轴重仪标定原理

仪器信息网轴重仪标定原理专题为您提供2024年最新轴重仪标定原理价格报价、厂家品牌的相关信息, 包括轴重仪标定原理参数、型号等,不管是国产,还是进口品牌的轴重仪标定原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合轴重仪标定原理相关的耗材配件、试剂标物,还有轴重仪标定原理相关的最新资讯、资料,以及轴重仪标定原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

轴重仪标定原理相关的仪器

  • 现代社会,螺栓广泛用于各个领域的构件连接,不可欠缺。在机械结构、汽车、飞机、高速公路、桥梁、分段固定等应用中,通过测量施加到螺栓的轴向力,可以确定和管理紧固状况。此外,轴向力测量对于了解螺栓强度和设计螺栓连接方式也很有帮助。本公司承接螺栓测量的应变片安装业务。对客户提供螺栓进行钻孔加工,埋设专用应变片并提供负载标定。应变片安装业务可以埋设应变片或表面粘贴应变片。提供特殊形状螺栓的咨询,可以满足从低温到高温的要求。安装方法根据螺栓的使用条件,有螺栓内部埋设方法和表面粘贴方法。埋设: 螺栓专用应变片(BTM/BTMC系列)在螺栓中心钻孔,孔径为1.6mm或2mm。将应变片插入螺栓孔中并使用专用胶粘剂埋设。这种方法的优点是在紧固螺栓时可以避免垫圈等物件对应变片的损伤。粘贴: F、QF、ZF、CF系列将两组应变片以轴向对称形式粘合在螺栓轴的两侧,以消除弯曲的影响。为了避免在紧固螺栓或与垫圈接触时损坏应变片,螺栓表面经过略微削平后粘贴应变片。根据使用温度以及环境选择适合的应变片。标定业务为实现精确的测量,可按指定的负载标定。用于标定的测量仪器和校准设备,将定期由符合日本国家标准的公认机构进行标定和检查。应用示例监测连接部位的螺栓轴向力由于风力发电设施的大型化,安装、运转时结合部位的螺栓轴力管理是必不可少的。通过在连接部分使用的螺栓中安装螺栓应变片,可以连续监测轴向力。叶片等结合部位的一部份使用螺栓固定,可以时常监视轴力的状态。电路板紧固螺栓轴力测量施加到螺栓上的轴向力通常用扭矩计算,但通过使用螺栓应变计(轴力螺栓)直接测量轴向力,可以很容易地测量和检查松动、过度拧紧以及是否达到规定的紧固力。我们可提供M3及以上尺寸的螺栓加工。获取产品资料,了解更多产品信息,请咨询日本东京测器研究所(日本TML)中国总代理欧美大地,热线400-700-9998
    留言咨询
  • JJG(交通) 053-2017《摆式摩擦系数测定仪检定规程》----附录D 最大静压力标定方法 1.相关产品链接: ?【摆式仪标定架】 →了解详细产品参数 ?【高精度摆式摩擦系数测定仪】 →了解详细产品参数 ?【摩擦系数试块组】 →了解详细产品参数 2.测试方法: ?【高精度摆式摩擦系数测定装置】 ?【JJG(交通) 053-2017《摆式摩擦系数测定仪检定规程》】 3.使用说明: ?【摆式仪标定架使用说明书】 ?【高精度摆式摩擦系数测定仪使用说明书】 ?【摆式摩擦系数试块组使用说明书】 摆式仪标定架 型号:BM一、摆式仪标定架用途: 摆式仪标定架是根据JJG(交通) 053-2017《摆式摩擦系数测定仪检定规程》研制而成,用于检定摆式仪 滑溜块的正向静压力。二、摆式仪标定架主要技术参数 1、千分尺:0~10mm,分度值0.01mm; 2、标定砝码:2263g; 3、托架:1套。三、摆式仪标定架试验准备: 托架、千分尺、标定砝码,其中标定砝码由配重块、V型槽杆和连线组成,总质量为(2263±1)g。四、摆式仪标定架最大静压力标定试验步骤: 1、将标定架垂直固定在墙上(详见图一); 2、将摆倒置于专用压力标定架上,将V形槽杆置于滑溜块 橡胶片边缘,用连线连接V形槽杆和砝码,此时砝码应置于标定架下端可升降的托盘上并处于未加载状态(详见图二); 3、用千分尺测定滑溜块轴上橡胶片的位置并记下下读数A 4、慢慢松开托盘旋钮给滑溜块缓缓施压,待稳定后再次用千分尺测定滑溜块位置,并记下读数B,计长度变形为:△L= B - A 式中:△L--长度变形,单位为mm; A--未施加压力前橡胶片所处的位置,单位为mm; B--施加压力后橡胶片所处的位置,单位为mm; 5、通过旋紧或旋松摆杆弹簧调节螺母可调节弹簧松紧程度(详见图三),使长度变形△L满足: ①橡胶片与被测量表面的最大正向静压力为:(22.2±0.5)N; ②使用挂重法检测,最大静压力对应的滑溜块沿轴向变形距离应为(4.0±0.1)mm。五、摆式仪标定架维修与保养: 1、使用后,清除灰尘,用防尘罩保护。 2、使用过程中,器具应轻拿轻放,严禁敲击防止架体变形。 产品相关关键字:摆式仪标定架如果您对摆式仪标定架感兴趣,想了解更详细的产品信息,请与销售部联系:
