当前位置: 仪器信息网 > 行业主题 > >

超薄电动平移台

仪器信息网超薄电动平移台专题为您提供2024年最新超薄电动平移台价格报价、厂家品牌的相关信息, 包括超薄电动平移台参数、型号等,不管是国产,还是进口品牌的超薄电动平移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超薄电动平移台相关的耗材配件、试剂标物,还有超薄电动平移台相关的最新资讯、资料,以及超薄电动平移台相关的解决方案。

超薄电动平移台相关的资讯

  • 新品 | 徕卡推出3D连续超薄切片机
    p   2月15日,徕卡推出新产品ARTOS 3D连续超薄切片机。 br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 368px " src=" https://img1.17img.cn/17img/images/201907/uepic/65e5d42d-0dba-4354-93d1-bbe95d818dcb.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 368" border=" 0" vspace=" 0" / /p p   关注细胞超微结构的您: br/ /p p   还在为只能得到十几张超薄切片而不满吗? /p p   还在为TEM下只能观察到一层切片的细胞结构而劳神吗? /p p   还在为单层贴壁细胞内细胞器之间,病毒和宿主之间的关系而发愁吗? /p p   那么,告诉您一个好消息!徕卡3D连续超薄切片机上市啦! /p p   它可以一次自动切出上百个切面尺寸灵活 (微米到毫米) 的超薄切片。 /p p   内置切片-条带收集系统,可直接转移至SEM内。 /p p   通过序列断层成像,对生物样品超微结构进行纳米级别的三维重建。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 徕卡3D连续超薄切片机(ARTOS 3D)具有以下3个优势: /strong /span /p p    strong 1 快速连续切片和轻松对准SEM成像 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/ba360912-11fd-4f8c-b01a-0b69f1619b6c.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p    strong 2 通过无缝的工作流程,节省高品质切片的制作时间 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/edf00fbc-aefb-408e-b632-cfcfa99a772f.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p    strong 3 可重复且无假象的切片 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/b1006e83-1c47-41b9-b832-ff07e696d746.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p   可选择透明的硅片收集切片,因此 ARTOS 3D 也是 strong 光电联用显微技术 (CLEM) /strong 的理想解决方案。整体的成像解决方案工作流程如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/02d50b2c-131d-4c75-b542-d985403828dc.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p   除此之外,ARTOS 3D 的卓越性能和速度源于 strong EM UC7 技术 /strong ,因此可用于各种样品制备任务。 /p p    strong & gt /strong 由于 EM UC7 的观察系统采用 strong 共心运动方式 /strong ,而刀台以电动方式进行横向和竖向运动且自动接近所选刀段,ARTOS 3D可以制备LM和TEM高品质半薄及超薄切片,并获得进行SEM和 AFM 检测所需的光滑表面。 /p p    strong & gt /strong 将您的 EM UC7 超薄切片机升级为 strong ARTOS 3D 超薄切片机 /strong /p p    strong & gt /strong 短短几分钟即可将 EM UC7 和 ARTOS 3D 超薄切片机转换为配备 strong EM FC7 冷冻箱 /strong 的冷冻超薄切片机 /p
  • 半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!
    【科学背景】二维(2D)半导体具有原子级厚度,是潜在的高度缩放晶体管沟道材料,因其能够抑制短沟道效应而成为研究热点。然而,要超越传统的硅基晶体管,需要在2D半导体上开发无瑕的超薄高介电常数(κ)介电材料,以实现高效的栅极控制。然而,由于2D半导体表面没有悬挂键,直接进行原子层沉积(ALD)来沉积介电层存在非均匀成核和电流泄漏的问题,特别是在介电层厚度小于3nm的情况下。为了解决这个问题,科学家们提出了多种界面工程方法,包括等离子预处理和种子层预沉积,但这些方法通常会引入额外的界面电荷散射、较差的热稳定性或整体栅极电容降低等问题。有鉴于此,南开大学材料科学与工程学院张磊,吴金雄等教授提出了一种垂直金属辅助的范德华(vdW)集成方法,这种方法能够在不损伤2D半导体表面的情况下,将高κ介电材料层叠到2D半导体上。研究中开发了一种铋氧化物(Bi2O3)辅助的化学气相沉积(CVD)方法,用于垂直生长钯、铜和金等单晶纳米片,这些纳米片具有原子级平整的表面。通过无聚合物的机械压合方法,这些纳米片可以轻松转移到目标基板上。此外,CVD生长的钯与ALD过程兼容,能够在其上沉积超薄高κ介电材料如Al2O3和HfO2,同时保持其原子级平整表面。通过一步转移过程,研究人员将小于3nm的Al2O3/Pd和HfO2/Pd异质结构堆叠在几层的MoS2或石墨烯上,形成了清洁的vdW界面,没有有机污染或沉积引起的损伤。结果表明,使用2nm厚Al2O3或HfO2介电材料的顶栅MoS2场效应晶体管(FET)展示了约61mV/dec的亚阈值摆幅、0.45V的低工作电压、107的开/关比、10&minus 6A/cm² 的栅极漏电流和~1mV的可忽略滞后。【科学亮点】(1) 实验首次介绍了铋氧化物辅助化学气相沉积(CVD)方法:&bull 首次开发了铋氧化物辅助CVD方法,用于垂直生长单晶金属纳米片,如钯、铜和金,这些纳米片具有原子级平整表面。&bull 创新性地展示了纳米片通过无聚合物机械压合技术轻松转移到目标基板上,这一过程没有引入有机污染物,保持了原子级平整度。(2) 实验通过vdW集成成功实现了亚1nm CEC的2D晶体管的制备:&bull 使用了铋氧化物辅助CVD生长的钯纳米片作为基础,成功实现了超薄高介电常数(高κ)介电材料(如Al2O3和HfO2)的原子层沉积(ALD),保持了介电材料的原子级平整度。&bull 在少层二硫化钼(MoS2)和石墨烯上,通过一步转移过程堆叠了小于3nm厚的Al2O3/Pd和HfO2/Pd异质结构,形成了清洁的vdW界面,避免了常见的沉积损伤和有机污染物的引入。(3) 实验所制备的MoS2顶栅场效应晶体管(FET)展示了亚1nm CEC(0.9nm)的高介电常数(高κ)介电材料(Al2O3或HfO2)的优异性能。具体包括低至0.45V的操作电压、106 A/cm² 的栅极漏电流。【科学图文】图1:垂直生长的单晶金属化学气相沉积chemical vapour deposition,CVD生长、无聚合物转移和表征。图2:垂直生长钯Pd纳米片的原子层沉积atomiclayer deposition,ALD兼容性和范德华van der Waals,vDW集成。图3:以亚3nm Al2O3/Pd作为顶栅介质和电极的MoS2晶体管。图4:以2nm HfO2/Pd作为顶栅介质和电极的MoS2晶体管。【科学结论】本文的科学启迪在于了一种新颖的方法,利用铋氧化物辅助化学气相沉积(CVD)生长垂直单晶二维金属纳米片,并成功将其作为高质量原子层沉积(ALD)氧化物的平台。这一方法不仅解决了传统ALD技术在二维半导体表面上沉积难题,还避免了传统转移技术中介电层厚度过大的问题。通过铋氧化物的引入,实现了在原子级别上对金属表面的垂直生长,从而为超薄介电层的制备提供了一种新途径。此外,本文还通过简化的一步法集成过程,成功在二维半导体上形成了范德华界面,避免了传统转移过程中的有机污染和损伤,确保了介电层的质量和性能。这不仅有助于在极小的电容等效厚度下实现高效的栅极控制,还为制造更高性能的二维场效应晶体管(FET)奠定了基础。原文详情:Zhang, L., Liu, Z., Ai, W. et al. Vertically grown metal nanosheets integrated with atomiclayerdeposited dielectrics for transistors with subnanometre capacitanceequivalent thicknesses. Nat Electron (2024). https://doi.org/10.1038/s41928024012023
  • 电镜制样设备新突破 国内首款超薄切片机发布
    10月29日,江苏雷博科学仪器有限公司(以下简称“雷博科仪”)在2022年浙江省X-射线衍射分析与电子显微学学术交流会上发布了其自主研发的高端电镜制样设备---UM10超薄切片机,同时面向大众推出了此设备的2款配套产品GK25玻璃制刀机和SA350减震台。雷博科仪成立于2013年9月,公司地点在江苏省江阴市,是一家致力于高档科研仪器研发及生产的高科技公司。公司主营纳米薄膜制备类设备和电镜周边制样类设备,主要产品有等离子清洗机、匀胶机、显影机、烤胶机、提拉机、涂膜机等相关纳米薄膜制备产品和电解双喷仪、冲孔仪、超薄切片机、玻璃制刀机、包埋聚合箱、离子溅射仪等相关电镜周边制样产品。超薄切片机是公司2019年立项研发的一款电镜制样的设备,主要应用于生物类、高分子、无机非金属、金属等材料的切片。此前国内应用该款设备主要依赖于进口,不仅价格高而且一旦发生售后,周期较长,严重影响科研项目的进度。2022年10月,历经3年多的时间,经过公司研发团队不懈的技术探索,终于取得技术上的突破,完成了首台样机的问世,并顺利通过XX大学超半年以上的使用测试,测试结果比肩进口设备水平,得到行业内专家的肯定,此款设备的问世,将填补国内空白,打破此前超薄切片机严重依赖进口的尴尬局面。UM10超薄切片机视频演示以下是电镜下观察效果(植物细胞)(肌肉组织)UM10超薄切片机,采用的是机械式推进结构,使切片的过程更平稳连续。三目体视显微镜,更便于直接观察结果。为减少外界震动影响切片效果,机台内置减震模组,可以有效的隔绝外界震动。更多数据可参考一下表格▼
  • 仪器表征,科学家评述超薄手性二维材料的最新进展!
