1~80℃/minl 控温方式:升温,恒温(全自动程序控制)l DSC量程: 0~±500mWl DSC解析度: 0.01 mWl DSC灵敏度: 0.01 mW4、 仪器主要优势GT-DSC-054研发型差示扫描量热仪DSC系统除了有足够满足需要的精确度和精密度,还有以下无与伦比的技术优势。l 炉体采用了电子半导体制冷降温系统,体积小,结构紧凑,无需外接制冷机或液氮等繁琐的附属制冷系统;l 降温过程程序可控,制冷速度达50℃/min;l 无需辅助冷却气体和辅助气动控制气体,使实验室管理者无需担心使用高压气瓶所带来的风险;l 独特的温度探头设计和专用的控温技术,保证了实验的准确性和重复性;l 强大和专业的软件功能,可以使DSC获得的原始数据直接做各种反应动力学分析,避免了很多繁琐的数据处理工作;l 仪器备有两路可自动切换的气氛气体控制系统,用户可以根据需要接入气氛气体;l 工业级别的宽屏触摸结构和通用的USB接口,可以灵活采用本机操作或电脑控制。二、 GT-DSC-054研发型DSC在胶粘剂和涂料行业的应用方案1、 原料的质量监控利用DSC的方法来监控原料质量,主要是利用各种原料的热性能(包括熔点、软化点、Tg点、结晶度、水分含量、相容性、热分解温度、氧化分解温度等),针对不同的材料开发不同的监控方法和内控标准。l 潜伏性固化剂的质量监控。潜伏性固化剂在程序升温过程中有相变、自反应、热分解的过程,通过设立方法监控这些过程的起止温度和焓变数值,来确定监控标准。l 树脂的质量监控。树脂在冷冻和升温过程中有结晶、熔融、分解等热过程,可以通过测定这些过程的Tg点、结晶点、熔点、分解温度及焓变等参数来确立监控标准。l 填充剂的质量监控。无机填充剂在热过程中可能有晶格的转变以及热裂解的现象发生,有机填充剂在加热过程中有玻璃化转变、熔融、分解等热过程,因此也可以通过测试这些过程中的热力学参数来设定监控标准。2、 DSC方法在产品上的应用测试产品的等温和程序升温DSC曲线,可以得到产品的各方面热性能参数,这些参数包括固化时间,起始反应温度、峰值反应温度、反应过程焓变、反应速率等,并且可以通过这些参数结合反应动力学方程进行反应动力学方面的研究。l 等温固化曲线。等温固化曲线可以确定样品在特定温度下固化反应完成时间,是了解特定温度下固化速度的精确可靠的方法,同时可以得到固化放热量的数据。l 程序升温固化曲线。在程序升温的固化曲线上,可以知道样品的起始反应温度、峰值反应温度、固化速率、反应焓变等热力学参数。对于相同配方不同批次的样品,通过比对相同条件下程序升温图谱的指纹信息可以监控产品质量的一致性。3、 DSC方法在固化物上的应用DSC在固化物方面的应用主要体现在测试固化物固化度、玻璃转变温度(Tg点)以及热分解温度等,通过测试这些参数可以了解固化物的热可靠性和热稳定性,并且可以确定达到最佳的热可靠性和热稳定性应该使用的固化条件。l 固化度(固化转化率)的测试。通过测试不同温度下的固化度,可以确定合适的固化温度和固化条件,固化度是通过对比不同温度下固化反应的放热量而得到的,以百分比表示。l 固化物玻璃化转变(Tg点)的测试。用DSC测试固化物Tg点的原理是根据固化物在Tg点前后比热的不同,从而导致固化物DSC图谱在Tg点前后基线的跃迁,基线跃迁的中点对应的温度即Tg点。测试Tg点需要DSC仪器有足够的灵敏度,因为这些跃迁往往是比较小的。l 固化物分解温度的确定。固化物达到或接近分解温度时,固化物的粘结和密封性能将急剧丧失,并且因为热分解而不可逆转,因此分解温度是固化物可靠性和稳定性一个重要指标。以上列出的是差示扫描量热法DSC在胶粘剂和涂料行业的典型应用方案,具体的应用方案可以根据实际情况开发出更多。由于胶粘剂和涂料行业的配方体系是一个混和物体系,通常比较复杂,因此常用的分析手段应用起来非常复杂,并且成本昂贵。DSC的方法有非常高的灵敏度,并且操作简单,结合热力学的分析,宏观联系微观,是胶粘剂和涂料行业研发和质量控制人员的利器。惠州建仪科技有限公司致力于差热扫描量热法DSC在胶粘剂和涂料行业应用方案的开发,欢迎业界各位老师高人共同探讨,开发出更多实用的方法。

  • 差示扫描量热DSC技术简介

    热分析法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29178]差示扫描量热DSC技术简介[/url]

  • 差示扫描量热法应用

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21052]差示扫描量热法(DSC)应用[/url]

  • 新建标准的量值溯源和传递框图?