    留言咨询
  • 1.中瑞祥便携式磷酸盐测定仪水质检测仪 ZRX-18041 微电脑光电子比色检测原理 一、磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪概述磷酸盐测试仪适用于大、中、小型水厂及工矿企业、生活或工业用水的磷酸盐浓度检测,以便控制水的磷酸盐达到规定的水质标准 二、磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪原理:本仪表应用微电脑光电子比色检测原理取代传统的目视比色法。消除了人为误差,因此测量分辨率大大提高。测量时,当被测水样倒入试剂时,水样将变成蓝色。然后将此水样放入光电比色座,仪表会通过比较蓝色深浅从而得到磷酸盐的浓度大小。磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪技术参数测量范围 0-2.0mg/L分辨率 0.001mg/L重复性 ≤2%示值误差 ±5%FS±1个字充电器 AC 220V 50Hz三.特点: 1.微电脑,轻触式键盘,LCD液晶数字清晰显示,使用方便。2.可自动调零和5点自动校正。3.高性能锂电池,充电2小时可连续使用4小时,即充即用。4. 采用高精度电路系统,低漂移,仪器能长时间稳定工作,水样放入试剂即可读数.5. 本仪器采用特制高强度长寿命光源,恒光源半导体发光器光源稳定,其光源寿命长达20年,开机时无需预热,可直接使用。6.仪表分辨率高达0.001mg/L。 7. 交直流两用,携带方便,除了能在实验室和固定场所使用外,还可直接现场取水样测量和野外使用。 1.中瑞祥便携式磷酸盐测定仪水质检测仪 ZRX-18041 微电脑光电子比色检测原理 一、磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪概述磷酸盐测试仪适用于大、中、小型水厂及工矿企业、生活或工业用水的磷酸盐浓度检测,以便控制水的磷酸盐达到规定的水质标准。 二、磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪原理: 本仪表应用微电脑光电子比色检测原理取代传统的目视比色法。消除了人为误差,因此测量分辨率大大提高。测量时,当被测水样倒入试剂时,水样将变成蓝色。然后将此水样放入光电比色座,仪表会通过比较蓝色深浅从而得到磷酸盐的浓度大小。磷酸盐测定仪 磷酸盐检测仪 磷酸盐分析仪技术参数测量范围 0-2.0mg/L分辨率 0.001mg/L重复性 ≤2%示值误差 ±5%FS±1个字充电器 AC 220V 50Hz三.特点: 1.微电脑,轻触式键盘,LCD液晶数字清晰显示,使用方便。2.可自动调零和5点自动校正。3.高性能锂电池,充电2小时可连续使用4小时,即充即用。4. 采用高精度电路系统,低漂移,仪器能长时间稳定工作,水样放入试剂即可读数.5. 本仪器采用特制高强度长寿命光源,恒光源半导体发光器光源稳定,其光源寿命长达20年,开机时无需预热,可直接使用。6.仪表分辨率高达0.001mg/L。 7. 交直流两用,携带方便,除了能在实验室和固定场所使用外,还可直接现场取水样测量和野外使用。 2.超声波声强测量仪 ZRX-18040用于检测超声波在液体中 超声波声强测量仪 是一种用于检测超声波在液体中能量辐射大小的仪器, 能实时测量诸如超声波清洗机水槽内的超声能量强弱 频率以及波形曲线 声强量程 0.00-200/260(W/cm2) 测量精度 0.01(W/cm2) 0.01(KHz) 数据显示 声强最大值、平均值;频率;曲线 可测频率 5KHz-100KHz 探头长度 40cm或60cm任选 耐酸碱性 液体PH4-PH10 供电电源 3.7V×2节循环可充锂离子电池 显示方式 3.2寸TFT彩色显示屏(480×320) 实时显示声强、频率、波形曲线 仪器尺寸 216×100×36(mm) 典型用途 检测清洗机在液体内的辐射强度、频率 仪器重量 386(g)不含锂电池 3.