    【科学背景】二维材料具有超薄形态和极高长宽比,与块体材料相比,它们的性质发生了显著变化,因而在光电子学、自旋电子学、二氧化碳转化、能源存储和气体分离等领域展现出巨大的应用潜力。然而,尽管二维材料在许多方面表现出色,直到最近,全局手性这一特性在二维材料中仍然缺失。手性是一种广泛存在于自然界中的现象,尤其是在分子水平上。手性材料因其在对映选择性识别和催化中的应用,长期以来受到研究者的关注。然而,全局手性,即发生在分子水平以上的手性构象和排列,在二维材料中的实现一直是一个难题。特别是手性二维材料的设计、合成与表征面临着诸多挑战,包括超薄纳米片的分离、稳定性问题以及在二维平面中有效传递和放大手性信号的难度。有鉴于此,上海交通大学化学化工学院董金桥刘燕以及崔勇合作发表了二维材料的最新评述论文。他们发现,研究者们近年来开展了大量的研究,并在手性二维材料的设计与合成方面取得了显著进展。通过化学合成和精确设计,几种不同类型的超薄手性二维晶体得以实现。这些新型手性二维材料在实验上展示了分子尺度的局部手性如何在超薄单晶二维结构中显著传递和放大,从而形成独特的全局手性。【科学亮点】1. 本研究发现超薄手性二维晶体材料表现出独特的物理性质和潜在应用,填补了二维材料中长期缺失的全局手性这一重要特性。2. 论文指出,科学家成功地传递并放大了分子尺度的局部手性,从而在超薄单晶二维结构中实现了显著的全局手性。【科学图文】图1:手性二维2D 金属有机骨架材料metal–organic frameworks,MOFs的局部结构表征。图2:通过共价或非共价组装的手性二维2D纳米片合成和结构表征。图3:手性二维2D 有机-无机混合钙钛矿hybrid organic–inorganic perovskites,HOIP的晶体结构。图 4: 手性二维2D蛋白质的合成和HR-TEM表征。【科学启迪】本文揭示了二维材料领域中的全局手性这一未被充分探索的潜力。尽管二维材料因其超薄形态和极高的长宽比展现出众多独特性能,但全球手性特性长期以来在这些材料中却鲜有踪迹。近期的研究突破通过实现多种超薄手性二维晶体,揭示了全局手性在二维材料中的重要性和应用潜力。文章强调了如何通过精确设计和合成策略,将分子尺度的局部手性有效地传递并放大至整个超薄单晶二维结构中,从而形成显著的全局手性。这种全局手性不仅提升了材料的功能复杂性,还为开发新型手性材料和应用提供了全新的视角。本文的讨论引导我们认识到,在二维材料中探索和应用全局手性,能够拓展现有材料的功能范围,并激发在化学、物理和材料科学等领域中的新兴应用机会。参考文献:Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01595-w
  • 超薄!晶盛机电减薄机实现12英寸30μm晶圆稳定加工
    超薄晶圆因其高集成度、低功耗和卓越性能,已成为当前半导体产业发展的关键材料之一。随着半导体工艺进入2.5D/3D时代,晶圆的厚度不断减薄,对设备精度和工艺控制的要求也越来越高。晶盛机电的研发团队迅速响应市场需求,于近日成功研发出新型WGP12T减薄抛光设备,实现了稳定加工12英寸30μm超薄晶圆的技术突破。这一成就标志着晶盛机电在半导体设备制造领域再次取得重要进展,为中国半导体产业的技术提升和自主可控提供了强有力的支撑。▲ 12英寸30μm超薄晶圆据悉,新型WGP12T设备是在原有设备上进行了多项技术优化和工艺改进,成功使晶圆在设备上能稳定减薄至30μm以下,并确保晶圆表面平整度和粗糙度的高标准。在此过程中,团队成功解决了超薄晶圆减薄加工过程中出现的变形、裂纹和污染等难题,真正实现了30μm超薄晶圆的高效、稳定加工。这一技术突破为公司在全球半导体设备市场的竞争中增添了新的优势。▲ 新型WGP12T减薄抛光设备晶盛机电一直致力于半导体设备的研发与创新,此次行业领先的超薄晶圆加工技术突破,将为我国半导体行业提供更先进、更高效的晶圆加工解决方案。未来,晶盛机电将继续秉持“打造半导体材料装备领先企业,发展绿色智能高科技制造产业”的使命,持续深耕半导体设备领域,以技术创新为动力,不断突破技术壁垒,加速产品创新,为客户提供最前沿、最具竞争力的半导体解决方案,引领行业迈向新未来。
  • 【大赛通知】第二届“中镜科仪杯”超薄切片大赛通知(第一轮)
    随着电子显微镜(以下简称电镜)技术的飞速发展,超薄切片技术已经成为众多研究领域中重要的实验手段之一。在透射电镜样品制备过程中,超薄切片技术是最基本、最常用的技术。首届超薄切片大赛的成功举办,受到了业内广泛关注,获得了一致好评。为了持续开展技术交流和推广,让全国各电镜实验室的技术人员展示自己的精湛技艺,第二届“中镜科仪杯”超薄切片大赛即将拉开帷幕,欢迎各地、各单位从事超薄切片技术的在职职工、离退休人员和学生积极参加。具体大赛事宜通知如下:一、大赛宗旨:本次大赛以“分享、切磋、传承、创新”为宗旨,目的在于通过大赛加强同行间的技术交流,展现技术人员的风采,提升我国超薄切片的技术水平,尤其是为了实现新一代电镜工作者对于基础工作的重视和对前辈们技艺的传承,在此基础上做好本职工作、实现创新突破。二、大赛主题:探究微观世界,传承切片技艺。三、组织机构:主办单位:中国材料与试验标准化委员会FC98/TC03科学试验装置标准化技术委员会中镜科仪集团承办单位:浙江大学农生环测试中心河南化工技师学院协办单位:徕卡显微系统(上海)贸易有限公司阿姆西(RMC)仪器有限公司北京中科百测技术服务有限公司河南元宇宙仪器有限公司大赛组委会:主任委员:丁明孝委 员:(按姓氏首字母排序)陈明霞、管铮、郭新勇、郝雪梅、洪健、李吉学、申孟芝、孙异临、佟艳春、王华、王仁姚、杨勇骥、张艾敬、祝建大赛评委会:总裁判:杨勇骥评 委:(按姓氏首字母排序)陈明霞、洪健、石洪波、孙异临、杨勇骥、俞彰、祝建四、参赛对象和大赛分组:大赛分为“职工组”和“学生组”1.职工组:在职职工及离退休人员。一等奖1名:奖品价值5000元二等奖2名:奖品价值3000元三等奖3名:奖品价值1000元优秀奖若干名。2.学生组:在校及实习期间学生。一等奖1名:奖品价值3000元二等奖2名:奖品价值2000元三等奖3名:奖品价值1000元优秀奖若干名。五、参赛办法及要求:比赛分预赛和决赛两个阶段。1. 预赛:参赛人员自行拍摄切片简短视频及最后电镜照片,打包发邮件给组委会。提交时要注明操作详细描述(详见附表2)。2. 决赛:经组委会对预赛内容进行审核后,择优入选决赛。决赛过程需要参赛人员到比赛现场进行实际操作,评委进行现场打分,评出各级奖项。现场决赛统一使用徕卡EM UC7或EM UC6超薄切片机。决赛内容包括:手工修块、切片机操作、超薄切片、捞片。选手可自行选用玻璃刀或钻石刀进行切片,玻璃刀现场制备,钻石刀自带。决赛所用设备及其它耗材由承办方和协办方统一提供。为了技术交流和推广,将于决赛期间进行“RMC连续超薄切片演示活动”,欢迎各位老师观摩互动。六、比赛日程:报名时间:即日起至2024年1月31日。预赛时间:截止至2024年3月31日。决赛、颁奖时间:待定。七、决赛地点:杭州市西湖区余杭塘路866号,浙江大学紫金港校区农生环测试中心。八、报名方式与费用:1. 邮件报名(报名表见附表1):edu@emcn.com.cn2. 参赛费用:本次大赛不收取报名费用,决赛时参赛人员须到现场比赛,交通及食宿费自理。3. 联系人:浙江大学农生环测试中心:李云琴 13735465530中镜科仪集团:赵胜蓝13298325853本大赛规则解释权归大赛组委会。中国材料与试验标准化委员会FC98/TC03 科学试验装置标准化技术委员会中镜科仪集团2023年1月8日附表1:第二届“中镜科仪杯”超薄切片大赛报名表.docx附表2:第二届“中镜科仪杯”超薄切片大赛预赛视频要求.docx
  • 德国研制出超薄显微镜
    德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。   这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。   达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部组合成整体图像。这些微小透镜由特殊模具对高分子材料加工制成,可以批量生产,因而成本相对低廉。   目前德国研究人员已研制出这种超薄显微镜的样品,但批量生产至少还需一两年时间。
  • 领拓聚焦 | 超薄切片机新品发布会暨电镜前处理设备分享会
