当前位置: 仪器信息网 > 行业主题 > >

高温蠕变仪原理

仪器信息网高温蠕变仪原理专题为您提供2024年最新高温蠕变仪原理价格报价、厂家品牌的相关信息, 包括高温蠕变仪原理参数、型号等,不管是国产,还是进口品牌的高温蠕变仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温蠕变仪原理相关的耗材配件、试剂标物,还有高温蠕变仪原理相关的最新资讯、资料,以及高温蠕变仪原理相关的解决方案。

高温蠕变仪原理相关的资讯

  • ​深圳三思纵横试验机|持久蠕变试验机:分析工作原理及应用领域
    在材料科学研究领域,持久蠕变试验机作为一种重要的测试设备,对于评估材料在长时间受力作用下的变形行为具有不可替代的作用。今天,跟着深圳三思纵横试验机小编一起来看下持久蠕变试验机的工作原理、应用领域以及未来发展趋势。一、持久蠕变试验机的工作原理持久蠕变试验机主要用于模拟材料在长时间恒定或变化应力作用下的蠕变行为。蠕变是指固体材料在应力作用下,随时间发生的缓慢而连续的变形现象。持久蠕变试验机通过施加恒定的或变化的载荷,以及控制温度、湿度等环境因素,来模拟实际工作环境中的材料受力情况。试验机通过高精度传感器和数据采集系统,实时记录材料的变形数据,为材料性能评估提供可靠的依据。二、持久蠕变试验机的应用领域1、金属材料研究:持久蠕变试验机在金属材料研究领域具有广泛应用,如钢铁、铝合金、钛合金等。通过对金属材料进行持久蠕变测试,可以评估其在高温、高压等恶劣环境下的性能表现,为航空航天、能源、交通等领域提供关键材料性能数据;2、高分子材料测试:高分子材料如塑料、橡胶、纤维等,在长时间受力作用下容易发生蠕变现象。持久蠕变试验机能够模拟这些材料在实际应用中的受力情况,评估其蠕变性能,为产品设计、生产和使用提供重要参考;3、复合材料性能评估:复合材料由于具有优异的力学性能和多功能性,在航空航天、汽车、建筑等领域得到广泛应用。持久蠕变试验机可用于评估复合材料在不同应力状态下的蠕变性能,为复合材料的优化设计和应用提供有力支持。三、持久蠕变试验机的未来发展趋势1、智能化与自动化:随着人工智能和自动化技术的不断发展,持久蠕变试验机将实现更高级别的智能化和自动化。通过引入智能控制系统和机器人技术,试验机能够实现更精确的试验操作、更高效的数据处理以及更便捷的远程监控,提高试验的准确性和效率;2、多功能化与集成化:未来的持久蠕变试验机将更加注重多功能化和集成化设计。通过集成多种测试功能,如拉伸、压缩、弯曲等,以及实现多种环境因素的模拟和控制,试验机将能够满足更多种类的材料测试需求,提高设备的利用率和灵活性;3、高精度与高可靠性:随着材料科学研究对测试精度的要求不断提高,持久蠕变试验机将致力于实现更高的测试精度和可靠性。通过优化机械结构、提高传感器精度、加强设备校准和维护等措施,试验机将能够提供更加准确、可靠的测试数据,为材料科学研究提供有力支持。四、结论综上所述,持久蠕变试验机在材料科学研究领域具有广泛的应用前景和重要的价值。随着技术的不断进步和市场的不断发展,相信未来持久蠕变试验机将在材料性能测试领域发挥更加重要的作用。
  • 40台高温持久蠕变试验机顺利发货
    9月11日,三思纵横40台高温持久蠕变试验机顺利发货。 9月8月,公司下达发货指令,9月11日下午6时,40台高温持久蠕变试验机完成全部装车,启程发往北京,完成发货命令,我们只用了3天时间。 9月9日,高温持久蠕变事业部的人员完成了项目的结尾工作,当晚,钱正国总工程师带领高温持久蠕变事业部的全体人员以及部分828项目的参与人员举行项目厂内结尾庆祝宴会。 9月10日(周六),一天的时间,完成了40台产品的打包工作,黄志方董事长和钱正国总工程师为第40台设备举行了包装结束仪式,三思纵横再现惊人的效率,原来预计需要2天的工作结果只用了1天就完成了。 9月11日(周日),公司的很多人员都来加班,雒智强副总经理坐镇现场,指挥吊运和装卸工作。人事行政部做好了一切后勤准备工作;电拉事业部的许多人员都来帮忙;市场部的人员忙前忙后地拍摄和拍照;仓库人员忙着办理入库出库手续,事业部的助理小高忙着编号、记录和拍照工作;董舫、郭剑波带领销售部的人员协助包装工作。 整个发货的场面蔚为壮观,很多员工来到现场,亲眼看着一台又一台的超大型箱体被吊下三楼装入货车。 9月11日下午5点30分,发货工作顺利结束。 图1:工作人员对产品做最后检查 图2:产品包装现场核查 图3:黄志方董事长(左)与钱正国总工程师(右)亲自包装最后一台产品 图4:产品吊装现场(一) 图5:产品吊装现场(二) 图6:装车完毕,等待出发。
  • 240万!清华大学氦气氛高温蠕变-疲劳试验系统采购项目
    项目编号:清设招第20230019号(TC231901N)项目名称:清华大学氦气氛高温蠕变-疲劳试验系统采购项目预算金额:240.0000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量1氦气氛高温蠕变-疲劳试验系统1套本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。(2)本项目不接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:用于高温气冷堆镍基合金材料在不同环境温度和不同介质中的高温蠕变-疲劳试验,可实现真空条件下的高温蠕变-疲劳试验、高纯氦气氛及含特定杂质组分条件下的高温蠕变-疲劳试验。合同履行期限:合同签订后365日内完成交货、安装调试。本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月14日 至 2023年03月21日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:本项目标书发售期内,请供应商通过汇款方式购买标书。凡有意参与本项的潜在投标人请前往“中招联合招标采购平台”进行投标人注册(网址:http://www.365trade.com.cn)下载电子版招标文件(详见六、其他补充事宜(二)特别告知)。招标文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:清华大学地址:北京市海淀区清华大学 联系方式:鲍老师,010-62784824 转21112.采购代理机构信息名称:中招国际招标有限公司地址:北京市海淀区学院南路62号中关村资本大厦联系方式:张涵睿、蒋雪娜、邓嘉莹、陈思佳,010-61954122、61954121、619541203.项目联系方式项目联系人:张涵睿、蒋雪娜、邓嘉莹、陈思佳电话:010-61954122、61954121、61954120
  • 王春生教授:离子注入对高温合金蠕变/疲劳性能的影响及寿命预测
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为北京航空航天大学材料科学与工程学院王春生教授所作报告的精彩内容: 北京航空航天大学材料科学与工程学院王春生教授 报告题目:离子注入对高温合金蠕变/疲劳性能的影响及寿命预测   对于疲劳断裂与试验技术发展历程,王春生教授在报告中首先回顾到,19世纪40年代,由于火车轴在轴肩处常发生断裂,德国人Wohler通过车轴疲劳模拟试验提出了S-N曲线及疲劳极限概念;20世纪初,伴随着光学金相显微镜问世,科学家们对疲劳机理进行了更深入的研究;1920年,Griffich提出了著名的裂纹体脆断强度理论,为断裂力学新学科发展奠定了基础;20世纪50年代,英国两架喷气式客机“慧星”号坠毁事故使人们意识到,看上去静止的飞机结构一旦承受反复载荷作用就会发生疲劳破坏。   随之,各种用于疲劳断裂测试的试验机新产品不断推出,如1987年,美国英斯特朗推出32位数字控制的电流伺服试验系统;1938年,瑞士首次推出频率范围在35-300Hz的高频疲劳试验机;20世纪90年代美国MTS推出了试验频率为1000Hz的电液伺服系统等。发展到今天,疲劳试验机的种类已日益繁多,如轴向拉压、弯曲、扭转、拉扭、单轴、双轴、多轴、低循环机械疲劳、低循环热疲劳等。   此外,王春生教授还重点介绍了离子注入对高温合金蠕变/疲劳性能的影响及寿命预测,众所周知,航空发动机的涡轮盘、叶片等热端转动部件,长期在高温、高应力及环境介质条件下服役,这使得零件材料承受着蠕变/疲劳或蠕变/疲劳/环境的交互作用,即时间相关疲劳。   对此,王春生教授采用金属蒸汽真空弧离子源(MEVVA )离子注入技术,将载能离子注入材料表面,引起材料表层成分和结构的改变,以提高材料的使用寿命。最后经试验验证得出,在650℃条件下,GH4169合金的CP型蠕变/疲劳寿命比PP型寿命损伤严重,寿命下降约70-80%,而经离子注入后的CP型蠕变/疲劳寿命仅下降20-30%;此外,采用SEP法预测GH4169合金650℃的疲劳及蠕变/疲劳寿命,可以得到满意的结果,其分散带B≤1.5,标准差S=0.08周。 会议现场
  • 三思泰捷为灾后重建项目提供的20台高温持久蠕变试验机顺利验收
    日前,三思泰捷为攀长特钢灾后重建项目提供的20台高温蠕变持久试验机完成现场验收,即将顺利发货。   攀长特钢灾后重建项目拟投资66.8亿元,采用世界先进技术和装备,重点新建或重建特殊钢炼钢连铸、高合金钢锻造、特殊钢初轧、电渣钢、钛材、核电管、高合金钢挤压管等生产线,主体工程预计2011年6月底前竣工。全部项目建成投产后,将形成“年产钢70万吨,钢材79万吨,钛材1万吨,销售收入134亿元,利润总额16亿元”的经营规模,工业总产值将增长3倍以上,劳动生产率将提高6倍以上,对提升我国国防军工实力,加快钢铁产业结构调整步伐,完善特钢产品深加工产业群,增强攀钢集团综合竞争实力,都具有十分重要的意义。 客户正在现场了解高温持久试验机产品情况   据悉,三思泰捷此前已与攀钢集团有过合作,为其提供过电子万能试验机多台,以及高温持久试验机等设备。本次合作三思泰捷又在招标中胜出,一次性为其生产12台高温持久试验机及8台高温蠕变试验机。这些设备的技术要求较高,代表了国内同类型试验机最新的发展水平。 客户亲手操作试用高温蠕变试验机   另据攀长特钢相关人士透露,该公司此前还曾向其他试验机厂商采购过多台该型设备,但使用状况却始终不能令人满意。所以,在本次招标采购中,他们非常慎重,在反复选择后,才与三思泰捷签订合作协议。这一方面是基于双方以往一直保持的良好合作,同时也是出于对三思泰捷产品的稳定性、可靠性的认可。日前,经过现场仔细验收,该公司人员对已全部生产完毕的20台设备非常满意,认为设备功能先进。外形美观,综合表现良好,确实代表了行业较高的水准。   作为备受瞩目的灾后重建项目,三思泰捷与攀钢集团的此次合作将为重振四川钢铁工业增添一份力量。   关于三思泰捷:   三思泰捷(www.sstjtest.com),是国内拉力试验机领先厂商,前身可追溯自天水三思,是国内第一台电子万能试验机的研制单位,国内最早的民营试验机企业。三思泰捷的产品被应用于不同环境条件下各种材料及构件的力学性能测试。公司成立于2004年,并与2010年实施了重组。三思泰捷目前主要生产拉力机、高温持久蠕变试验机等试验机产品。产品应用于国防军工、航天航空、车辆制造、核能、质量检测、商品检验、科研院校及钢铁、塑料、橡胶、家电、建筑建材、包装、纸张、医疗等制造业领域。
  • 822.5万!中机试验中标中国特检院60套高温蠕变持久试验机采购项目