    新建标准的量值溯源和传递框图?

    新建标准: 示差扫描热量计检定装置 和开口闭口闪点测定仪检定装置 技术报告里需要量值溯源和传递框图,查找系统表没有,咨询后可以参照,请问我可以参照下图这个吗?望前辈们指点迷津。[img=,690,979]https://ng1.17img.cn/bbsfiles/images/2019/07/201907291326156527_5962_1693685_3.png!w690x979.jpg[/img]

  • 超声波流量计的原理及安装方法

    SY系列 超声波流量计 采用的是时差法测量原理。它的高可靠性是积8年的制造经验加上博采众长,通过不断完善提高得到的;是由于采用了最新的诸如Philips、Tl、美国国家半导体公司的新型高性能集成元器件加上先进的SMD贴装器件生产线大规模生产实现的。 40皮秒(40×10 秒)的时间分辨率,0.5%的线性度。 低电压多脉冲原理,保证可靠运行。 两路0.1%精度的模拟输入,接入温度传感器电流信号,即变成热量计! 实现中文显示,软件开放式设计,所有参数用户皆可设定;硬件元件参数无关化设计,无需调整即能确保每一台流量计具有完全相同的性能。 主机机型有:便携式、壁挂式、标准盘装式、手持式、一体式。 传感器具有:方便安装的外缚式、可靠工作的插入式、高可靠高精度的标准管段式、超高精度的标准型π管段式。   SY系列超声波流量计的安装应从几个方面来考虑:(1)详细了解现场情况;(2) 确定安装方式;(3) 选择安装管道;(4)计算安装距离, 确定探头位置; (5)管道表面处理;(6)探头安装及接线。在检测过程中, 应该注意到:  一、换能器位置的选择  SY系列超声波流量计要求管道内液体必须为满管流。对安装时前、后直管段的要求为至少满足前10D后5D(D为管道直径)。若上、下游侧安装有弯头、渐扩管、渐缩管等阻流件,应将超声波流量计上、下游直管段延长到(25~50)D。许多企业在安装流量计时,并未考虑到其后续检测, 未留足够长的直管段或安装在泵/阀门附近,导致阀门和焊缝产生的紊流,给流量计检测带来一定的麻烦。此时一般需要整改后检测,并尽量远离阀门和焊缝,否则因流场不稳定,会造成数据偏差或准确度变大。    管道的顶部易积聚气体,底部易沉淀杂物,气体、杂物和焊缝都会使超声波信号发生非正常的反射,从而影响超声波流量计的测量准确度,甚至造成超声波流量计无法正常工作,检测过程中要考虑这些因素的存在。  二、换能器的安装  在安装前需要了解流量计安装管道的外径、材质(包括铸铁、不锈钢、PVC、铝等)、壁厚、衬里及衬里厚度等参数,根据主机的提示找到相应检测点。进行管道打磨(有保温层的预先需去除),检测点必须磨光、平正,有一定半径弧度和换能器吻合,并涂上耦合剂进行啮合。  根据超声波流量计的测量原理, 换能器的安装是影响测量准确度的关键因素。当采用V法安装时,两个换能器的水平位置较易保证。当采用Z法安装时,应当用坐标纸包裹管道,再沿中线对折,然后将两个换能器的水平中心对准坐标纸两端进行安装, 这样可以保证换能器发射的声波信号穿过管道轴线,减小对测量准确度的影响。  但是,仍需注意的是,由于现场工艺条件变化较大,在线实流检定的每个流量点应在检定流量、压力、温度变化较小的范围内完成。由于受现场工艺条件的限制,很难完成流量计全量程范围检定。超声波流量计一般按口径范围配备多组探头, 不同的探头适用不同的口径段, 探头之间不能简单互换, 因此检定时应注意口径范围。同时,便携式超声波流量计在使用过程中应避开强电磁和声波信号的干扰。高压线下方、变频器旁、车辆密集的马路旁, 都会对超声波流量计的测量准确度产生影响,仪表电源应避免引起电压波动,换能器与仪表之间的连线应用屏蔽线。

