当前位置: 仪器信息网 > 行业主题 > >

细胞融合仪原理

仪器信息网细胞融合仪原理专题为您提供2024年最新细胞融合仪原理价格报价、厂家品牌的相关信息, 包括细胞融合仪原理参数、型号等,不管是国产,还是进口品牌的细胞融合仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞融合仪原理相关的耗材配件、试剂标物,还有细胞融合仪原理相关的最新资讯、资料,以及细胞融合仪原理相关的解决方案。

细胞融合仪原理相关的资讯

  • 科学家发明细胞融合新法
    新华社华盛顿1月4日电(记者任海军)美国麻省理工学院4日发表公报称,该学院科学家开发出一种高效的细胞融合新方法,大大提高了细胞融合的准确率。   细胞融合又称细胞杂交,是指两个或两个以上的细胞融合成一个细胞的现象。自发的动物细胞融合几率很低,从上世纪60年代开始,人工诱导细胞融合作为一门新兴技术发展起来,目前已被广泛应用于细胞生物学和医学研究各个领域。   据麻省理工学院介绍,过去,人工诱导细胞融合技术面临的最大障碍是难以高效地将细胞正确配对。例如,科学家希望将分属不同类型的细胞A和细胞B进行配对融合,通常情况下,除了得到所需的AB型细胞外,还会得到很多不需要的AA型和BB型细胞。而该学院科学家开发出的新方法,则能够保证获得所需要的配对细胞,提高了细胞融合的准确率。   细胞融合技术在医学上有重要意义,例如,可通过把病变组织和器官的细胞与健康干细胞融合,对患者进行治疗 还可通过阻止癌细胞融合控制癌症发展等。   这项研究成果已刊登在4日的《自然• 方法学》杂志网络版上。
  • 首台LF301细胞电融合系统落户中科院细胞生化所
    日本BEX公司的活体/单细胞基因电转化系统及细胞融合系统,在国际上享有盛名!尤其是新款的 LF301细胞融合系统和CUY21VIVIO-SQ活体电传孔系统,因其独到的方波波形加上电阻/电流测量专利技术,以及数十种可供选择的电极,使得细胞融合、基因的转移变得高效而方便!   BEX提供数百篇国际权威杂志发表的应用文献,及几十个protocol供参考!   日前,首台 LF301细胞电融合系统 落户 中科院上海生命科学研究院细胞生化所&ldquo 动物实验技术平台&rdquo 。用户的融合实验顺利,对仪器的性能高度赞赏!      双细胞胚胎融合前后的对照   产品咨询热线:13918980949 侯先生
  • 奥然科技LF301电融合仪中标
    奥然科技于2009年10月在中国农科院海南香饮所的设备采购中,中标一套日本BEX* LF301细胞电融合仪。 日本BEX是世界知名的电穿孔仪、细胞融合仪生产商,LF301是其最新型号的细胞电融合仪。奥然是BEX的中国总代理。
  • 东胜创新举行“BTX电穿孔、电融合技术的应用”全国巡回讲座
    近日,东胜创新主办的“电穿孔、电融合技术的应用”巡回讲座分为三场依次在广州、上海、北京举行。在广州的专场已于10月21日圆满结束,来自美国BTX公司的技术专家Robin E. Butler介绍了“Electroporation and Electrofusion——A methodology for efficient gene transfer in In vivo, In Utero,96 Well and Fusion applications”。 接下来的两场分别将于 10月22日下午14:30—17:00在上海中国科学院营养所35号楼2楼多功能厅; 10月24日上午 9:00—11:30在北京中国农业大学新综合楼马协三层举行。 上海的专场还将增加由中国科学院神经科学研究所的丁玉强研究员介绍“在体子宫内胚胎电转技术——在神经科学研究中的应用”;北京的专场还将增加由中国农业大学生命科学学院的卫恒习介绍“电融合技术在转基因动物克隆中的应用”。 背景介绍: 一、电穿孔、电融合技术的应用范围: 哺乳动物细胞或组织的转染、细菌和酵母的转化、动物细胞融合、活体/离体基因或药物导入、卵内基因或药物导入、核转移、植物组织和原生质体的转化、杂交瘤生成、胚胎操作、植物原生质体融合、蛋白质电整合/电插入。 二、美国BTX公司——电穿孔、电融合专家 自1983年成立以来,以电穿孔仪、电融合仪为主要产品,开发了电穿孔、电融合、转染、转化等方面的众多最新技术和产品,成为电穿孔、电融合领域全球领先的专业厂家。 三、东胜创新BTX产品链接 http://www.eastwin.com.cn/product_btx.asp
  • 人工智能将融合、推动甚至颠覆科学仪器和分析测试技术是大势所趋
    p    strong 撰稿:中国农业科学院 蒋士强研究员 /strong /p p    strong (一)、怀念与启示。 /strong 每当议及科学仪器与测试分析时,总使我想起 strong 王大珩院士 /strong 生前对科学仪器精辟的定义:“ strong 科学仪器是认识世界和改造世界的工具 /strong ”。同时也使我想起 strong 邹承鲁院士 /strong 生前一直坚持的立论:“ strong 科学是认识自然,大至宇宙,小到基本粒子。而技术是在认识自然的基础上改造自然,为人类服务 /strong ”。科学仪器和测试分析(以下简称为科仪与测试)在学科分类上是二级乃至是分支学料,但又是跨多学科,而且是科学发展的工具和产物,大家分析一下,众多与科学仪器和分析测试有关的诺贝尔奖得主就一目了然了。在行业地位上处于第二产业的分支中的分支。但是在当今全世界都在谋求科学和技术全方位的、不断的、甚至颠覆性的创新,以造就各领域、各学科、各产业、各行业的腾飞,使社会财富和政经不断增值和振兴,以满足 strong 人民日益增长的美好生活需求 /strong 。无论是探索科学发明和技术的创新,乃至具体到确保和提髙质量,直至更新、换代,都需要科仪和测试,即在学科和产业体量不大,并不显眼的领域,将越来越彰显出“庙小显神通”的作用。当今人工智能新浪涛己经来到之时,如何应对,急待探索和实践。 /p p   (二)、 strong 要充分认知人工智能大幕己开启、新浪涛己经来到,科仪和分析测试领域的学界和业界都不能固守原有思维模式、思路和策略。 /strong 我国传统思维比较保守,惯于从四书五经等典籍中,寻找治国安天下的方略,我国古代有四大发明,但我国自然科学的发展史是英国人写的,科学救国是近代一时思潮,后来受到批判,将社会发展、变革的推动力被阶级斗争等取代了,直到现代光辉的近30年、40年、70年才有所突破。就以机器和仪器而言,一字之差,前者是解放人的体力,后者是扩展、延伸人的感官,两者不断地融合、昇华& #8230 直到如今将脑科学、人的智慧,渗透、移植、乃至深化、超越地赋于各领域、产业、行业、事物的戴体(客体) 。寻求我国的轨迹,可说也是世界潮流的涌动波及和启迪的结果,恕我直言,我国有优良的文化、传统,但学界、业界乃至大众也有历史造成的不良习俗,多喜于学之外表,不求真谛,不仅缺乏异想天开的创造性,而乐于找捷径、跟风、蹭边、冒名& #8230 & #8230 。如早先,把仅能测电阻、电流、电压的三用表叫成“万用表” 把清涼油加点药料就叫“万金油”,& #8230 & #8230 。“人工智能”、“智能”、“智慧”等响亮而谜人的冠词,在各行业、各种产品上已有泛用之势,国内是乎更盛。但在国际上的仪器仪表、科学仪器、测试分析的领域,国外产品命名和广告宣传,还是比较谨慎的, strong 很少冠用人工智能 /strong ,即使其功能上具有某些初级人工智能的部分要素,如各种图谱的识别、解释、训练、自校正、自检等,这是值得学习的。 /p p   (三)、 strong 人工智能逐步渗透、融合于科学仪器和分析测试技术的历史回顾 /strong /p p   在科学仪器、实验室设备和分析测试技术中,经历了自动化、数字化、信息化、网络化之后,逐步渗透、融合了部分“人工智能元素”、“专家的部分智能”,如:可编程,进而可自检、自校正的自动进样器和样品前处理工作站 实验室管理系统LIMS系统(Laboratory Information Management System 英文缩写LIMS)是将以数据库为核心的信息化技术与实验室管理需求相结合的信息化管理工具,结合网络化技术,将实验室的业务流程和一切资源以及行政管理等以合理方式进行管理,通过LIMS系统,配合分析数据的自动采集和分析,大大提高了实验室的检测效率,降低了实验室运行成本并且体现了快速溯源和痕迹,使传统实验室手工作业中存在的各种弊端得以顺利解决 又如各种谱仪和联用仪中,应用了各种控制和分析的专家系统(有时称工作站、软件包等),先是出现在进口仪器的操作系统中,接着国产仪器设备也逐步跟进,而且学者们发表了不少论文和专著,例如: strong 卢佩章院士于1992年12月就出版了《高效液相色谱法及专家系统》,2012年3月的版本是,由卢佩章院士、张玉奎院士和梁鑫淼增订的,是一本经典性的著作。在回味人工智能在分析测试技术中的应用时,非常贴近的实例,是早在上世纪末的近红外分析测试技术的突破,国外以Karl Norris博士、国内以陆婉珍院士、严衍禄教授等为代表的学者们,就建立了近红外光谱模型分析、人工神经网络模型算法等技术、以及用标样校正(训练)图谱模型的技术。 /strong 1998年湖南大学许亚兰发表论文,提出了模糊智能仪器这一新构想,针对这一构想,论文从其原理入手介绍了模糊智能仪器的相关基础理论--模糊数学与人工智能,其次在传统微机化仪器的基础上设计了模糊智能仪器。2004年由南开大学出版了裴雷著的《科学仪器软件平台研发——人工智能软件包开发》,提出:以软件为关键技术的通用平台上,可以很方便地改变软件配置来适应不同的需要,功能更加灵活、强大,更适合科学研究和创新的需要,建立中国自己的科学仪器通用软件平台,可带动我国分析仪器水平的提高,是我国分析仪器产业实现跳跃式发展的一次难得的机遇。中科院化工冶金所、中国科技大学、湖南大学的石乐明、张懋森、李志良的论文中指出:专家系统在分析化学中的一些应用,例如谱图解析,分析方法与分离路线的设计与优化,分析仪器工作参数的优化以及故障的诊断等。2010年11月1日,在化学_自然科学_专业资料中,发布了“分析化学中的应用”一文提出: 知识系统、知识工程已成为人工智能应用最显著新技术。2015年9月12日,在能源_工程科技_专业资料中,发布了“人工智能技术在分析化学中的应用技术”一文。2016年12月31日中国科学院化工冶金研究所李晓霞等发表论文,报导建立了HIN(chemicalinformationnetwork)。其实国内外生产的大型、专用型的光谱仪、色谱仪、质谱仪、波谱仪、基因导入仪、基因测序仪、蛋白质纯化系统、细胞融合仪、电泳仪、病毒免疫荧光分析仪、层析仪、生化分析仪和各种联用仪以及大型样品自动处理设备等,都渗入部分初级人工智能, strong 确切地说都有一定基础和苗头,只是有待于逐步完善。 /strong /p p   (四)、 strong 从以上(三)所述的案例中,近乎可得出一个规律,即:有强力的应用人工智能科技的需求,而且开发应用者、实施者对人工智能有足够的认知,二者碰撞即能产岀鲜艳的火花。 /strong 为此我建议在科学仪器与分析测试的学界与业界,宜先行有关人工智能的科普(在我国规划中就列有 strong 人工智能的全民科普的布署 /strong )。对学界、业界领军机构、人士、决策者,都有良好的科技学术基础,对类似以上列举的二本著作,肯定能熟读而有启迪的。新的科学技术的创新和应用不是炒岀来的,也不是抄岀来,更不是吹岀来的,是学者和业界同心合用探索、啃岀来的。 /p p   (五)、 strong 依据众多人工智能的著名院士、学者论述,我感悟人工智能与科学仪器和分析测试有着一些相似性,但因学科和产业的层次、目标、定位、历经和发展速度的不同,又有巨大差异。科仪和测试技术应该充分借助于人工智能的巨大驱动力和利用以下相似性:人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学 目前用的办法就是我们现在说的神经网络或者准符号模型等 目的是研制出具有类人智能的智能机器,表现形式是会图像识别& #8230 & #8230 ,会人机对话& #8230 & #8230 ,会自动运行& #8230 & #8230 ,会思考、证明、诊断& #8230 & #8230 ,会学习& #8230 & #8230 ,会表示认知结果& #8230 & #8230 。鉴于人工智能总体发展水平当前仍处于起步阶段,专用人工智能取得突破性进展,由于应用背景需求明确、领域知识积累深厚、建模计算简单可行,(任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单)因此形成了人工智能领域的单点突破,如图像检测分析& #8230 & #8230 ,都建立在数据的基础上 /strong (最初级的数据大多来自传感器和己有文献), strong 都涉及众多学科,是多学科交叉、实践性很强的综合性学科。差异是人工智能更深,涉及到当今和未来的科技、产业乃至于社会变革。更新、是近60年来兴起的。更大、是新一轮科技革命和产业变革的重要驱动力量。