    2024年3月11日,中国特种设备检测研究院高温蠕变持久试验机及其配套设备采购项目中标结果公布。该项目预算827万元,采购60套高温持久试验机(要求每套不超过13万)、1套试验机配套控制系统(要求不超过10万)、1套持久试验机报警系统(要求不超过10万)、2套UPS不间断电源(要求每套不超过13.5万),中机试验装备股份有限公司以822.5万元中标。一、项目编号:24CNIC01-2002(招标文件编号:24CNIC01-2002)二、项目名称:高温蠕变持久试验机及其配套设备采购三、中标(成交)信息供应商名称:中机试验装备股份有限公司供应商地址:长春市高新区越达路1118号中标(成交)金额:822.5000000(万元)四、主要标的信息序号供应商名称货物名称货物品牌 货物型号货物数量货物单价(元) 1 中机试验装备股份有限公司 高温持久试验机中机试验 RDJ-30等 60套RMB129,500.00 试验机配套控制系统 1套RMB100,000.00持久试验机报警系统1套RMB100,000.00UPS不间断电源2套RMB127,500.00 五、高温持久试验机技术指标(部分)1 最大试验加载力:30kN;2 实验力测量误差:最大误差为实验力示值的 0.5%;3 最小加载量:1N;4 实验力范围:0.3kN~最大实验加载力;5 杠杆偏移量:±0.1mm;6 同轴度:国标≤8%或美标≤10%;7 下拉杆行程:≥250mm;8 杠杆级数:1 级;9 高温炉:对开门式,不锈钢外壳;10 真空(充气)保护炉:真空度需≤500Pa;可通惰性气体防止试样高温氧化。六、关于中国特检院 中国特种设备检测研究院(简称:中国特检院;英文缩写:CSEI),于1979年10月经国务院批准成立,隶属于原国家劳动总局,1998年划转至原国家质量技术监督局,2001年划转至原国家质量监督检验检疫总局,现隶属国家市场监督管理总局,是公益二类事业单位。主要承担三方面职责:一是组织科研攻关,承担基础科学研究、重大仪器设备研发,解决行业共性关键和重大疑难技术问题,承担法律法规、政策理论、发展规划等研究工作;二是支撑安全监察,承担安全技术规范和相关标准研制工作,为行政许可、监督检查、事故调查、风险监测等工作提供支撑保障;三是提供公益服务,开展监督检验、定期检验、风险评估、安全评价等,参与重大活动、重大工程安全保障工作,为欠发达地区提供援助性检验。基础设施方面:和平里院区办公用房1.9万平方米;顺义院区国家试验基地占地108亩,一期5.6万平方米已投用,规划建设16个研究中心、68个实验室,其中已正式建成投用50个实验室。现有仪器设备7489台(套),总价值5.31亿元。七、关于中机试验中机试验装备股份有限公司(简称:中机试验;股票代码:872726)始建于1959年(原名:机械工业部长春试验机研究所,曾用名长春机械科学研究院有限公司),是中国机械工业集团旗下子公司,是国家试验机质量检验检测中心和国家试验机标准化技术委员会支撑单位,是国家试验机行业学会、协会秘书处挂靠单位。中机试验是以“试验装备”研发制造为主业的国家级科技创新型企业,2021年入选“国家企业技术中心”;2022年入选国务院国资委“科改示范企业”名单;2023年入选国务院国资委“创建世界一流专精特新示范企业”名单。截至目前,制修订试验机国家和行业标准近160项;拥有专利181项,其中发明专利41项,软件著作权79项,实用新型61项。拥有试验装备行业多项国际前沿核心技术,解决了多项国家“卡脖子”技术难题,其中静压支撑技术、测量传感技术等一批关键技术处于国际领先地位。作为中国工程试验设备和材料试验解决方案提供商,中机试验已经形成一个中心,二个基地的产业布局,在北京设有研发中心,在长春、无锡设有制造基地。
  • “高温蠕变无损检测与损伤状态评价技术研究及应用”项目启动暨实施方案论证会召开
    近日,2022年度国家重点研发计划“国家质量基础设施体系”重点专项“高温蠕变无损检测与损伤状态评价技术研究及应用”项目启动暨实施方案论证会在上海顺利召开。该项目由华东理工大学牵头,联合南京工业大学、清华大学、合肥通用机械研究院有限公司、上海材料研究所等单位进行协同攻关。哈尔滨工业大学刘俭教授、南京市产品质量监督检验院张驰研究员、东南大学丁辉教授、北京航空航天大学周正干教授、华中科技大学康宜华教授、重庆大学邓明晰教授、复旦大学他得安教授、国家能源集团科学技术研究院有限公司胡先龙研究员、国核电站运行服务技术有限公司钟志民研究员等项目实施方案论证委员会专家出席会议。科技部中国21世纪议程管理中心项目主管张家林,学校校长轩福贞以及科研院、机动学院等单位负责人,项目首席科学家项延训、各课题负责人和项目骨干等50余人参加会议。轩福贞在致辞中表示,学校坚持“四个面向“,积极布局一流学科和国家战略科技平台,持续加强有组织科研,以承担国家重大科研任务支撑高水平科技自立自强。2022年,学校已牵头获批重点研发计划项目13项,立项数超过 “十三五”期间的总和,创学校历史新高。本次启动的重点研发计划“高温蠕变无损检测与损伤状态评价技术研究及应用”项目属于 “国家质量基础设施体系”重点专项,是学校深入学习贯彻党的二十大精神,落实质量强国、科教兴国等国家战略需求和《质量强国建设纲要》的重要举措,责任光荣、使命重大,学校将加强项目过程管理,提供切实保障条件,确保项目顺利开展。张家林对项目启动会的顺利召开表示祝贺,并对项目提出三点要求:一是项目组要勇于探索科学的管理体制机制,做好有组织的科研和风险预案,确保研究目标按期完成;二是项目牵头单位和负责人要切实加强课题之间的统筹与协调,高质量完成预定目标;三是项目牵头单位要加快管理创新、制度创新,推动全链条创新和成果转移转化应用。希望本项目聚焦解决航空发动机、新一代核电等高端装备服役安全检测与状态评价的关键技术,为推动国家经济高质量发展提供坚强的科技支撑。专家组组长刘俭教授主持了项目实施方案论证会。项目首席科学家项延训围绕课题背景与研究现状、研究目标与任务要求、研究内容与实施方案、预期成果、课题组织管理等方面进行了汇报,各课题负责人也分别对课题实施方案进行了详细讲解汇报。专家组从研究内容、任务分工、技术路线、组织模式等方面质询并评估了项目及课题方案,一致认为任务分工明确,技术路线可行,成员单位具备良好的科研基础和配套能力,可保障项目顺利实施。专家组还从项目具体执行计划、课题间交流框架、专项经费管理等方面提出了指导意见。最后,项延训代表项目组成员衷心感谢专家们的建议和意见。他表示,项目组将进一步细化方案,加快部署,积极组织各承担单位深入研究,迅速开展技术攻关,按时、保质、高效完成项目目标。
  • 10台高温持久蠕变产品在西飞公司顺利通过验收
    近日,三思纵横发往西飞公司的10台高温持久蠕变试验机顺利通过客户验收,并获得用户的认可。   高温持久蠕变试验机是三思纵横全部重新研发并在今年推向市场的新一代高温持久蠕变设备。新一代的高温持久蠕变试验机与传统的设备相比,具有许多的改进和优点:产品造型新颖美观,占地面积较小,可选配对开式和圆筒式高温炉,高温炉可以选配电动升降系统,不用人工干接触高温炉,极大的提高了产品的安全性和可靠性,下拉杆行程变长,更加方便进行多种试验组合。   2011年,三思纵横的高温持久蠕变产品已经销往国内十多个知名企业和军工单位,销售额逾千万元。     技术人员对产品做出厂前的检测 产品整齐的排列在生产线上,整装待发
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率,-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 华嘉公司成功推广KRUSS高温接触角测量仪
    瑞士华嘉公司代理的德国Kruss 公司的接触角测量仪系列中的高温系列DSAHT系列由于其能具有在达到10-3-10-5 Pa的高真空,最高1750℃高温下测量接触角的独有特点,广州有色金属研究院焊接研究所和中南大学经过两年时间,对市场上多种类似设备的评估,最终选购了kruss公司的高温接触角测量仪产品。我们衷心希望该产品能继续为国内的有色金属行业的高温浸润性研究服务。 相关产品信息: 超高温接触角测量仪DSAHT http://www.instrument.com.cn/netshow/SH100150/C13013.htm 瑞士华嘉公司(SiberHegner China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 1796年Paul Kruss先生在德国汉堡市成立了KRUSS公司。50年来,公司致力于表面/界面张力和接触角测量技术的创新,开发和应用研究,使之成为全球市场的领导者以及表面/界面张力和接触角测量技术的国际标准。我们开发出众多的实验室仪器和工业在线仪器以满足最苛刻的科学研究需要和严格的工厂质量控制。
  • 扫描电镜纳米分辨高温力学原位仪器研究获新进展
    p style=" text-indent: 2em " span style=" text-indent: 2em " 在浙江大学张泽院士主持的国家自然科技基金委重大科研仪器设备研制专项《针对若干国家战略需求材料使役条件下性能与显微结构间关系的原位研究系统》的支持下,北京工业大学和浙江大学张泽院士、张跃飞研究员团队在扫描电镜纳米分辨高温力学原位仪器研制成果,以“A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150℃ in scanning electron microscope”为题,于2020年4月7日发表在《科学仪器评论》【 i Review of Scientific Instruments /i 91, 043704 (2020) doi: 10.1063/1.5142807】杂志上,并被选为主编推荐(Editor’s Pick)亮点文章,在其杂志网站首页作为重点展示。《 i Review of Scientific Instruments /i 》是美国物理学会旗下的关于仪器研究方面的专业学术期刊。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 352px " src=" https://img1.17img.cn/17img/images/202006/uepic/c5f78264-b188-4f17-b720-1d5ac9aec7c4.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 352" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 研究背景:目前国际上原位高温拉伸可获得高分辨SEM图像的温度只能到800 ℃左右,远不能满足高温材料研究的需求 /strong /span /p p style=" text-indent: 2em " 高温材料在服役过程中需要经受长期的高温和应力共同作用,因在航空、航天、核电、热发电等领域具有重要的应用,其生产研发应用水平已经成为衡量国家材料科技水平的标志之一。我国在高温材料领域如高温合金等,研发水平仍然需要寻求进一步突破,以满足国家重大战略需求。将调控、优化高温材料的制备过程、加工工艺、服役性能等环节建立在与之相应的显微结构研究与分析基础上,是指导高温材料研发的科学有效途径。 /p p style=" text-indent: 2em " 在传统的高温材料研究模式中,由于其高温力学性能测试与显微结构研究分别独立进行,导致难以获得动态力学行为与对应实时微观组织结构演化信息。扫描电镜(SEM)是对材料进行微观组织结构分析的主要科学仪器之一,SEM具有较大的便于集成的样品室空间,国际上也在竞相发展基于SEM的原位拉伸、加热以及高温拉伸仪器,力求实现材料性能测试与相应显微结构的同步关联性研究。但是在SEM中同时进行高温-力学性能-成像三位一体测试时, span style=" color: rgb(0, 112, 192) " 目前国际上可获得高分辨SEM图像温度最高只能到800 ℃左右,还远远不能满足高温材料原位研究的需求。 /span 其主要问题是没有解决在SEM中进行高温加热时,高温热电子溢出进入SEM二次电子探测器使接收信号饱和的难题,导致原位SEM高温实验时图像发白,掩盖了样品表面形貌特征,失去微观组织分辨能力,如图1所示。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 215px " src=" https://img1.17img.cn/17img/images/202006/uepic/c27210e6-3c33-4988-9876-8eddfdcc43ed.jpg" title=" 2.tif.jpg" alt=" 2.tif.jpg" width=" 600" height=" 215" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图1(a)1150℃时热电子对高温成像的影响,(b)热电子抑制后图像质量 /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 研究成果:实现1200℃高温拉伸时样品微区原位、实时动态跟踪和纳米分辨、高质量的长时间成像 /strong /span /p p style=" text-indent: 2em " 在张泽院士的带领和指导下,团队科研人员近年来一直致力于原位高温扫描电子显微学方法研究和仪器的开发工作。 span style=" color: rgb(0, 112, 192) " 通过对SEM原位拉伸和加热测试系统的创新性结构设计、优化选材与热电子抑制技术,成功实现了1200℃高温拉伸时样品微区原位、实时动态跟踪和高分辨、高质量的长时间成像。 /span 科研团队在仪器开发过程中攻克并掌握了可以在SEM有限腔室空间内实现稳定运行的精密传动、准静态加载、原位视场追踪、闭环自锁、高精度测控、热源屏蔽、电磁屏蔽、真空兼容等多项核心关键技术。 /p p style=" text-indent: 2em margin-top: 15px " br/ /p p style=" text-indent: 2em margin-top: 15px " script src=" https://p.bokecc.com/player?vid=46BC6EBB7E77D8D99C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script br/ /p p style=" text-indent: 2em " 图2为原位高温拉伸仪器与SEM组合的系统设计图和实物图,该原位仪器系统具有多项技术优势:配合SEM功能附件(EBSD,EDS,GIS)可实现一定环境气氛中的高温应力条件下材料的显微晶体取向和微区成分分析;同轴双向对称加载,使观察区保持在SEM视场中心;多级减速结构合理设计,扭矩输出平稳,保证了力学测试稳定性和高质量成像要求;传动自锁,随时起停,适合原位成像;消磁加热结构,电磁干扰小;高效热隔离,环境温度影响小;热电子抑制,突破了800 ℃以上的SEM高温高质量成像难题等。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 198px " src=" https://img1.17img.cn/17img/images/202006/uepic/aac90d91-7015-4607-a4bf-bb39101ea9d2.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 198" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图2. 位高温拉伸仪器与SEM组合的系统设计图(a)和实物图(b) /span /p p style=" text-indent: 2em " 凭借上述技术突破,所研制的原位高温拉伸仪器和SEM配合进行原位测试时,当样品温度保持在1150℃拉伸应力状态时,SEM在WD=25 mm长工作距离条件下仍然具备10 nm左右的空间分辨能力和31万倍放大的成像能力。如图3a所示,镍基单晶高温合金保持在1150 ℃、400 MPa拉伸状态时,扫描电 WD=22.5 mm(通常高分辨成像WD需要≤10 mm)、放大倍数为12万倍时的二次电子图像质量,图中样品表面D=10 nm的组织特征清晰可见。图3b显示了WD=25mm,镍基单晶高温合金保持在1150 ℃、530 MPa的高温拉伸状态时,放大倍数为31万倍时的二次电子图像质量,图3b是目前在高温和应力加载时所获得的放大倍数最高的SEM二次电子图像。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 278px " src=" https://img1.17img.cn/17img/images/202006/uepic/f31c7d0a-586f-456f-8aaf-e4c8f77334f7.jpg" title=" 4.png" alt=" 4.png" width=" 600" height=" 278" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图3.一种镍基单晶高温合金在1150 ℃不同应力水平的SEM图像 /span /p p style=" text-indent: 2em " 所研制的高温拉伸仪器,需要在SEM腔室内与样品台配合使用。受SEM样品台承载能力和倾转功能的限制,拉伸仪器需要体积小,重量轻。通过双丝杠传动、样品轴心平面加载等优化设计,保证了拉伸仪器小型化后加载的系统刚度要求,实现了高精度力-位移测试和快速响应。通过原位拉伸仪器测试同批次的小样品力学性并与标样证书校验结果对比,其力学性能指标与宏观标样测试结果一致,保证原位拉伸仪器测试力学性能的准确性,并与宏观测试力学性能参数具有的可比性,如图4所示高温拉伸仪器与力学性能测试校验。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 426px " src=" https://img1.17img.cn/17img/images/202006/uepic/0d759570-e160-4bd0-9436-c22122db44e9.jpg" title=" 5.tif.jpg" alt=" 5.tif.jpg" width=" 600" height=" 426" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图4. 原位高温拉伸仪器与力学性能测试校验 /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 成果应用:原位仪器已应用于高温合金、钛合金等的研发与性能试验,并取得系列研究成果 /strong /span /p p style=" text-indent: 2em " 目前该仪器已经用于国内高温合金的研发与性能试验中。如图5为使用该仪器对二代镍基单晶在1150 ℃时高温拉伸力学性能和微裂纹扩展行为的研究成果,它直接揭示了镍基单晶高温合金在近服役温度下,弹性到屈服阶段微裂纹的形核与扩展行为,捕捉并阐述了微裂纹优先在冶金缺陷孔洞边缘形核长大,并且在持续应力加载过程中观察到裂纹尖端以绕过γ′,在γ基体相中扩展并发展为主裂纹的过程。相关论文发表在金属学报杂志。【金属学报, 55(8): 987-996, (2019). doi: 10.11900/0412.1961.2019.00013】。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 503px " src=" https://img1.17img.cn/17img/images/202006/uepic/eeca6546-ed0c-4a87-9b57-55d5f108037f.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 500" height=" 503" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图5 镍基单晶高温合金1150 ℃原位拉伸微裂纹扩展与变形行为 /span /p p style=" text-indent: 2em " 如图5报道了在SEM腔室的真空环境中,样品温度保持在1150 ℃时,有微量氧气氛参与的镍基单晶高温合金表面初始氧化行为。使用该原位高温拉伸仪器在纳米分辨水平直接观察到了1150 ℃时镍基单晶表面氧化物的形核与长大过程,并通过对比有无应力作用时表面Al2O3生长动力学,揭示了由微量氧元素参与在接近高温合金叶片实际服役温度条件的初始氧化行为。相关论文以题为相关论文以题为“Initial oxidation behavior of a single crystal superalloy during stress at 1150° C”发表在近期 i Scientific Reports /i 杂志上。【 i Scientific Report /i 10,3089(2020). https: // doi.org/10.1038/s41598-020-59968-3】。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 479px " src=" https://img1.17img.cn/17img/images/202006/uepic/56e0670f-9735-4ea0-b9da-193ff7826d6a.jpg" title=" 7.tif.jpg" alt=" 7.tif.jpg" width=" 600" height=" 479" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 图6 镍基单晶高温合金1150 ℃有无应力的初始氧化行为与氧化动力学曲线 /span /p p style=" text-indent: 2em " 该仪器也可以用于原位高温拉伸EBSD研究,如图7为Inconel 740H为样品在650 ℃高温拉伸EBSD研究。实验结果表明,样品在650 ℃高温拉伸时,EBSD探头工作状态良好,花样识别率高,样品进入屈服阶段大应变量时标定率仍然可以保持在85%以上。通过该仪器与SEM和EBSD的结合,可以准确的判断晶粒的转动与变形滑移系的开启时的应力水平与对应显微组织状态,相关研究结果发表在 i Journal of Alloys and Compounds /i 820 (2020) 153424。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 290px " src=" https://img1.17img.cn/17img/images/202006/uepic/3eac64ed-fa07-4a13-852a-f6dc6770a6e5.jpg" title=" 8.png" alt=" 8.png" width=" 600" height=" 290" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " 图7 Inconel 740H 650 ℃原位拉伸组织结构和晶粒取向的演变过程 /span /p p style=" text-indent: 2em " 此外,利用该项目开发的仪器和研究方法,对增材制造钛合金快速凝固组织与室温和高温力学性能方面的研究也已经有系列成果发表,【 i Journal of Alloys and Compounds /i 817 (2020) 152781; i Materials Science & amp Engineering A /i 749 (2019) 48–55; i Materials Science & amp Engineering A /i 712 (2018) 199–205】。