    2024年4月16日,超薄切片机新品发布会暨电镜前处理设备分享会在领拓仪器培训室和实验室圆满完成。此次活动也是徕卡超薄切片机新品UC Enuitv在国内首次亮相。会议主要分为技术交流与现场实际操作两大部分,上午由徕卡的高级应用工程师包沈源博士进行徕卡超薄切片机新品介绍和徕卡TIC 3X三离子束切割仪与TXP精研一体机产品的应用介绍分享及现场答疑。包沈源博士详细讲解了超薄切片机新品UC Enuity的优势与特点,举例介绍金属、易碎样品、聚合物等样品的超薄切割技术,以及电镜样品前处理全套解决方案,并为现场参会人员解疑答惑。现场互动 下午大家来到领拓仪器的实验室现场直观感受设备,由徕卡的应用工程师王励娟对徕卡超薄切片机新品进行应用讲解。领拓实验室现有20多种国际尖端制样检测设备。参会人员对实验室设备很感兴趣,领拓技术团队就现场参会人员的问题作了详细的解答,并为客户提供完美的应用解决方案,获得了一致好评。 台式扫描电镜CUBE-Ⅱ 三离子束切割仪EM TIC 3X 精研一体机 EM TXP 手自一体磨抛机EcoMet 30 参观实验室 超薄切片由于透射电子显微镜的电子束穿透能力有限,因此需要把待观察的标本切成厚度为100 nm左右的薄片,这种薄片称之为超薄切片。超薄切片机就是用于对样品进行超薄切片的一种制样设备,其可以将切片厚度控制在纳米级,以便电子束能够穿透,用于透射电镜观察。应用范围:生命科学领域:各种动植物组织样品,细胞,细菌等样品的超薄切片。材料科学领域:各种玻璃化温度在常温范围的高分子材料的超薄切片。全新一代超薄切片机 Leica UC Enuity引领技术,超越期待Leica UC Enuity不仅是一款性能卓越的设备,更是一项意义重大的技术革新。进一步提升的控制精度结合自动化模块,使您能够轻松获得高效优质的超薄切片,助您在实验前处理工作中事半功倍。自动化赋能,轻松掌握切片技术Leica UC Enuity 全新上线自动校准和自动修块功能,大大降低常规切片和连续超薄切片技术门槛,让您轻松掌握切片技术,为常规电镜表征和体电子显微学研究赋能。精准靶向,高效利用每一张切片Leica UC Enuity创新性地基于荧光或μCT数据,精准定位样品内部目标区域,为电子显微学实验提供高质量切片,助您深入挖掘样品的分析潜力,提升实验的科学价值。Leica UC Enuity不仅为您带来全新的切片体验,还通过多重防护和人体工程学设计,确保您的工作舒适、稳定和安全。它的高精度和可靠性将为您的实验工作带来便利和保障,让您尽情探索科学的无限可能性!样品前处理设备三离子束切割仪Leica EM TIC 3X可制备横切面和抛光表面,用于扫描电子显微镜 (SEM)、微观结构分析 (EDS、WDS、Auger、EBSD) 和 AFM 科研工作。一次可处理样品多达 3 个, 并可在同一个载物台上进行横切和抛光。工作流程解决方案可安全、高效地将样品传输至后续的制备仪器或分析系统。精研一体机Leica EM TXPLeica EM TXP是一款独特的可对目标区域进行准确定位的表面处理工具,特别适合于SEM,TEM及LM观察之前对样品进行切割、抛光等系列处理。它尤其适合于制备高难度样品,如需要对目标精细定位或需对肉眼难以观察的微小目标进行定点处理。有了 Leica EM TXP,这些工作就可轻松完成。领拓仪器是徕卡LNT的华南、西南授权代理商,领拓仪器为透射电镜/扫描电镜/工业材料样品提供全套样品制备服务。
  • 中国电镜产业链系列走访第9站雷博科仪:聚焦电镜制样技术 实现国产首款超薄切片机突破
    秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于 2018 年启动“国产科学仪器腾飞行动”之“创新 100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,在企业发展的关键时期“帮一把”。五年以来,天时地利人和至,中国电镜产业迎来发展窗口期,国内电镜产业链企业们也纷纷抓住历史机遇,实现生机蓬勃的发展之势。2023 年迎来国产电镜的“全新时代”。此背景下,“创新100”项目组在2023年底走进13家中国电镜产业链代表性企业,邀请电镜专家联合走访,探寻中国电镜产业发展进展,为发展新阶段赋能,也为 2024 年即将在苏州举办的“第三届中国电镜产业化发展论坛”的内容筹备作前期调研。交流现场走访第9站,由浙江大学农生环测试中心副主任洪健研究员、福建电镜学会理事长陈文列、福建医科大学电子显微镜室钟秀容老师、镇江专博检测科技有限公司总经理周卫东、镇江专博检测科技有限公司运营总监杜敏溢、仪器信息网材料物性组执行主编杨厉哲、仪器信息网创新100项目负责人韦东裕、仪器信息网营销服务中心牛群山组成的走访项目组走进江苏雷博科学仪器有限公司(以下简称“雷博科仪”)江阴总部,雷博科仪总经理夏秋华、销售总监贡勇等接待了走访一行人员。——企业发展进展雷博科仪自2013年成立以来,一直专注于薄膜制备产品的研发和生产,包括匀胶机、烤胶机、显影机、涂膜机和等离子清洗机等。随着市场的需求变化,雷博科仪逐渐向电镜制样领域拓展,2015年起开始进军电镜制样领域,推出了首款电解双喷仪。在开发初期,研发团队也遇到了性能方面的问题,经过两三年的产品不断迭代,以及收集客户反馈,如今这款产品在国内已稳居单品第一的位置。之后,在开发新产品的过程中,雷博科仪与浙江大学紧密合作,共同开发了超薄切片机和玻璃制刀机等产品。除核心产品线外,雷博科仪也在积极探索新的产品线。为满足不断增长的市场需求,2020年8月,江苏雷博科仪通过资源整合,将雷博科仪中发展起来的的工业半导体设备业务分拆出来成立了江苏雷博微电子设备有限公司(简称“雷博微电子”)。两家公司使用同一品牌,独立经营不同系列产品。雷博科仪主要针对科研用户,雷博微电子则瞄准工业企业用户。为了满足对高层次人才的引进需求,雷博在无锡也建设了研发中心。而高标准的半导体工业设备则安排在徐州生产基地生产,预计将于今年上半年启用。在市场驱动下,雷博微电子营收在2022年便过亿。夏秋华表示,企业客户的生命周期更明显,雷博微电子之所以能实现快速发展,主要得益于近年来半导体行业的迅猛增长。高校用户群体的增长虽然不如企业客户迅速,但高校用户的增长相对稳定,主要因为他们的设备采购经费主要来源于国家,因此增长幅度不会过于显著,也不会出现剧烈波动。这种稳定性决定了两家公司不同的市场定位。尽管如此,雷博科仪近几年的年增长率依然保持在30%以上。——产品技术与市场应用雷博科仪有薄膜制备和电镜制样两大产品线。薄膜制备产品主要应用于钙钛矿、太阳能、有机光电、MEMS、光通讯、化合物半导体等领域,已推出了约35款产品,在国内同类产品中享有很高的品牌知名度。近年来,雷博科仪在电镜制样领域也开始逐渐发力,并取得了巨大突破。2022年,雷博科仪发布了其自主研发的国产首款高端电镜制样设备---UM10超薄切片机,同时面向大众推出了此设备的2款配套产品GK25玻璃制刀机和SA350减震台。其中,UM10超薄切片机控制软件已经获得了软件著作权,还申请了一种纳米级超薄切片仪器的实用新型专利,其他相关发明专利也正在申请中。据介绍,2018年10月,夏秋华在成都电镜年会与洪健研究员就合作研发超薄切片机进行洽谈。事不宜迟,同年11月UM10超薄切片机立项。历时两年,2020年4月一代样机组装完毕,并于次月送到浙江大学大学实验室试验。通过专家的不断反馈和试用,研发团队不断改进产品,UM10一代获得了专家认可。2021年5月,雷博科仪再次携手浙江大学建立产学研合作,共同开发UM10二代,样机于12月通过验证且效果显著。2022年,UM10超薄切片机正式面向市场。上机操作UM10超薄切片机UM10超薄切片机采用的是机械式推进结构,使切片的过程更平稳连续,主要应用于生物类、高分子、无机非金属、金属等材料的切片。其搭载的三目体视显微镜,更便于直接观察结果。为减少外界震动影响切片效果,机台内置减震模组,可以有效的隔绝外界震动。此前国内应用该款设备主要依赖于进口,不仅价格高而且一旦发生售后,周期较长,严重影响科研项目的进度。此款设备的问世,将填补国内空白,打破此前超薄切片机严重依赖进口的尴尬局面。2023年1月,UM10三代机研发开始,预期将于2024年3月发布新机。——国产电镜发展观点企业要长久发展,一定要把产品做好才行——夏秋华表示,团队已经精心研发了四五十款产品,每一款产品都要把它作为艺术品精心打磨,不追求短期的快速盈利和市场转化。对比友商肉眼可见的成本差异,雷博科仪更注重产品的生命周期,要做成电镜制样设备的精品。雷博科仪的愿景就是要打造成中国电镜制样产品的一线品牌。夏秋华强调,企业要长久的发展下去,一定要把产品做好才行。附1:2024年4月,“第三届中国电镜产业化发展论坛”将在苏州举办,现进入论坛内容筹备阶段,为更好解决产业痛点,切实助力产业发展,现向广大网友征集论坛内容建议,欢迎大家积极参与,建议被采用的网友或专家将获得论坛定向邀请函,邀请现场与电镜业界专家、企业精英共议行业发展!扫码填写论坛内容建议或点击链接填写:https://www.wjx.cn/vm/hxJFe0g.aspx# 或直接邮件或电话沟通,邮箱:yanglz@instrument.com.cn ,电话(同微信):15311451191。附2:2023年年底中国电镜产业链系列走访名单走访企业聚束科技惠然科技速普仪器大束科技格微仪器康尔斯特国仪量子祺跃科技雷博科仪屹东光学苏州冠德上海精测纳克微束
  • 美研究人员发明新型超薄光学透镜 可用于多种仪器
    据美国航空航天局(NASA)官网报道,NASA喷气推进实验室(JPL)与加州理工学院研究人员合作开发了一种超薄光学透镜,通过“元表面”(metasurface)技术实现对光路的控制,可应用于先进显微镜、显示器材、传感器、摄像机等多种仪器,使光学系统集成度大大提高,并使透镜制造方式产生革命性变化。  这种透镜的“元表面”由硅晶阵列组成,单个硅晶的横截面为椭圆形。通过改变硅晶的半径与轴向,可以改变通过光线的相位与偏振性,从而使光路弯曲,实现聚焦。传统的光学系统由多组玻璃镜片组成,每个镜片都要求非常精密的制造工艺 而这一新技术可以采用标准的半导体制造工艺,将厚度仅为微米级的“元表面”相互叠加,即可获得所需的光学系统,可以像半导体芯片一样实现大规模批量化自动制造。  该研究团队正与企业伙伴进行合作,使这一技术进一步商业化。这一项目还获得了美国能源部与国防部高等研究计划局(DARPA)的资助。
  • 基于SERS技术的新型可穿戴超薄传感器