更神、是引领这一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的“头雁”效应。 /strong 而仪器与测试是原系古老庙小、时显神灵 更通俗的比喻是:后者古老的小庙、小神,既需依靠大神、大庙,也宜发挥庙小有神灵的特点, strong 我很赞赏将人工智能科技,逐步渗透、融合于科仪和测试的机理、构思、设计、研发之中,并在实施中与精细工匠精神相结合,推动科仪和测试技术发展,甚至颠覆其面貌。 /strong /p p   (六)、 strong 科仪和测试技术也应走人工智能应用上的细分工与专用化之路 /strong ,下棋人工智能机器人,决不能用于自动驾驶车辆& #8230 & #8230 ,当今高档的科仪和测试技术系统,越做越大、越复杂,有利于生产厂家赚钱,而买家只用其中部分功能,科仪和测试技术设备中逐步引入人工智能机器人技术,必能使科仪和测试技术设备走向细分工和专用化,硬件可能更简化,研发出各种新型传感器,当今庞大的科学仪器可能变成各种专用的传感部件,科仪将更灵敏、更小巧,测试分析将更具智能化,其实,万能的仪器设备都是假的。例如就食品安全检测而言,就应开发出检测某类、某种,甚至特定有害组份的人工智能机器人,其硬件将更精而少,而更神通,轻便和价廉。 /p p   (七)、 strong 学科和产业发展上应注重社会需求驱动,中医学的人工智能化将是我国的瑰宝。 /strong /p p   科学仪器和测试分析技术在医疗保健和生命科学中的应用,可说一支独秀,这原系这两界本身就是大学科、大产业,有巨大社会需求,也正因此,不论在仪器设备或测试技术方面都很快地融人工智能技术,已有不少案例(请参阅上述三、),编撰者一直关注中医学中人工智能技术的运用,在去年4月份发表的《人工智能化将猛力推动甚至颠覆现有科学仪器与测试分析技术的面貌》一文中用 strong “中医学的人工智能化将是我国的瑰宝” 表述 /strong ,引用了2017年以前较详细媒体报导的资料,但近二年未见更多的报导,但愿是疏漏, strong 我仍坚信中医学领域,人工智能将大有作为。一方面应尽快抢救极其丰富的著名中医学大师积累的中医诊断中病人型像学和病案、宝方的经验,并转化为图像和数据,同时在中医院校引进人工智能专才,推进人工智能在中医学中的应用。 /strong /p p   (八)、将传统的科学仪器与分析测试的机理,变为模块、模型、模式, strong 将感知数据转变为图像,也许是得以融入以深度神经网络模型算法和图像分析等为代表的人工智能技术的捷径 /strong ,即大幅跨越了科学与应用之间的“技术鸿沟”,这也许是近年来,国外把许多传统的谱仪分析,转为图像分析的原因。 /p p   (九)、 strong 人才的培养、吸纳和借助。 /strong 科仪和测试界本身就需多学科人才,而要将人工智能技术引入,人才是关键,据媒体报导,华为拥有700多位数学家、300位物理学家、200位化学家,而且我国人工智能领域高级人材奇缺,科仪和测试业还属小庙,养不起“大和尚”即人工智能专才,那只能从原来从事计算机软件、自动化专业的人才中培养人工智能中级人才吧!当然也宜与从事人工智能的机构合作,吸纳和借助人才资源了。另外、今后开源的模型、算法等会越来越多,据报导,西方有不少中小型企业、机构,就是针对自已应用目的,利用开源的资料,修改、嫁接、而用之。 /p p   (十)、 strong 共建大数据共享联盟。 /strong 大数据分析是人工智能神力之一,也是科学仪器和测试分析技术跃进的梯子,而测试分析领域的数据也非常可观,以庞国芳院士的团队为例,就己公开岀版了色谱、质谱、核磁共振图谱集三大本,五亿多个数据吧!大数据在大数据分析,乃至于人工智能中的地位业内人士比我更清楚,我只是呼吁通过已有联盟机构,协同共建更大的分析测试大数据共享联盟, strong 是时候了! /strong /p
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • Nature | 非小细胞肺癌新的驱动因素与药物靶点:CLIP1-LTK融合蛋白
    肺癌是最具侵略性的肿瘤类型之一,根据致癌因素对病人进行分层的靶向治疗会显著改善非小细胞肺癌(Non-small-cell lung cancer,NSCLC)患者的治疗效果【1】。然而在NSCLC中最常见的肺腺癌中有25-40%的病例中找不到具体的致癌驱动因素【2】。为了对非小细胞肺癌的致癌驱动因素进行进一步地探究,2021年11月24日,日本国家癌症中心东医院Koichi Goto研究组与Susumu S. Kobayashi研究组合作发文题为The CLIP1-LTK fusion is an oncogenic driver in non-small-cell lung cancer,揭开了非小细胞癌肺癌新驱动因素CLIP1-LTK融合蛋白,并发现了可以作为临床治疗的药物参考。致癌驱动因素的发现会揭示非小细胞肺癌的发病机制,比如在76%的肺腺癌样本中受体酪氨酸激酶-RAS-RAF通路会出现体细胞致癌驱动突变【3】。而基于转录组测序的方法可以帮助发现非小细胞肺癌中其他的致癌驱动因素,比如CD74-NRG1蛋白融合【4】。而基于这些研究响应开发出来的激酶抑制剂会对病人的治疗策略进行进一步的优化,从而提高患者的生存率。2013年,作者们构建了多机构联合的肺癌基因组筛查平台LC-SCRUM-Asia,该平台可以识别肺癌的致癌驱动因素,并在临床开发分子靶向治疗。作者们希望利用该平台寻找目前无法治疗的NSCLC患者中的致癌驱动因素。为了对新的致癌驱动融合基因进行鉴定,作者们对目前LC-SCRUM-Asia平台中目前成因未知的病人样本进行了全转录组测序分析(Whole-transcriptome sequencing,WTS),从中鉴定发现了一个符合阅读框的转录本:位于染色体12q24的CLIP1以及位于15q15位置的LTK融合转录本(图1)。LTK和ALK构成受体酪氨酸激酶的ALK/LTK亚家族,而CLIP1是微管末端跟踪蛋白家族的成员之一。图1 CLIP1-LTK融合蛋白结构域示意图随后,作者们想知道该融合蛋白与肺癌之间的关系,所以对LC-SCRUM-Asia平台中所有572个肺癌样本都进行了检测,发现其中有两个病人表现出CLIP1-LTK融合转录本阳性的特征,占NSCLC病人比例的0.4%,并且这两个病人体内没有其他已知的致癌驱动因素。该结果说明CLIP1-LTK融合转录本的出现可能是NSCLC的特征性致癌原因。CLIP1-LTK融合蛋白中具有coiled-coil结构域,该结构域会协助蛋白质的二聚化,因此作者们想知道该融合蛋白是否会形成二聚体从而组成性地激活LTK的激酶活性。通过CLIP1、LTK以及CLIP1-LTK分别在细胞中进行瞬时转染,作者们对LTK的磷酸化水平进行检测,发现与其他组别相比CLIP1-LTK的转染显著增加LTK的磷酸化水平, 也就是说在融合蛋白存在的情况下LTK具有更高的激酶活性。随后,作者们找到了CLIP1-LTK融合蛋白中的激酶活性缺失突变位点,该结果进一步地确认了CLIP1-LTK是组成性激活的。另外,作者们也对CLIP1-LTK融合蛋白的定位进行检测,发现CLIP1-LTK融合蛋白与LTK本身在细胞表面的表达模式不同,由于该融合蛋白缺乏LTK的跨膜结构域,所以CLIP1-LTK融合蛋白主要定位在胞质之中。进一步地,通过对细胞进行表型分析,作者们发现瞬时转染CLIP1-LTK融合蛋白的细胞会表现出圆形的细胞形态,同时细胞之间也会缺乏接触抑制,这些结果说明CLIP1-LTK融合蛋白使得细胞具有转移特征。为了证实CLIP1-LTK融合蛋白在体内的转移活性,作者们将体外培养的细胞移植到裸鼠的体侧(图2),发现只有CLIP1-LTK融合蛋白会导致肿瘤产生因因而是致癌驱动因素,并且该融合蛋白发挥作用依赖于其激酶活性。图2 CLIP1-LTK融合蛋白会导致肿瘤产生以上的结果表明,CLIP1-LTK融合蛋白可能会是NSCLC病人体内的潜在治疗靶标。所以作者们首先对CLIP1-LTK融合蛋白转染的细胞中施用了一些美国食品和药物管理局批准的或正在研究酪氨酸受体激酶抑制剂,发现其中Lorlatinib的处理会显著降低肿瘤细胞的生长。进一步地,作者们对病人进行Lorlatinib 100mg每天的常规剂量进行临床治疗,发现CLIP1-LTK融合蛋白激酶活性受到抑制,同时肿瘤的生长也会受到抑制(图3)。图3 CLIP1-LTK融合蛋白分型的NSCLC病人施用Lorlatinib会抑制肿瘤生长总的来说,该工作发现CLIP1-LTK融合蛋白是非小细胞肺癌新的致癌驱动因子,并表明激酶抑制剂Lorlatinib可以靶向该融合蛋白。未来将需要对CLIP1-LTK融合蛋白进行分子靶向抑制剂的临床开发,以及对该致癌驱动因素进行临床筛查和验证。原文链接:https://doi.org/10.1038/s41586-021-04135-5
  • 华粤行细胞生物学新技术研讨会—广州站!
    2012年3月19日,华粤行仪器有限公司(我司)在南方医科大学附属南方医院举行细胞生物学新技术研讨会,与该院临床医学实验研究中心的师生们进行了一次丰富精彩的技术交流。 会上,我司市场经理向与会师生们介绍了美国biospherix低氧培养系统、日本NEPA GENE NEPA21高效基因转染系统及细胞融合仪等新产品,并就科研过程中遇到的技术难点与师生们进行了深入的交流探讨。 我司市场经理介绍新技术、新产品 积极交流 本次研讨会得到了南方医院临床医学实验研究中心师生的大力支持和热烈欢迎,大家对我司介绍的细胞新技术及新产品表现出极大的关注,并表示期待新产品能在不远的将来为中心的科研工作发挥作用。 华粤行细胞生物学新技术研讨会全国巡回正火热进行,诚邀各科研院所业内人士合作交流,共同关注生命科学领域的新发展。
  • 北京倍辉科技携手中国科学院、清华大学举办CUY21 EDIT II超级多模式细胞/活体基因电转化仪试用活动
    继2013年上半年在全国范围内举办CUY21 EDITII电转化仪的免费试用活动大获成功之后,应广大客户要求,我司于今年10月份开始,再次举办大规模的免费试用活动。这次携手单位包括清华大学,中国科学院系统各所。截止至目前为止,已为客户演示实验多达50多次,覆盖细胞、活体种类多达30种之多,比上半年翻了一倍。此次演示实验大多是极难转染的细胞种类,如NIH/3T3、NG108-15、raw264.7、SSC、Sertoli、HepG-2、HEK293、N2a、A549、K41、LN229、PC3、LCL、CHO、NIT1、EAhy926,原代小鼠胚胎干细胞以及细胞系,原代小鼠β胰岛细胞团等。 试用活动覆盖多个学科领域。CUY21EDIT II对比脂质体转染,具有显著提高转染效率的特点;对比慢病毒转染,更是克服了对细胞产生毒性,进而影响后续实验开展的弊端。CUY21 EDITII独有的性能优点,特别是恒流转化模式,为那些极难转染的细胞另辟蹊径。 以下举例部分细胞转化效果图。随着试用工作的进一步开展,相信有更多用户能够体验到这款超级仪器带来的神奇转化效果。如需更多转化protocol或转化效果图,请联系我司各地办事处。 HepG-2细胞转染效率达近98%,存活率达98%(中国科学院动物所提供)NIT1小鼠胰岛瘤β细胞转化效率约达100%,存活率约100%(中国科学院遗传所提供) 极难转染的精原干细胞(spermatogonialstemcells,SSC)转化效率达50%小鼠胚胎干细胞细胞系转染效率达到75%中国科学院动物所提供上海同济大学提供 CUY21 EDIT II 超级多脉冲细胞-活体基因电转化仪 超强机器,超级性能----全球同步上市………… CUY21EDIT II超级多模式定电流活体/细胞基因电转化仪是日本BEX公司2012年10月发布的具有里程碑意义的产品。采用最先进的脉冲芯片控制技术,首次实现了恒电流输出转化,并可根据样品差异进行多脉冲选择。超强的脉冲模式,不需要特殊转染试剂即可高效神奇的转染难转细胞及活体。 关于BEX公司BEX公司成立于1990年,是活体转基因技术及细胞融合技术全球领导者。BEX研发制造在转基因领域最为著名的CUY21电转化仪以及LF系列细胞融合仪。BEX公司于1998年全球发布第一台CUY21EDIT专业活体基因转化仪,从此开创了活体基因转化的新时代,奠定了CUY21做为全球唯一公认的专业活体/细胞转基因仪器,已有2000余台CUY21全系列转化仪服务于全球科研工作者,发表于Nature,Cell及Science等顶级杂志的文献高达数百篇。 国内独家代理商:北京倍辉科技有限公司 www.bio-sun.com.cn info@bio-sun.com.cn
  • 【聚焦外泌体】之从细胞培养上清液中分离外泌体的准备