利用该项目开发的仪器和研究方法,对锂离子电池正极材料、负极材料在电化学力学耦合作用下的结构演变与性能的原位研究方面也有系列研究成果发表【 i Extreme Mechanics Letters /i 35 (2020) 100635; i ACS Energy Letters /i ,2019,4,1907-1917; i Electrochimica Acta /i 2018, 269, 241249】。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 该仪器研发成功已经引起了国内外相关学者的广泛关注,2020年6月16日美国材料学会会刊MRS Bulletin的“News & amp Analysis Materials News”专栏也特别撰文对这一成果进行了介绍(In situ mechanical testing in an SEM performed at 1150° C with submicron resolution)。波士顿大学Christos Athanasiou博士评论认为“The capabilities offered are exciting for many. The developed instrument paves the way for exploring new mechanisms, which could serve as guidelines for designing ultra-tough ceramic nanocomposites for demanding environments”(开发的仪器提供了令人兴奋的测试能力,该仪器为揭示材料高温变形新的机理铺平了道路,比如可以用于指导超韧纳米复合陶瓷材料的设计等)。 /span /p p style=" text-indent: 2em " 该仪器成果已经承接了国内重点科研单位高温材料急需的原位测试需求。同时,通过科技成果转化,仪器产品已经在国内多家重点科研单位进行了推广应用,为这些单位的研究提供了强有力的实验和数据支持,促进了高温材料的研发。 /p p style=" text-indent: 2em " 博士生王晋、马晋遥、唐亮、桑利军,硕士生张文静、张宜旭等参与了仪器的功能开发与性能测试等,北京工业大学吕俊霞副研究员负责原位仪器的应用研究。这些工作也得到了北京市长城学者项目的支持。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/202006/uepic/40e51be5-453d-4bf7-8279-acb7807dd7ea.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 600" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " 图8 仪器研发团队合影 /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 相关文章链接: /strong /span /p p style=" text-indent: 2em " a href=" https://doi.org/10.1063/1.5142807" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1063/1.5142807 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1557/mrs.2020.172" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1557/mrs.2020.172 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1038/s41598-020-59968-3" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1038/s41598-020-59968-3 /span /a /p p style=" text-indent: 2em " a href=" https://www.ams.org.cn/CN/Y2019/V55/I8/987" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://www.ams.org.cn/CN/Y2019/V55/I8/987 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1016/j.jallcom.2019.153424" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1016/j.jallcom.2019.153424 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1016/j.jallcom.2019.152781" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1016/j.jallcom.2019.152781 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1016/j.eml.2020.100635" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1016/j.eml.2020.100635 /span /a /p p style=" text-indent: 2em " a href=" https://doi.org/10.1016/j.msea.2019.01.111" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " https://doi.org/10.1016/j.msea.2019.01.111 /span /a /p p style=" text-indent: 2em " span style=" text-decoration: underline color: rgb(0, 176, 240) " a href=" https://doi.org/10.1016/j.msea.2017.11.106" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " https://doi.org/10.1016/j.msea.2017.11.106 /a /span /p p style=" text-indent: 2em " br/ /p p style=" text-align: right " span style=" color: rgb(0, 112, 192) " 【本文系仪器信息网专家约稿 , /span /p p style=" text-align: right " span style=" color: rgb(0, 112, 192) " 作者:北京工业大学 张跃飞 研究员】 /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " -------------------------------------- /span /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 延申阅读 /strong /span span style=" color: rgb(0, 0, 0) " br/ /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " 6月16日,张跃飞研究员在 /span span style=" color: rgb(0, 0, 0) text-decoration: underline " a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" style=" color: rgb(0, 176, 240) " span style=" text-decoration: underline color: rgb(0, 176, 240) " “第六届电子显微学网络会议(iCEM 2020)” /span /a /span 第2分会场“原位电子显微学技术及应用”会场线上报告视频回放如下,报告题目《扫描电镜原位高温-拉伸-成像进展与应用》: /p script src=" https://p.bokecc.com/player?vid=D16537227F20FE939C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script
  • 小知识 | 高温超纳米压痕系统
    一基本介绍高温纳米压痕仪的主要用途是获得薄膜和材料在一定温度下的微观力学性能,其力学性能随温度变化的特性具有巨大的工业和科学意义。但高温测量中存在热漂移,信号稳定性(噪声),表面氧化和尖端样品反应的困难,安东帕研发了一种新型的高温真空纳米压痕仪,该压痕仪能够完成在特定温度下的超稳定的测量,是一款商业化的高温纳米压痕仪。二工作原理该系统基于超纳米压痕测试仪(UNHT),该测试仪利用一种主动表面参照技术,该技术包括两个独立的轴,一个用于表面参照,另一个用于压痕。在这种对称结构和差分深度测量技术中使用的极硬且热膨胀系数非常低的材料导致系统的柔量可忽略不计,并且热漂移率非常低。这样就可以进行稳定且长期的测量(例如蠕变测试),而不必担心漂移和噪声。每个轴都有自己的执行器,位移和负载传感器。对于两个轴,通过压电执行器A1和A2施加位移。压头和基准上的负载是从弹簧K1和K2的位移获得的,这些位移是用电容式传感器C1和C2测量的。压头的位移是通过差分电容传感器C3相对于基准进行测量的。精确的反馈回路确保连续控制压头和基准上的法向力。三针尖与样品表面温度的匹配-热漂移最小化实验过程中热电偶读取的温度不是压头和参比端以及样品表面的真实温度。因此,压头和样品的表面温度需要精确匹配,以避免热量流过触点,从而避免热漂移。我们开发了以下3个步骤的程序来匹配此压头的尖端样品表面温度:a.将压头尖端放在距离样品表面约100微米以内的位置,并使用PID控制将样品和尖端加热到目标温度。现在,安装在压痕头上的热电偶将直接与样品表面接触。将样品表面温度调节至目标温度。温度稳定后,请切换至恒定功率模式以防止瞬时温度波动b.温度粗调:通过调整针尖加热过程中热电偶的温度,以最大程度地减大载荷压入样品表面时引起针尖的温度变化c.温度微调:进一步微调针尖加热过程中的功率,以达到零热漂移率(a) 长时间蠕变测试时的压痕温度(b) 通过粗调压头温度,以最大程度减少接触产生时的温度变化(c) 直接在热漂移测量过程中微调压头的加热功率安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 三思泰捷20台持久蠕变试验机交付仪式在四川攀长特钢举行