    目前的可穿戴传感器,已经可以实现在日常条件下跟踪佩戴者的运动和生命体征,例如步数、血压、血氧和心率,并且也已逐渐发展出以非侵入性方式对佩戴者的生物流体(如汗液、唾液、眼泪和尿液)进行原位化学传感(in situ chemical sensing)的技术。但是,传统的可穿戴传感器通常无法在一次测量中同时区分不同的化学物质。如果想要设计成可用于测量多种化学物质,则需要更大的尺寸和非常昂贵的成本。能够检测多种化学分子和生物标志物对及时、准确和全面了解佩戴者复杂的生理和病理状况至关重要。为此,东京大学的研究团队开发出一种基于表面增强拉曼光谱(SERS,Surface-Enhanced Raman Spectroscopy)技术的新型可穿戴超薄传感器。该研究成果发表在6月22日的Advanced Optical Materials杂志,题为“高度可扩展、可穿戴的表面增强拉曼光谱”(Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy)。拉曼技术对可穿戴生物监测具有重要意义,因为它们拥有无需分子标记即可进行灵敏和多路化学分析的能力。困难在于,生物系统的固有的拉曼信号较为微弱,需要将目标分子结合到合适的底物上,以放大拉曼响应。研究团队选择了黄金作为基底。金是一种已知可有效用作SERS基底的材料,多个研究项目已经研究了在实际SERS平台中使用金属的不同方法。研究团队的灵感来自于制造镀金聚乙烯醇 (PVA) 纳米纤维的最新进展,该纳米纤维用于可长时间佩戴在人体皮肤上的电子传感器。团队成员 Limei Liu 解释,“这些 PVA 装置由涂有金的超细线纺制而成,因此可以毫无问题地附着在皮肤上,因为金不会以任何方式与皮肤发生反应或刺激皮肤。”这种可穿戴传感器由纳米网格状的PVA纤维制成,在纤维上覆盖150纳米的金层,将涂覆的纤维纳米网附着到目标表面(例如人体皮肤),然后用水将 PVA 溶解掉,只留下完整的金纳米网在目标表面。纳米线的尖锐边缘作为局部SERS效应的“热点”(hot spot),研究人员通过减小纳米线的直径来优化单位体积中的热点数量,同时保持足够的机械强度以实现耐磨性。在概念验证试验中,志愿者佩戴该贴片,并暴露在不同的化学物质中,然后用商用785纳米拉曼光谱仪进行检测。实验证明,该系统能够检测尿素和抗坏血酸等生物分子,并识别水中的微塑料污染。还可以检测到常见的滥用药物,以及应用于执法。该系统目前需要外部光源和光谱仪配合使用,但研究人员未来将把半导体纳米激光器和纳米光谱仪通过直接键合的方式,集成到可穿戴式SERS传感器中。助理教授Tinghui Xiao表示:“目前,我们的传感器需要进行微调以检测特定物质,我们希望在未来进一步提高灵敏度和特异性。有了这个,我们认为像血糖监测这样的应用是可能的,非常适合糖尿病患者,甚至可以用于病毒检测。”
  • 美国麦克仪器助杂化二维超薄结构电催化还原CO2研究取得重要进展
    近日,中国科技大学合肥微尺度物质科学国家实验室谢毅教授和孙永福特任教授课题组在杂化二维超薄结构的合成及应用领域取得重要进展。该课题组设计了一种杂化模型体系用来研究金属表面氧化物对其自身金属电催化性能的影响,该结果以“Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel” 为题发表在Nature上(2016, 529, 68-72, DOI 10.1038/nature16455)。 通过电催化过程将CO2还原成碳氢燃料分子不仅有助于降低CO2的负面影响,而且还可以获得甲烷、甲酸、甲醇等燃料。然而,电还原CO2过程的一个瓶颈是如何将高稳定性的CO2活化,这往往需要非常高的过电位;而过电位的存在不仅浪费大量的能源,还往往导致还原产物选择性的降低。 已有报道显示金属电极通常具有较高的电还原CO2活性,尤为有趣的是通过金属氧化物还原得到的金属比通过其它方法制备的金属催化活性要高,甚至能将CO2的还原电位降低到热力学的最小值。但是金属表面氧化物对其自身金属电还原性能的影响机制还不清楚,这主要是因为以前制备的催化剂中含有大量的微结构如界面、缺陷等,这些微结构的存在很容易掩盖住表面金属氧化物对其自身金属催化性能的影响。 为了揭示金属表面氧化物对其自身金属电还原CO2性能的影响,谢毅教授、孙永福特任教授课题组构建了一种杂化模型材料体系, 即数原子层厚的金属/金属氧化物杂化超薄结构。以六方相Co为例,他们通过配体局限生长的方法制备了4原子层厚的Co/Co氧化物杂化结构。电化学比表面积矫正的Tafel斜率和法拉第转换效率结果揭示出局限在超薄结构中的表面Co原子比块材中的表面Co原子在低的过电位下具有更高的本征催化活性和更高的产物选择性,Co原子层的部分氧化进一步增加了其本征催化活性,进而在只有0.24 V的过电位下于40 h内获得10 mA cm-2的稳定电流和90%的甲酸选择性。本工作展示了金属原子在位于特定的排列方法和氧化价态时,可能具有更高的催化转化活性,即超薄二维结构和金属氧化物的存在提高了催化还原CO2的能力。该工作有助于让研究者重新思考如何获得高效和稳定的CO2电还原催化剂,也对推动电催化还原CO2机理研究具有重要的意义。 文中催化剂的CO2吸附性质是通过美国麦克仪器公司的经典仪器ASAP 2020获得,通过对比四种催化位点下催化剂的CO2吸附性能,有力的佐证了文中论点。全文链接:http://www.nature.com/nature/journal/v529/n7584/pdf/nature16455.pdf。
  • IKA推出新型彩盘磁力搅拌器/超薄磁力搅拌器
    2010年, 以创新闻名的IKA 又向中国市场推出三款新品: 新型彩盘磁力搅拌器, 大盘面磁力搅拌器, 及超薄磁力搅拌器.   新型彩盘/大盘面磁力搅拌器是最新改进的小型磁力搅拌器, 与以前相比,   1) 新添加了数字显示功能, 转速达2500RPM.   2) 电子控制电达, 处理量比以前更大: 1升(彩盘), 1.5升(大盘面)   3) 玻璃表面以及热塑性聚酯 TPC-ET 合成材料基座   新型超薄磁力搅拌器,厚度仅12MM. 采用最先进的磁力线圈技术,内部无运动部件,无磨损。为了确保更好的搅拌,每隔30秒自动改变搅拌转向 良好的耐化学腐蚀性能.   三款新品, 设计大方美观, 沿用德国IKA典型的简洁风格, 爽心悦目。 Color Squid 彩盘磁力搅拌器 Big Squid 大盘面磁力搅拌器 Lab disc 超薄磁力搅拌器
  • 新材料创新,科学家实现室温下超薄、透明柔性电路的大面积印刷!
    【科学背景】金属氧化物薄膜是大多数电子设备中的关键材料,因其在透明导体、气体传感器、半导体、绝缘体和钝化层等应用中的重要性而成为了研究热点。然而,传统的金属氧化物薄膜制备方法通常需要高温和缓慢的真空工艺,这在实际应用中存在制备成本高、生产效率低的问题。此外,传统方法往往会在膜表面留下液体残留物或形成不均匀的薄膜,这对器件的性能和稳定性造成了挑战。为了解决这些问题,美国北卡罗来纳州立大学Michael Dickey教授联合韩国浦项科技大学Unyong Jeong教授合作提出了一种新的方法,通过在室温下利用熔融金属的弯月面在基底上进行打印,来制备大面积均匀的本征氧化物薄膜。该方法利用液体不稳定性使氧化物从金属中轻柔地分离,从而形成无液体残留的均匀薄膜。此外,打印的氧化物薄膜具有金属间层,使其导电性显著提高,并且能够与蒸发的金形成良好的润湿,克服了传统方法中金属岛屿的粘附性差的问题。最终,这种超薄(图4: 超薄透明电极表征。图5: 图案化超薄透明电路线演示。【科学启迪】这项工作展示了一种可靠且连续的方法,可以在室温条件下利用镓液态金属(Ga LM)的脱湿行为打印大面积且均匀的超薄(10 nm)本征氧化物薄膜。这种脱湿诱导的氧化物印刷技术也可以通过改变液态金属的组成来打印铝氧化物(AlOx)和铟氧化物(InOx)。我们的研究发现,刚打印的GaOx具有高导电性,但由于进一步氧化,导电性会逐渐降低为绝缘性。然而,通过在氧化物薄膜上蒸发少量的次级金属(Au或Cu),可以稳定氧化物的导电性。由于刚打印的GaOx具有金属特性,蒸发的金属容易“润湿”薄膜,导致其融入到薄膜中。这些金属装饰的氧化物薄膜具有高度的透明性,且电导率、热学和机械稳定性都很优秀。在室温下跨大面积打印如此薄且耐用的氧化物和导体,应该对创建透明导体、电路以及其他柔性电子器件,以及屏障涂层(20)、光电材料和忆阻器等应用具有重要意义。参考文献:Minsik Kong et al. ,Ambient printing of native oxides for ultrathin transparent flexible circuit boards.Science385,731-737(2024).DOI:10.1126/science.adp3299
  • 104个项目!2022年度江西省科技厅重点研发计划拟立项项目公示