    对于外泌体研究的新手来说,细胞培养上清液是非常好的实验材料,外泌体相对容易收集。我们可以首先从细胞上清开始来熟悉整个外泌体的研究流程,充分了解整个流程需要使用的仪器、试剂以及准备时间,对我们后续的实验安排有很大帮助。其中比较重要的一点是要确定有足够的初始细胞上清液来收集外泌体,以保证我们能够拿到足够多的蛋白、核酸来进行后续分析。我们可以逆向思维,通过后续检测所需蛋白/核酸量——外泌体量——细胞上清量,来确定初始细胞上清体积。先从细胞上清开始,熟悉了整个过程后,我们再进行其他相对较难的实验材料进行研究。01细胞系选择无论贴壁细胞或是悬浮细胞,能分泌更多外泌体的细胞系肯定是优先选择的。一般说来,肿瘤细胞的外泌体分泌水平要高一些,但并不是所有肿瘤细胞系都能分泌足够多的外泌体,我们可以借鉴文献中的细胞系推荐1。以常用基因转染的HEK293为例,是比较公认的分泌外泌体水平较高的细胞系。或者,以每100ml的细胞上清收集到的外泌体蛋白可达到5~20μg范围作为标准2,例如我们可以从100ml的细胞上清中获得10μg的外泌体蛋白,如果后续要做蛋白质组学分析(需50μg蛋白),那么初始细胞上清就需要扩大到之前的5倍,500ml,500ml上清差不多是通过离心方法可处理的大样品量了。如果后面收集到的外泌体蛋白都不够进行一次WB,那就要考虑一下是不是要换个细胞系了。如果外泌体蛋白小于3μg,那么考虑到扩大体系的实验难度和后续实验的顺利进行,那证明我们用的细胞系不太合适做外泌体研究。*虽然很多生物样品或是细胞系在文献中没有出现过,许多外泌体相关的数据库(ExoCarta, Vesiclepedia, Evpedia等)可以提供帮助,在上面我们可以查到有哪些细胞系已经有人成功进行外泌体提取了。或者也可以咨询一些做外泌体的生物公司,看看他们是用哪些细胞系来制备商业化的标准外泌体样品的。02优化细胞培养条件及细胞系选择影响外泌体质量和回收率的另外一个重要因素是在收集之前细胞的培养状态。好的收集时间段是细胞状态好、生长旺盛,即处于对数期的细胞3,并且在细胞传代之前收集细胞上清,这个时候细胞所分泌的外泌体量达到高4。准备好的细胞上清液,细胞密度也要适合,贴壁细胞如果细胞密度过高会出现接触抑制,对所分泌的外泌体也会有影响。所以,理想的条件是在细胞融合达到70%~80%后的40~48h后收集外泌体(此时约融合至90%)。要注意,为了避免FBS外泌体的污染5,收集外泌体的40~48h之前需换成无血清培养基,注意此时40~48h仅作为推荐参考。像有些细胞在无血清培养基培养24h后没有发生存活率和细胞形态改变,那么可以进行上清收集。如果出现死细胞增加、细胞形状改变、状态变差等情况时,使用EV-delepted FBS培养基来代替无血清培养基,EV-delepted FBS可以直接购买也可以自己制备(使用SW 41Ti转头在4℃,35,000rpm(Rmax 210,000 ×g)离心16h后小心收集上清)。但是这样仍无法完全避免血清外泌体的污染,需要清楚样品中血清外泌体的含量,增加一组没有培养细胞的培养基的平行样品作为阴性对照是必要的。03外泌体的提取方法目前被大家认可的方法就是超速离心,因为超离的方法可以收集到完整的细胞外囊泡群,并且几乎所有的实验材料(细胞上清、血液、体液等)都可以通过超离的方法来进行外泌体提取。当然超离的方法也有需要改善的地方,比如样品量很小的情况下,超离对外泌体的回收率不高,但是超离作为一种物理分离的方法,可以在不破坏外泌体群体特性的情况下进行分离的。当前,除了超离外还有许多外泌体分离方法,每种方法都有它的优势和劣势,首先我们需要理解各种分离方法的原理和特点,再根据我们的实验需求才能找到合适的外泌体提取方法。超离方法是可以获得整个外泌体群体,适合于研究整个外泌体群体特性。Yoshioka博士:众多外泌体分离方法中,我们使用超离沉降的方法作为实验室提取外泌体的标准方法5(见下图)。这个Protocol主要包括三个步骤:1.小心收集细胞上清并低速(4℃,2,000xg,10分钟)去除悬浮细胞(死细胞)。2.用0.22μm孔径过滤器过滤上步中收集到的包含外泌体的上清液,去除大颗粒和细胞碎片。3.将上步中的滤液进行超离处理,使用贝克曼库尔特SW 41Ti水平转头、13.2ml超净离心管(Product Number:344059,Beckman Coulter),4℃下35,000rpm(Rmax 210,000xg)离心70分钟。离心过后外泌体在离心管底聚集成沉淀,通常是肉眼不可见的。然后用预先过了0.22μm孔径过滤器的PBS进行清洗,洗掉与外泌体一起沉降的成分,例如微颗粒和蛋白。小心倾倒掉第3步超离后的上清,残留少量液体进行2~3s的涡旋振荡重悬沉淀,然后加入PBS,重悬后的样品同样的条件再进行一次超离。再次超离过后的外泌体仍然需要重悬,倾倒掉上清后,再进行2~3s的涡旋振荡重悬,这时的外泌体样品就可以进行下步分析了。从离心管中转移外泌体样品到储存管(比如1.5ml微量离心管)时,在吸取时我们可以用移液枪先大概测量一下样品体积,后面在储存管中补充PBS到我们之前预估的样品体积,比如,我们想收集到100μl的外泌体样品,但是从离心管中转移到微量管中只有80μl(注意:使用13.2ml超净离心管,平均下来每次收集到的外泌体样品大概80μl),我们加20μl PBS到微量管中再混匀一下就可以保存了。外泌体样品可以在4℃保存,并且要尽量早的用于分析。另外,外泌体样品是不能反复冻融的,与细胞类似,反复冻融过程会破坏外泌体。现在大家普遍认为外泌体是具有异质性的,整个外泌体群还可以细分为亚群(例如尺寸、蛋白表达等),不同的亚群也具备不同的特性,正如前文所说,通过超离的方法可以收集完整的外泌体群体。也有些文献也报道过使用不同的离心条件,可以将尺寸大小不同的外泌体亚群分开。目前,还没有特别统一的外泌体超离提取步骤,像转头类型、离心管类型、离心力以及离心时间等离心条件在不同的文献上都会有些许的差异。04参考文献1. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]2. Valadi H et al. Nat Cell Biol. 2007 9(6): 654–6593. Beckman Coulter. Interview article: Basics and Vision of Exosome Research. 20154. Urabe F et al. Clin Transl Med. 2017 6(1): 455. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]
  • Leica的宠儿——PAULA(细胞培养个人自动实验助手)
    可能很多人对Leica的产品PAULA(Personal AUtomated Lab Assistant)相对陌生,此产品的推出被Leica高层极度重视,被视为“掌上明珠”。PAULA是一款与客户共同设计开发的用于细胞培养实验室常规应用的数字细胞检测仪,是世界首台细胞培养个人自动实验助手。PAULA是可以放置在细胞培养箱中的小型倒置荧光显微镜,具有相差和红绿两色荧光的观察功能,在平板中直接下载APP进行连接观察和使用,可以实时进行实验的分析和检测为下游实验获取最佳细胞提供保障。细胞实验中无法进行样本的实时监测、对细胞计数的不准确和浪费时间、细胞状态不适用于下有实验、缺乏细胞的生长曲线以及转染蛋白的表达水平等问题会一直环绕在每一个实验操作者的身边。PAULA的出现这些烦恼将不再存在。PAULA部分功能简介使用用户管理模式进行使用:Administrator, Standard User, Guest(只能拍照)三种用户类型进行使用,有效地管理和使用彼此之间的实验数据,保护实验数据的安全。管理员身份可以对其他账号进行管理和查看,及时进行实验的指导和完善。数据自动命名:根据培养的细胞系种类和实验人员姓名来对细胞培养瓶进行命名,该命名会自动匹配到所拍摄的图片、视频、分析结果等等。并且配有条形码、二维码的扫描功能,准确的记录观察样本的信息。样本信息记录集成化数据库:所有数据都储存在电脑中具有备份功能、所有信息一目了然、具有过滤功能并且可以直接将结果导出到Excel中。集成化数据库Audit trail:操作记录可查,数据结果可被归为文档格式实验操作查询PAULA中含有分析模块,可以直接对样本进行分析和检测,抛弃只能人工目测检测的方法,使实验更佳严谨和专业:细胞融合度检查:没有PAULA之前只能靠目测进行估算,这种方式缺乏规范性、并且误差较大,很容易会对下游实验造成不良影响。PAULA可以进行自动快速检测,进行保存,并且可以绘制生长曲线、划痕实验检测,通过邮件提醒功能得知实验已经完成,不用担心样本的生长状态不适合而导致实验失败。细胞融合度检测和划痕实验检测转染效率检测:将外源基因导入样本细胞中对带有荧光细胞和总细胞数的检测,从而进行转染效率分析。转染实验和HELA细胞转染图北京德泉兴业商贸有限公司为徕卡授权代理商。徕卡显微系统是显微镜和科学仪器领域的全球先驱。十九世纪,公司从家族事业起步,如今成为全球知名企业,以无可匹敌的创新精神铸就辉煌历史。与科学界一贯的紧密合作是徕卡显微系统创新传统的关键,从而将用户的想法付诸实践并根据用户需要为其量身定制解决方案。徕卡显微系统的全球运作分为四个部门,它们均已成为其各自领域的领头羊:生命科学部门、工业部门、病理系统部门以及医疗显微镜部门。徕卡病理系统是一家自主运营的公司,为组织病理学实验室提供丰富多样的产品,适用于组织学中的每一步工作,并帮助提高整个实验室工作流程的生产率。公司在全球 100 多个国家设有代表处,在 7 个国家设有 12 家制造厂,在 19 个国家设立了销售和服务机构,并且具有全球性的代理商网络。公司总部设在德国的韦茨拉尔 (Wetzlar)。
  • 媲美基因测序仪的科学仪器“明珠”?国产自研单细胞光导系统实现商品化
    单细胞光导系统是利用计算机系统融合光电半导体技术与微流控技术,打造一个单细胞分选、培养、分析以及回收功能的多功能单细胞平台,能够高效、快速、精准地进行各种基于单细胞分辨率下的细胞生物学研究和操作。目前,该技术平台已广泛应用于抗体发现、细胞株构建及合成生物学等领域,极大精简和缩短了新型生物药物相关研发工作的流程。目前,全球主流供应商仅有Berkeley Lights 一家。据悉,彩科生物完成了LyTARS™单细胞光导系统研发及商品化工作,实现了该领域国产零的突破。为了一探究竟,近日,仪器信息网实地走访了位于苏州的彩科生物,并与CEO程鹏博士进行了对话交流。走访彩科(苏州)生物科技有限公司(仪器信息网生命科学主编李博(左);彩科生物CEO程鹏(右))芯片上的抗体发现实验室——LyTARS™单细胞光导系统程鹏表示,“寻找药物新靶点,一直是全球创新药物研发激烈竞争的焦点和难点。随着时间推移和易筛靶点被大量挖掘,新药研发面临着“低垂的果子被摘完”,潜在靶点难以筛选的窘境。工欲善其事必先利其器,发明新的药物发现工具迫在眉睫。然而,国外上游工具开发企业对中国药物研发的实时需求响应速度缓慢,尤其新应用开发领域,重视程度远不及欧美市场。作为一家专注于为生命科学提供先进研究工具的本土企业,彩科生物敏锐地捕捉到了机遇,基于整个研发团队的多学科交叉技术背景和坚定的工程师精神,通过数年时间成功自主研制出LyTARS™单细胞光导系统。”程鹏补充说,“随着流式细胞技术、微流控技术和光流体技术等相关生物技术发展和成熟,单B细胞技术不断革新和完善,成功地从实验室走向了商业化应用。相比于杂交瘤等传统平台,利用单B细胞技术搭建的单B细胞平台能够直接对单个B细胞或其分泌的抗体进行分析,绕开了传统的细胞融合和大量铺板的繁重低效的工作,使科学家摆脱了融合的限制和负面影响,同时,平台可以实现对单B细胞不同程度的高通量筛选,有效简化实验流程,从而大大缩短研发周期。基于新一代单B细胞克隆技术,彩科生物自主研发的LyTARS™单细胞光导系统,能够在芯片上直接完成单细胞抗体筛选、抗原结合及功能测试,将抗体药物早期发现周期从4-6个月缩短至1-2个月,大大加快了抗体药物开发进程。”彩科的研究员们使用LyTARS™单细胞光导系统进行相关实验坚持底层创新与多学科交叉融合程鹏认为,“底层创新和多学科交叉融合是促进国产高端科学仪器发展进步的两大关键因素。底层创新包括基础理论研究、新技术开发和创新以及新材料发现等,这些研究在短期内可能无法产生明显的商业效益,但它们是科技发展的基石,为未来的技术创新提供了坚实的基础;当代知识生产和学科发展已经步入多学科交叉融合的时代,单一学科的研究范式与思考角度难以实现科技创新和解决复杂的系统问题。多学科交叉融合旨在结合不同学科之间地研究思路,利用不同学科的优势最高效地产生实用性的研究成果。”程鹏表示:“从零做起,研发过程涉及多学科交叉融合,其难度不亚于基因测序仪”。据程鹏介绍,开发单细胞光导系统初期面临着研发难度大、国内供应链尚未成体系、诸多工艺设计也无前车之鉴等诸多挑战与困难。彩科生物拥有经验丰富的多学科交叉背景研发团队,始终坚持底层创新理念,综合运用半导体、微电子、生物工程、机器学习、材料化学以及自动化等多学科技术,实现了光电技术和微流控技术等关键核心技术突破。其中,多个核心零部件生产涉及的技术非常复杂,影响因素众多,不仅要研究材料本身性质,也要对材料开发工艺进行全新设计。最终,凭借坚持不懈的努力和多方协作,彩科生物完成了LyTARS™单细胞光导系统从研发到发售各个环节的工作。细胞生物学进入“单细胞”时代,LyTARS™系统应用前景广阔细胞是构成生命体的结构和功能的基本单位,早期基于群体细胞分析所获得的平均性数据,往往忽略了细胞个体间差异。随着生物技术发展和多学科交叉融合,细胞生物学作为生物学的重要分支,也已经开始进入一个全新的时代。