    2011年12月19日下午,在四川攀钢集团江油长城特殊钢有限公司理化楼,三思泰捷20台高温蠕变持久试验机完成了现场验收,双方举行了简短的交付仪式,标志着这一灾后重建项目顺利完成。 参加交付仪式的双方领导合影   攀长特钢灾后重建项目拟投资66.8亿元,采用世界先进技术和装备,重点新建或重建特殊钢炼钢连铸、高合金钢锻造、特殊钢初轧、电渣钢、钛材、核电管、高合金钢挤压管等生产线,主体工程预计2011年6月底前竣工。全部项目建成投产后,将形成“年产钢70万吨,钢材79万吨,钛材1万吨,销售收入134亿元,利润总额16亿元”的经营规模,工业总产值将增长3倍以上,劳动生产率将提高6倍以上,对提升我国国防军工实力,加快钢铁产业结构调整步伐,完善特钢产品深加工产业群,增强攀钢集团综合竞争实力,都具有十分重要的意义。   本次合作三思泰捷一次性为攀长特钢研制12台高温持久试验机及8台高温蠕变试验机。这些设备的技术要求代表了目前国内同类型试验机最新的发展水平。 机械式高温持久试验机现场 机械式高温持久试验机现场 电子式高温蠕变试验机现场   参加19日下午交付活动的双方领导有攀长特钢质量计量中心王主任、特种合金事业部罗主任等攀长特钢方面有关领导。三思泰捷方面由总经理焦东军带领,包括销售总监曾德友、技术总监简华龙、客服部经理左兴等一行5人。双方共约15人参加了本次活动。 交付活动现场   在交付活动现场,双方回顾了项目合作的时间进程,对实现设备圆满交付纷纷表示满意。首先发言的是攀长特钢质量计量中心主任王军,他对与三思泰捷的本次合作表示愉快,对三思泰捷顺利高效地完成本次设备交付表示了充分肯定。其后发言的攀长特钢合金事业部罗东明主任对三思泰捷的专业素质表示赞许,并就三思泰捷工作人员的综合表现提出了表扬。   随后,三思泰捷总经理焦东军发表了热情洋溢的讲话。他首先回顾了本次项目合作的历程。从设备的生产,到珠海预验收,再到设备发货、现场调试,整个历时半年多。期间,双方一直保持着融洽的合作气氛,三思泰捷也投入了极大的人力物力来保障这一灾后重建项目的优先进行。项目得以顺利完成,成为双方合作的又一典范,为双方的长期深入合作再次奠定坚实的基础。  焦东军总经理还向客户介绍了三思泰捷的最新情况。他表示,三思泰捷作为三思品牌的继承者,正在进行二次创业。我们将力争打造一个不一样的三思品牌,一个更加关注用户满意度,更加注重工业精神的三思品牌,为三思续写辉煌。他感谢所有支持三思泰捷的用户朋友,并预祝攀长特钢在打造“具有独特优势的国内一流特钢企业”的征途上再创伟业,永续辉煌。   简短的交付仪式之后,双方共同参观了设备现场,并进行合影留念。交付活动在双方的相互祝福声中圆满结束。   背景资料:   三思泰捷( http://www.sstjtest.com),是国内拉力机领先制造厂商,其背景渊源自新三思、珠海三思,超过20年的试验机领域专业经验。三思泰捷的产品被应用于不同环境条件下各种材料及构件的力学性能测试。公司成立于2004年,主要生产拉力机、拉力试验机、高温持久试验机、高温蠕变试验机等试验机产品。
  • 再中千万大单 中机试验1190万中标持久蠕变试验机项目
    p   近日,中机试验(原‘长春机械科学研究院有限公司’)高温持久蠕变试验机在天津重型装备工程研究有限公司采购项目中成功中标,中标项目包括电子式高温蠕变持久试验机25台、机械式高温持久试验机50台、高温拉伸试验机1台,中标总金额高达1190万元。 /p p   此次中标天津重型装备工程研究有限公司距上次中标东方电气集团东方汽轮机有限公司48台持久蠕变试验仅仅两个多月,是近两年来持久蠕变试验设备继北科大、宝钢研究院、浙江国检、中航上大、东方汽轮机后,又一次中标大批量蠕变试验机项目。 /p p   据悉,这是天津重型装备工程研究有限公司第三次大批量集中采购中机试验高温持久蠕变相关产品,共计拥有高温持久蠕变试验设备近百台,是中机试验战略性重点客户。 /p p    strong 立足技术支撑、深耕行业市场 /strong /p p   中机试验一直注重对持久蠕变装备技术的不断创新,新一代持久蠕变试验机正是通过多年持久蠕变设备的技术积累,加上先进的设计理念,在机械设计、电气控制、软件操控性、人机工程学等方面寻求突破,在保留设备原有刚度好等优点的前提下,对主机结构、操控方式、集群控制等方面进行了全方位的技术升级,力求为客户提供更加优质完美的试验新体验。 /p p   近年来,中机试验还不断加强对战略性重点客户的服务与支持,集中研发力量为客户提供个性化的试验设备及测试解决方案,真正站在客户的角度考虑问题,用心解决客户在试验设备应用、试验方法等方面的问题,同时也赢得了客户的高度认可,此次蠕变大单花落中机试验,再次彰显了中机试验高温持久蠕变产品和服务在行业的绝对优势,奠定了中机试验品牌在中国试验装备行业的领先地位。 /p p    strong 相关产品介绍: /strong /p p    strong 电子式高温蠕变持久试验机 /strong /p p   RDL系列电子式蠕变松弛试验机是中机试验与德国DOLI公司联合研制开发的,控制系统采用德国DOLI公司专门为中机试验蠕变试验机开发的EDC数字控制器,软件系统采用双方合作开发具有独家使用权的CreepTest试验软件和中机试验自主开发的CCPS5.0软件系统,该系列设备具有技术稳定可靠,长时试验稳定可靠等特点。 /p p    strong 机械式高温持久强度试验机 /strong /p p   RDJ系列机械式高温持久试验机可完成室温和高温环境下的持久试验,配置具有自主知识产权的试验控制及数据处理软件,控制系统可以单独设定参数进行试验,也可以与计算机实现对试验的集散式控制。 /p p    strong 满足不同试验标准的要求 /strong /p p   GB/T2039-2012《金属拉伸蠕变及持久试验方法》 /p p   GB/T10120-1996《金属应力松弛试验方法》 /p p   ASTM E139-2011《金属材料蠕变、蠕变断裂和应力断裂的标准试验方法》 /p p   HB5151-1996《金属高温拉伸蠕变试验方法》 /p p   HB5150-1996《金属高温拉伸持久试验方法》 /p p   JJG276-2009《高温蠕变、持久强度试验机检定规程》 /p p   JJF1298-2011《蠕变持久、强度试验机型式评价大纲》 /p p   ASTM E4-16《试验机力的检定实践》 /p p   ASTM E83-16 《引伸计系统的检定和分级实践》 /p p    strong 高温拉伸试验机 /strong /p p   用于600℃-1600℃真空或保护气体环境下金属材料及制品的批量拉伸力学性能试验,满足ASTM E21、EN和ISO及GB/T228.2的相关规定和计量检定标准。 /p p    strong 客户介绍: /strong /p p   中国一重天津重型装备工程研究有限公司是重型技术装备国家工程研究中心,是国家高新技术企业,以提高国家重大装备自主创新能力的提升和技术进步为宗旨,以“生产一代、试制一代、研发一代、构思一代”的阶梯式创新体系为平台,围绕国家重点工程建设和重型机械行业需求,通过引进、合作和自主研发,在大型板带轧制工艺及设备、重型容器(加氢、核电、煤液化)、电站铸锻件等专业领域持续不断地提供工程化研究成果,提供具有市场前景的国内首台首套重大技术装备。 /p
  • 北斗仪器最新款CA600型超高温真空接触角测量仪
    超高温接触角测量仪原理介绍:接触角(Contact angle)是指在气、液、固三相交点处的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ,是润湿程度的量度,是现今表面性能检测的主要方法。由主体支架、专用光源、远焦镜头、工业成像CCD、高温高真空炉体、水循环冷却系统、真空泵、专用分析软件等组成。超高温接触角测量仪的应用: 在高温真空条件下,通过视频光学原理,测试各种材料的润湿铺展性能;目前已经广泛应用于陶瓷材料研究、金属材料研究、钎焊研究、航空航天材料研究、钢铁冶炼研究、复合材料研究等众多高校院所及企业。研究材料在高温状态下熔体与其相应的基底材料间的接触角变化规律。对于高熔点材料能实现高真空或惰性气体保护气氛下的表界面性能测试,而对于低熔点材料能现实升降温过程中的收缩、变形、融化、润湿、铺展及凝固行为进行图像化、定量化表征。设备性价比高、加热稳定、真空度高、功能全面、可满足各种金属材料科研的需要。1、测量液态金属在高温真空状态下对基材的润湿性能,评估不同材质在高温真空状态下润湿过程及附着性能 2、研究金属与陶瓷复合材料间的润湿性能,测量金属材料在高温真空状态下熔融时,在陶瓷材料上的接触角 3、研究钎焊过程,钎料在基材上的润湿铺展过程,动态分析钎料在高温下的接触角、润湿过程 4、测量金属在不同的高温状态下,以及不同的气体保护环境下,对于不同基材的接触角变化及区别:5、分析涂层与基材的接触角,分析涂层与基材的润湿过程及铺展机理,并研究不同温度及不同气氛下,润湿性能的区别:6、研究液体与固体间的接触角,评估液体与固体的附着粘附性能,分析固体的表面自由能 7、分析焊料与焊接体的接触角值,从而有效地提升焊接强度 8、基于分析接触角及表面张力的基础,控制合理润湿范围,查找有效的去除冶炼过程中炉垢的办法。应用案例超高温接触角测量仪核心参数:型号CA600 腔内环境大气环境/真空/惰性/有氧气氛高温系统温度范围室温~1200℃/室温~1700℃长期使用温度室温~1100℃/室温~1600℃真空下温度1000/1500测温电偶1200°:N型电偶 1700°:B型国际铂铑热电偶测温精度±1℃温度控制30段程序温度设定实现复杂热处理工艺的分析升温速率常温-1000℃≤10℃/min1000℃-1600℃≤5℃/min加热体1200°HRE合金电阻丝/1700度U型硅钼棒恒温区尺寸长200mm加热管尺寸内直径50mm*长度700mm测温系统温度监控,测温材质美国钨铼合金,测量精度±0.1℃,可实时测量加热管内温度。进样方式具有快速样品制备专用工具,以及样品装载专用工具,确保样品快速定位视窗法兰专用同轴双视窗法兰,备双通道惰性保护装置,可同时或单独使用某种工艺气体对内部金属进行保护,带真空系统及保护气体管路、双水冷装置。采用进口石英材质并可快拆更换。炉膛材质1200°C内采用石英,1700°C以上采用高纯刚玉保温材料湿法真空抽滤成型制备的多晶无极氧化铝陶瓷纤维材料样品尺寸5*5*5mm真空系统真空度范围1*10-1Pa采用机械真空泵+数字流量计+真空法兰1*10-3Pa采用分子泵+复合全量程高精度真空计+真空法兰材质两级组合,在高温下达到高真空要求;泵体采用高纯度不锈钢;配置复合真空计;真空系统也可以通保护气体水冷系统温控范围温度范围:5-35℃外形尺寸约460mm(长)*380mm(宽)*590mm(高)水泵流量15L/min冷却系统容量≥11L实测制冷量1520W成像系统镜头Subpixel0.7-4.5倍超高温高清远焦距工业级连续变倍式显微镜、工作距离500mm相机日本SONY原装进口高速工业级芯片(Onsemi行曝光)传感器类型1/2.9 英寸逐行扫描CMOS分辨率1280× 1024镜头控制仰视角度:±10度,精度:1度,前后180mm(微调50mm)*左右200mm(微调50mm)帧率全局曝光高速400帧/s(最快2.5ms采集/次)视频录像功能可录制整个高温润湿过程连续测量测量间隔时间可调、实时记录、连续测量光源系统组合方式采用石英扩散膜与均光板使得亮度更均匀,液滴轮廓更清晰光源进口CCS工业级冷光源(有效避免因光源散发热量蒸发液滴),寿命可达5万小时 亮度调节PWM数字调节功率10W测量软件CA V2.0静/动态接触角测量软件+表面能测量软件操作系统要求windows 10(64位)测量方式自动与手动计算方法自动拟合法(ms级别一键全自动拟合,不存在人工误差)、三点拟合、五点拟合、自动测量(包括圆拟合法/斜圆拟合法(Circle method/ Oblique Circle)、椭圆拟合法/斜椭圆拟合法(Ellipse method /Oblique Ellipse))、凹凸面测量等基线拟合自动与手动角度范围0°<θ<180°精度0.1°分辨率0.001°分析自动计算多组数据中接触角的最大接触角、最小接触角、平均接触角,左右接触角分别计算与比较功能表面能测量方法Fowks法,OWRK法,Zisman法,EOS法,Acid-Base Theory法,Wu harmonic mean法,Extended Fowkes法,得到固体表面能。表面能单位mN/m输入电源220V 50-60Hz仪器尺寸约1500mm(长)*405mm(宽)* 725mm(高)润湿性分析粘附功一键自动分析铺展系数一键自动分析粘附张力一键自动分析精度0.001 mN/m单位mN/m选配件1.机械真空泵,真空度:1*10-1Pa 2. FJ-110分子泵组一套,最大抽气速率110L/s (对空气),真空度:1*10-3Pa 3.惰性气体气氛保护(Ar,N2,He或混合气体)4.冷浴装置:5℃-35°超高温接触角测量仪测试方法