面筋测定系统 面筋洗涤仪 面筋指数仪 面筋烘干仪 型号:ZRX-18039 产品概述及特点 概述:ZRX-18039 面筋测定系统是专业用于测定面粉中干、湿面筋含量与面筋质量的仪器,适用于小麦粉、硬小麦、粗小麦、谷元粉等的测定。面粉的面筋数量和质量对于生产的面包、饼干、面条等产品的质量有很大影响。比如湿面筋含量越高,烘培出的面包体积越大。虽然面筋由蛋白质组成,但是面粉中的蛋白含量并不能真实反映面筋的质量,很多情况下高蛋白含量的小麦,面筋含量很低。面筋仪通过测定揉制面团后形成的面筋的数量和筋力强弱,客观准确地评价面团特性,是检测面筋质量的标准检测仪器 特点:性能稳定,设计可靠,可用于粮食储藏库或其他恶劣环境的粮食采购区域 操作简单,自动化程度高,非技术人员也容易操作 快速分析,整个测试过程少于10分钟 双样品测定,测试效率高 符合的国家国际标准:AACC/No. 38-12.02、ICC/No. 155&158、CC/No. 137/1、ISO 21415 GB/T 5506.2 三、产品技术参数 1、官方认可的认证方法:检测方法符合 AACC/No. 38-12.02 、ICC/No. 155&158、ICC/No. 137/1 ISO 21415、GB/T 5506.2; 2、电源:220V AC 50Hz 180W; 3、外形尺寸:320mm×400mm×280mm; ★4、采用进口阻尼电磁铁,工作中无异响,噪音小; 5、滤网采用瑞典进口合成树脂,工作寿命长; ★6、配有4.3寸彩色显示屏提示,稳定准确,内置成熟程序机器人监控调整实验时间、温度、出水量等; 4.新品振动测量仪/手持振动测量仪/故障诊断仪/振动检测仪 型号:ZRX-18038 慨述: 随着设备故障诊断及状态监测技术的日益推广及普,对检测仪器提出了更高的要求。振动测量仪广泛应用于石油、化工、冶金、机械、矿山、烟草等行业。 振动测量仪是一种数字显示多功能振动测量仪器。该仪器配有压电式加速度计和磁吸座,能方便地测量出机械振动的加速度值(A)、速度值(V)、位移值(M),测量结果均为真有效值读数。 该仪器采用集成化设计,结构紧凑合理。9V充电池供电。触摸按键开关。3位半液晶显示示值、整机外观美观大方,是较为理想的便携式测量仪器。该仪器适用于各种设备的点检、巡检、定期检,能方便地进行各种机械设备的状态监测和故障诊断。 主要技术指标: 1.加速度测量范围: 0—19.99.00g(有效值) 2—10000 HZ (频率响应) 2.速度测量范围:0—19.99.cm/s (有效值) 3—1000 HZ (频率响应) 3.位移测量范围: 0—19.99mm(峰峰值) 3—200 HZ (频率响应) 4.测量误差范围: ≤5% 5.传感器类型: 压电式加速度传感器 5.在线氨水浓度计 在线密度仪 音叉氨水密度/浓度计 型号:ZRX-18035 介绍 在线密度/浓度计用于测量罐体和管道中液体介质的浓度。浓度测量是产品生产工艺中重要的过程控制,音叉密度/浓度计可用作固含量或浓度值等其他质量控制参数的指示器。可满足用户对密度、浓度、固含量的多种测量要求。 ◆ 工作原理在线密度/浓度计,是使用声波频率信号源对金属音叉进行激励,并使音叉处于中心频率下自由振动,此频率与接触液体的密度有着相联对应关系,因而通过对频率的分析可测量液体的密度,再进行温补可消除系统的温漂;而浓度则根据对应液体密度和浓度的关系式可计算出25℃温度下的浓度值。 ◆ 应用行业1、石化行业:柴油、汽油、乙烯等。2、化工行业:硫酸、盐酸、硝酸、氯乙酸、氨水、甲醇、乙醇、盐水、氢氧化钠、冷冻液、碳酸钠、甘油、双氧水等。3、制药行业:药液、生物液体、醇提、丙酮、酒精回收等。4、食品及饮料行业:糖水、果汁、酿造、奶油等。5、电池、电解液行业:硫酸、氢氧化锂等。6、环保行业:脱硫(石灰浆、石膏浆)、脱硝(氨水、尿素)、废水处理mvr(酸、碱、盐回收)等。产品性能 精度 ±0.001g/cm3 ±0.25% 工作范围 0~2g/cm3 0~100% 重复性 ±0.0001g/cm3 ±0.1% 过程温度影响(已校正) ±0.0001g/cm3 ±0.1% (每℃) 过程压力影响(已校正) 忽略不计 忽略不计 (1)上述精度适用于标定范围0.8–1.5g/cm3(800﹣1500 kg/m3)。 (2)液体的粘度最大可达2000cP。 (3)温度影响指的是因过程流体温度偏离工厂标定温度而引起的最大测量偏差。(4)压力影响定义为:由于过程压力偏离标定压力而引起的传感器流量和密度敏感度的变化。温度规格过程温度 标准:–25℃~+120℃订制:–25℃~+150℃环境温度 –25℃~+85℃温度系数 20ppm/℃(校正后)内置温度传感器 温度芯片 6.活性炭着火点测定仪 触摸屏点火检测仪 型号:ZRX-29593 ZRX-29593 产品介绍1. 将活性炭试样填充石英灼管。2. 炭层高度 25mm±1mm,炭层上部应覆盖厚度为 15mm 石英珠,热电偶尖端置于试料上端 3/4 处,另一热电偶尖端置于炭层下端 3/4 处,用于升温速率控制。 3. 通入干燥、洁净、无油的空气 ,以 20L/min 的流量吹试料 1 小时。 4.将空气流量调到 14.7L/min±0.3L/min ZRX-29593 技术参数 设备系统参数 (气泵、流量计、加热器、石英灼管)防护等级:IP30安装方式:水平安装4.通风流量:≥4m3/h5.空气流量:≤1.6m3/h6.湿度:≤60%相对湿度(无凝结水)7.加热器功率:1000W1.2控制系统参数(PLC、触摸屏、SSR、打印机、温度传感器、配电器件)1.电源:AC220V(系统必须可靠接地)2.控制电源:DC24V3.加热功率:1000W4.加热控制方式:SSR 占空比5.最高温度:≤650℃6.通讯端口规格:RJ457.PLC 模拟量输入: 2 路(K 型热电偶) 8通道尘埃粒子检测仪 型号:ZRX-29591 本仪器采用半导体激光光源,数码显示,其体积小、重量轻、检测精度高、功能操作简单明了,电脑控制,可打印采样结果,测试洁净环境十分便利。广泛应用于电子、光学、化学、食品、化妆品、医药卫生、生物制品、航空航天等部门。 最大功耗 40W供电电源 交流电源 220V±10%粒径通道 0.3、0.5、1、2、3、5、7、10(µ m)采样流量 2.83L/min使用环境条件 温度:10℃——30℃湿度:20%——75%大气压力:86kPa——106kPa.允许最大采样浓度 35000 颗/L(尘埃颗粒粒径不大于 0.5µ m),采样空气中不得含有酸碱等腐蚀性气体检测周期 1min、2min、10min自净时间 ≤20min 9.在线式红外测温仪 型号:ZRX-29589 ZRX-29589 技术指标测温参数测温范围:-50~600℃/-50~900℃(选配) 测量精度:±1% FS 或±1℃ 重复精度:±0.5% FS或 ±1℃响应时间:150 ms温度分辨率:0.1℃发 射 率:0.10~1.00可调测温方式:瞬时值(TEM)、最大值(MAX)、平均值(AVG)光学参数工作波段:8~14 μm距离系数:20:1 ZRX-29589 电气参数电 源:24V DC ±10%,100mA信号输出:0/4~20mA电流输出环境及物理参数工作温度:-20℃~80℃;储存温度:- 30℃~80℃防护等级:IP65尺 寸:探头Φ14×28 mm,控制盒120×70 mm重 量:0.46Kg电 缆:标配1m。 10.可见分光光度计 型号:ZRX-29586 ZRX-29586 是一款实用型可见分光光度计,广泛应用于教学、化学化工、电力等领域,采用单片微机控制,数码显示自动调0、调100%功能,可通过PC控制实现更精确和灵活的测量要求. ZRX-29586 可见分光光度计技术参数波长范围: 325~1000nm光谱带宽: 4nm波长准确度: ±2.0nm波长重现性:1nm透射比准确度: ±0.5% τ透射比重复性:0.2% τ杂散光: ≤0.05% τ (340nm NaNO2)稳定性: 0.001A/30min(500nm预热后)测光方式: 透过率、吸光度、浓度、能量波长调节:手动光度范围: -0.3~3A显示方式: 4位LED显示检测器: 进口硅光二极管光源: 进口钨灯电源: AC 220V/50Hz 110V/60Hz功率: 120W仪器尺寸: 360×280×190mm主机净重: 9Kg 以上参数资料与图片相对应
    留言咨询