单细胞多组学、空间转录组等新兴技术的出现帮助科研人员能够深入研究单个细胞的DNA、RNA、蛋白质,以单细胞分辨率组合多层信息,揭示单细胞基因组、转录组、甲基化、蛋白质组学等多种数据。程鹏介绍说,“彩科生物是一家旨在开发高效的产品以挖掘高分辨率的海量生命科学信息企业,以核心技术平台μ-MPF(Micro-scaled Multi Physics coupled Force)为基础,搭建了多个应用平台,其中包括LyTARS™单细胞光导系统和多重单分子检测平台。其中LyTARS™单细胞光导系统在细胞生物学研究具有广阔应用前景,它能更好地保留B细胞的多样性,在早期阶段即可得到高质量的阳性hits,避免“优秀克隆”的丢失。通过将独特的光电定位技术与微流控设计结合,不仅能够在一张芯片上精准地对单细胞进行挑选,还可以直接进行培养、实时而不间断地利用多个不同的荧光通道,监测细胞状态,对单细胞或单克隆进行多种实验,并根据实验时读取的特定结果导出需要的目标细胞和目标克隆。另外,LyTARS™单细胞光导系统还可以实现在线on-chip检测。除此以外,该系统还具有更丰富的功能性筛选,包括阻断实验、交叉活性等检测,不仅检测类型多样,检测的灵敏度也极高。”程鹏非常看好LyTARS™单细胞光导系统未来在细胞生物学领域的应用前景,也非常期待与更多国内优秀企业开展广泛合作,让彩科生物的生命科学研究工具尽快服务于中国生物医药产业。LyTARS™单细胞光导系统打包环节后记:近年来,中国高端科学仪器的制造和研发水平不断提升,尤其是生命科学仪器在国产化上已取得积极进展,市场也涌现出诸多优秀国产仪器,比如流式细胞仪、基因测序仪等,国产高端科学仪器正在开启宏大时代。LyTARS™单细胞光导系统成功研制不仅仅攻克了又一项国产高端生命科学仪器卡脖子”难题,也侧面证实多学科交叉融合是实现科技创新和解决复杂的重大问题有效途径。程鹏博士毕业于美国理海大学,从事基于半导体芯片的单分子基因组测序仪器的研究。创办彩科之前在精密科学仪器企业Asylum Research工作,负责APAC的技术团队。苏州彩科成立于2018年,是一家为生命科学提供先进研究工具的公司,一直专注于开发高效的技术平台以挖掘高分辨率的海量生命科学数据。目前,公司以核心技术平台μ-MPF (Micro-scaled Multi Physics coupled Force) 搭建了多个应用平台,其中包括单细胞光导平台、单分子灵敏度生物分子检测平台及多重磁性荧光编码微球平台。
  • 悟空助力国家医学攻关产教融合创新平台项目
    5月27日-28日,由西安交通大学医学部主办,依托西安交通大学国家医学攻关产教融合创新平台和天然血管药物筛选与分析国家地方联合工程研究中心联合举办的“CMC-药理学实践培训”顺利举行。本次培训班分为仪器示教、培训讲座、药理学研究创新研讨会、实验教学等环节。徐宗本院士、来自西安交通大学、空军军医大学、陕西中医药大学、西安医学院的师生、海能技术总裁刘文玉先生及技术工程师参加了本次活动。本次培训使用的CMC/RL-2020型分析仪是由西安交通大学医学部贺浪冲教授团队与海能旗下悟空仪器团队共同合作开发的,该仪器实现了生物体内配体-受体特异性结合现象在体外的仿生模拟,为认识靶向药物作用规律、发现新的药物先导物提供了有效分析手段。药理学实践《型分析仪》培训班在仪器示教环节,贺浪冲教授团队的师生以理论讲授+仪器实操示范相结合的形式,深入介绍了《CMC/RL-2020型分析仪》在研究配体-受体亲和作用的应用。徐宗本院士提出将人工智能与分析仪器进行有机结合,对《CMC/RL-2020型分析仪》应用于药物筛选发现领域提出了更高的要求与期望。贺浪冲教授介绍《CMC/RL-2020型分析仪》的设计、研制与应用背景等。来自陕西省内四所医学类高校的近80名师生就细胞膜色谱(CMC)分析仪应用中遇到的问题、使用感受和用户需求等内容进行现场探讨和互动交流。在CMC-药理学实践《CMC/RL-2020型分析仪》培训暨药理学研究创新研讨会上,贺浪冲教授强调“工欲善其事,必先利其器”,介绍了自主研制的“CMC/RL-2020型分析仪”从提出CMC理论与技术,到研制成分析仪器,再到应用于药物发现与药物分析的发展历程,并结合新时代生物学与人工智能的进步,开辟“生物分析装备产业”新赛道,全力提升国产分析装备竞争力。西安交通大学研究生院副院长龙建纲教授从构建人才自主培养体系出发,指出项目驱动、学科交叉、产教融合“三位一体”协同融合发展,期待在各方力量支持下院校团队与海能合作共赢,促进以CMC技术为代表的一系列分析装备应用落地。刘文玉先生提到,创新引领科学发展,充分展现了科学仪器国产化的家国情怀和企业凡人匠心的“螺丝钉”精神,并诚邀与会师生到海能参观与实践。西安交通大学药学院党委书记张彦民教授总结,本次活动是CMC药理学实践的新延续,期望海能的科学仪器真正成为中国式标杆,助力生物色谱的发展。CMC技术实验教学环节,学员们在演练学习中掌握CMC技术的基本原理和实践方法,熟悉海能的仪器操作。悟空助力国家医学攻关产教融合创新能够参与到这一产教融合项目中,悟空仪器深感荣幸,也期待与更多科研工作者携手,不断探索与创新,推动更多科研成果落地转化,为国产仪器的发展贡献智慧和力量。
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 创新融合,精准诊断 BCEIA 2021标记免疫分析分会圆满举办
    仪器信息网讯 第十九届北京分析测试学术报告会暨展览会(BCEIA2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)盛大召开。作为BCEIA学术报告会的重要组成部分,9月29日,由中国分析测试协会标记免疫分析专业委员会主办的BCEIA 2021学术报告会标记免疫分析分会在学术会议区E301举行,会议为期一天,旨在推动标记免疫分析领域的发展,为国内外同行提供充分交流的平台,吸引逾百位学者与会。会议现场本次会议主席,也是中国分析测试协会标记免疫分析专业委员会委员颜光涛研究员为会议致辞。颜光涛研究员本次会议主题为“创新融合,精准诊断”,围绕“精准诊断新检测技术、新检验指标临床验证转化、检验质量控制、检验参考物质及溯源”4个专题方向,邀请了10位国内标记免疫领域权威专家,针对前沿热点领域的研究重点进行学术报告。以下是部分精彩报告摘要:上下半场会议主持人 (左上:崔丽艳 北京大学第三医院 右上:敬华 战略支援部队特色医学中心检验科 左下:陈建魁 解放军总医院第五医学中心 右下:徐国宾 北京大学肿瘤医院)张国军 首都医科大学附属北京天坛医院报告题目:一种新型缺血性卒中标志物(ACS)化学发光法及开发临床评价为了建立自动化学发光免疫分析法(CLIA)测定人体液中凋亡相关斑点样蛋白(ASC)的方法,探讨脑卒中患者血清ASC的临床意义,首都医科大学附属北京天坛医院张国军主任采用自行研制的CLIA法检测血清ASC浓度,评价新biomarker的临床意义。所在团队以磁性颗粒-FITC-FITC抗体为固相分离体系,FITC标记了一株抗ASC单克隆抗体,吖啶酯标记了另一株抗ASC单克隆抗体,建立了ASC自动CLIA检测方法。一共收集了167例急性缺血性中风(AIS)患者和238例健康对照者的血清。结果发现自行研制的ASC自动CLIA检测方法满足临床检测的要求。AIS患者血清ASC水平显著升高,是鉴别脑卒中患者的良好指标,可用于监测脑卒中的发病、治疗及预后。叶棋浓 中国军事科学研究院报告题目:肿瘤糖代谢基因表达控制癌症是严重威胁人类健康的常见疾病之一。葡萄糖代谢是最重要的代谢过程之一,包括葡萄糖的厌氧氧化、戊糖磷酸途径、三羧酸循环、糖异生和糖原合成。在恶性肿瘤转化过程中,糖代谢的重编程为癌细胞的生长和转移提供了能量和物质支持。中国军事科学研究院叶棋浓研究员在研究中发现,与正常细胞相比,肿瘤细胞葡萄糖摄取水平升高,需氧糖酵解和戊糖磷酸途径通量增加,三羧酸循环异常,糖异生水平下降。肿瘤细胞葡萄糖代谢的调节机制主要包括蛋白质的转录调控、转录后调控和翻译后修饰。癌细胞可以通过HIF-1、c-Myc、p53等转录因子调控糖代谢相关基因的表达。其所在团队发现SIX1是调控肿瘤糖酵解的关键转录因子,SIX1的翻译后修饰在调控糖酵解中发挥重要作用,SIX1是肿瘤诊断和治疗的候选靶标。刘向祎 首都医科大学附属北京同仁医院报告题目:新型质谱技术在临床检验实践核酸质谱技术已开始越来越被大家了解和熟悉,很多体外诊断产品在注册中。在报告中,首都医科大学附属同仁医院的刘向祎主任所在实验室利用MALDI-TOF技术,采用毅新博创的飞行时间质谱仪,在耳聋基因筛查、老年性黄斑变性和疫苗在人群有效性评估方面进行初步检测和评估,为尽快走向临床起到一定推动作用。周洲 中国医学科学院阜外医院 报告题目:高敏肌钙蛋白检测性能评价周洲教授主要研究方向为遗传性心血管疾病的分子机制研究及基因诊断方法开发。报告当天恰逢世界心脏日,中国医学科学院阜外医院周洲主任对高敏肌钙蛋白检测的性能评价等作了专业归纳与表述。周主任认为,高灵敏度肌钙蛋白检测方法的分析性能评价是临床应用的前提。评价标准应包括空白限、检出限、定量限、报告范围、印痕和一致性等,且不同样品类型和“目标”机器的一致性是必要的。宗金宝 青岛大学附属青岛市海慈医院报告题目:流式细胞术在淋巴细胞亚群及细胞因子检测的临床应用青岛大学附属青岛市海慈医院宗金宝主任对流式细胞术的原理及特点作了详细介绍。团队利用流式细胞术进行了淋巴细胞亚群检测,细胞内外细胞因子检测等一系列详实实验。结果表明流式细胞术是检测淋巴细胞亚群和细胞内细胞因子非常重要而且不可或缺的手段,此外流式细胞术也可以检测细胞外细胞因子,其中流式荧光技术将在细胞外细胞因子的检测中发挥重要作用。李海霞 北京大学第一医院报告题目:膀胱癌肿瘤异质性及液体活检的应用膀胱癌(BC)是一种异质性疾病,以基因组为特征,具有不稳定性和高突变率。液体活检技术是一项很有前途的技术,可以在多个时间点分析体液(如血液和尿液)中的肿瘤成分,并提供一种微创的方法,可以跟踪进化动态和监测肿瘤异质性。北京大学第一医院李海霞主任在报告中对膀胱癌基因组和转录水平上异质性的多重面,以及它们如何影响临床护理和结果进行了系统阐述。高艳红 解放军总医院第一医学中心报告题目:流式荧光技术在临床应用及发展精准医学模式对临床实验室诊断提出了越来越高的要求,要求其具有预防性、预测性、个体化以及参与性等。因此快速、灵敏、高通量对疾病的生物标志物进行定性和定量分析,是当今生命科学领域的研究热点。流式细胞术(FCM)是70年代初发展起来的一项采用流式细胞仪对细胞悬液进行快速分析的高新技术,是继化学发光、生物芯片技术之后的新一代高通量分子诊断技术平台。在报告中,解放军总医院第一医学中心高艳红详细介绍了流式细胞仪的基本原理以及在免疫学、肿瘤学等领域的应用。郭建巍 北京市第一中西结合医院报告题目:临床实验室助力肠癌的早期发现结直肠癌是全球发病率和病死率居首位的消化系统恶性肿瘤,平均每一分钟就有一人确诊结直肠癌,每两分钟就有一人死于结直肠癌。然而结直肠癌发生、发展需要十余年时间,所以早期筛查可以显著降低肠癌死亡率,让肠癌止步。传统的结直肠癌筛查方法使用粪便潜血试剂盒或者肠镜进行检测判断,但平均漏诊率高达41%。北京市第一中西结合医院郭建巍在报告中介绍了几类新型的结直肠癌筛查方法,并分别对比了其优缺点。最后他认为FIT+便DNA(单靶点或多靶点)模式为肠癌筛查的主要手段,DNA甲基化检测是主要方法,并号召提高医务人员认知,他认为这将在结直肠癌的防控中发挥不可或缺的重要作用。李永哲 北京协和医院报告题目:自身免疫病实验诊断技术临床应用进展北京协和医院李永哲主任介绍了自身免疫病实验诊断技术的临床需求,自身免疫病新标志物临床应用进展,检测技术临床应用现状及发展趋势。首先明确了检查的一些基本要素,如免疫细胞、免疫分子、基因分型、自然抗体等等。随后介绍了自身免疫指标的应用,作为伴随诊断提供疾病预警判断等。李永哲主任重点介绍了自身抗体在炎性疾病中的应用,自身抗体与中毒的关联性,狼疮脑病与类风湿关节炎等新型标志物,以及新冠病毒与自身抗体的关系。陆予非 安捷伦科技(中国)有限公司报告题目:超亮荧光蛋白拓展免疫检测新征程荧光藻胆蛋白(RPE)是由多个小亚基组成的生物大分子,是一种高吸收荧光分子,具有良好的检测性能。当高灵敏度对检测和准确性至关重要,荧光藻胆蛋白是首选的荧光色素。荧光藻胆蛋白偶联物用于流式细胞术、免疫测定、MHC四聚体测定和珠基测定。陆予非展示了安捷伦科技能够提供的链霉亲和素、藻胆蛋白和广泛选择的结合产品。会议设置颁奖环节,会务组为本次获得优秀论文的年轻科研学者颁发了荣誉证书。优秀论文获奖者合影部分报告嘉宾合影留念(一)部分报告嘉宾合影留念(二)
  • 突破进口大型流式牛乳检测垄断,微流控融合单细胞成像技术大显身手——访朱良漪奖获奖企业中科苏净生物邵高祥总经理