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 粒子束成像设备的分辨能力测试原理和测试方式
    一、测试原理粒子束成像设备如SEM、FIB等,成像介质为被聚焦后的高能粒子束(电子束或离子束)。以扫描电镜(SEM)为例,通过光学系统内布置的偏转器控制这些被聚焦的高能电子束在样品表面做阵列扫描动作,电子束与样品相互作用激发出信号电子,信号电子经过探测器收集处理后,即可得到由电子束激发的显微图像。图1:偏转器的结构示意(左);电镜图像(右)基于以上原理,一台粒子束设备在进行显微成像时,其分辨能力与下落至样品表面的粒子束的束斑尺寸相关,束斑的尺寸越小,扫描过程中每个像元之间的有效间距即可越小,设备的分辨本领越高。当相邻的两个等强度束斑其中一个束斑的中心恰好与另一个束斑的边界重合时,设备达到分辨能力极限(图2)。图2:分辨能力极限示意图不考虑粒子衍射效应时,经聚焦后的粒子束截面可视为圆形(高斯斑),其束流强度沿中心向边缘呈高斯分布(图3)。以扫描电镜为例,在光学设计和实验阶段,通常使用直接电子束跟踪和波光计算(direct ray-tracing and wave-optical calculations)方法,来获得聚焦电子束的束斑轮廓。该过程是将电子束的束流分布采用波像差近似算法来计算图像平面上的点展宽函数PSF(Point Spread Function),基于PSF即可估算出包含总探针电流的某一部分(如50%或80%)的圆的直径,从而得到设备的分辨能力水平。图3:高斯斑的截面形状和强度分布示意图但是在设备出厂后,由于粒子束斑尺寸在纳米量级,无法直接测量,因此行业通常使用基于成像的测试方法,测试粒子束设备的分辨能力。 锐利物体边界的边界变化率法是行业目前达到共识的测试粒子束斑尺寸的方法,即使用粒子束成像设备对锐利物体(通常是纳米级金颗粒)进行成像,沿图像中锐利物体的边缘绘制亮度垂直边缘方向的变化曲线,并选取曲线上明暗变化位置一定比例对应的物理距离,来表示设备的分辨率(图4)。为了保证测试准确性,可以在计算机帮助下取数百、数千个锐利边界的亮度变化率曲线求取均值,以获知设备的整体分辨能力。图4:金颗粒边界测量线(上图红线);测量线上的亮度变化(下左);取多条测量线后得到的设备分辨率示意(下右)边界变化率曲线上亮度25%-75%位置之间的物理距离d,可以近似认为是粒子探针束流50%时所对应的粒子束斑直径,在粒子束成像设备行业通常用此距离d来最终标识设备的分辨能力。图5:边界变化曲线与高斯斑直径对应示意图二、测试方式「 样品的选择 」金颗粒通常采用CVD或者PVD等沉积生长的方法获得,由于颗粒形核长大的过程可以人工调控,因而最终得到的金颗粒直径的大小可以被人工控制,所以视不同用途,金颗粒的规格也不同。以Ted Pella品牌分辨率测试金颗粒为例,用于SEM分辨率测试的标准金颗粒有五种规格,其中颗粒尺寸较小的高分辨、超高分辨金颗粒(如617-2/617-3)通常用于测试场发射电镜的分辨能力;颗粒尺寸较大的金颗粒(如617/623)通常用于测试钨灯丝或小型化电镜的分辨能力,详细的颗粒尺寸和适用设备见图6。测试时,不合适的金颗粒选择无法准确反映一台电镜的分辨能力。图6:Ted Pella品牌金颗粒规格及适用机型「 SEM光学参数的设置 」分辨率的测试旨在测试设备在不同落点电压下的各个探测器的极限分辨能力,因此,与电子光学相关的成像参数设置需要注意以下内容:(1)视场校准:保证放大倍数、视场尺寸的准确;(2)目标电压:这里特指落点电压,即电子束作用在样品上的真实撞击电压;(3)探测器:不同探测器收取信号的能力不同,因此获得图像的极限分辨能力不同,因此都要测试,通常镜筒内探测器ETBSE;(4)光阑/束斑:通常在每个电压下使用可以正常获得图像的最小光阑(以获得极限分辨能力);(5)工作距离:通常在每个电压下使用可以正常获得图像的最小工作距离(以获得极限分辨能力)。「 SEM图像采集条件 」(1)合理的测试视野/放大倍数测试时,所选用的测试视野(放大倍数)需要根据设备的分辨能力做出调整,一般放大倍数取每个像素的pixel size恰好与真实束斑尺寸接近即可。比如:对于真实分辨能力约1.5nm的设备,调整放大倍数使屏幕上每个像素对应样品上的真实物理尺寸为1.5nm,即在采集1024*1024像素数的图像进行测试的前提下,选择不大于1024*1.5nm≈1.5um的视野进行测试即可。表1:分辨率测试的FOV及放大倍数估算表(2)合理的亮度、对比度采集金颗粒图像时,亮度和对比度的选择也需要合理,也就是通常所讲的不要丢失信息。在不丢失信息的前提下,图像亮度对比度稍微偏高或偏低,只要边缘变化曲线的高线和低线均未超出电子探测器采集能力的上限或者下限,曲线虽然在强度方向(Y方向)出现的位置和差值有所变化,但距离方向(X方向)及变化趋势均不改变,因此使用25%-75%变化率对测量出来的分辨率数值d基本没有影响(图7)。然而,当使用过大的亮度、对比度设定后,当边缘变化曲线的高线和低线至少一边超出电子探测器采集能力的上限或者下限,再使用25%-75%变化率对测量出来的分辨率数值d就不再准确,这时测出的分辨率数值无效(图8)。图7:合理的亮度对比度及边界变化率的曲线图8:不合理的亮度对比度及边界变化率的曲线三、总结基于上述图像学进行的分辨率测试,是反映粒子束设备整体光学、机械、电路、真空等全面综合性能的关键手段。该测试在设备出厂交付时用于验证设备的性能指标,在设备运行期间不定期运行该测试以关注分辨率指标,可以快速帮助使用人员和厂商工程师快速发现设备风险,从而及时制定维护、维修方案,以延长设备的稳定服役时间。 钢研纳克是专业的仪器设备制造商,同时提供完善可靠的第三方材料检测服务、仪器设备校准服务,力求在仪器设备产品的开发、生产、交付、运行全流程阶段遵循行业标准和规范,采用统一的品质监控手段,保证所交付产品品质的稳定可靠。参考文献[1] J Kolo&scaron ová, T Hrn&ccaron í&rcaron , J Jiru&scaron e, et al. On the calculation of SEM and FIB beam profiles[J]. Microscopy and Microanalysis, 2015, 21(4): 206-211.[2] JJF 1916-2021, 扫描电子显微镜校准规范[S].本技术文章中扫描电镜图像由钢研纳克FE-2050T产品拍摄。
  • 张定、薛其坤研究团队在高温超导机理研究中取得重大突破
    自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十五年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题,如配对对称性上也尚未达成共识。针对配对对称性这一核心科学问题,清华物理系张定副教授、薛其坤教授带领的研究团队与国内外同事合作,通过制备具有原子级平整界面的高质量约瑟夫森结,发现铜氧化物中s-波配对占主导地位。这个结果颠覆了铜基高温超导是d-波配对的主流认识。该工作不但是铜氧化物高温超导研究的一个重大进展,同时也为破解高温超导机理这一科学难题指明了正确方向。该研究成果以“转角超薄铋锶钙铜氧约瑟夫森结中的s波配对”(Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes)为题在线发表在7月15日的《物理评论X》(Physical Review X)上。超导作为一种宏观量子现象,其量子态的波函数在理论上可以分为s波、p波和d波等。与氢原子波函数的空间分布相似,s波超导各向同性,角动量量子数为0,而p波和d波的超导波函数具有空间各向异性。其中,d波的角动量量子数为2,其振幅的空间分布像四朵花瓣一样(以dx2-y2波为例),而且从一个花瓣转向近邻花瓣时会发生由相位引起的变号。相比于常规超导体的s波配对,多数人认为铜氧化物超导具有d波配对对称性。然而,这一观点也受到了一系列新的挑战。比如,薛其坤教授团队利用扫描隧道镜直接测量铜氧化物的超导层时发现其超导能隙符合s波超导的U型,而非d波的V型。不过,区分s波与d波的最关键信息来自于超导波函数的相位,即前述的变号行为。此前人们通过两个或三个超导体组成花瓣平面内的约瑟夫森耦合开展了相位测量。但是,将多个晶体进行横向的拼接,往往存在拼接处—晶界—的晶格畸变、多晶面交替出现、化学配比剧烈变化等问题,这都使得实验结果存在着不确定性。图1 高温超导转角约瑟夫森结原子结构示意图。图中蓝、绿、红、黄、黑色小球分别代表铋、锶、钙、铜、氧原子。上半部分半个原胞相对下半部分旋转45度。右侧插图表示s波配对中相位在空间中保持相同符号。相比于此,由于铜氧化物超导具有二维层状结构,将其沿纵向拼接而成的约瑟夫森结就有望形成原子级平整的界面。以最典型的铋锶钙铜氧高温超导体为例(图1),该铜氧化物具有层状结构,纵向由超导的铜氧层与不超导的铋氧/锶氧层交替堆叠而成。纵向拼接而成的约瑟夫森结是判定配对对称性中相位的一种理想结构。其原理是,如果将两个d波超导体沿垂直于其d波花瓣平面的方向即纵向进行约瑟夫森耦合时,其耦合强度将在两个超导体相对旋转45度时下降到零,而两个s波超导体在此情况下仍然存在约瑟夫森耦合。过去,人们曾构筑过这样的纵向约瑟夫森结对铜基高温超导的相位问题开展过研究,但没有得到一致的结果:有的实验支持s波,有的支持d波。造成这个结果的主要原因是两个超导体构成的约瑟夫森结的界面质量不够高,而且实验结果中混入了其它约瑟夫森耦合的信号—单边的超导体中也存在本征的纵向约瑟夫森耦合。因此,制备原子级平整、宏观均匀的单一约瑟夫森结是关键。张定副教授、薛其坤教授带领研究团队成功制备出了超薄的具有原子级平整界面的高质量约瑟夫森结,并且能将两边超导层的相对转角进行精确地控制。在这些高质量样品中,他们观察到参与隧穿过程的只有相对发生旋转的两个超导层,避免了本征约瑟夫森结造成的复杂性。通过这种高度精确人为可控的相位敏感测量,他们发现在相对角度旋转到45度时,两片铋锶钙铜氧超导在纵向仍然存在约瑟夫森耦合,而且耦合强度与转角为0度时可比拟,这说明配对对称性是s波。这个结果清楚表明,目前主流的d波配对理论并不适用铋锶钙铜氧高温超导体系。如果这一实验得到进一步验证,并且推广到其它铜氧化物高温超导体系,那么这将是三十多年高温超导机理研究的一个转折点,为最终解决高温超导机理走出了最关键的一步。为了最终确认s波配对对称性,研究团队目前正在瞄准原子极限下两个单层铜氧化物超导间的约瑟夫森耦合——进行强力攻关。这一突破的取得是团队成员潜心攻关和精诚合作的结果。北京量子信息科学研究院(量子院)助理研究员朱玉莹(清华大学物理系原博士后)作为文章的共同第一作者,在加入团队后的四年中未发表一篇作为主要作者的文章,心无旁骛、刻苦攻关。她与清华大学物理系博士生廖孟涵(共同第一作者),在开展该研究的五年内,利用美国布鲁克海文国家实验室Genda Gu教授研究组提供的最优质量的晶体,共尝试了近800多个薄膜样品,制备和测试了300多个具有不同转角的约瑟夫森结。为了验证人工约瑟夫森结的质量,需要获得原子结构的信息,这得到了中科院物理所谷林研究组的全力支持。物理所张庆华副研究员(共同第一作者)对数十个约瑟夫森结样品开展了精细的结构表征,证明了其具有宏观大范围原子级平整的晶界。参与该研究的合作者还包括清华物理系博士生刘耀伍与柏中华、季帅华教授、姜开利教授、马旭村教授,量子院解宏毅副研究员,物理所孟繁琦博士生,美国布鲁克海文国家实验室Ruidan Zhong和John Schneeloch等。该工作得到了国家科技部、自然科学基金委员会、清华大学低维量子物理国家重点实验室、北京未来芯片技术高精尖创新中心等的经费支持。论文链接:https://doi.org/10.1103/PhysRevX.11.031011