  • 在线焦炉煤气孔板流量计的清扫

    焦炉采用焦炉煤气或高炉煤气加热时,通常选用孔板流量计来计量煤气的用量。由于焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,存在一次取压口与引压管路易堵塞、计量不准确、在线清扫困难等问题。为了保证计量的准确性并降低维修人员的劳动强度,经摸索,制造了一种实用的现场专用设备,并总结出了一种有效的处理方法,较好地解决了上述问题,取得了良好的效果,满足了生产要求。炼焦是将配制好的洗精烟煤通过高温干馏,得到高炉炼铁需要的冶金焦或其他的焦炭及气体燃料——焦炉煤气和有关化工产品。焦炉采用自产并经过精制处理的焦炉煤气或高炉冶炼过程中产生的高炉煤气加热,将配制好的洗精烟煤在炭化室加热到950~1050℃变成焦炭。焦炉炉体的特性,决定了焦炉加热与生产具有长期高度连续性的特点,通过配套回炉焦炉煤气或高炉煤气管道体系来保证加热的连续性。由于高炉煤气热值低,为了保证焦炉加热的要求,需要掺混9%的焦炉煤气进入高炉煤气系统及使用焦炉煤气进行炉头补充加热。每座焦炉加热使用的焦炉煤气约占其自身煤气发生量的45%左右,对于一座65孔,高4.3mm,宽407mm达到设计生产水平的焦炉,其焦炉煤气的使用量约9000m3/h。通常一座焦炉在其一代炉龄里,头几年与zui后的几年都采用焦炉煤气加热,中间可以采用高炉煤气或焦炉煤气加热。由于焦炉生产的能耗较大,为了控制能源消耗,保证加热及方便不同焦炉之间的比较,需要安装计量仪表和参与加热控制的计量仪表。1孔板流量计的使用1.1孔板流量计的工作原理燃气计量仪表有容积式流量计、速度式流量计、差压流量计和涡街式流量计。差压流量计又叫节流流量计,是工业上应用zui广的一种测量流体流量的仪表,根据节流件的不同分为孔板、喷嘴和文丘里管3种。由于孔板流量计结构简单,制造成本与加工精度要求相对较低,安装与使用方便,使用寿命长、适应性较广,已标准化且焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,为了保证计量的准确性并达到计量仪表在管道上的布局要求,通常选用标准孔板作为检测的节流装置。其工作原理是流体在管道中通过孔板时,突然断面缩小,流体的动能发生变化产生一定的压力降,压力降的变化与流速有关,此压力降可通过孔板前后测压点的引压管路(图1),借助差压计测出,经现场变送器转换成标准的电信号传输,经组合仪表处理后可在线显示实际的煤气用量并累积计算。压力差与体积流量的关系式如下。1.2孔板流量计在焦炉上的使用(1)焦炉煤气总管?焦炉煤气加热时,煤气总管上装有显示每小时用量的孔板流量计(图1),其一次取压口一般采用标准的一英寸法兰连接,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。(2)机焦侧混合煤气支管?高炉煤气加热时,显示每小时用量的孔板流量计(与图1原理相同),其一次取压口一般采用标准的角接法,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。此外,还可将测得的煤气量信号反馈现场执行机构控制翻板开度来调节煤气用量。1.3使用中问题由于焦炉煤气中含有焦油、萘、氨、硫和氰化物等杂质,长期使用后,流量检测系统的一次取压口、引压管路极易发生堵塞使其不畅通,导致流量无法准确测量。更令人头痛的是焦炉煤气内的杂质吸附在孔板的刀口上,使孔板孔径变小,造成孔板前后压力降增大而使煤气流量计量值增大甚至不能正常运行,严重影响焦炉煤气计量和用量的调节。由此可知,焦炉煤气孔板流量计存在一次取压口或引压管路易堵塞、在线清洗频繁且困难、仪表维修工作量大、测量不准确等问题。由于焦炉煤气的使用量较大,而发生的周期短,处理又比较困难,而且必须在正常生产时进行,增加了维修人员的劳动强度。为了保证计量的准确性并降低维修人员的劳动强度,必须找到有效的清扫方法。2解决方法2.1孔板清洗方法对于孔板、孔径因积焦油、萘等杂质变小问题,通常的清洗方法是停止加热拆下清洗、更换孔板、从引压管路通入蒸汽清洗,从孔板前冷凝液排放管中用蒸汽管或水管清洗等。该方法使用时需要停止加热,影响了焦炉的正常生产。带气作业时有煤气泄漏影响安全、在线用蒸汽清洗时几千立方米每小时的煤气流量带走了蒸汽热量,中低压冷水不能融化焦油、萘等杂质,故清洗效果不理想。经过长期的摸索后,制造出了一种取材方便、投资少、制造简单、现场安装搬运调试方便的专用设备(图2),并总结了一种有效的处理方法解决了上述问题。使用方法为:将图2所示的设备搬到现场安装好,向铁桶6内注满水,用蒸汽加热到60℃以上,开动增压泵4,待看到高压水枪1侧出口小孔的水流稳定且压力表上显示达到4~8MPa后,关闭图1中计量阀门7,打开计量变送器8上方的平衡阀,拆下丝堵4,将图2中带有比枪管孔径稍大丝堵2的高压水枪1,从图1中冷凝液排放管3伸入,上好丝堵2,打开阀门5,高压水枪喷孔对准孔板上下并小角度转动,将孔板冲洗干净。该方法的优点是设备投资少,搬运、安装、调试方便,操作简单,在线清洗不需停止加热,水流在比枪管稍大的丝堵处起液封煤气的作用,操作安全,高压热水清洗效果好,清洗后的计量准确。2.2一次取压口及引压管路的清扫对于一次取压口及引压管路堵塞问题,通常的方法是用蒸汽或高压氮气清扫。由于通常的蒸汽压力只有0.5MPa左右,一次取压口径又小,堵塞不严重时,该方法是可行的,若堵塞严重,该方法的使用效果不理想。为此,将用于孔板清洗的设备去掉图2中1、2、3后与引压管路连接好清扫,然后用蒸汽清扫,效果较好,保证了生产需要