    2023年初,备受业界关注的2022年“朱良漪分析仪器创新奖”颁奖典礼在京隆重举行,评选出“创新成果奖”3项,“青年创新奖”5名。中国仪器仪表学会分析仪器分会与仪器信息网联合采访了“朱良漪分析仪器创新奖”获得者,倾听了解他们的获奖感受、研发过程以及今后的研究方向。2022年朱良漪分析仪器创新奖“创新成果奖”获奖证书苏州中科苏净生物技术有限公司获得2022年“朱良漪分析仪器创新奖”之“创新成果奖”,获奖成果是“基于单细胞铺展微流控芯片与纳米荧光单细胞成像技术的细胞现场快速分析系统”。基于此,仪器信息网邀请苏州中科苏净生物总经理邵高祥向大家介绍其研制成果及对养殖乳品行业的重要应用等方面的看法。该项目针对养殖企业、乳品企业、消费者对牛奶体细胞数检测的需求,从科技创新、工程转化及应用推广三方面需求出发,研制出牛奶体细胞现场检测系统,具有“现场条件下、3min内、成本低于10元、单细胞成像与绝对计数”的特点优势。目前该技术成果主要面向的用户包括:奶牛养殖企业、普通奶牛养殖户、大中小型乳品厂、乳品加工企业、乳品检测中心实验室、兽医实验室等。 奶牛健康&奶质量关键指标——牛奶体细胞数SCC牛奶体细胞数(Somatic Cell Count, SCC),是指每毫升的牛奶中所含有的牛体细胞的数量,该项数值对养殖企业、乳品企业、消费者具有重要的指导价值,SCC的高低代表牛只乳腺是否受细菌感染的健康程度,同时也标志奶品的质量,因此作为奶牛健康和原料奶质量的关键指标,被纳入原料奶收购的计价体系进一步指导奶牛养殖。2004年农业部颁布《生鲜牛乳中体细胞测定方法》行业标准、2016年中国农垦乳业联盟颁布《中国农垦生鲜乳生产和质量标准》企业标准,将SCC限定为国际最严格的欧盟标准(400k/mL),为进一步规范市场、增强我国乳品的国际竞争力,SCC现场检测技术则成为标准制定以及实施的重要支撑。 突破大型流式细胞仪对牛乳体细胞检测垄断现有金标准检测方法(显微人工计数法和流式细胞计数法)与实际需求之间存在差距,前者检测时步骤多、费时费力且对专业水平要求高,后者则需进口的流式细胞仪,不仅价格昂贵、且需专业操作与维护。二者虽能对SCC实现精准检测,但均无法满足养殖企业、乳品企业的行业需求。现有的牛奶体细胞总数检测仪以进口大型流式细胞仪为主,性能优异,但存在价格昂贵、维护成本高,操作复杂、专业性强的痛点。现场快速的检测方法手段有限,严重制约了牧场管理、乳品厂质检的工作效率。本项目以值得信赖的精准检测性能,打破市场底价的仪器价格,低廉的单样本检测成本,实现现场条件下、3min 内,牛奶原奶中体细胞的精准计数,突破了大型流式细胞仪对牛乳体细胞检测的垄断。遵循需求牵引并依托科技创新研制满足需求的新技术产品,从各行业的实际需求出发,依托高性能荧光染料实现快速染色,基于单细胞铺展微流控芯片技术实现单细胞成像与绝对计数,实现了在现场条件下、高灵敏度与低成本的牛体细胞数检测,为SCC检测以及国标完善实施提供新技术手段。 微流控技术&单细胞成像技术强强联合一体化浇筑基于狭缝流体结构的微流控芯片是实现单细胞成像检测的核心,以单细胞铺展微流控芯片为核心,将其与纳米超速荧光染料和牛体细胞计数仪有机整合,形成了基于单细胞铺展微流控芯片与荧光单细胞成像技术的牛奶中体细胞现场检测系统。整个项目成果构成基于对单细胞铺展微流控芯片、纳米超速荧光染料以及智能传感的牛体细胞计数仪的创新设计与工程量产。实现了整个微流控芯片的结构、操作鲁棒性与结果精密性的提升;而纳米超速荧光染料则是通过微波加热合成聚集态不淬灭的量子点,该项技术更是实现了革兰氏阳性、革兰氏阴性、抗酸染色等细菌的超速普染,从而为针对细胞更为快速、有效、均匀的染色奠定了基础;牛体细胞计数仪通过硬件结构与软件算法两方面的优化与联用,实现了单细胞精准成像基础上的单细胞信号自动识别、自动采集、自动计数。单细胞铺展微流控芯片技术相比于其他微流控芯片技术具备两方面优势,创新设计方面依托狭缝结构使得微量液体中的细胞实现单层铺展并减小高浓度蛋白的遮盖;芯片核心区由进样口、分析区及引流槽区构成,引流槽区与排气孔配合,防止检测过程中的气泡干扰,与分析区配合可以减少检测中乳样品的堵塞。此外,整个单细胞铺展微流控芯片有双测量复核芯片,进一步提升了结果的准确性与可靠性。工程量产方面,采用一体注塑成型的方式,通过多模具优化,实现了成本可控、高量产与高成品率的大批量产。微流控技术联合单细胞成像技术的优势:(1)使用场景:非专业人员现场便携检测;(2)检测成本:仪器成本低、单次检测成本低;(3)操作简便、反馈快速、结果立等可取。 市场需求与技术能力倒挂亟需缓解获奖项目成果相关的仪器与配套试剂(milkCELL100 牛体细胞计数仪及配套微流控芯片/染色剂)已于 2019年12月12日与哈罗德(北京)科技有限公司签订了总代理商协议与100台仪器(含10000片试剂)订购合同。并被三元乳业、君乐宝乳业、奶牛养殖等畜牧企业应用于原奶、过程奶质量监测检测等环节,被河北省畜牧兽医研究所用于奶牛健康管理、牛奶品质检测的行业监管。伴随《生鲜牛乳中体细胞测定方法》、《中国农垦生鲜乳生产和质量标准》等行业/企业标准的进一步完善,以及国家标准的制定与实施,现有需求与技术能力倒挂的现象(奶牛养殖场/养殖户数量居多、需求巨大,但没有技术手段;乳品企业数量较少、没有旺盛需求,但技术手段先进充裕。)迫切需要缓解,最小的市场需求量也会超过十万台,试剂每日消耗更是巨大,这是以自有知识产权产品支撑国家食品安全的重要机遇。 展望由微流控芯片、纳米荧光染料、智能传感有机融合所构建的“单细胞铺展技术及单细胞成像/绝对计数”技术平台,具有针对细胞分析拓展其它应用领域的潜力,未来可将其拓展至临床即时检测领域(Point Of Care Testing, POCT),分别进行指尖血的人白细胞总数检测、免疫+细胞联合检测。附:关于“朱良漪分析仪器创新奖”朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。“朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发五届,先后有15项分析仪器创新成果、18位青年创新科学家获奖。
  • 中国检科院张峰团队融合离子淌度质谱和脂质组学技术发现可表征真菌毒素侵染人类细胞的生物标志物
    近日,中国检科院张峰首席专家团队在毒性快速评价研究领域取得科研新进展,构建了一种基于脂质组学和离子淌度质谱的真菌毒素侵染细胞评价模型。真菌毒素及其次级代谢产物种类繁多,分布广,毒性强,并可通过食物链累积和传递,严重威胁着人类健康。目前,真菌毒素的毒性评价主要采用体内模型和体外模型开展,体内模型评价准确性高,但存在成本高、周期长、基质效应强等问题,且低剂量的真菌毒素往往无法满足动物实验毒性评价的用量要求。体外模型具有条件可控、周期性短等优点,但是开展基于真菌毒素侵染细胞毒性模型评价也有一定的局限性,在低剂量真菌毒素侵染时细胞状态变化不显著,难以进行毒性评价。研究团队将脂质组学技术引入体外毒性评价领域,融合离子淌度质谱技术,筛选出真菌毒素侵染人源细胞的生物标志物,并研究了真菌毒素侵染导致的人源细胞脂质变化规律。经统计学差异分析发现,受伏马毒素B1侵染的HepG2细胞模型生物标记物为神经鞘脂类和甘油磷脂类,受黄曲霉毒素B1侵染的细胞模型生物标记物为甘油糖脂类,受赭曲霉毒素A侵染的细胞模型生物标记物以甘油磷脂类为代表类。检测标志物的含量可以用于评价新型真菌毒素的毒性大小。该方法相比于细胞模型毒性评价实验,具有两大优点:一是方法灵敏度高;二是可通过标志物的定性定量分析,精准评价复合毒素的毒性。相关研究由在读研究生陈兰在导师张峰研究员的指导下完成,得到了陈凤明博士等老师的指导帮助,研究成果发表在分析化学领域国际顶级期刊《Analytical Chemistry》(影响因子6.986)2022, 94, 18, 6719–6727,该工作得到了国家重点研发计划项目,国家高层次人才项目的支持。图1 不同真菌毒素侵染细胞脂质组学生物标记物筛查表1 不同毒素侵染细胞的代表性生物标志物FormulaDescriptionAFB1C41H76O5DG(18:2(9Z,12Z)/20:0/0:0)C51H98O6TG(14:0/16:0/18:0)C59H110O6TG(18:0/18:1(9Z)/20:1(11Z))C61H112O6TG(18:1(9Z)/20:1(11Z)/20:1(11Z))C63H116O6TG(18:1(9Z)/20:1(11Z)/22:1(13Z))FB1C32H65NO3Cer(d18:0/14:0)C34H69NO3Cer(d18:0/16:0)C45H76NO6PPE dO-40:9C45H91N2O6PSM(d18:1/22:0)C47H93N2O6PSM(d18:1/24:1(15Z))DONC37H72O4DG(O-16:0/18:1(9Z))C36H69O8PPA(13:0/20:1(11Z))C39H78NO8PPC(10:0/21:0)C35H30O17Thonningianin BC46H82NO8PPC(16:0/22:5(4Z,7Z,10Z,13Z,16Z))OTAC37H68O4phenolic phthiocerolC36H69O8PPA(13:0/20:1(11Z))C45H76NO6PPE dO-40:9C45H88NO9PPS(O-20:0/19:1(9Z))
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • 江苏弗泰生物科技融合蛋白试剂首次出口美国
    生意社7月26日讯 日前,江苏弗泰生物科技有限公司的融合蛋白试剂获得泰州海关出境通关许可,远销美国,成为国内首批经过海关允许出口的同类试剂。   据介绍,融合蛋白是目前世界上为数很少的以抑制为作用机理的重组药物,广泛应用于自身免疫、肿瘤免疫、器官移植。泰州中国医药城引进以海外科学家郑心校教授为技术领军人,以高层次人才张栋博士、黄序博士等为骨干的技术团队,建立了国内乃至国际领先的重组蛋白类药物研发技术服务平台——细胞及蛋白质治疗研发中心。目前,弗泰生物已建成哺乳动物细胞、原核细胞表达等产品生产线,创制出数十种具有全新功能的融合蛋白试剂,并接到了来自日本、美国的订单。 (金陵)
  • 高通量自动化成像及分析设备使用心得——中科院分子细胞科学卓越创新中心高级工程师韩帅
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术”主题约稿活动(点击查看)。本期,特别邀请到中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管韩帅博士谈一谈高通量自动化成像及分析设备方面的使用心得。中国科学院分子细胞科学卓越创新中心 韩帅 高级工程师韩帅,博士,高级工程师,中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管,负责功能基因组筛选、高内涵筛选及单细胞转录组测序文库构建等技术体系搭建,为药物新靶标发现等高通量筛选项目提供技术咨询和服务。建立了多种基于高内涵的高通量筛选体系,作为主编组织编写了《高通量筛选技术实验手册》及《高内涵成像与分析实验手册》;利用自动化设备建立了基于384孔板模式的单细胞转录组自动化建库体系。所建立的技术体系帮助用户在Nature、Cell、Cancer Cell、Nature Genetics等知名期刊发表多篇研究论文。俗话说:“眼见为实”,显微成像技术是生命科学研究领域中至关重要的检测手段之一。随着自动化技术与显微成像技术的融合,以及图像分析技术的提升,涌现出了一大类高通量自动化成像及分析仪器。这类仪器不仅可以帮助我们在短时间内迅速获取大量图片,而且能够从中提取出多种参数的定量信息。这些特点使其能够最大程度上避免传统高通量筛选检测方式因检测指标相对单一而带来的假阳性和假阴性结果。目前,高通量自动化成像及分析设备在高通量药物筛选、功能基因组筛选及其他多样品检测项目中有了越来越广泛的应用,涉及的领域也涵盖了细胞信号通路、肿瘤、神经生物学、免疫学、传染病学、干细胞等多种生物学研究领域。中国科学院分子细胞科学卓越创新中心化学生物学技术平台是一个以高通量实验技术为手段,为功能基因组筛选及药物筛选等通量化实验提供服务的技术平台。显微成像是我们开展高通量筛选项目的重要检测手段之一。为了最大程度满足中心乃至全国用户在高通量成像及定量分析方面多元化的实验需求,平台目前配备了5台侧重点不同、各有优势的高通量自动化成像及分析设备。为了帮助用户获得最佳数据,我们对成像实验主要从以下三个方面进行综合考虑:实验标记体系选择、成像设备选择及图像分析方法设置。其中实验标记体系及图像分析方法设置在《高内涵成像及分析实验手册》中有详细描述,本文将结合我们在技术服务过程中的体会,重点就如何选择合适的高通量自动化成像及分析仪器进行讨论。我们参考平台现有的设备,将自动化成像分析仪按照性能特点大致分为三个类别,下文将分类探讨其特点及应用。1. 高内涵成像分析仪高内涵成像分析系统通常具备高分辨率、多通道成像、大样本容量和高通量的能力,配合强大的图像定量分析软件,适用于高度复杂的细胞和生物分子研究,如细胞表型分析、药物筛选等。具体来说,高分辨率的成像能力使研究者能够在微观水平上观察细胞和亚细胞结构的微观细节;其次,多通道成像使得研究者可以同时获得多个生物标记物的信息,为复杂生物学研究提供更全面的数据;高通量性能使得在相对短的时间内处理大量样本成为可能,支持高效的大规模实验和筛选。高内涵成像分析仪配备非常强大的图像分析软件,这是它区分于其他类别高通量成像分析仪的最主要方面。