  • 与你相关!工业场所噪声与高温测量公益讲座即将召开
    p    span style=" color: rgb(0, 112, 192) " 工业生产中噪声和高热的危害给人体带来的危害有哪些?国家政策法规又是如何保护工业生产中不受噪声和高热的侵害?如何对噪声和高热进行更好的检测与防护? /span /p p   中国职业病防治形势严峻,据了解,我国约有1200万家企业存在职业病危害,约有2亿劳动者接触各类职业病危害因素,因职业病死亡人数居世界首位!常见职业病危害因素包括噪声、高温、生产性粉尘、化学毒物、放射性物质(电磁辐射)、生物性有害因素等。以噪声为例,相信噪声大家都不陌生,噪声是环境污染七大典型公害之一,无论是日常生活还是在生产劳动中暴露于噪声中,均会对人体健康产生不良影响,作业场所噪声监测更是职业卫生领域讨论和关注的焦点。 /p p   针对职业卫生领域相关检测,TSI精心为大家准备了讲座!本次讲座将向大家介绍职业卫生物理因素中噪声和高温(WBGT指数)的相关知识,包括噪声和高温的物理特性、主观评价量、检测原理、职业卫生法规和标准、术语解释等一些基本知识,以及TSI QUEST噪声和WBGT系列产品的功能原理、技术特性、现场应用等。 /p p   免费听会,机会难得!点击下列链接: /p p    a href=" https://www.instrument.com.cn/webinar/meeting_13187.html" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " strong span style=" color: rgb(255, 0, 0) " https://www.instrument.com.cn/webinar/meeting_13187.html /span /strong /a /p p   立即报名参加! /p
  • 原理革新!超透镜分辨率提升一个量级
    超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测。然而,超透镜的本征损耗一直是该领域长期存在的关键科学问题,限制了成像分辨率的进一步提升。  近日,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员密切合作,提出了多频率组合复频波激发超透镜成像理论机制,通过虚拟增益来抵消本征损耗,成功提高了超透镜的成像分辨率约一个量级。该研究成果于8月18日在《科学》杂志上在线发表。  “超透镜”概念最早由英国帝国理工学院教授John Pendry于2000年首次提出。根据理论预测,超透镜将具有突破传统光学成像分辨率极限的能力。随后,为实现超透镜构想,中国科学院外籍院士、香港大学教授张翔团队率先提出了新型银-聚合物超透镜的实验方案,极大推动了超透镜技术的发展和应用。此后,各国科学家纷纷加大研究投入,超透镜迅速成为光学领域的热门课题,并被广泛应用于生物医学、光纤通信、光学成像等场景。合成复频波方法提升超透镜成像质量的原理示意图(研究团队供图)  目前,基于极化激元材料和超构材料的超透镜已被广泛验证可以实现亚衍射成像,但其本征损耗的严重限制了其分辨率进一步提升,从而也限制了其应用发展。  为了解决这一重大挑战,由香港大学教授张霜、张翔、国家纳米科学中心研究员戴庆以及John Pendry组成国际科研团队开展联合攻关。  在最新发表的论文中,张霜介绍:“针对光学损耗提出一种实用的解决方案,即借助多频率组合的复频波激发来获得虚拟增益,进而抵消光学体系的本征损耗。”  作为验证,他们把这一方案运用到超透镜成像机制,理论上实现了成像分辨率的显著提升。最后,进一步借助微波频段双曲超构材料的超透镜实验进行了论证,获得与理论预期一致的良好成像效果。  戴庆团队基于长期对原子制造技术下的高动量极化激元的积累,创制了基于合成复频波的碳化硅声子极化激元超透镜。“我们最终实现了超透镜成像分辨率约一个量级的提升,相信这将对光学成像领域产生巨大影响。”戴庆表示。  科研人员介绍,合成复频波技术是一种克服光子学系统本征损耗的实用方法,不仅在超透镜成像领域有卓越的表现,还可以扩展到光学的其他领域,包括极化激元分子传感和波导器件等。该方法还可以针对不同的系统和几何形状进行定制化应用,为提高多频段光学性能、设计高密度集成光子芯片等方向提供了一条潜在的途径。  “这是一个优美而普适的方法,可以拓展到其它波动体系来弥补损耗问题,如声波、弹性波以及量子波等。”张翔说。  香港大学博士后管福鑫、国家纳米科学中心特别研究助理郭相东和香港大学博士生曾可博为本文共同一作。张霜、张翔、戴庆和John Pendry为本文共同通讯作者。
  • CTM系列高温持久低压大电流筒式高温炉寿命测试已超过2000小时
    三思纵横CTM系列高温持久蠕变试验机广泛用于各种金属及合金材料在高温环境下的蠕变性能和持久强度试验,测试材料的蠕变极限、持久强度极限等性能参数,其配套产品高温炉的性能直接决定了试验机在高温工作环境中的表现,三思纵横配备的筒式高温炉保温效果好,均温带长(200mm),高温可达1200℃,电炉寿命长,在不高于1200℃的条件下可以保障使用30000小时。 三思纵横深圳研发部秉承严谨的工作态度,对公司CTM系列高温持久蠕变试验机配套筒式高温炉进行了极限工作环境下的寿命测试,据研发部提供的数据,本次测试始于2012年3月19日16:00.测试电压25V,测试条件为1200℃温度下24小时不间断测试,截至发稿时,该筒式高温炉已无间断正常工作逾2000小时,此项测试工作目前进展顺利,并将持续进行。 据研发部介绍,筒式高温炉工作效率高,是传统对开式高温炉的十几倍,无需降温升温和保温过程即可进行更换试样重复试验。相对于早起的对开式高温炉,筒式炉在材料使用上进行了较大的改进,选用HRE &Phi 5mm电热管炉丝取代了对开式高温炉的常规&Phi 1mm炉丝,加热速度更快,温度可控性强,目前可以达到100℃-1200℃范围内均可控,安全性能和保温效果都得到了极大的提升。 本次试验再次验证了三思纵横CTM系列高温持久蠕变试验机的可靠性,也为研发部提供了客观合理的观测数据,为今后设备性能的进一步提升提供了丰富详实的技术资料。 欢迎登录公司网站查看公司最新动态www.sunstest.com
  • 德国BOROSA发布德国BOROSA L800 高温高压声悬浮系统新品
    德国BOROSA公司简介 德国 Borosa Acoustic Levitation 公司坐落在德国波鸿鲁尔科技园区,是专门研发、生产声悬浮装置的创新企业。该公司依托德国波鸿大学的科研力量,专注于创新、开发高品质的声悬浮装置。Borosa 公司研发生产的世界第一台高压声悬浮系统,荣获 2015 年度德国工业奖研发类第一名。Borosa 的技术和产品为空间环境的地面模拟研究提供了有力的研究手段,推动了液滴动力学、材料科学、生物化学等领域科学研究的发展。 北京东方德菲仪器有限公司是德国BOROSA公司在中国区的独家代理商,作为BOROSA公司在中国区的唯一代理商,东方德菲将继续秉承“Leading by Professional因专业而领先”的理念,与BOROSA公司一起为您提供先进的声悬浮系统,并以快捷的方式为您提供专业的技术服务。声悬浮---基本原理声悬浮是利用物体受到的声辐射力来实现的悬浮。物质的悬浮,所需的声场通过在超声发射端和反射端之间形成驻波来实现。高压声悬浮是在不同压力和温度下利用物体受到的声辐射力来实现的悬浮。压力范围:0.10MPa – 20MPa ,温度:-20℃– 180℃德国BOROSA L800 高温高压声悬浮系统L800 高压声悬浮系统荣获 2015 年度德国工业奖研发类第一名,特许使用德国工业奖标志。 德国BOROSA L800 高温高压声悬浮系统是世界上唯一一款将声悬浮与高压釜完美结合在一起的实验室设备,它的优势在于其精心设计的悬浮技术--在压力 20Mpa 下,温度在-20℃到 180℃范围内,样品随时都可以进入悬浮模式。用户可以在不同的压力、温度下研究非接触、无污染样品的性质,如:样品的相变过程,颗粒的形成过程等。 L800 的可视高压釜采用钛合金材料及蓝宝石视窗,既耐高压又耐腐蚀,确保了 L800 高品质的性能。 L800 高温高压声悬浮装置是单液滴谐振模式的测量装置 特别适合悬浮液滴传质过程机理(即分子扩散作用)的精密测量。L800 声悬浮系统应用范围非常广泛:气体水合物的测量,结晶与颗粒形成过程的研究,凝胶化和非接触熔化的研究等等。L800 是研究极端条件下物质相变过程的重要测量工具,它不愧为获得德国工业奖的产品! L800 使用自主研发的声悬浮专用测量软件,界面友好,功能强大: - 自动识别悬浮的液滴 - 自动分析液滴的外观轮廓 - 测量和记录轴对称液滴的体积 - 自动列表保存时间、温度、压力、体积、液滴的轴向直径和径向直径等重要测量参数 - 根据体积-时间图,计算物性参数,如:扩散与传质系数L800 性能优势- 声悬浮+高压 20Mpa+温度-20℃---180℃- 无接触、无污染测量,避免器壁对液滴的影响及器壁对分析信号的干扰- 从扁圆形到球形,液滴形状可控- 高精准的实时测量,无器壁干扰,分析检出限提高 1-3 个数量级- 无噪音,无声音污染- 操作简便,即插即用,只需简单培训,即可掌握L800 应用领域- 传质过程的机理研究- 均质形核的研究- 液滴凝胶化的研究- 结晶过程的研究- 纳米材料自组装的研究- 气体水合物的研究- 可燃冰的研究- 与荧光光谱结合研究浓度与相平衡L800 配置组成• 钛合金声悬浮主机 • 可视高压样品室• 蓝宝石水晶视窗×3 • 液滴注射单元• 热绝缘体 • 高压室的专用支架• 三通阀 • 模拟压力表 精密控制阀及泄压阀• 压力变送器 • 热电偶• 手动加压杆 • 高速相机• 12mm 变焦头 • 可控 x/y/z 轴相机支架• 频率发生器 • 功率放大器-扩频仪• 电脑,27"触控屏及 office 软件 • 全套密封件• 旋转接头 • 铝合金外壳及玻璃推拉门L800 常见问答 FAQs问:在 L800 的高压装置里能悬浮多大尺寸的液滴答:可以悬浮直径 0.7mm-4mm 的液滴。问:液滴如何注射到声压节点答:在驻波场的声压节点处安置有毛细管,液滴通过螺杆活塞泵注入毛细管,到达驻波场压节点处。问:适合研究什么样的液体?溶液?浆料?答: L800 既可以研究溶液,也可以研究浆料。流体,溶液,固体(例如 PVP,PEG, cacao,sugar, NaCl,CO 2 -hydrate) 都可以研究。问:在 L800 里,如何控制/影响传质现象的?例如:在干燥过程中 ,是通过自然对流来控制传质过程,还是通过诱导气体对流来控制传质过程呢?答:在 L800 里,传质现象的控制是通过自然对流来实现的。 当液滴悬浮时,系统可以以0.2 MPa/min 和 5 K/min 的最大速率改变压力和温度,从而产生自然对流,液滴仍可保持位置不变,液滴周边的气体流速大约是 0.3m/s。问:驻场声波对液滴内传质过程的影响如何?答:L800 通过实验,没有发现驻场波对液滴内传质有负面影响。创新点:1.世界上唯一一款将声悬浮与高压釜完美结合在一起的实验室设备。 2.压力20Mpa下,在-20℃到 180℃的温度范围内,样品随时都可以进入悬浮模式。 3.L800 的可视高压釜采用钛合金材料及蓝宝石视窗,既耐高压又耐腐蚀。 4.无接触、无污染测量,避免器壁对液滴的影响及器壁对分析信号的干扰。 德国BOROSA L800 高温高压声悬浮系统