  • 下落法量热计和差示扫描量热仪在比热容测试中的比较

    下落法量热计和差示扫描量热仪在比热容测试中的比较

    摘要:本文分别描述了下落式和差示扫描量热计式比热容测试方法的测量原理,列出了这两种技术的国内外标准测试方法,并从多个方面对这两种测试方法进行了比较,其中下落法比热容测试样品量大、操作简便入门容易,测试温度可高达3000℃,而DSC法则测试参数多应用面广。两种方法各有特点和侧重,相互互补,需根据具体使用情况进行选择。[b][color=#ff0000]1. 测量原理[/color][/b][color=#ff0000]1.1. 下落法比热容测量原理[/color] 比热容的定义为单位质量样品的温度升高1K所吸收的热量。下落法比热容测量原理则完全按照比热容定义来进行实施,如图 1-1所示,即将已知质量的样品通过加热炉加热到测试温度TS,然后样品落入具有恒定温度TC的绝热量热计中,试样将热量传递给量热计,并使得量热计温度上升并最终达到平衡温度TH。通过测量绝热量热计落入试样后的温升TH-TC可以测得试样放出的热量,即试样受热所吸收的热量,由此可以得到TC和TS温度范围内平均比热容和平均焓值。通过多个温度点下的平均比热容测量及数据处理,还可以得到某一温度点下的比热容和焓值。[align=center][img=,400,492]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_01_3384_3.png[/img][/align][align=center][b][color=#3333ff]图 1-1 下落法比热容测定仪结构示意图[/color][/b][/align] 下落法比热容测量的核心部件是量热计,量热计为绝热式量热计的一种铜卡计,即通过测量标定过的已知质量铜块的温升来得到铜块吸收的热量(试样放出的热量),因此下落法是一种典型的绝对测量方法,测量精度只受到加热量热计的电压和电流标定精度限制。[color=#ff0000]1.2. 差示扫描量热仪比热容测量原理[/color] 差示扫描量热法(DSC)热分析方法在程序控制温度下, 测量样品和参比物的温度差和温度关系,由此测定各种热力学参数(如热焓、熵和比热等)和动力学参数。如图 1-2所示,在此基础上又发展出功率补偿型DSC和热流型DSC。[align=center][img=,619,296]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_02_3384_3.jpg[/img][/align][align=center][b]图 1-2 各种差示扫描量热仪测量原理图[/b][/align] 热流型差示扫描量热仪DSC 是使样品和参比物同时处于一定的温度程序(升/降/恒温)控制下,观察样品和参比物之间的热流差随温度或时间的变化过程。 功率补偿型DSC是给试样和参比物分别配备独立的加热器和传感器,整个仪器由两个控制系统进行监控,其中一个控制温度,使试样和参比物在预定的速率下升温或降温;另一个用于补偿试样和参比物之间所产生的温差,这个温差是由试样的放热或吸热效应产生。通过功率补偿使试样和参比物的温度保持相同,这样就可从补偿的功率直接求算热流率。 由此可见,差示扫描量热仪都需要参比物做为基准,因此这种测试方法是一种典型的相对法,在测量过程中,要精确了解参比物的用量和相关特性。[b][color=#ff0000]2. 标准测试方法[/color][/b][color=#ff0000]2.1. 