轴重仪标定原理相关的方案

轴重仪标定原理相关的论坛

  • 【我们不一YOUNG】氨氮检测仪曲线标定原理以及关键步骤

    [font=&][color=#333333]氨氮是评估水体污染程度和水质安全的重要指标之一。为了准确测量水体中的氨氮含量,氨氮检测仪的曲线标定是必不可少的步骤。本文将深入探讨氨氮检测仪曲线标定的原理和关键步骤,带你了解如何精确测量水体中的氨氮含量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定原理[/color][/font][font=&][color=#333333]氨氮检测仪的曲线标定基于氨氮与试剂之间的化学反应。一般情况下,氨氮检测仪采用纳氏试剂法(Nessler法)进行测量。纳氏试剂能够与氨氮形成复合物,生成具有特定颜色的产物。曲线标定的目的就是建立不同氨氮浓度下的反应产物与光强之间的关系,从而实现测量样品中氨氮含量的精确计量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定原理关键步骤[/color][/font][font=&][color=#333333]1、准备标准氨氮溶液:首先,需要准备一系列已知浓度的标准氨氮溶液。这些标准溶液的浓度应覆盖待测样品的预期氨氮范围。标准溶液的浓度可以通过稀释已知浓度的氨氮标准品或通过溶解已知质量的氨氮化合物来制备。[/color][/font][font=&][color=#333333]2、进行反应:将不同浓度的标准氨氮溶液分别与纳氏试剂反应。反应过程中,试剂会与氨氮形成复合物,产生特定颜色的产物。颜色的强度与氨氮浓度成正比。[/color][/font][font=&][color=#333333]3、测量光强:使用氨氮检测仪测量各个标准溶液反应产物的光强。光强的测量可以通过检测器接收产物溶液的光线强度来实现。[/color][/font][font=&][color=#333333]4、绘制标定曲线:将测得的光强值与对应的氨氮标准溶液浓度进行配对,绘制标定曲线。标定曲线是光强与氨氮浓度之间的线性或非线性关系,通常使用回归分析进行拟合。[/color][/font][font=&][color=#333333]5、校准和测量样品:通过标定曲线,可以根据测量样品的光强值确定其对应的氨氮浓度。校准仪器后,即可使用检测仪对待测样品中的氨氮含量进行测量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定是确保测量准确性的关键步骤。通过制备标准溶液、进行反应、测量光强和绘制标定曲线,我们可以建立光强与氨氮浓度之间的关系,从而实现对水体中氨氮含量的精确测量。[/color][/font]