    2022年度江西省科技厅重点研发计划拟立项项目公示各有关单位:2022年度江西省科技厅重点研发计划项目经组织申报、专家评审等环节,现对拟立项项目予以公示。任何单位或个人对拟立项项目持有异议的,可在公布之日起7日之内,以书面形式向省科技厅科技监督处或驻厅纪检监察组反映,并提供必要的证明材料。以单位名义提出异议的,应由单位法定代表人签字并加盖本单位公章发送电子邮件至指定邮箱;个人提出异议的,应当签署真实姓名并提供有效联系方式。我厅承诺按有关规定对异议人身份予以保护。联系方式及电话:1.省科技厅科技监督处联系电话:0791-86263938;电子邮箱:jdc_jx@126.com2.省科技厅发展计划处联系电话:0791-862568453.省纪委驻厅纪检监察组联系电话:0791-86265917通讯地址:南昌市东湖区省政府大院北二路53号邮编:330046江西省科学技术厅2022年10月29日2022年度江西省重点研发计划立项项目清单序号项目名称承担单位项目负责人省内依托单位(经费承接单位)1面向飞机设计和研制的大数据技术及其示范应用研究南昌航空大学钟伯文2数字化检测技术在民机复材加筋壁板制造过程中的应用研究江西先进复合材料研发中心李云龙3高性能变几何航空电推进涵道风扇设计方法北京大学南昌创新研究院周超4固定翼飞机机身铝合金框架密排连接孔结构的抗疲劳激光冲击强化工艺研究南昌航空大学丁相玉5直升机传动承力件激光熔覆修复与延寿关键技术研究南昌航空大学郑海忠6耐高温碳纤维增强热塑性复合材料制备及在航空领域的应用研究北京大学南昌创新研究院白树林7大型航空复合材料精确成型技术研究江西航空研究院李建军8变电站智能巡检机器人厦门大学九江研究院姚俊峰9城市轨道交通道岔系统减振控制关键技术华东交通大学张斌10激光剪切散斑无损检测系统技术研究合肥工业大学王永红华东交通大学11面向高原地区的鹰式臂全电脑三臂凿岩台车研制江西鑫通机械制造有限公司李永丰12气体驱动浮芯辅助共注塑工艺的成型机理研究与成型装备研发华东交通大学柳和生13含高比例分布式电源的有源配电网智能管控与故障自愈技术研究国网江西省电力有限公司电力科学研究院范瑞祥14商用车氢燃料发动机关键技术研究南昌智能新能源汽车研究院楼狄明15基于智能控制策略的增程式电动轻卡关键技术研发江铃汽车股份有限公司邓海燕16基于车-云协同管理的电动汽车动力电池失效诊断与预警技术研究华东交通大学曾建邦17新型高性能汽车用弹簧扁钢开发及关键技术研究方大特钢科技股份有限公司陈明18高性能铋层状超高温压电换能陶瓷制备关键技术研究景德镇陶瓷大学沈宗洋196G用超高频低损耐蚀稀土基软磁材料制备及应用研究中国科学院赣江创新研究院谭果果20稀土掺杂高增益低损耗石英基光纤制备关键技术研究国瑞科创稀土功能材料(赣州)有限公司张料林21非热处理高强高导热稀土镁合金开发及示范应用南昌大学罗岚226μm超薄电解铜箔技术的开发及产业化江西省江铜铜箔科技股份有限公司余科淼23多功能天然灭火水凝胶材料设计制备及产品开发江西科技师范大学徐景坤24稻壳基铅炭电池材料制备及其电池性能研究江西金糠新材料科技有限公司熊源泉25纳米纤维素锂金属电池隔膜制备关键技术研究东华理工大学那兵26高效单晶硅太阳电池关键技术研究晶科能源股份有限公司杨洁27基于预锂化负极的超长寿命磷酸铁锂储能电池及光储示范江西赣锋锂电科技股份有限公司戈志敏28高稳定超高镍三元正极材料及其固态锂电池的研发南昌大学李勇29新能源汽车用固态动力电池关键技术的研发宜春清陶能源科技有限公司何泓材30地质时空大数据云服务平台及其可视化关键技术研究江西省地质博物馆汤森进315G陶瓷介质波导滤波器研发与产业化江西一创新材料有限公司王一凡32基于工业大数据驱动的钢铁产品质量全流程智能管控技术研究与应用新余钢铁股份有限公司肖敏33氮化镓电子器件三元氮化物新型介质研究江西省纳米技术研究院蔡勇34高温高压蒸汽管线剩余寿命与危险预警的物联网无损监测关键技术研究南昌航空大学石文泽35基于多模态全光融合的空地协同安防物联网系统研发南昌大学杨鼎成36轻量级可解释性医学影像诊断系统华东交通大学李广丽37江西原始瓷与白浒窑古法柴烧釉彩的研发景德镇陶瓷大学虞澎澎38基于量子保密通信的现代物流大数据平台兼容联通关键技术及应用华东交通大学甘卫华39电影胶片档案数字化及其修复关键技术研究华东交通大学罗国亮40早稻高效分子育种技术创新与优质高产广适新品种选育江西惠农种业有限公司胡桂英41油菜高效育种技术创新与“三高”新品种选育江西省农业科学院作物研究所陈伦林42辣椒优异种质资源精准鉴定与特色优质新品种选育江西省农业科学院蔬菜花卉研究所袁欣捷43柑橘资源种质评价利用与优质极端熟期新品种选育赣南师范大学陈健美44杉木良种选育研究与应用江西省林业科学院肖复明45泰和乌鸡食用和药用品种鉴别选育及其相关功能因子产品的研制泰和傲昕乌鸡发展有限公司路则庆46江西特色柑橘设施栽培关键技术研究与示范江西农业大学刘勇47优质富硒赣南脐橙关键技术研究与示范赣南师范大学姚锋先48井冈蜜柚标准化种植技术研究与示范江西农业大学杨莉49典型湖库净水渔业技术研发与应用中国水产科学研究院长江水产研究所杨德国江西省水生生物保护救助中心50高纯度茶皂素提取关键技术研究与产品开发南昌大学李红艳51油茶授粉结实关键调控技术研究与示范中国林业科学研究院亚热带林业实验中心钟秋平52林下中药材黄精、铁皮石斛生态高效种植关键技术研究与示范江西农业大学曾黎明53江西薄壳山核桃良种高效栽培关键技术研究与模式创制江西省林业科学院左继林54新型微生物菌肥研制与产业化示范应用江西省科学院微生物研究所黄俊生55绿色富硒投入品研发及应用示范江西农业大学吴建富56茄果类蔬菜冬春季设施生产关键技术研究与集成示范南昌市农业科学院高旭春57生猪饲料减粮替抗关键技术研发与产业化应用江西农业大学游金明58江西省农村“厕所革命”新技术产品研发与应用推广南昌大学谢显传59耕地酸化防控和培肥协同关键技术研究与示范江西省农业科学院土壤肥料与资源环境研究所冀建华60特色赣味预制菜加工关键技术研究与应用南昌大学陈奕61低廉油脂资源高值化利用关键技术与示范宜春大海龟生命科学有限公司代志凯62食药同源农产品中稳血糖功能因子的加工稳态化关键技术及新产品研发南昌大学胡婕伦63江西名优特色蔬菜产地初加工及绿色防腐减损关键技术研发江西省农业科学院农产品加工研究所袁林峰64江西中医药大学欧阳辉67植物抗炎有效成分发掘与合成通路的研究与利用江西省、中国科学院庐山植物园肝脏代谢性疾病靶点发现及创新药物研发赣南医学院胡宇峰73痰液直接质谱分析无创筛查肺癌临床研究及设备研发
  • 扫描电镜在电解铜箔中的应用
    金属铜具有优异的导电性、可塑性和导热性,制出的铜箔工艺成熟,成本低,已被广泛运用于各个行业。在电子制造行业中,铜箔是生产印制电路板(PCB)的主要原材料,高密度互联技术的发展,对印刷电路板提出更密、更薄、更平的要求;在锂电行业,电解铜箔作为负极集流体,是制备锂离子电池的基础原材料,同样轻薄化也是未来锂电铜箔的发展方向。铜箔的分类 近年来,随着智能消费类电子产品、5G 通信和动力汽车的迅猛发展带动了铜箔行业的繁荣,铜箔已成为国民经济不可或缺的基础性原材料。常规而言铜箔是指厚度小于200 μm 的铜薄膜材料,目前常采用以下几类方法对其进行分类:按应用可分为印制线路板铜箔、覆铜层压板铜箔、装饰用铜箔和锂电池用铜箔等。按生产工艺可分为压延铜箔和电解铜箔。除此之外,还可以按照铜箔厚度和表面形貌进行分类。图1:电解铜箔的分类电解铜箔的应用 压延铜箔延展性优、工艺更复杂且成本高。压延铜箔是通过轧制厚铜板并进行一系列表面处理后形成的铜箔,其优点在于屈服强度和延展性较高、表面粗糙度较低,致密度和弹性较好。缺点在于生产工艺复杂、流程长、成本高,且极限厚度和宽度受到轧辊限制,因此应用受限。电解铜箔工艺较成熟,生产效率高成本低。电解铜箔是以硫酸铜溶液为原料,在电解槽中进行电解达到的。电解槽中以不溶性材料为阳极、阴极辊为阴极,其中阴极辊底部浸在硫酸铜电解液中旋转,溶液中的铜沉积到阴极辊筒的表面形成铜箔。这种方法的优势 在于生产工艺相对压延法简单,成本低,铜箔厚度和宽度可控范围大。目前电解铜箔制造技术已较为成熟,高性能电解铜箔已广泛应用于PCB与锂离子电池制造中。图2.电解生箔的工序流程 电解铜箔的生产壁垒主要在添加剂和阴极辊的选择。阴极辊是生箔机的核心及关键部件,其质量决定铜箔的档次和品质。由于阴极辊长期处于强腐蚀性的工作环境中,表面腐蚀快,要求阴极辊辊面钛材料的微观组织均匀细微化,晶体尺寸一致和低含氢量等,才能保证铜离子在阴极上均匀沉积,得到厚度均匀的铜箔。电解铜箔的微观形貌 如何评价电解铜箔表面晶粒的均匀性是表征铜箔性能的重要指标。扫描电镜作为材料微观尺寸分析的重要工具,在铜箔表面晶粒观察中起到了不可替代的作用。如下图3所示,采用赛默飞智能型钨灯丝扫描电镜AxiaChemiSEM所获的的PCB铜箔毛面形貌图。图3右图铜箔晶体晶粒细小紧密且均匀,结晶组织为等轴、球形晶粒结构。铜箔粗化面呈现较浅而圆的轮廓状,而传统工艺生产的厚铜箔(图3左)是锯齿状或山丘形的表面状态。图3:不同工艺生产的PCB铜箔毛面形貌 铜箔由于具有良好的导电性、柔韧性和适中的电位,耐卷绕和辗压,制造技术成熟,且价格相对低廉,在电池充放电过程中便充当石墨等负极活性材料载体,同时作为负极集流体,将电池活性物质产生的电流汇集起来,以产生更大的输出电流。相比于电子铜箔,锂电铜箔要求铜箔的厚度更薄,表面更光滑,晶粒更细小且均匀。 铜箔厚度越薄,在电芯体积不变的条件下,可以增大活性材料的用量,浆料涂覆厚度增厚,使电芯能量密度提高。除此之外,铜箔表面粗糙度和晶粒大小也直接影响负极活性物质在铜箔表面的附着力。如图4采用赛默飞智能型钨灯丝扫描电镜AxiaChemiSEM所拍摄的锂电铜箔表面形貌。从图中可以看出,铜箔毛面非常平整、无明显缺陷,说明该工艺配方具有较好的整平效果,得到的铜箔组织均匀且具有较好的外观。图4. 不同放大倍数下锂电铜箔表面形貌赛默飞Axia ChemiSEM 赛默飞Axia ChemiSEM全新智能型钨灯丝扫描电镜,具备操作方便,适用人群广泛的特点。全中文操作界面,日常操作无需光阑合轴,内置的用户使用指南方便任何人员进行操作,降低了设备操控性。不仅如此,Axia的高稳定样品仓设计,还可以容纳大而重的样品。标配5种探测器,完善的探测系统和直观的导航系统,可帮助用户快捷、全面的掌握样品信息。赛默飞Axia ChemiSEM智能型钨灯丝扫描电镜参考资料:1. “高性能锂电铜箔紧俏,优质龙头乘东风”-国盛证券研究所.2. 杨森. 锂电池用高性能超薄电解铜箔的研究[D].常州大学.3. 王帅.我国电解铜箔技术现状与趋势前瞻[J].有色金属加工,2023.4. 周启伦. PCB用厚铜箔市场发展与其性能的提高[C],2020.5. 何铁帅,樊斌锋,彭肖林等.极薄高安全性能锂电铜箔的工艺研究[J].山东工业技术,2020.