其软件可以自动识别、分割细胞及细胞亚结构,并在此基础上对数目、形态、强度、定位、运动轨迹、纹理等多种参数进行定量化分析。大多分析软件的界面呈现为可自由组合的多种分析模块,用户可以像使用命令语句编写程序一样,根据实际需求非常灵活地将模块按照特定逻辑进行个性化组装,最终获得所需参数。分析软件还可以提供单个细胞的数据,并可根据单细胞数据对整体细胞进行亚群分类,非常适合异质性培养体系的分析。对于动力学实验,分析过程中配合细胞追踪模块(cell tracking)可以拿到每个单细胞的动力学变化数据。很多高内涵的分析软件中还加入了机器自学习或人工智能,对于复杂的表型或高通量筛选过程中会出现的不可预测的多样化表型进行智能化分析。这种智能化的图像分析有助于从庞大的图像数据中提取有意义的信息,加速实验结果的分析和解释。根据光路设计的不同,高内涵又分为共聚焦高内涵及宽场高内涵两大类。共聚焦成像模式最大的优势在于去除了来自非焦面的信号,从而极大地提高图像的信噪比,使图像更清晰。但这并不意味着宽场成像在所有应用中都劣于共聚焦成像。在我们的实际运行过程中,宽场成像可以满足大部分日常需求,例如荧光强度、细胞形态、细胞迁移、周期、类器官大小和数目检测等等。在某些对信噪比要求较高的实验中,共聚焦表现出更大的优势。例如,对比较厚的样品(如类器官或多层生长的细胞)进行成像并需要对单个细胞进行精确定量时,共聚焦成像会去除大量来自非焦面的信号,从而给出更准确的数据;当关注的细胞亚结构尺寸较小(例如自噬小体、蛋白聚集体等呈现为点状的结构)时,共聚焦成像会获得信噪比更高的图像,使计数或荧光强度的分析更加准确;另外,对于信号较弱的样品,由于共聚焦成像一般使用能量强波长单一的激光作为激发光源,且通过pinhole过滤掉大部分来自培养基及板底的背景信号,图像信噪比会较宽场成像有非常显著地提升。高内涵成像分析仪在生命科学研究中的应用非常广泛。在细胞生物学中,它们被用于研究细胞形态学、细胞内信号传导、亚细胞结构等方面。在药物筛选和药物发现中,高内涵成像分析仪可以用于评估化合物对细胞的影响,加速新药物的发现和开发过程。此外,这些设备还在生物标记物研究、基因表达分析、蛋白质相互作用研究等方面发挥着关键作用。2. 分析功能相对简单而明确的自动化显微镜相比于分析功能丰富而灵活但操作门槛较高的高内涵成像分析仪,另外一类仪器应用场景明确且操作简单更易上手。这类仪器在成像方面具有高度自动化的功能,成像速度快,能够拍摄高质量的明场及荧光图像;用户友好的操作界面使得操作者能够轻松设置实验参数、调整显微镜设置,并进行图像采集;但物镜配置往往以低倍镜为主,这些特点决定了这类成像仪器的应用场景基本以细胞整体水平的观测和分析为主,不适用于对分辨率要求更高的细胞亚结构水平的检测;分析软件提供的分析功能相对简单而明确,界面大多以已开发好的分析流程呈现给用户,用户只需优化部分参数的设置即可。结合我们平台的实际运行情况,这类仪器较多的应用是细胞计数、细胞活死分析、病毒感染/质粒转染效率分析、细胞融合度分析/生长曲线绘制、基因表达/细胞整体荧光强度分析、克隆个数分析等。概括来讲,如果实验的定量需求基于细胞计数,或是整体荧光强度,或孔内特定区域的分析(如细胞克隆或细胞融合度),都可以考虑这类自动化显微成像仪器。由于这类仪器低倍镜成像速度快,在以酶标仪读值作为主要检测指标的高通量筛选体系中,我们会根据具体情况建议用户在实验结束之前利用自动化显微镜收集全孔图像,便于后续酶标数据分析过程中对阳性孔或数据异常的孔回溯图像,从而帮助筛选者有效减少传统高通量筛选体系中的假阳性和假阴性。例如,实验结束前,在不影响酶标检测体系的前提下,利用核染色或明场成像统计孔内细胞数,可辅助校正由孔间细胞数差异导致的酶标读值变化。总之,这类仪器虽然功能相对简单,但它们提供了快速而有效的图像获取及简便的定量分析解决方案。3. 自动化活细胞长时程监测设备若要对活细胞样品进行较长时间的跟踪拍摄,通常需要在拍摄过程中提供二氧化碳、温度及湿度控制。虽然大多数自动化成像仪器能够实现二氧化碳和温度的控制,然而对于需要长时间跟踪拍摄的实验,如细胞生长曲线监测和细胞迁移监测往往需要持续数天,湿度控制对于确保在观察期间细胞处于最适宜状态变得尤为关键。这种情况下,就需要使用自动化活细胞长时程监测设备。自动化活细胞监测设备的湿度控制有多种实现方式。一种是体积较小可直接放入细胞培养箱内使用的活细胞工作站,细胞培养箱为成像设备内的样品提供所有环境控制。这类仪器通常具备多个板位,能够实现对中等通量样本的同时监测。另一种方式是成像设备自身搭载自动湿度控制模块。另外,对于开放式的自动化显微镜,可通过在载物台上加装具有活细胞环境控制模块的腔室(chamber),来实现在拍摄过程中对活细胞环境的控制。然而,这类设备一次只能实现一块板的连续拍摄,更适用于低通量样本监测。此外,我们平台还采用了将高内涵成像设备通过机械臂与自动化培养箱整合的方式,实现活细胞长时程监测。当一块样品板完成拍摄后,机械臂将其送回自动化培养箱,继续下一块样品板的拍摄。这种运行方式也可实现中等通量的样品监测,但只适合拍照时间点间隔较长的实验。在某些研究项目中,还会出现对氧气浓度有要求的实验(例如研究低氧或高氧环境对细胞的影响)。这种情况对环境控制提出了更高的要求,需要成像设备或培养箱搭载氧气浓度控制模块。自动化活细胞长时程监测设备通过连续、实时的图像采集,使研究人员能够观察和记录细胞的实时变化。对于研究细胞的实时响应、细胞迁移、细胞周期、细胞增殖等过程至关重要,确保我们不会错过微观层面上的关键事件。综上所述,高通量自动化成像分析设备的不同类别在生命科学研究中各具特色,为科学家提供了多样化的工具,促进了研究的深入发展。高内涵成像分析仪通过高分辨率成像及丰富多样化的定量分析指标为生物学研究提供了深刻的洞察;分析功能相对简单而明确的自动化显微镜为分辨率要求不高的通量化检测提供了快速有效的图像获取及简便的定量分析解决方案;而活细胞长时程监测设备则使得细胞动态过程的观察更为全面和细致。这三类设备相互补充,共同推动了生命科学领域的进步,为科学家提供了更广阔的研究空间。在未来,随着这些设备技术的不断创新和进步,会更好地服务于生命科学研究。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 我国科学家研发出抗HIV的脂肽病毒融合抑制剂
    高效抗逆转录病毒疗法是目前治疗艾滋病的主要方法,然而患者一旦停药,HIV病毒会迅速反弹。同时艾滋病患者长期服药也面临药物毒性积累和病毒耐药等问题。因此实现停药后的病毒控制是艾滋病防治的重要目标。近期,我国科学家成功开发出脂肽病毒融合抑制剂LP-98,能够有效治疗、预防SHIV(一种HIV和猴免疫缺陷病毒的嵌合病毒),并且在部分恒河猴中实现了停药后的病毒稳定控制。研究成果发表在《Cell》期刊,标题为“Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide”。  脂肽病毒融合抑制剂能够阻断HIV病毒与细胞膜融合,从而阻止病毒入侵细胞。科研人员筛选出具有高效、长效抗病毒活性的脂肽病毒融合抑制剂LP-98,并对21只感染SHIV的恒河猴施以LP-98治疗。结果发现,其中5只恒河猴在停药后实现了病毒的稳定控制,其病毒DNA以低水平隐藏于深部淋巴结;16只恒河猴在停药后出现病毒反弹,其病毒DNA以高水平聚集在浅表淋巴结。科研人员进一步研究了部分恒河猴实现停药后病毒稳定控制的机制,发现CD8+ T细胞起到了关键作用。此外,研究还发现LP-98可有效阻断SHIV和SIV(猴免疫缺陷病毒)经过直肠、阴道或静脉途径的感染,从而为暴露前预防提供了新策略。  这项研究成果为HIV的治疗和预防提供了一种有效策略,也为后续研究治疗药物靶点提供了重要基础。  论文链接:  https://www.cell.com/cell/fulltext/S0092-8674(21)01382-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867421013829%3Fshowall%3Dtrue#%20  注:此研究成果摘自《Cell》期刊相关报道,文章内容不代表本网站观点和立场,仅供参考。
  • IVIS视角 | 穿上 “细胞膜吉利服”的纳米载体在体内必将威力大增
    众所周知,多功能纳米载体可以有效识别肿瘤细胞并且在体外具有良好的抗肿瘤效果。但是目光转向体内,这些纳米载体往往在免疫系统的攻击下集体失灵。因为,人体免疫系统将会感知纳米载体的入侵,并且非常努力的把我们精心设计的载体清除掉。一旦纳米载体被清除掉,药物就很难到达目标肿瘤区域,很难实现杀伤肿瘤的效果。因此,纳米医学的一个非常重要的课题就是在不破坏免疫系统的前提下,让纳米载体躲避免疫系统的攻击。传统的解决方案我们都是通过在纳米载体表面携带各种伪装工具,尽量和免疫细胞捉迷藏,能躲则躲,绝不露面。但是这些载体也很容易迷路, 到达深层肿瘤部位的很少,并且在和免疫系统的斗智斗勇中,还会激发免疫系统产生新的抗体从而加速纳米载体的清除,因此很难达到治疗的效果。而随着仿生纳米医学的发展,科学家们可以让纳米载体穿上“吉利服”,不但可以在免疫系统中潜伏下来,还可以大摇大摆的从免疫细胞的眼皮底下蒙混过关,发挥极大功效。这种“吉利服”就是细胞膜提取物,不同种类细胞提取的细胞膜包覆在纳米载体表面还可以表现出特殊的功效,像红细胞膜或者一些免疫细胞膜可以提高纳米载体的体内循环时间,肿瘤细胞膜可以特异识别同源肿瘤等。穿上“细胞膜吉利服”之后,纳米载体将显现各方面的优势和潜力,从而成为近年来多功能纳米载体领域的研究热点之一。1、T细胞膜包裹下仿生纳米药物的免疫识别增强通过糖代谢技术,获取嵌入叠氮基团(N3)的功能化T细胞,并提取功能化T细胞膜包裹在吲哚菁绿/聚合物纳米载体表面,构建仿生纳米光敏剂。功能化T细胞膜上不但原本的抗原受体可以赋予纳米光敏剂识别肿瘤细胞的能力,并且N3基团可以识别肿瘤细胞糖代谢靶点,从而实现纳米载体在肿瘤内部的富集,通过小动物光学成像可以清楚的看到T细胞膜包裹下仿生纳米药物在肿瘤部位的靶向作用,从而进一步实现肿瘤的精准可视化治疗。功能化T细胞膜仿生纳米颗粒实现特异性的肿瘤靶向和精准光热治疗参考文献:T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. Advanced Science. 2019: 1900251.2、生物学重编程全抗原细胞膜助力纳米疫苗的研发将肿瘤细胞和树突细胞融合细胞的生物学重编程细胞膜包覆在金属有机化合物表面,构建肿瘤疫苗可以在融合细胞膜表面表达大量免疫刺激分子,从而使得包裹融合细胞膜的纳米载体像抗原呈递细胞一样直接作用T细胞从而激活免疫反应。通过小动物光学成像,可以看到重编程细胞膜包覆的纳米载体在体内长循环到达肿瘤部位的过程。到达肿瘤部位的纳米载体还可以被树突细胞识别,从而诱导树突细胞成熟,增强免疫效果,最终消除肿瘤,从而拓展肿瘤治疗平台。生物学重编程细胞膜包裹纳米载体的过程以及肿瘤免疫的激活参考文献: Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nature Communications. 2019, 10(1): 3199.3、肿瘤细胞膜包裹的黑磷纳米载体拓宽光热肿瘤免疫治疗手术切除的肿瘤组织含有对患者特异性的新抗原,是成为制备个体化肿瘤疫苗最好的材料来源。作者利用细胞膜封装的方式在二维光热黑磷量子点(BPQDs)表面包裹肿瘤组织的细胞膜,从而制备具有光热效应的纳米肿瘤疫苗(BPQD-CCNVs),并且把纳米肿瘤疫苗和集落刺激因子(GM-CSF)装入热敏水凝胶中。皮下注射水凝胶后可以在红外光的作用下持续释放纳米疫苗以及集落刺激因子,招募并激活DC细胞,从而捕获肿瘤抗原并激活肿瘤特异性T细胞。同时,尾静脉注射PD-1抑制剂,阻断PD-1/PD-L1免疫检查点通路,增强T细胞抗肿瘤免疫应答效应。通过活体光学成像我们可以对肿瘤进行生物发光标记,从而长期连续监测肿瘤在体内的发展情况。实验结果表明通过光热免疫治疗可以有效清除实体肿瘤同时抑制术后转移的复发。(A)光热肿瘤免疫实验设计思路;(B)FITC标记的水凝胶在体内的降解情况;(C)个性化光热肿瘤免疫治疗可以有效抑制术后实体肿瘤的复发;(D)个性化光热肿瘤免疫治疗可以有效抑制术后肿瘤的转移。参考文献:Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS nano. 2019, 13(3): 2956-2968.珀金埃尔默拥有先进的分子影像技术,其小动物活体成像系统为生物医学的各种研究领域(包括肿瘤、干细胞、传染病、炎症、免疫性疾病、神经疾病、心血管疾病、代谢疾病、基因治疗、纳米材料、新药研发、植物学等)提供了完整的成像解决方案。点击链接,获取相关产品及应用资料:https://account.custouch.com/perkinelmer/site/#/list/15?_wxr_1564535099232&refresh=true关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • X时代的融合交叉与创新,2022医疗科技世界峰会圆满落幕!