下落法比热容标准测试方法[/color] (1)GJB 330A-2000 固体材料60-2773K比热容测试方法 (2)GBT 3140-2005 纤维增强塑料平均比热容试验方法 (3)ASTM D4611-16 岩石和土壤比热标准测试方法(ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil)[color=#ff0000]2.2. DSC比热容标准测试方法[/color] (1)ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (2)ISO 11357-4 Plastics: Differential Scanning Calorimetry (DSC)- Determination of Specific Heat Capacity (3)Japanese Industrial Standard K 7123 Testing Methods for Specific Heat Capacity of Plastics (4)ASTM E2716-09 (2014) Standard Test Method for Determining Specific Heat Capacity by Sinusoidal Modulated Temperature Differential Scanning Calorimetry[color=#ff0000][b]3. 两种测试方法比较[/b]3.1. 测量精度比较[/color] 下落式比热容测试方法是一种下落式量热计法,这是一种绝对测量方法。所谓绝对测量方法即材料性能的测量不依赖于任何其它物质的性质,所以目前国内外计量机构普遍采用下落式量热计或绝热量热计做为计量级别的测试方法。差示扫描量热测试方法则是一种典型的相对法,即材料性能的测量还要依赖其它物质的性质,测量过程中要始终与参考材料进行对比,测量精度受到参考材料性质和精度的限制。差示扫描量热仪中常用的参考材料蓝宝石和纯三氧化二铝粉末都是采用下落式量热计或绝热量热计进行校准后才能使用,从原理上讲,下落法就比差示扫描量热法测量精度要高。[color=#ff0000]3.2. 测试操作复杂度比较[/color] 在比热容测试操作复杂程度方面,下落式比热容测试方法与差示扫描量热仪相比具有巨大优势。做为一种绝对测试方法,下落法测试仪器的内部结构比较复杂,但整个操作过程非常简单以避免各种因素对测量精度的影响,测试操作中只需安装好被测试样,试样达到设定温度后进行自动落样,就可以对试样比热容进行全自动准确测量,无需进行其它各种试验参数的设定。而在使用差示扫描量热仪测量比热容过程中,要考虑到多种因素的影响,并对试验参数进行正确的设定,操作复杂程度要远大于下落法,对操作人员的技术要求很高,否则测量结果会出现较大偏差。 差示扫描量热仪比热容测试必须考虑的主要影响因素大致有下列几方面: (1)实验条件:程序升温速率和所通气体的性质。气体性质涉及气体的氧化还原性、惰性、热导性和气体处于静态还是动态。 (2)试样特性:试样用量、粒度、装填情况、试样的稀释和试样的热历史条件等。 (3)参比物特性:参比物用量、参比物的热历史条件。 从以下ISO和ASTM差示扫描量热仪比热容标准测试方法中的相关规定就可以看出DSC操作的复杂程度。以下同时列出采用DSC测量比热容时的操作注意事项。3.2.1. DSC蓝宝石法比热容测试ISO标准方法细节 (1)三次测试:空白测试、蓝宝石测试、样品测试。 (2)两个坩埚的质量差不要超过0.1mg,材料相同。如果仪器足够稳定,且坩埚质量差小于0.1mg,空白曲线和蓝宝石曲线可以使用多次。 (3)当需要在更宽的温度范围内获得更准确的结果时,温度范围可以被分为2个或多个的小段温度范围,每一段50到100K宽,第二段的开始温度应该比第一段的结束温度低30K。 (4)实验的开始温度要比数据获取点的温度低30K。 (5)两个等温段的时间一般为2到10min。3.2.2. DSC蓝宝石法测试ASTM标准方法细节 (1)与ISO和JIS标准测试方法相似。 (2)因为毫克级的样品,所以样品要均一并有代表性。 (3)化学反应和失重会导致测试无效,所以要仔细选择坩埚和温度范围。 (4)合成蓝宝石最好是片状,实验室间的偏差小,推荐合成的蓝宝石(α-氧化铝)标样为热流校准标样。 (5)必须要进行温度和热流校准。因为比热随温度的变化不大,所以温度不用经常校准,但热流校准则非常关键。 (6)样品的形态与标样最好一致(粉末——粉末)(片——片)。 (7)推荐至少每天做热流校准。 (8)蓝宝石测试和样品测试使用同一坩埚。如果使用不同重量的坩埚,要考虑坩埚重量差别。 (9)恒温段至少4min,加热速率不能超过20K/min。 (10)如果样品质量变化大于等于0.3%,则测试无效。3.2.3. DSC比热容测试注意事项 (1)炉体清洁 对炉体通氧气空烧,空烧后一定要将炉体及传感器上的灰尘及灰分吹走。如果使用自动进样器,则一定要保证放置坩埚的转盘上无灰尘。 (2)温度校准 因为比热是温度的函数,所以一定要对测试范围内的温度进行校准。加热速率包含在各种测试方法中,如果温度不准,升温速率也不准,这将影响比热测量精度。 (3)坩埚及类型 根据测试温度范围选择坩埚,并最好将样品压倒坩埚底部,坩埚底部要非常平整,提高热接触效果。坩埚最好有定位针,保证位置固定。每一个比热容测试使用质量相同的坩埚。 (4)气体 静态空气或50ml/min氮气。 (5)样品及制备 样品要与坩埚底部接触良好,可以用聚四氟乙烯棒将粉末样品压实。 特别细的粉末样品可能还有比较多的水分,要先进行除水处理。 样品最好是薄片状以减小接触热阻,粉末样品最好采用中等尺寸(约0.1mm)以下的粉末颗粒。 样品必须是热稳定的固体、纤维、粉体和液体。因为样品为毫克级,所以样品的不均匀性会导致严重误差。化学反应或质量损失可能使测试无效。 导热性较差的样品通常会比比热容真值低5%。 (6)样品量 测试信号与样品量成正比,这意味着样品量越大越好,DSC信号在5mW至10mW之间较好。但样品量大的同时会使得样品的导热性差,同时容易造成样品受热不均匀。 (7)称重精度 重量准确度对比热测定非常重要,最好用百万分之一的天平称重样品。ASTM标准要求至少是十万分之一的天平。 (8)空白曲线 准确的比热容测试一定要减空白曲线,最好测试前能多做几遍空白曲线,前两遍用于调节仪器,第三遍曲线用于计算。 (9)加热速率 经典的比热容测试的加热速率通常为10K/min,如果想节省时间,20K/min的加热速率也可以得到测试结果,但比热容测试的原则是加热速率越慢越好,以使得试样温度受热均匀。 (10)参考材料 实际操作中参考材料可以采用蓝宝石,形状为片状。理论上最好是参考材料的比热容与样品越接近越好。[color=#ff0000]3.3. 样品大小和材料代表性比较[/color] 按照比热容的定义可知,无论是下落法还是差示扫描量热计法,被测样品尺寸和质量越大,样品吸收或放出的热量就越多,也就越便于得到准确的测试信号。无论是那种测试方法,样品的大小主要取决于加热方式、温度和热流检测方式。 下落法比热容测试中,样品是整体加热方式以及大面积接触放热方式,所以被测样品可以在很大(是DSC样品的几十倍)的同时还能保证样品的温度均匀性和放热准确性。大样品恰恰是下落法比热容测试的重要特点,这非常有利于非均质材料的比热容测试,如各种内部多结构形式的复合材料和各种低密度的轻质材料等。而大试样同时也是下落法测量精度高的重要保证。 差示扫描量热仪比热容测试中,原则上样品也是越大越好。但由于受到仪器结构的限制,样品大多数是底部加热和测量形式。为保证样品具有良好的热接触性能、传热性能以及温度均匀性,要求样品和参考材料最好是片状,且还要是毫克量级的微量样品。这就使得差示扫描量热法测试中要在测量准确性和样品代表性之间进行妥协和权衡,样品量大代表性好但测量精度差,测量精度高则需要样品量小代表性差,因此差示扫描量热仪多用于均质材料的比热容测试。[color=#ff0000]3.4. 测试温度范围比较[/color] 下落式比热容测试方法由于采用了绝热式量热计技术,可以轻松的实现上千度以上的高温测试,这也是国内外高温比热容测试多采用下落法的原因。 