  • 【分享】电子衍射原理及多晶、单晶衍射的标定

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=33923]电子衍射原理及多晶、单晶衍射的标定[/url]刚接触TEM衍射,跟大家分享点资料,好像这里还没有。主要内容包括:电子衍射原理多晶电子衍射成像原理与衍射花样特征 多晶电子衍射花样的标定单晶电子衍射成像原理与衍射花样特征单晶电子衍射花样的标定复杂电子衍射花样TEM的典型应用等

轴重仪标定原理相关的耗材

  • BDQ型引伸计标定器
    BDQ型引伸计标定器,是一种纯机械式的简易位移测微仪器。依据JJG762-2007引伸计检定规程要求,专门用于对各类引伸计的标定,也广泛用于位移传感器的检定及相应百分表、千分表的检定。 技术精度指标 1、测量引伸计标距范围Lmax ≥100㎜ 2、上下模拟试样同轴度 ≤φ0.1mm 3、分辨率 0.001㎜ 4、示值误差 校准范围不超过1/3mm绝对误差 ±0.001mm 校准范围超过1/3mm相对误差 ±0.3%
  • G-渗透仪 标定气体发生器(无CE)
    G-渗透仪 标定气体发生器(无CE)G-渗透仪为手提式,特别设计用于我们专利保护的23 系列G-Cal 渗透装置,用来产生已知浓度(ppb~ppm)的各种气体和液体蒸汽。此仪器提供最简便的标定有毒气体检测设备、气体分析器和色谱的方法,常用于化学、石油化学、造纸、能源和相关工业。由于采用渗透专利技术,当遭受温度变化时G-Cal 装置的渗透率仍保持相当稳定,此特征也就消除了对温控箱的需要。两个基础系列可以订购 – 2301 型(无温控箱)和2330 型(带温控箱)。带温控箱的2330 系列有一个单一固定温度点 (35° - 50°C),所有产品均带不锈钢接头并有PTFE 管路贯穿。G-渗透仪 标定气体发生器(无CE)流速范围温控箱*电池型号100 – 1000 cc/min无1.5 VDC2301无12 VDC 镍镉蓄电池2310-10有12 VDC 镍镉蓄电池2330-10200 – 4000 cc/min无12 VDC 镍镉蓄电池2310-20有12 VDC 镍镉蓄电池2330-20*单一固定温度点(35° - 50°C)无 CE,欧洲限制使用。
  • 欢迎选购 新仪各型号微波消解罐 非标定制国产价格
    欢迎选购 新仪各型号微波消解罐 非标定制国产价格  微波消解罐  微波消解仪已广泛应用于食品、药品、纺织、塑料、地质、冶金、煤炭、生物医药、石油化工、环境监测、污水处理、化妆品等领域。但进口微波消解仪内罐无论是供应周期还是产品价格确实让很多使用单位望而却步。为了满足更多客户的需求,德氟作为PTFE产品的生产单位,在完善的成熟的生产技术水平上,不断开发生产国内外各品牌各型号的微波消解仪内罐及外罐、转盘、塞子、垫片、弹片、主控罐盖子等。  TFM微波消解罐特点:  1、内罐选用进口美国3M公司旗下牌号TFM1700,PFA(改性聚四氟乙烯)PTFE加工完成。  2、罐体材料纯进口,保证与原厂一致,绝不添加回料,洁净的车间环境,精准高效的工艺,确保合理的成本。  3、TFM材质耐高低温-190~+260℃,极限可耐300℃,具有空白值更低,耐变形性更好,耐渗透,高温高压下恢复性更强等特点。  3、德氟特殊研发的生产工艺(五轴CNC),保证了特别厂家(如美国3M)的超长内罐的光洁度。  德氟具有的独特优势:  德氟是国内zui早从事PTFE行业的厂家,从产品原材料到半成品再到成品,全程把控,绝不添加回料。德氟已经通过了ISO9001.ISO14001,以及被多家世界500强企业纳入合格供应商名单内。在全国各地区德氟在四氟行业相当有知名度。所加工的产品实验数据不亚于原厂且成本低,价格只有原厂的1/4,大大缩减了众多科研单位购买耗材的成本开支。  德氟可以配合客户开发生产任何PTFE、POM、PEEK、PVDF、PCTFE、TFM等多种材质的所有产品,工艺技术与日本德国看齐。德氟拥有:现代化模压设备、数控设备、走心机、三轴、四轴、五轴CNC、车铣复合等多种设备数十台,保证了技术产品的稳定性,产品单价的合理性。  德氟可定制各个厂家微波消解仪内罐:  美国3M、迈尔斯通、、耶拿、上海新仪、上海新拓、上海屹尧、北分瑞利、北京祥鹄、山东海能等,我厂特殊研发的生产工艺保证特别厂家(如3M MARS5、MARS6、XPRESS)的超长罐的光洁度。