    2022年12月14日-15日,由动脉网VB100、蛋壳研究院主办的2022医疗科技世界峰会在苏州狮山国际会议中心圆满落幕。展望X时代的交叉融合创新与科研成果转化,聚焦三大硬科技下未来医疗升级与价值重构是本次大会的主旋律。在开幕式上,蛋黄科技CEO刘辉光为大会致辞并表示,医疗创新事业转折点以超乎想象的方式和速度到来,过去8年中,动脉网已经陪伴了超过50家企业,从初创变成上市公司,从未来医疗100强榜单毕业,我们一直为有机会服务全世界的医疗健康创新家而感到骄傲,也一直都在记录着产业的变革和创新。刘辉光|蛋黄科技CEO01 政产学研协同创新,聚焦医疗科技前沿发展本次大会汇聚了众多顶尖大咖嘉宾,14日上午就医疗器械政策审批与创新发展趋势、医学影像人工智能、康复医学与现代科技的融合发展、心脏瓣膜创新研发、计算机辅助药物设计中分子动力学模拟的应用等话题展开深入探讨。出席大会的国内外一线专家,包括中国工程院院士、上海理工大学光学与电子信息工程学院院长庄松林;中国药品监督管理研究会副会长、原国家食品药品监督管理局医疗器械监管司司长王宝亭;中国科学技术大学讲席教授、美国国家学术发明院院士周少华;欧洲科学院外籍院士、中科院自动化所脑网络组研究中心主任蒋田仔;美国医学科学院国际院士励建安;上海长海医院心胸外科主任医师陆方林;美国密歇根州立大学超算研究中心院长、Joseph Zichis讲席教授Kenneth M. Merz Jr。庄松林院士开场分享,从太赫兹影像与波谱、量子生物ATP光子、裸眼3D临床显示、计算光学无透镜细胞显微成像技术、拉曼光谱仪、微流控PCR仪器、无创健康参数检测,以及新冠病毒及烈性病原全自动检测系统等方面,为我们讲述“光学技术在医学中的应用”。王宝亭先生总结了我国创新医疗器械鼓励政策和审批实践,认为创新医疗器械应该从医院和临床医生的需求、病人及家属需求、主要进口医疗器械研究、有关科研机构和高等院校、加大研发投入五个方面着手。周少华院士从算法层面为大家阐释了医学影像人工智能,为解决大任务小数据的问题,他的团队从“降低标注数据,构建全能型的通用模型,把知识和学习融合在一起”三方面进行探索。励建安院士则在现场与大家探讨了21世纪10项最大的科技进步与康复医学的关系,希望激发大家对康复医学未来投资发展的无限想象空间和发展空间。陆方林主任从医生的角度为大家分享了心脏瓣膜创新研发的临床思考,他认为在研发过程中,仿生并非是简单的模仿,而是具有超越性的,单纯的外科技术介入化并不一定能产生良好结果,第一性原理更加重要,产品会随着其他技术进步而进一步发展,并且医工结合需要相互包容与兼容。Dr.Kenneth M. Merz Jr.分享了计算机辅助药物设计中分子动力学模拟的应用,他认为使用分子动力学的自由能方法是可以广泛适用的。从左至右,从上到下依次为:庄松林|中国工程院院士、上海理工大学光学与电子信息工程学院院长;王宝亭|中国药品监督管理研究会副会长、原国家食品药品监督管理局医疗器械监管司司长;周少华| 中国科学技术大学讲席教授、美国国家学术发明院院士;蒋田仔|欧洲科学院外籍院士、中科院自动化所脑网络组研究中心主任、IEEE/IAPR/AIMBE Fellow 励建安|美国医学科学院国际院士;陆方林|上海长海医院心胸外科主任医师 Dr. Kenneth M. Merz Jr.|美国密歇根州立大学超算研究中心院长、Joseph Zichis讲席教授02 科技赋能医疗“底色”,产业链共话新生态当前,医疗领域的转化与科技创新市场热度高涨,在这几年的创新浪潮和剧烈变革中,离不开科研院校、企业、医院、以及资本等诸多创新要素的协同发力。在价值链条中,各个创新主体应该如何破局?未来要如何实现产业链的深度协同,共建良好的行业新生态?今年正值微软入华30周年,微软中国企业商用事业部健康与生命科学行业总经理朱沪君结合自身经验,分享了云计算赋能现代医疗实现数字化生产力,微软和行业伙伴提供面向医药行业全价值链数字化能力建设。创投代表则请到了国投招商投资总监杜方尧和普华资本管理合伙人周密。杜方尧表示,国投还是希望投资一些有创新能力并且能够满足目前临床未满足需求的产品或者技术平台,重点来说适应症方面会关注肿瘤、代谢和呼吸系统疾病,包括新药研发的过程中一些产业链的要素环节。周密提出,医疗新基建下,我国医疗器械行业将保持高景气,但更重要的是在国内医疗器械招采和支付政策革新背景下,真正具有临床价值的产品将受到青睐,这样引发医疗器械行业内的高度分化,从长期维度看,应该关注布局国际化、国产化、新诊疗、新消费。从左至右杜方尧|国投招商投资总监 ;朱沪君|微软中国企业商用事业部健康与生命科学行业总经理 ;周 密|普华资本管理合伙人03 汇聚创新资源优势,深挖科研成果转化项目为进一步了解国内医院科技创新成果转化现状,总结推广医院创新成果转化先进经验,预立生科联合动脉网VB100、创瑞投资、医学科技成果转化管理100人论坛(T100论坛)筹备组共同推出了《医学科技成果转化排行榜(医疗机构类)》,以期为全国医院创新发展提供参考支撑。值此医疗科技创新盛会,排行榜发起方于12月14日峰会开幕式,正式对外发布《医学科技成果转化排行榜(医疗机构类)》。北京预立生科知识产权代理有限公司总经理孟祥斌、蛋黄科技CEO刘辉光和创瑞投资集团董事长、重庆点石创坚基金总经理唐浩夫出席排行榜发布仪式,一起完成榜单揭幕及发布。发布仪式医学科技成果转化排行榜(医疗机构类)(扫码查看榜单详情)14日下午的科学家×创新者板块,作为资本与项目融合的绝佳舞台,首先是比邻星创投创始合伙人孙晓路的演讲,比邻星创投“唯新不破”,突破科学和技术的既有界限,为临床研究带来变革,将所有精力、时间和专业知识用于这些突破,以治疗最具挑战性的疾病。截止到目前,支持了超过50个全球首创产品,接近2/3的被投企业有全球首创产品。接下来是5家优秀的项目企业方做展示,涵盖新型人体器官芯片、动力学+AI驱动的新药分子发现、重症冠心病一体化解决方案以及医疗介入器械创新等前沿技术创新。江苏艾玮得生物科技有限公司副总经理陈早早,在此次会上带来了团队人体器官芯片技术团队转化科技成果和技术进步,分别是提出基于双光子聚合的芯片加工策略、提出并实现了通过微结构控制亲疏水表面的设想、发明了光子晶体细胞力显微镜、针对器官芯片提出了肿瘤的6个分析指标、确立了细胞外基质材料生产工艺。予路乾行生物科技CSO刘昊介绍,予路乾行是一家基于Dynamics-Based Drug Discovery(DBDD,基于动力学的药物发现)的新药分子发现工场,与其他公司相比,采用了多尺度动力学模型,可以解决更为复杂的构象变化过程,而且平衡了运算速度和精度,更符合商业环境下的创新药开发需求。精智未来创始人、董事长,京津冀国家技术创新中心博导王俊奇也做了主题演讲,精智未来创造性地融合微机(MEMS),微流控(Microfludic)和人工智能(AI),以呼气代谢组学为理论基础,开发了全球首款超灵敏、高分辨、智能化床旁(POCT)呼气分子分析色谱仪,通过对呼气中的挥发性有机物代谢分子(VOC)分析,为癌症早筛、疾病快诊和慢病居家监测提供无创便捷的诊断服务、健康管理服务。在荷清和创医疗科技CEO张淑燕的分享下,现场观众领略了国内首个、国际领先的、具有完全自主知识产权的超声介入溶栓技术平台的进展和突破。公司秉持创新发展的理念,以自有核心技术为平台努力将公司打造成介入医疗器械领域的知名企业。悦唯医疗是由包括联合创始人、CEO于文渊在内的三甲医院的心外科团队联合器械产业资深技术高管共同创立,致力于冠心病的诊疗全流程研发创新型医疗设备及耗材,用原创器械解决冠心病内外科诊疗技术难点,顺应冠脉外科发展趋势的创新医疗。从左至右,从上到下依次为:孙晓路|比邻星创投创始合伙人;陈早早|江苏艾玮得生物科技有限公司 副总经理 ;刘 昊|予路乾行生物科技CSO ;王俊奇|精智未来创始人、董事长,京津冀国家技术创新中心博导;张淑燕|荷清和创医疗科技CEO;于文渊|悦唯医疗联合创始人、CEO04 探索科技与医疗的深度融合,关注三大硬科技的创新应用“医疗+时代”来临,全球科技创新进入活跃期,科学技术革命朝着与医疗健康深度融合的方向加速演进。15日的大会整体围绕三大技术的创新应用展开,在历史节点中找寻机遇,探索科学技术与医疗技术的深度融合,需要解析更多的医疗科技新锐创新应用实践,发现更多的创新性医疗科技解决方案。动脉网VB100、蛋壳研究院于2022年9月面向全领域、全成长阶段的医疗健康企业发起“VB-Find Award:2022年度最具创新性医疗科技产品(解决方案)TOP100”征集,从生物技术、智能制造及新材料技术、数字及信息技术三大技术集群出发,寻找最具创新性的医疗科技产品(解决方案),旨在发现具有技术先进性、满足医学临床需求、行业示范效果突出的创新案例,打造医疗科技前沿研究及应用成果展示平台,赋能医疗科技企业品牌成长;同时,深入剖析我国医疗科技行业发展现状,探讨未来创新范式。“VB-Find AwardFind”寓意生命健康领域发现与探索的历程,也指代被发现的推动现代医疗变革的创新产品。值此医疗科技创新盛会,榜单组委会于12月15日峰会现场,正式对外发布“VB-Find Award:2022年度最具创新性医疗科技产品(解决方案)TOP100”。蛋黄科技CEO刘辉光、蛋壳资本董事总经理贺斯渡、VB100总经理王广龙为获奖企业代表颁奖并合影留念。颁奖仪式VB-Find Award:2022年度最具创新性医疗科技产品(解决方案)TOP100(扫码查看榜单详情)生物技术的快速发展与突破,孕育着未来人类生命科学的新动能。“政策+技术+产品”齐头并进,奠定了精准医疗行业的发展基石。先声诊断通过持续的技术创新,目前在肿瘤、中枢神经系统、感染及药物基因组学等治疗领域拥有完善的创新产品管线。先声诊断肿瘤研发负责人许青在分享中对2030年精准医疗进行了预测,并提出为临床实验室提供IVD产品及个性化LDT解决方案的能力,将成为精准医疗企业的核心竞争力。许 青|先声诊断肿瘤研发负责人新药研发正变得日益困难,基于药物研发本身高投入、高技术、高风险、长周期的特性,大量企业都试图通过AI、大数据等计算技术加速药物研发。予路乾行近期连续发表两篇顶刊封面文章,深度阐释基于动力学的新药发现。在15日上午圆桌讨论环节中,予路乾行与小分子、小分子应用场景的代表企业围绕“利用DBDD,推动现代药物研发的应用场景与前景展望”展开思想碰撞,现场掀起一阵头脑风暴。提到与予路乾行的合作,鞍石生物药物化学总监李功说,进行初步试用时就得到一些非常惊艳的结果,所以加深了共同做有AI加持生物科技公司的想法,目前公司正在开发下一代激酶抑制剂的产品,试图解决现在临床产品的耐药突变的问题。晶云科睿思COO孟丽苹则提出药物进入到人体需要经历很多生物过程,一些生物过程现在科学上研究的并不非常清楚,同时AI计算也需要很多数据,这些数据最好是能够真实准确的。最后,针对AI对于制药领域中究竟还有多大的潜力,予路乾行生物科技董事长郑铮提到,整个药物设计早期就是需要大量的试错,在这个阶段,计算机辅助药物设计可以利用计算在相对较低廉的成本下保证相对较高的成功率。基于对于国内生态的感受以及其他企业的合作,公司的定位是新药分子创新工厂,从计算角度来讲,提出源头式的分子结构的设计以及对于分子的评估能力,可能恰恰是目前AI技术最大的优势,能够和诸多的下游药企配合起来,快速实现药物早期阶段的推进。AI的最终目的并不是为了取代实验,未来可期的是随着算力不断提升,AI算法对于解释性模型,甚至可以把量子力学第一性原理应用到药物研发复杂体系中,理论精度逼近实验的精度,在一定程度上达到实验所不能达到的效果,这可能是AI发挥的最终价值。苏州超算中心总助、云与超算事业部总经理陈锋提到,基于AI背景的生物科技企业与算力密不可分,自己搭建运算平台,投入成本非常高昂,AI的重要意义在于降本增效,所以利用国有资源对于算力起到支持实际上是非常好的模式。从左至右依次为:陈松年|蛋壳资本投资总监;沈心怡|予路乾行商务负责人;陈 锋|苏州超算中心总助、云与超算事业部总经理;线上连线嘉宾:李 功|鞍石生物药物化学总监;郑 铮|予路乾行生物科技董事长;孟丽苹|晶云科睿思COO伴随着5G、云计算、物联网、人工智能、大数据等新一代信息技术的蓬勃发展,数字化、网络化、智能化的设施和解决方案与医疗场景加快结合。思科资深系统架构师、IT领域技术专家、思科助力制造业数字化转型践行者王海鹰分享道,生物医药企业针对出海面临的挑战主要是法律和合规风险、区域与时差的风险以及缺乏稳定供应链。思科为了协助中企提高业务敏捷度,保障安全合规性,预防潜在风险,提出了企业出海数字化三部曲。出海企业IT的能力,从初具规模到成熟,大致可分为“探索”,“扩张”和“创新”三个发展阶段。探索期重要的是确保数据连接和安全合规,用数字化打通应用和数据;第二阶段则需要实现可预期的IT架构,采用多云混合架构助力企业打造业务弹性、应变和应急能力;最后是实现企业出海的全球标准化。亚马逊云科技(AWS)大中华区首席医疗行业总监李健同样表示,数字经济的发展,催生了全球化的数字贸易。中国企业上云出海,正从“数字化出海”向“出海数字化”拓展。中国商业联合会互联网应用工作委员会智库顾问、国家互联网数据中心产业技术创新战略联盟技术专家委员会副主任委员施中华则介绍ITOT在医药行业中的行业趋势与现状,并分析了智能制造IT与OT的融合。