  • 物理学家以硅和黄金研制出超薄无畸变镜头
    哈佛大学的科学家们,更准确的说是物理学家们,已经成功研发出一种超薄镜头,厚度仅60纳米,比一张纸更薄,与人类的发丝差不多,更令人震惊的是,这将是完全没有畸变的镜头。   几个世纪以来,成像技术受制于玻璃镜片的发展已是不争的事实,甚至是最新的光纤技术也逃脱不了材料的限制。不过近日,哈佛大学工程与应用物理学的几名高级研究员组成的联合小组试图打破这个传统,他们打算制造一组完全没有畸变的镜头。   这种镜头的原理是在表面覆盖一层液体硅的“黄金天线”——成V型结构,这些天线能够收集光线,短时间存储光线,然后把光线向新的方向发射出去。其优势除了几乎没有体积外,还有一个更重要的特性—没有畸变:   “平面镜头消除了传统广角镜头的光学畸变,例如鱼眼效果。像散和慧差同样也不存在,所以其成像或信号非常准确,也不需要复杂的校正技术。”   首席科学家Francesco Aieta表示,这项技术也许有一天“会用一个平面代替所有光学系统中的镜片”。   如果未来这种技术可以实现量产的话,将大大改善相机在设计过程中的体积和画质均衡的难题。   研究组制造了一个全新的60纳米厚的硅透镜,然后将微小的镀金天线蚀刻在硅的表面。由于整体的结构和尺度都是纳米级别,因此该镜片的结构在规模上要比光线的波长还要薄。而每个镀金天线都是一个微型谐振器,而硅透镜表面的镀金天线又具有不同类型的梯度,因此,当光线进入之后可以有效弯曲。从传统的光学设计而言,便是硅透镜与空气之间发生了相移。在这样的情况下,通过接口结合相位不连续的渐变,理论上可以控制光的反射和折射。光线的反射和折射定律受到了巨大挑战。   如果最终的研究转化为生产力,那么未来也许有一天,它可能替代目前的各种光学产品,从显微镜到望远镜。
  • 2018年生物电镜超薄切片高级培训班第二轮通知
    p style=" text-align: center "   2018年生物电镜超薄切片高级培训班 /p p style=" text-align: center "   第二轮通知 /p p   为了促进生物电镜行业技术的发展,提高从业人员的技术水平,推动我国电镜技术标准化工作的进程,由中国电子显微镜学会农林电镜专业委员会/生物医学电镜专业委员会联合主办,由河南化工技师学院、徕卡显微系统(上海)贸易有限公司、瑞士戴通公司联合承办的“2018年生物电镜超薄切片高级培训班”于2018年4月17日在河南省开封市举行,现将培训班具体事宜通知如下: /p p   一、培训时间、地点 /p p   时间:2018年4月17日—4月25日 /p p   地点:河南化工技师学院--开封市东京大道与七大街交叉口西 /p p   二、培训对象:具有一定超薄切片经验的技术人员 /p p   三、培训老师 /p table width=" 568" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 183" valign=" top" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " Dr.Helmut& nbsp Gnaegi /span /p /td td width=" 385" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 瑞士戴通公司总经理、首席应用工程师 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 张艾敬 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 徕卡生命科学部门应用工程师 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 杨勇骥 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 中国人民解放军第二军医大学 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 石洪波 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 瑞士戴通公司中国区总经理 /span /p /td /tr /tbody /table p   四、培训人数、费用 /p p   本次切片培训班主要培养和选拔国内一流人才,为今后制定规范、培养一流培训师,积淀人才搭建平台。为保证培训质量和效果,本次高级培训班人数限定为10人。请报名参加培训班的学员填写回执,并于 2018 年 3 月 1 0日前电邮至zk_15890901833@163.com,由专家评审后确定参培人员。 /p p   培训费用7000元/人,含培训费、材料费。食宿及交通费用自理。住宿标准: 标间440元/间· 天(合住220元/人· 天)。 /p p   五、培训日程 /p table width=" 561" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " colspan=" 2" p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 时间 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 安排 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 备注 /span /p /td /tr tr style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " colspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月17日 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 全天报道 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " colspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月18日-20日 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 技术研讨 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月21日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 全天 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 熟悉设备,水平测试 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月22日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(1) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 2" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月23日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(2) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 2" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月24日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(3) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 4" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月25日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 集中答疑+经验交流+颁发证书 /span /p /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 离会 /span /p /td /tr /tbody /table p   注:本次培训所使用的仪器由徕卡提供,钻石刀由瑞士戴通提供,耗材由中镜科仪提供。 /p p   六、培训证书 /p p   1、本次培训结束时进行结业考核,通过者颁发2018年生物电镜超薄切片高级培训班结业证书,证书由徕卡公司、戴通公司、河南化工技师学院共同认证,三方签字,具有国际权威性。 /p p   2、本次培训结束时进行结业考核,成绩优异并获得“优秀学员”称号的个人,将享受丰厚的个人奖励。考核成绩排名前三的个人,学院颁发“客座讲师”聘书,长期聘用为电镜专业指导教师,并将被邀请为第二届全国超薄切片大赛评委。 /p p   七、联系方式 /p p   河南化工技师学院:张 康,15890901833,zk_15890901833@163.com /p p   徕卡公司:张艾敬,13810143752,aijing.zhang@leica-microsystems.com /p p   戴通公司:石洪波,13907177885,hbshi.cn@gmail.com /p p style=" text-align: right "   中国电子显微镜学会农林电镜专业委员会 /p p style=" text-align: right "   中国电子显微镜学会生物医学电镜专业委员会 /p p style=" text-align: right "   河南省电子显微镜学会 /p p style=" text-align: right "   河南化工技师学院 /p p style=" text-align: right "   2018年3月7日 /p p /p
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 昆士兰大学显微中心投资亿元搭建电镜顶尖平台 日立HF5000亮相