轴重仪标定原理相关的资料

轴重仪标定原理相关的资讯

  • 溶解氧测试仪的两种标定方法分享
    氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。  溶解氧测试仪的电极由阴极和带电流的反电极、无电流的参比电极组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。  氧量测量传感器由阴极和带电流的反电极、无电流的参比电极组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,覆膜将电极和电解质与被测量的液体分开,只有溶解气体能渗透覆膜,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵人而导致污染和毒化。  向反电极和阴极之间施加极化电压,假如测量元件浸人在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上的氧分子就会被还原成氢氧根离子。电化学当量的氯化银沉淀在反电极上,对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流。  溶解氧测试仪的标定方法一般可采用现场取样标定或标准液标定,下面咱们就来了解一下:  1、现场取样标定法:在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。  2、标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 深圳先进院郑炜团队提出可突破物镜标定视场极限的大视场高分辨双光子成像技术
    双光子成像具备较强的组织穿透能力、较高的分辨率和固有的光学层析能力,适用于深层组织的活体研究。传统的双光子成像能维持细胞分辨率的视场直径往往小于1 mm,限制了在大规模生物成像中的应用,如横跨多个脑区神经环路的结构与功能成像。近年来,一些新型技术通过设计特殊物镜和相应光学元件,实现可支持数毫米视场范围且保持细胞分辨率的双光子成像。但这些物镜并不是常规的商用光学元件,加工设计复杂,且使用时有较高的光学知识门槛,无法在生物成像研究中得到广泛应用。针对这一问题,中国科学院深圳先进技术研究院研究员郑炜团队提出一种有效的自适应光学方法,可矫正在大扫描角度时(大视场成像)的离轴像差,从而突破物镜的标定视场限制,在仅集成商用光学元件的基础上即实现视场直径可达3.5 mm且维持着800 nm横向分辨率的双光子成像。物镜是显微成像系统的核心部件,而物镜标定视场是一个由物镜制造商提供的数值,反映了该物镜光学像差得到有效校准的最大成像视野范围。在标定视场外的区域虽然仍能探测到光信号,只是将这部分信号用于成像时,图像模糊且存在明显畸变。为利用这一特性,团队提出一种分割矫正的无波前自适应光学补偿方法,该方法能高效且稳定地恢复标定视场外的图像质量。利用这一方法,研究人员能清晰观测到几乎覆盖了1/4小鼠大脑的神经环路成像,也能在活体小鼠大脑上监测大规模分布的小胶质细胞和微血管。该技术无需特殊光学元件,可集成到任一标准的点扫描式光学显微镜中。相关成果以Exploiting the potential of commercial objectives to extend the field-of-view of two-photon microscopy by adaptive optics为题,发表在Optics Letters上。研究由深圳先进院、香港理工大学联合完成,得到国家自然科学基金委、广东省重点实验室等项目支持。论文链接 技术原理及Thy1-GFP-M小鼠脑片大视场成像结果
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制