由于受到温差和热流信号探测技术的限制,一般标准的差示扫描量热仪最高温度不超过800℃。也有特制的上千度以上的差示扫描量热仪,但由于技术复杂度明显提高,使得仪器价格远高于普通差示扫描量热仪。[color=#ff0000]3.5. 测试效率比较[/color] 下落式比热容测试方法是一种单点温度测试方法,即测试样品在某个温度下的焓值和平均比热容,然后通过多个温度点焓值和平均比热容测试得到样品比热容随温度变化曲线。下落法看似不像差示扫描量热仪那样在样品温度连续变化过程中进行测量,但可以在设定温度下快速进行多个样品的连续测量。具体测试中,当第一个样品温度达到稳定后开始下落到绝热量热计中,在量热计热平衡过程中,可以导入第二个样品进行加热。当第一个样品在量热计达到热平衡并得到测试结果后,取出第一个样品后就可以下落第二个样品。如此连续操作方式可以极大提高下落法的测试效率,得到一条比热容温度变化曲线的效率基本与差示扫描量热计相同。而如果是测量多个试样的比热容温度变化曲线,则可以在一个温度点下把所有被测样品测量一遍,然后在升温至下一个温度点进行另一轮的测量,这种多个试样的测试效率要远比差示扫描量热仪快很多。 差示扫描量热仪的测试过程则是一个典型的升降温过程,升降温必须按照设定的速率进行,而且为了保证测量精度,升降温速率还不能太快,因此差示扫描量热仪这种程序式的测试流程大大限制了测试效率。[b][color=#ff0000]4. 测试设备校准[/color][/b] 下落式比热容测试方法是一种绝对测量方法,除了相应的温度传感器进行定期校准外,不再需要其它方式的校准。为了评价测试设备的测量准确度,可以采用NIST标准参考材料SRM 720(蓝宝石)或高纯度蓝宝石做为被测样品进行考核或定期自检。 对于差示扫描量热计法测量比热容而言,则需要经常采用蓝宝石参考材料进行测量和校准,ASTM标准测试方法甚至要求在每次比热容测试前都要进行校准。 另一方面,从理论上讲,差示扫描量热计法测量比热容过程中,要求参考材料的热容与样品热容越接近越好,也就是说对于不同比热容样品测量最好采用已知的近似比热容参考材料才能最大限度的保证测量精度。在这方面,文献"Reference materials for calorimetry and differential thermal analysis." Thermochimica Acta 331 (1999): 93-204给出了详细的描述。[color=#ff0000][b]5. 下落式比热容测试仪器的应用情况[/b][/color] 下落式比热容测试技术由于测量精度高而普遍应用于国内外的各个计量机构,相关文献可以参考中国计量院的研究论文:温丽梅, et al. "下落法测量材料比热的装置研究." 计量学报 z1 (2007): 300-304。 采用下落法测试材料比热容的文献报道也非常多,可以参考上海依阳实业有限公司官网上的大量文献报道:http://www.eyoungindustry.com/2013/1024/47.html。 下落法比热容测试方法和差示扫描量热计测试方法在国内基本是同步发展,由于航天部门大量采用各种复合材料和高温材料,要求测量精度高和测试温度范围广。同时,由于材料研制和生产中的工艺和质量需求,往往要求大批量的对材料比热容进行测试。因此,综合考虑下落法和差示扫描量热计法这两种方法的特点,国内航天系统几乎都选择了下落法做为材料工艺中的指定测试方法,并编制了相应的国军标测试方法。[b][color=#ff0000]6. 总结[/color][/b] 综上所述,下落法和差示扫描量热计法比热容测试技术各有特点,下落法具有测量精度更高,测试样品大更具有代表性,操作上手容易,测试效率快,测试温度范围宽等特点。差示扫描量热计则具有微量样品和应用面更广的特点。两种方法各有千秋,相互互补,需根据具体使用情况进行选择。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制