    p    strong 仪器信息网讯 /strong 近日,澳大利亚昆士兰大学显微镜和微量分析中心在显微技术基础设施方面进行了系列投资建设,投资金额超过1亿元人民币,其中包括耗资500万美元的日立HF5000球差校正透射电子显微镜,550万美元用于Hawken设备的翻新,450万美元用于澳大利亚研究理事会量子工程卓越中心(EQUS)的纳米光刻套件等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a04cd6e0-93d5-418e-b493-206ea9dfe84f.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 日立集团的中村先生(Kuniyasu Nakamura)与昆士兰大学教授Roger Wepf展示了日立全自动球差校正透射电子显微镜HF5000的内部工作原理 /span /p p   目前,HF5000已安装完毕,并在微观创新方面取得获得巨大回报。9月7日,昆士兰大学显微镜和微量分析中心新成立的霍肯显微镜团队取得新的发现:通过日立200kV透射电子显微镜HF5000可以观察到比最小原子还小的物体 - 一个氢原子。这个发现会推动先进的医药工具,电池技术和纳米材料领域潜在的新发展。 /p p    strong 昆士兰大学的显微镜和微量分析中心Roger Wepf /strong strong 教授 /strong 表示,“这项新技术将有助于将量子物理学和分子生物学的研究人员聚集在一起,从而带来突破性技术发展的可能。 /p p   这个显微镜有足够的能力可以观测到人类头发直径的百万分之一,这意味着你甚至可以看到金属和半导体中原子晶格间距的微小变化。这个极小的微观层面将开启健康领域,合成生物学,先进材料和独特电子设备领域的新发现。” /p p   他还表示,“想象一下,能够实时操作超薄电子或磁性材料,测试纳米级电池模型,或者看看药物如何在分子或原子的范围上传递给细胞。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/5b1d1579-14d0-4bf0-86f1-e0423cebc1ce.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图中(从左-右):教授Aidan Byrne,日立高新技术公司 执行役常务高木幹夫,Kim Richards MP和教授Roger Wepf正式推出HF5000球差校正透射电子显微镜 /span /p p   本次合作中,日立集团将与包括New Spec在内的其他科学设备专家一起合作,共同推动技术界限,以协助昆士兰加入第六技术浪潮的中心,即所谓的可持续“Green Wave”。 /p p   据悉,日立集团基于“通过开发先进的自主技术和产品为社会做贡献”这一企业理念,实现可持续发展社会的目标。此次,与澳大利亚顶尖学府昆士兰大学显微镜和微量分析中心的强强联手,日立将其先进的电镜技术和丰富的解决方案,在科学创新研发方面得到更深入应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dc76d4e0-16da-4954-8271-92b6002e6f9e.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 全自动球差校正透射电子显微镜HF5000在昆士兰大学显微镜和微量分析中心 /span /p p    strong 更多关于日立HF5000: /strong /p p   1、高度自动化球差校正,尽量减少人员介入,适用于繁忙的分析测试中心或设备平台 /p p   2、三位一体呈现(TEM、STEM、SEM),内部结构成像和表面结构成像可同时进行同时获取 /p p   3、EDS超大球面角,无窗口探头。可实现快速,高灵敏度化学成分分析 /p p   4、前瞻性平台总体设计,为性能扩增预留选项,例如可扩增为气体环境电镜。 /p
  • 全球首条在线低辐射镀膜超白超厚大板玻璃线建成
    近日,在海南中航特玻公司特玻生产基地,随着2号线15mm厚的在线低辐射镀膜(LOW-E)超白超厚玻璃在生产线下片装箱,全球首条在线LOW-E超白超厚玻璃线在我国诞生。   海南中航特玻技术研发团队在国际先进技术基础上,通过自主创新,将在线LOW-E大板的厚度从3mm、4mm、5mm、6mm、8mm增加至10mm 12mm,现在又成功地生产出15 mm超厚玻璃。这是世界当前最厚的在线LOW-E玻璃产品,也是海南中航特玻继研制出在线Low-E超白产品后取得的又一创新成果。在线Low-E超白超厚玻璃的面世,标志着我国玻璃行业技术已经居于国际领先水平,对进一步拓展国际国内建筑节能玻璃市场有着重要意义,更是我国玻璃行业为世界玻璃工业技术进步作出的新贡献。   据专家介绍,因为受到生产工艺技术的制约,在线Low-E镀膜玻璃厚片生产技术难度较高。在许多公共建筑和大部分高层楼房裙楼商业用房和大堂建筑装饰中需要大板面单片厚玻璃,因为离线Low-e玻璃存在脱膜的问题,所以,一直以来,国内外建筑师都只能在这些部位使用普通浮法玻璃厚片,以至于建筑效果和使用功能与建筑节能产生无解的矛盾。   而在线Low-E是在浮法线上700C镀膜固溶在玻璃体上,单片使用永不会发生膜层脱膜,15mm超厚玻璃既可满足荷载和抗风强度要求,又美观坚固,钢化加工性较强,其节能膜低辐射性能与玻璃同寿命,单片使用达到冬暖夏凉,保温隔热功效十分显著,在北方冬天大幅降低室内热能的浪费,在南方能够很好的起到隔热节能效果。   据统计,单片15mm在线LOW-E玻璃的传热系数比普通浮法玻璃传热系数低36%,比普通单片玻璃提高节能效率1/3,应用在建筑领域上,可节约大量的电力和煤炭资源消耗。不仅如此,这次海南中航特玻公司研发的新产品是在线超白厚板大尺寸Low-E玻璃,超白玻璃具有极高的透过率,可见光透过率可达92%,具有非常好的光学性能,可以更真实再现景观,是高端写字楼和豪华酒店建筑师和业主的梦想。   通过与在线Low-E膜层的结合,既可以保证超白玻璃原有较高的可见光透过率,满足室内采光要求与舒适度,减少室内照明用电,又具有低辐射功能,达到综合节能的效果。是满足通透性建筑型要求较高的关键材料, 如北方和滨海区建筑. 同时,由于超白玻璃对原料的严格要求及自身低铁特性,超白Low-E玻璃不会产生自爆现象。   用作大堂玻璃及幕墙玻璃时,由于抵抗风压和设计规范的要求必须采用钢化玻璃,而非超白钢化玻璃经常发生自爆,厚片普通钢化玻璃自爆的危险程度更高。因此,这一新技术还解决了困扰多年的建筑用钢化玻璃自爆的问题,这问题曾经是历年“两会“代表提案之一,一直受到社会各方面的高度关注.   中航三鑫股份有限公司旗下海南中航特玻材料有限公司,是海南省和中航工业国防新材料重点企业,也是我国资本市场新材料板块引人瞩目的企业。位于海南省老城经济开发区,在海南文昌拥有两座世界顶级品质砂矿。企业引进欧美国多项高端浮法玻璃生产制造专有技术,拥有世界最先进CVD在线镀膜生产技术和装备。公司建有4条600吨级的浮法玻璃生产线,采用全氧燃烧生产工艺并配有余热发电,生产的汽车玻璃原片、超薄电子玻璃原片、超白浮法玻璃、超白航空材料、高速列车玻璃,以及在线低辐射系列节能玻璃等,是我国高端玻璃制造领域的领军企业。   海南中航特玻公司2号线原是生产TCO太阳能基板玻璃。太阳能市场严重萎缩之后,企业通过技术创新,成功转型生产在线Low-E镀膜超白超厚玻璃。该产品为海南中航特玻进一步开辟国内国际市场提供了先机,也大大提高了企业的市场竞争力和经济效益。这条线完全可生产各种颜色和超白等各类在线低辐射系列3—15mm节能玻璃,也是全球第一条多品种高端节能玻璃制造生产线。目前,产品已通过国家玻璃质量监督检验中心的检验合格,性能指标完全满足国家标准《镀膜玻璃第二部分 低辐射镀膜玻璃》(GB18915.2-2002)的各项技术要求。这一优秀成果对于我国第二代浮法玻璃的研发创新,实现玻璃行业转型升级,发展资源节约型、环境友好型和优质高效型玻璃产业,使我国从玻璃大国向玻璃强国迈进,都有着十分重要的战略发展意义。
  • 天津率先实现碳纳米管触控屏产业化
    记者日前在天津开发区了解到,天津富纳源创科技有限公司通过产学研结合,成功的实现了全球首个碳纳米管触控屏的产业化,目前已生产碳纳米管触控屏700万片,月产规模达到150万片,成功的为华为、酷派、中兴等手机配套。   上世纪九十年代碳纳米管的发现,让世界掀起了一股碳纳米管研究热。由于技术和工艺的复杂性这一技术至今绝大部分还处于实验室阶段。中科院院士、清华大学教授范守善告诉记者,碳纳米管技术是目前世界最前端技术之一,由于碳纳米管材料具有许多传统材料难以达到的特性,一直是各国科学家竞相研究课题。   据介绍,富纳源创采用碳纳米管导电膜生产触控屏幕,与传统氧化铟锡膜(ITO)比较,有四大优势:一是原材料是碳,不用稀有金属铟,材料成本低 二是可挠曲、高抗弯折、耐敲击与刮擦性 三是具导电异向性,可设计新原理触控屏幕,避免其他厂商专利诉讼 四是生产工艺简单、耗能低、污染低,满足节能环保的要求。   据了解,这一技术成功实现产业化是清华大学范守善院士领导的团队与富士康集团长期合作的结果。早在1995年范守善院士开始从事碳纳米管的研究,2000年富士康集团与清华大学合作成立了纳米科技研究中心。而后他们相继在碳纳米管基础研究和技术装备领域取得了一系列突破,依靠自身力量开发出超薄电容式碳纳米管触控屏幕和多点电容式碳纳米管触控屏幕。目前他们生产的触控屏幕尺寸从1.52英寸至10英寸均已实现量产,围绕这一产品获取授权专利107项。
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 世界最大单台推力电动振动台问世
    近日从在苏州召开的“创新驱动发展成就展暨军民融合交流大会”上获悉,我国拥有自主知识产权的世界最大单台推力电动振动台在苏州问世。这台推力达到50吨的大型电动振动台由苏州东陵振动试验仪器公司独立研发,已通过中国计量科学研究院的校准验证。   据该公司总设计师江运泰介绍,研究团队在50吨振动台的研发过程中,相继攻克了动圈的一阶轴向共振频率控制、驱动线圈绕组冷却效果控制、内短路环冷却效果控制、功率放大器与振动台阻抗匹配等关键技术难关。与国外单台最大推力电动振动台相比,新问世的振动台在最大正弦力、最大位移、最大随机力等5项关键技术指标上领先,其他3项关键技术指标持平。   据了解,在产品故障失效事件中,30%的事件是由振动引起的。因此,振动试验成为预计产品的振动特性以及检验产品性能及其可靠性的必不可少的技术手段。   近年来,我国相继开展登月工程、大飞机工程、高铁工程等国家重点工程,对振动试验设备的推力需求不断加大,国内科研单位迫切需求大推力的电动振动试验设备。在单台50吨电动振动器问世之前,国内外为满足振动试验需求,采取两台或多台振动台并机激振的方式来解决单台振动台激振推力不足的难题。“并机系统有诸多先天性缺陷,是一种推力达不到情况下的权宜之策。”江运泰告诉《中国科学报》记者。   他介绍说,多台并机结构需要在多台小推力的振动台顶部附加一个大尺寸、大质量的公共台面,附加台面易引起台面振型模态的变化、大幅降低台面运动的均匀度指标等试验问题,从而使整个振动试验系统的有效推力与可靠性大幅降低。   该公司于2008年研制出35吨级电动振动台,打破了欧美对该设备的技术垄断与禁运封锁,成为当时世界上最先进的电动振动台。中国工程院院士王子才表示,50吨电动振动台部分指标已经达到并超过国际先进水平,“让国际为之振动”。
  • 两大“国字头”技术性贸易措施研究评议基地双双落户宁波
    p   1月23日,中国WTO/TBT-SPS国家通报咨询中心暨国家质检总局标准与技术法规研究中心(以下简称标法中心)、宁波检验检疫局、宁海县人民政府、慈溪市人民政府以及宁海县文教体育用品协会、宁波市玩具和婴童用品协会在宁波分别签署共建宁海文具、慈溪童车和儿童汽车安全座椅技术性贸易措施研究评议基地的合作协议并举行基地授牌仪式。这标志着中国WTO/TBT-SPS国家通报咨询中心宁海文具及慈溪童车和儿童汽车安全座椅两大评议基地将正式落户宁波。质检总局标法中心主任石宝祥、宁波检验检疫局局长卢厚林、宁海县副县长王鸿飞、慈溪市副市长周阳以及相关行业协会和企业代表等出席协议签署和授牌仪式。 /p p   仪式上,质检总局标法中心主任石宝祥指出,当前全球政治经济形势发生深刻变化,逆全球化抬头,多国贸易保护措施加剧。2016年我国出口企业遭受国外技术性贸易措施导致的直接损失额达3265.6亿元,宁波企业的直接损失额达到43.1亿元。实践表明,在产业聚集地合作共建技术性贸易措施研究评议基地是贯彻落实《中共中央 国务院关于开展质量提升行动的指导意见》中“加强技术性贸易措施信息服务,建设一批研究评议基地,建立统一的国家技术性贸易措施公共信息和技术服务平台”要求,推动技术性贸易措施工作与地方特色产业有效衔接和精准发力的重要抓手。 /p p   按照协议要求,质检总局标法中心、宁波检验检疫局及各基地所在地的地方政府、行业协会和企业等将加强合作,整合资源,共同建设研究评议基地。通过开展WTO其他成员有关文具、童车和儿童汽车安全座椅产品的信息跟踪、通报评议、研究应对,搭建国外技术性贸易措施信息服务平台,形成应对国外技术性贸易措施快速反应机制,服务宁波乃至全国相关产业转型升级、提质增效,为优质、安全的宁波出口文具、童车和儿童汽车安全座椅产品保驾护航。 /p p   宁波检验检疫局局长卢厚林表示,两大研究评议基地落成后,将充分发挥宁海文具和慈溪童车、儿童汽车安全座椅产业集聚优势,汇聚政府、检验检疫、协会和企业多方资源力量,加强对国外重大技术性贸易措施的研究、评议、交涉和应对,全方位帮扶企业破解国外技术壁垒,同时也将借助基地建设和研究评议工作促进宁波文具、童车和儿童汽车安全座椅等产业的转型升级和健康发展,助力供给侧结构性改革。 /p p   据介绍,技术性贸易措施作为一种更加隐蔽、灵活的贸易保护手段,被各国普遍应用,已成为国际贸易中仅次于汇率的重要障碍,对中国出口产业发展造成极大挑战。2017年全球共有93个国家或地区发布TBT/SPS通报4067项,同比增长5.23%,其中多项措施涉及文具、童车和儿童汽车安全座椅等儿童用品。而宁波素有“中国文具之都”和“中国童车和儿童汽车安全座椅之都”的美誉,拥有“得力”、“贝发”等文具自主名牌以及“妈咪宝”、“宝贝第一”等诸多童车和儿童汽车安全座椅自主名牌,产量已分别占到全国的四分之一,在全球市场也占有相当大份额。研究评议基地的落户将帮助宁波企业代表全国相关产业在家门口发出“中国声音”,更好地应对国际技术性贸易壁垒。同时,通过消化、吸收和应用国外技术性贸易措施中的先进理念、先进技术,将对相关产业提升质量水平,开拓国际市场,加快产业升级起到积极作用。 /p p br/ /p