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 用户大赞好评!高温石墨消解仪助力疾控中心高效实验
    河东区疾病预防控制中心承担临沂市河东区疾病预防控制、公共卫生监测、健康教育及预防医学科研、教学培训等工作,是全区疾病预防控制和卫生检测检验工作的指导中心。今年开始,疾控中心需要做游离二氧化硅检测项目,因目前使用的电炉子消解效果不理想,选择采购新的消解设备。经过多方了解,疾控中心选择了格丹纳的DS-360-42H高温石墨消解仪。2023年12月4日,高温石墨消解仪顺利入驻疾控中心,为了确保用户能够充分利用设备的强大功能,格丹纳不仅提供了高效的上门安装服务,还进行了详尽的操作培训,使疾控中心实验室人员能够熟练使用仪器,保障实验准确性与效率。格丹纳采用高纯石墨加热块,环绕包裹式加热,热量损失少;无线蓝牙控制,实验人员可以远离酸雾,可以帮助疾控中心高效进行游离二氧化硅测定。用户经过一段时间后反馈道,游离二氧化硅测定中使用高温石墨消解仪进行样品消解,加热均匀,得出的消解效果理想,保证到分析结果的准确性。用户的大赞不仅是对产品质量的认可,更是对格丹纳专业服务的高度肯定。疾控中心需要监测环境中的污染物,包括水、土壤、大气等多种样品。石墨消解仪可以用于处理这些样品,将其中的有机和无机物质转化为可分析的形式,以进行元素分析,例如检测重金属、有机污染物等。石墨消解仪在疾控中心扮演着关键的角色,可帮助确保监测和分析的样品能够提供准确、可靠的数据,从而保障公共健康
  • 美国康塔仪器公司推出高温型动态蒸汽吸附仪——Aquadyne DVS-2HT
    美国康塔仪器公司很高兴地宣布Aquadyne DVS水蒸汽吸附分析仪高温型问世,它的温度分析范围能够从10~85℃。Aquadyne DVS-2HT 高温型是继Aquadyne DVS - 1 单天平型以及Aquadyne DVS- 2双天平型后加入这一精密水吸附分析仪系列的最新成员。   Aquadyne DVS水蒸汽吸附分析仪是用于精确测量样品水蒸汽吸附量的仪器,它可以测定被吸附和解吸的速率。其原理是通过重量分析法监测进程,同时精确地控制在非反应性流动气体中的含水量。这即是动态蒸汽吸附(DVS)的技术。该仪器使用安置在温度控制箱内的精密微量天平,测量样品重量在微克范围内微小变动。随着精确的温度和湿度控制,这种高灵敏度保证了每一次结果的精确性和可重复性。   在分析过程中完全控制相对湿度(RH )和温度允许,使得研究者可以调查产品长期暴露在实际湿度环境下的条件。将样品暴露于极端的温度或湿度环境下,可被用来模拟在正常水平的长期暴露或确定在该样品的结构开始降解的点。Aquadyne DVS- 2HT扩展了暴露样品的温度范围。   水吸附分析仪通常用于在各种工业应用中,包括医药,食品加工,陶瓷等。Aquadyne DVS- 2HT的新高温范围对于燃料电池和建筑材料的应用特别重要,因为预测材料的寿命需要暴露于高温和高湿的条件。   美国康塔仪器公司成立于1968年,专注于多站分析仪器和最先进的技术,是世界领先的设计、制造以及销售和服务支持多孔材料和粉末的性质表征的仪器公司。康塔仪器公司不仅获得了ISO 9001认证,并且还以提供科学应用程序支持而著称。美国康塔仪器公司拥有遍布全球的超过50个销售,服务和分销办事处,竭诚为您提供最优质的科学仪器和产品支持!   欲了解更多信息,请联系qc.sales @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com/vapor_sorption/aquadyne_dvs.html
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 高温可达3000℃!高温高压光学浮区炉顺利落户中国电子科技集团公司第九研究所
    近期,德国Scientific Instruments Dresden GmbH(下文简称:ScIDre)公司生产的HKZ系列高温高压光学浮区炉在中国电子科技集团公司第九研究所顺利完成安装调试。图1:德国ScIDre制造商工程师安装现场图片图2:设备运行、调试现场图片 光学浮区法单晶生长工艺具有无需坩埚、无污染、生长快速、易于实时观察晶体生长状态等诸多优点,有利于缩短晶体的研究周期并加快难以生长晶体的研究进展,非常适合晶体生长研究,是目前比较公认的获得优质单晶样品的手段之一,现已被广泛应用于各种超导材料、介电和磁性材料以及其它各种氧化物及金属间化合物的单晶生长。 目前,高熔点、易挥发性材料是浮区法单晶生长领域的技术难点之一。针对于此,德国ScIDre公司研发推出了HKZ系列高温高压光学浮区法单晶炉,设备可提供高达3000℃以上的生长温度,同时晶体生长腔可实现高达300bar的压力,可通过高压手段达到抑制挥发的作用。HKZ的诞生进一步优化了光学浮区法单晶炉的生长工艺条件,拓宽了光学浮区技术的应用场景,使得高熔点、易挥发性材料的单晶生长成为了可能。 图3:德国ScIDre公司HKZ系列高温高压光学浮区法单晶炉德国ScIDre公司HKZ系列高温高压光学浮区法单晶炉技术特色:☛ 采用垂直式光路设计方案,加热更均匀☛ 可同时实现压力高达300bar(选配)和温度高达3000℃(选配);☛ 能够独立控制不同气体的流速和流量,能够实现样品生长的气体定速、定量混合供气;☛ 在保持氙灯输出功率恒定的情况下,采用调节光阑(shutter)的方式对熔区进行控温;☛ 能够针对不同温度需求采用不同功率的氙灯,从而对灯泡进行有效利用,充分发挥灯泡使用效率和寿命;☛ 拥有丰富的功能选件可进行选择和拓展,包括专利熔区红外测温选件、1×10-5mbar的高真空选件、实现氧含量达10-12PPM的气体除杂选件、对长成的单晶可提供高压氧环境退火装置选件等。 图4:高温高压光学浮区法单晶炉光路原理示意图 中国电子科技集团公司第九研究所(西南应用磁学研究所),主要从事磁性功能材料方向的研发、生产和基础研究,是我国磁学领域重要的综合性应用磁学研究机构之一。Quantum Design中国非常荣幸将德国ScIDre公司生产的HKZ高温高压光学浮区法单晶炉安装于中国电子科技集团公司第九研究所,该系统将为用户单位在磁性功能材料及其他新材料探索等诸领域的科研工作提供相关单晶样品制备支持!
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 让注水肉远离舌尖、肉类水分测定仪
    近段时间注水肉事件频发,注水肉的制造者图的是水充肉,多赚些银两,是没有健康卫生的理念,注水肉实质对人体健康存在,相当危害,并非只是简单的欺诈。除水之外,不法分子手段繁多;加入阿托品,扩张血管、多蓄水;注入血水可使肉色变深;注入矾水可起收敛作用;注入卤水能使肉色鲜艳、令蛋白质凝固而保水;注入工业色素也会使肉品长时间呈现鲜红色,但其物质会容易产生致癌病变。更有甚者,为延长肉的存放,水中加入防腐剂,对人直接产生毒害。注水肉不仅侵害了消费者的经济利益而且严重地影响了肉的卫生质量,是一种违法行为。因此注水肉的监督检验已成为市场肉类兽医卫生监督检验的一项重要任务。目前国内采用电导法这种仪器原理采用正负电极针插入肉内,利用肉类中本身含有的结构水中的电导率于注入水中的电导率不同而测量的,其结构特点是多针平滑滤波式电极和与之匹配的电路系统构成,以10次随机采样的算术平均值为测量结果示值。但是电导率存在的问题是:当不法商贩采用盐水、矾水或者污水时,其水分中的电导变化不大,导致这类水分测定的准确度不够稳定。而采用传统烘箱法,配备电子天平、恒温干燥箱等设备;有专职的化验人员操作,通过一定时间的恒温干燥箱的烘烤以及反复的称重和计算,方能得到结果。工序繁琐,操作周期长,而且烘干后的试样在从干燥箱取出进行称重的过程中,会迅速吸收空气中的水分容易产生误差以及人为误差。在注水肉检测领域,测量准确性和测量速度之间的矛盾一直没有解决;针对这一现状深圳市芬析仪器制造有限公司提供一种有烘干法结构的快速肉类水分检测仪器。CSY-R肉类水分测定仪是该公司自主研发生产的高新技术产品,获得国家发明专利国家发明专利号:ZL201310178317.X 国家实用新型专利号ZL201320262557.3外观专利ZL01430075376.X;CSY-R肉类水分测定仪克服检测误差大,测量步骤繁琐等问题,采用电磁力传感器确保称重准确,环形卤素灯可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法;目前该设备定为《GB 18394畜禽肉水分限量》标准检测设备,是一种新型的快速检测注水肉的仪器;可作为市场工商管理部门的一种有效的检测工具,防止不法商贩损害消费者的健康和利益的行为。公司网站:http://www.instrument.com.cn/netshow/SH103452/
  • 1200℃单双温区开启式真空气氛管式电炉:工作原理与优势
    在科研和工业生产中,电炉是不可或缺的重要设备。其中,1200℃单双温区开启式真空气氛管式电炉因其高精度、高效率的工作特点,被广泛应用于各种高温实验和材料制备。那么,这种电炉是如何工作的,它又具备哪些优势呢?接下来,让我们一起深入了解。  1200℃单双温区开启式真空气氛管式电炉的工作原理涉及到多个方面。在加热原理上,电炉主要依靠电力产生热量,通过高温电阻丝将电能转化为热能。这种方式的优点是能量转化效率高,加热速度快。在温度控制方面,电炉采用了先进的PID温度控制系统,可以实现对温度的精确控制。同时,由于采用先进的智能芯片控制,温度波动小,精度高。气氛控制是这种电炉的另一大特点。通过向炉内通入特定的气体,可以创造出不同的气氛环境,如还原性、氧化性或中性气氛,以满足不同实验和材料制备的需求。  1200℃单双温区开启式真空气氛管式电炉的优势有哪些呢?首先,其加热速度快,可以在短时间内达到高温,且温度均匀性非常好。这大大缩短了实验时间,提高了工作效率。其次,由于采用了先进的智能控制系统,电炉的操作非常简便。用户只需设定温度和时间等参数,电炉即可自动完成实验过程。此外,这种电炉还具有高可靠性和长寿命的特点。由于其内部采用优质材料和精密制造工艺,电炉的使用寿命长,可靠性高。  1200℃单双温区开启式真空气氛管式电炉还具有多种安全保护功能。例如过温保护、过流保护等,确保实验过程的安全可靠。  1200℃单双温区开启式真空气氛管式电炉以其高效、精确、安全的特点,成为科研和工业生产中的重要工具。无论是材料合成、化学反应还是高温烧结等应用场景,这种电炉都能提供出色的性能表现。随着技术的不断进步和应用需求的增加,我们有理由相信,未来的1200℃单双温区开启式真空气氛管式电炉将会更加智能化、高效化、安全化,为科研和工业生产带来更多的便利和可能性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制