  • 神奇“光学扳手”让显微镜镜头更轻薄
    未来的显微镜、望远镜甚至相机镜头,或许不再需要复杂、笨重的镜头组,仅通过纳米级厚度的平面薄膜,便可完成光的聚焦、偏转等控制。 记者日前从中科院光电技术研究所(以下简称光电所)获悉,在国家973项目“波的衍射极限关键科学问题”课题支持下,该所微细加工光学技术国家重点 实验室在国际上首次研究证实:利用光子自旋—轨道角动量相互作用的物理原理,“悬链线”可以对光产生稳定、可控的“扳手”作用。就是说用“悬链线”结构制 造的光学器件,可不借助任何凹凸透镜,仅在“二维”平面上便可实现光的折射、反射,甚至让光旋转成任意姿态。 悬链线与抛物线、月牙线或者半圆线不同,是一条两端固定的链条在重力作用下弯曲形成的曲线。它在生活中随处可见,桥梁悬索、架空电缆、街道护栏铁链等都是悬链线结构。 科学家们发现,在诸多形式的悬链线中有一种“等强度悬链线”可以保持结构在不同位置受力一致。那么,它施加到光上的“力”是否也一致呢?在这种奇特 的力学特性启发下,光电所团队用粒子束在厚度仅百纳米的平面金属薄膜表面,刻下纳米尺寸的“亚波长悬链线”连续结构,并证实了刻有这种悬链线“花瓣”的金 属膜,在光束照射后,可产生稳定可控的折射、反射等光学现象。 该团队负责人杨磊磊介绍说,传统意义上光的折射、反射等相位变化,是由于透镜不同厚度产生,而厚度均匀的平面透镜不会产生光的相位变化。此次科学新发现,意味着利用“悬链线”构成的超薄纳米结构,能够在二维平面内实现对光的连续调控。 “如果把光比喻成行进的列车,过去的凹凸透镜如同依靠弯曲的轨道调整列车运行,而现在仅需扳动悬链线这个铁道岔口的‘扳手’,便可改变列车的前进方 向。”杨磊磊介绍说,为进一步确认悬链线的“光学扳手”作用,研究团队还在平面金属薄膜上尝试刻制出不同形状的悬链线“版画”,并通过一种“花瓣状”的圆 形排列阵列,产生了携带完美轨道角动量,呈螺旋式前进的“光漩涡”。而此前研究中,科学家们还曾将月牙形、抛物线形结构刻制在平面上观察光的折射、反射, 结果证实仅有“等强度悬链线结构”具有稳定的光学相位变化。 “传统光学元件其厚度远大于波长,这就是为何天文望远镜、相机镜头需要不同大小的镜头组。但悬链线光学器件,可通过操作纳米级超薄结构的平移、缩 放、旋转等,实现光的相位变化,其厚度远小于波长。”杨磊磊介绍说,未来基于悬链线构建的新型光学元器件,具有轻薄的特点,可广泛应用于飞行器、卫星等空 间探测领域,手机、相机镜头等成像领域。 而这个受自然现象启迪的美妙光学发现,在电磁学、光通讯领域也让人充满遐想。杨磊磊说,按照光子自旋—轨道角动量相互作用的原理,悬链线还可拓展到 包括微波、太赫兹、红外、可见光在内的大部分频谱范围,广泛用于各种电磁器件;而采用悬链线结构的光通信器件,可在同一波长上传输多路信号,提高光通信的 频谱利用率,大大增加光通信的信息传输量。 上述研究成果在美国科学促进会创办的最新期刊《科学进步》上发表后,受到了国际光学界的广泛关注。《中国科学》对其点评认为,这一发现的证实,“证明了纳米悬链线可用于构建超薄、轻量化的光学器件,有望成为下一代集成光子学的核心”。
  • 国家计量基标准资源共享平台通过评议
    “国家计量基标准(化学部分)资源共享平台” 通过专家评议   2009年5月24日,国家科技基础条件平台中心在我院召开了“国家计量基标准(化学部分)资源共享平台”共享能力评议会。该平台在完善机制建设的基础上,以跨部门、跨领域、跨地区的分布式化学计量实验室网络为组织形式,服务区域遍及全国和亚非、欧美地区。已在食品安全、环境检测、临床与大众健康等国计民生方面取得了显著的社会成效,特别是在应对2008年地震水质污染、奥运食品中兴奋剂检测、原料乳中三聚氰胺快速检测等社会焦点问题中,成功的技术攻关和应用,取得了重大社会影响。在新材料性能检测、应对国际贸易壁垒、提升工业产品竞争力方面也取得了巨大的经济效益。   三年多来,我院联合43家参建单位对化学成分量、生化成分量和物化工程量等学科和食品、环境、大众健康、机电产品应对欧盟RoHS指令、能源与材料等应用领域的现有高端测量资源进行了整合和完善。完成了资源调查报告12份、制定管理技术文件41份 整合制定国家标准、检定/校准规范35项,完善测量方法110项 新增标准物质189项,开展国际比对65项,申报成功国家测量与校准能力178项,组织国内比对/能力验证22项 收集、整理化学计量基标准资源信息7800余条 开展国内外培训和交流活动,直接受训和交流人数达2000多人次 建立了涉及化学计量基准、标准、参考方法、参考实验室以及相关政策和技术法规的网络信息服务数据库 通过门户网站(www.nams.cn)、出版系列丛书、举办专业性培训班和学术交流会、开办网上学习课堂等多种方式,实现了信息资源的全社会共享 通过提供计量基标准技术服务、标准物质发售、参考方法的推荐使用、标准规范的颁布实施等多种渠道,实现了实物资源的社会共享。   专家组在听取了我院化学分析所副所长马联弟研究员做的平台评议报告后,对该平台的建设成果及其共享服务的效果表示十分满意。特别对本平台跨部门、跨领域、跨地区的组织形式 服务于食品、环境、大众健康等重要领域的明确的针对性 通过国际比对和国际合作检验平台成果,实现国际接轨的工作模式等特色给予充分肯定。并建议有关部门对该平台给予政策和长期稳定的经费支持,进一步完善硬件条件及实验环境,以目前的成果为契机,不断做大做强,以提升我国化学计量基标准的质量与共享能力,支撑科学技术、国民经济和社会的持续发展。该意见将为科技部、财政部确定平台转入运行服务阶段提供决策参考。   评议专家组由张玉奎院士、邓玉林教授、张新荣教授等9位专家组成。科技部平台中心,国家质检总局科技司、计量司的有关领导及我院吴方迪、段宇宁副院长参加了此次评议会。
  • 重庆市建成电动汽车整车及关键零部件测试平台
    近日,依托中国汽车工程研究院建设的电动汽车整车及关键零部件测试平台正式建成并投入使用。   该平台具备电动汽车电池、电机测试能力,针对全市新能源汽车产业发展需求,探索并形成了《插电式混合动力汽车和增程式电动汽车能量消耗率与污染物排放试验方法》、《电动汽车车内噪声振动试验方法》、《电动车辆的电磁场发射强度(150kHz-30MHz)试验方法》、《电动汽车制动能量回收与制动安全试验方法》等4项试验方法,保障了长安标致雪铁龙汽车有限公司、重庆长安新能源汽车有限公司、重庆科学技术研究院等科研院所和生产企业的新产品开发,提升了电动汽车整车和零部件开发水平,为全市电动汽车的研发及产业化提供了有力支撑。 文章转载自:重庆市科委
  • 湖南:财政资金购置科研仪器要共享 单台50万以上要查重评议
    根据《国务院关于国家重大科研基础设施和大型科研仪器向社会开放的意见》(国发〔2014〕70号)、《关于贯彻落实创新驱动发展战略建设科技强省的实施意见》(湘发〔2016〕25号)、《湖南省促进重大科研基础设施和大型科研仪器向社会开放实施方案》(湘政办发〔2015〕68号)等文件。日前,湖南省科学技术厅网站发布关于印发《湖南省科研基础设施和科研仪器向社会开放管理办法(试行)》的通知。  通知中明确指出:全部或部分利用财政资金建设的科研基础设施和购置的科研仪器,除涉密外,均应对外开放共享 由社会资金建设的科研基础设施和购置的科研仪器鼓励向社会开放共享。  据悉,湖南省科技厅负责组织推动全省科研基础设施和科研仪器向社会开放共享工作,组织建设全省统一的科研设施和科研仪器开放共享服务平台(以下简称“共享平台”),通过共享平台向社会定期发布全省科研基础设施和科研仪器开放共享目录,公布科研基础设施和科研仪器开放制度及实施情况。  此外,该通知还特别说明,湖南省科技厅、省财政厅还将对年度新立项科技计划项目拟以财政资金全额或部分出资新购单台套价值在50万元及以上的科研仪器开展查重评议。查重评议在省级科技计划项目批准立项之后、编制经费预算之前进行。对申请省级财政资金用于配套国家科技项目的,如该项目已通过国务院有关部门组织的评议,本省不再评议。  新购50万元及以上科研仪器评议申请书的内容主要包括:(一)科学研究和技术开发等科技创新活动需要新购科研仪器的必要性 (二)新购科研仪器功能指标的先进性、适用性,业务指标的合理性 (三)新购科研仪器的安装条件、技术队伍等配套支撑保障能力 (四)新购科研仪器的供货来源、采购方式、运行经费、预期效益等实施计划安排 (五)新购科研仪器的开放共享方案。
  • 国家标准物质资源共享平台通过专家评议
    近日,国家科技基础条件平台中心组织专家组,对中国计量科学研究院承担的国家科技基础条件平台子项目《国家标准物质资源共享平台建设》的开放共享情况进行了评议。此次评议的目的是为了贯彻科技部、财政部《关于进一步推动国家科技基础条件平台开放共享工作的通知》精神,推动国家科技基础条件资源平台尽快开展共享运行服务。按照通知要求,中国计量科学研究院对平台的资源整合与开放共享制度等开展自查、落实、形成了完整的开放共享工作总结报告。经国家科技基础条件平台中心的批准,成为在建的34个平台中首批接受评审的9个平台之一。   该平台在国家质检总局科技司和计量司的领导和推动下,通过建立规范的标准物质资源整合机制,整合了国内全部5000余种有证标准物质信息资源,并可随时提供4000余种标准物质实物资源。截止2008年底,累计实物资源共享量达85万份,有力支撑了科技创新及环境保护、食品安全等各项民生事业的发展。   专家组听取了平台负责人李红梅所做的《标准物质资源共享平台开放共享落实情况》的报告,观看了《国家标准物质信息平台》网站功能演示,审阅了《国家标准物质资源共享平台开放共享情况总结报告》以及相关资料,现场检查了国家标准物质实物库及资源共享服务情况后,对平台的建设成果以及在资源质量保证、评价与国际互认、资源更新维护、共享服务模式等方面形成的鲜明特色给予了高度评价,并建议对国家标准物质实物库今后扩大规模给予支持。专家组成员按照评议要求,对平台在资源整合、共享机制、服务效果方面的情况给予评议,并最终形成了专家组综合意见,该意见将为科技部、财政部确定平台转入运行服务阶段提供决策参考。   国家科技基础条件平台中心张渝英副主任,科技部农村与社会发展司许增泰处长,国家质检总局计量司刘新民副司长、科技司张永华副处长以及中国计量科学研究院吴方迪、段宇宁副院长参加了评审会。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制