从上到下,从左至右:王海鹰|思科资深系统架构师、IT领域技术专家、思科助力制造业数字化转型践行者;李 健|亚马逊云科技(AWS)大中华区首席医疗行业总监;施中华|中国商业联合会互联网应用工作委员会智库顾问、国家互联网数据中心产业技术创新战略联盟技术专家委员会副主任委员15日的大会上,“数字化转型”和“企业出海”是两个热点词汇,作为全球科技龙头企业,思科积极助力企业实现全球化进程。在“药企如何加速出海,打造“中国好药”新模式?”圆桌环节,思科资深系统架构师、IT领域技术专家王海鹰;中国商业联合会互联网应用工作委员会智库顾问、国家互联网数据中心产业技术创新战略联盟技术专家委员会副主任委员施中华;思科大中华区新兴市场事业部中国区总经理张胜远等多位嘉宾对生物医药企业出海战略规划、IT/OT融合创新促进产业升级,数字化转型的重要抓手等问题展开分享,共同探索生物医药企业数字信息创新融合的星辰大海。针对药企如何加速出海,从思科的角度来看王海鹰认为有三个重点,分别是连接、安全、自动化。首先是连接,从数字化转型的建设来看首先就去审视自己连接的网络基础是不是能够吻合将来业务的发展;二是安全,没有安全的连接就没有灵魂,需要有一个框架做长远的安全加固。三是自动化,一方面审视运维和管理能力是否能够做到可视化采集到相应的数据,另一方面要形成规模经营,自动化有效地实现规模效应,降低人员成本增加利润。张胜远强调了管理融合和安全融合的重要性,在IT和OT融合过程中也是讲求安全连接和抓手,注重知识产权保护和自己信息安全防护。施中华认为数字化转型比较重要的抓手是建立正确的数字化大方向,构建整个企业能够一起协作、的战略体系,使各个业务部门与IT之间进行更多的互联互通。从左至右依次为:刘永杰|思科大中华区新兴市场事业部业务拓展经理;王海鹰|思科资深系统架构师、IT领域技术专家、思科助力制造业数字化转型践行者;施中华|中国商业联合会互联网应用工作委员会智库顾问、国家互联网数据中心产业技术创新战略联盟技术专家委员会副主任委员;张胜远|思科大中华区新兴市场事业部中国区总经理与此同时,众多国内游戏企业开始逐步探索“游戏+”模式,发挥多元价值,数药智能CEO李文玉提到,目前数药智能正致力于扩展游戏应用场景,打造普适的脑神经疾病数字疗法,为脑健康开启数字药物时代。公司针对心理学和精神病学领域,研究数字药物疗法针对大脑神经/精神类疾病的有效治疗方式,开发适用于数字疗法的创新性技术、产品,建设高效便捷、具有普适性的数字疗法平台。李文玉 | 数药智能CEO与中国本土企业出海相对应的是跨国企业的“入海”,华瑭大昌高级信息技术总监黄睿对跨国医疗器械跨国医疗器械企业数字化供应链创新实践展开分享,提到公司的研发主要专注于提升全局数字化能力,以及为客户量身定制业务应用,通过电子订单系统、渠道管理系统,经销商服务门户,及运输管理系统等,进一步提高实时数据捕获及销售流的可视性,并提高商业智能管理。近几年,通过私域挖掘用户存量价值成为医疗企业的迫切需求,2021年在母婴健康领域私域运营颇具实力的好孕一生,从母婴健康领域进一步发力医疗健康场景。好孕一生&每日克克创始人兼董事长刘宏蛟提到公司的服务场景深耕、用户需求出发、专业内容资源三大优势确保依从性用户运营,在内容生成层面,好孕一生既有权威专家的加持,又能结合私域运营特点,借助AIGC算法生成内容。而珠海健康云科技有限公司(快速问医生)为提升内容价值,将大数据、AI、云计算等技术与内容创作结合,基于外部搜索数据和内部健康数据库,洞悉用户潜在需求,针对性的匹配内容,并基于内容创作,串联线上线下医疗资源,推动平台商业化路径的拓展。互联网医疗行业正在迎接新一轮的洗牌,新兴技术迭代将有望带动互联网医疗向医疗“核心”更进一步,正如快速问医生副总裁余林昌所说,“互联网医疗,破茧成蝶正当时”。在企业对数字化的追求提高的当下,临床研究中心不断增加所需的时间,亦是数字化临床研究服务解决方案提供商了解市场、打磨产品的黄金时段。那么,为什么选择数字化临床研究呢?临研通科技创始人、煌途医药CEO段忠成从数字化运营造就高效率、数据交换保证数据的一致性、数字化提供更多决策赋能、数字化管理降低成本等角度为我们回答了这一问题。以提升临床试验质量为机会,提高临床试验管理对数字化的认可度,再以提升临床试验效率为武器,让数字化在临床试验中普及,始终是临研通的发展目标,亦是行业内的共同追求。数字信息创新融合板块最后,也有幸请到NVIDIA 中国医疗行业生态负责人冀永楠以“计算加速医疗科技,新技术扩展医疗+AI新空间”为题,认为下一代医疗设备是软化定义并且AI赋能的医疗设备,并做了自己的观点分享。惠每数科副总裁&首席架构师仇伟佳分享了致力于打造高效率、广覆盖的药械企业数字化营销解决方案的惠每数科,通过沉淀全域数据资产,构建数字化、合规化的营销体系。从左至右,从上到下依次为: 黄 睿 | 华瑭大昌高级信息技术总监;刘宏蛟 | 好孕一生&每日克克创始人兼董事长;余林昌 | 快速问医生副总裁;段忠成 | 临研通科技创始人、煌途医药CEO;翼永楠 | NVIDIA 中国医疗行业生态负责人;仇伟佳 | 惠每数科副总裁&首席架构师2021年12月,国家工信部等八部门联合印发《“十四五”智能制造发展规划》,规划提出,“十四五”及未来相当长一段时期,推进智能制造,要立足制造本质,紧扣智能特征,加快系统创新,增强融合发展新动能。从生产材料到模式再到应用场景,中国“智”造突飞猛进。在新材料与智能智造板块,安杰莱科技创始人、董事长李鲁亚分享的人机融合的单下肢机器人给与会观众留下了深刻印象,该产品通过采集患者健康肢主动运动的步态信息,研判患者的运动意图、分析并学习其步态特征,机器人带动患肢进行与健肢相适应的运动再学习康复训练,从而促进脑神经控制功能重塑,使患者逐步恢复正常的行走步态,实现主动化、个性化、系统化、精准化的康复训练。诺美新创高级副总裁王晨针对植介入器械市场渗透过程中的机遇和挑战,认为企业应该全面树立临床需求导向观念、密切关注外部环境的变化、对未来趋势进行恰当的预测、协调好市场渗透与其他发展战略之间的关系。从左至右依次为:李鲁亚|安杰莱科技创始人、董事长;王 晨|诺美新创高级副总裁15日大会最后的圆桌环节,我们也邀请到投资界和产业界的嘉宾代表,围绕“医疗技术创新如何构建行业新生态“畅所欲言。丰誉资本合伙人李鑫认为,技术驱动的创新成果专业化和市场化存在天然的平衡和矛盾,从投资人角度看,技术驱动比较容易陷入产品思维,有时候会忽略商业化层面因素。另外,技术和科研人员的心态以及对商业团队的配合,对于技术创新成功转化为商业成功是非常重要的。“临床”和“科研”两个角色都需要“放低姿态”,从回溯性经验上看,最好是由商业团队主导,临床专家或者科研专家做一些输入和辅助。精智未来创始人、董事长,京津冀国家技术创新中心博导王俊奇也提到做技术应该转变自己的思维,根据终端用户的需求来设计产品并多和政府监管部门沟通。近期国内新冠政策开放,催生了新冠居家检测市场,针对中国未来居家检测发展趋势,王俊奇提到,居家采样检测,对于慢性病以及真正居家需求高频使用的患者来说受益颇多。新冠疫情让大家重新审视医疗科技创新的必要性,无论是器械、药物都需要首先从技术产品端下功夫,短期目标和长期目标结合,并做到降本增效,用创新技术优化整个运营过程。安杰莱科技创始人、董事长李鲁亚则谈到,从成果到产品再到商品是非常复杂的过程,需求是第一位,技术是背景,技术驱动的核心是要和应用的场景、商业模式相结合。安杰莱没有去拷贝或者仿制国外相关产品,而是坚持去临床中找刚性需求,研发产品时就会做创新突破并通过临床效果的确认以及临床学术的开展得到认可,最终获得市场欢迎。从左至右依次为:贺斯渡|蛋壳资本董事总经理;李鲁亚|安杰莱科技创始人、董事长;王俊奇|精智未来创始人、董事长,京津冀国家技术创新中心博导 ;线上嘉宾:李 鑫|丰誉资本合伙人05 奋进新征程,发展新时代同期活动:医疗科技生态展一个月之前,我们敲定这次会议的时候还有重重的顾虑,但对创新的向往和对未来的美好期望,让我们选择了坚持,2022医疗科技世界峰会也在寒冷冬日中圆满落幕。此次大会集“前沿技术分享平台、产业创新交流平台、应用成果展示平台“为一体,为产学研投各界搭建了良好的互动交流桥梁。2022年我们正式迈向了结束疫情的新道路,而中国医疗产业也正在开启“医疗+X”的创新增长范式。在科技交叉发展越来越频繁的当下,各领域的技术交叉带来了越来越多的创新突破,传统的医疗大健康赛道迎来创新拐点。动脉网VB100也将继续打造精彩的活动内容,与各位创新者们一起阔步前行,奋进医疗科技新时代与新征途。联合主办合作伙伴支持媒体大会回顾2022医疗科技世界峰会【回放】报名预计会后两周上线,敬请期待
  • “小动物光学多模融合分子影像成像设备”项目启动
    3月4日,由中国科学院自动化所田捷研究员担任项目负责人的基金委国家重大科研仪器设备研制专项“小动物光学多模融合分子影像成像设备”项目召开项目启动会,标志着该项目正式启动。   本项目由自动化所牵头,清华大学、北京协和医院以及第四军医大学、西安电子科技大学等四家单位共同参加,是迄今为止自动化所资助额度最高的国家基金委项目。   针对重大疾病防治和重大新药创制的国家战略需求,该项目拟研制小动物光学多模融合分子影像成像设备。该成像设备以光学分子成像模态为核心,同机融合核素和结构成像模态,从细胞分子、功能代谢和解剖结构等多个层面系统全面地提供生物体生理病理信息。围绕多模成像设备研制这一核心目标,该项目涉及到成像模型、重建算法、成像设备、融合平台、验证评价以及医学生物应用等多方面的研究。该设备将用于开展恶性肿瘤发生发展机理、早期精确诊断以及药物疗效定量评价的医学生物应用研究,为肿瘤早期精确诊断和药物定量疗效评价提供技术支持和设备保障。该项目的实施对推动生命科学和医学的科学研究、技术发展具有重要意义。   启动会上,田捷研究员还就项目总体情况、“小动物光学、结构、代谢三模态同机成像设备构建与研发”课题研究方案的报告、项目各子课题分别就课题定位、研究内容、实施方案、具体指标、研究计划等几个方面进行了汇报。   基金委医学部常务副主任董尔丹、综合计划局郑永和副局长、中国科学院计划财务局曹凝副局长、院高技术局杨永峰处长、基金委综合计划局谢焕瑛处长、医学部三处李恩中主任,中科院项目评估监理中心金启宏研究员、刘涛副研究员等领导和专家出席会议 美国医学科学院外籍院士戴建平教授、中国科学院吴培亨院士、沈绪榜院士等九位项目专家委员会委员莅临启动会。
  • 医工融合协同创新 生物医学工程前沿交叉论坛成功召开
    仪器信息网讯 2024年5月16-18日,生物医学工程前沿交叉论坛在清山会议中心圆满召开。本次大会由中国科学院苏州生物医学工程技术研究所和北京航空航天大学联合主办,中国生物工程学会生命科学仪器专业委员会、首都医科大学友谊医院、中国科学院深圳先进技术研究院、江苏省高端医疗器械技术创新中心和江苏省康复医学会为大会的支持单位。大会为期1.5天,以“医工融合协同创新”为主题,80余位科研专家、临床专家、产业专家分享了精彩报告,吸引近300位来自高校、科研院所、医院的专家学者、临床医生以及相关领域企业代表参会。大会现场大会主论坛由中国科学院苏州生物医学工程技术研究所周连群研究员主持,中国科学院苏州生物医学工程技术研究所党委书记/所长吴成铁、苏州市科技局副局长廖希明、中国科学院南京分院副院长陈江龙、苏州市高新区党工委书记毛伟为大会致辞。中国科学院大连化学物理研究所张玉奎院士、西安交通大学徐宗本院士、中国科学院长春应用化学研究所陈学思院士、南京大学副校长/中国科学院深圳先进技术研究院副院长郑海荣院士、北京友谊医院王振常院士、苏州市政府副秘书长谢飞西、安交通大学副校长吕毅、上海市第六人民医院党委书记马昕、南京大学医学院附属鼓楼医院院长于成功、苏州大学附属第一医院院长缪丽艳、中国科学院苏州纳米技术与纳米仿生研究所所长王强斌、北京航空航天大学生物与医学工程学院院长樊瑜波、苏州市高新区党工委委员/科技城党工委书记卢潮、苏州市高新区管委会副主任吴旭翔、苏州市高新区科技创新局局长李伟等专家领导莅临大会现场。吴成铁 中国科学院苏州生物医学工程技术研究所党委书记、所长廖希明 苏州市科技局副局长陈江龙 中国科学院南京分院副院长毛伟 苏州市高新区党工委书记本届生物医学工程前沿交叉论坛设置了1个主论坛和5个专题论坛,主论坛环节,四位生物医学工程领域的院士分享了精彩的大会报告。张玉奎 中国科学院院士、中国科学院大连化学物理研究所研究员《外泌体蛋白组技术进展》外泌体是由细胞分泌的尺寸为30-200nm的囊泡,存在于体液、组织及细胞培养液中,携带脂质DNA、RNA、蛋白质等重要功能性成分,其中干细胞外泌体在临床方面有重要应用,如用于治疗脑损伤。但是目前干细胞外泌体用于临床还面临规模化制备的多方面问题,纯度、通量和质控是制约外泌体临床发展的瓶颈。传统的外泌体富集方法主要包括超速离心、膜过滤等,但存在回收率低或者纯度低等问题。张院士团队合成了反向富集微球材料,利用外泌体尺寸差异实现外泌体的反向富集,效果好于传统方法。张院士还详细介绍了鹿茸干细胞外泌体的应用,包括治疗小鼠肠炎、皮肤创伤、骨缺损等。徐宗本 中国科学院院士、西安交通大学教授《智能化推动国产化:我国基础医疗装备自主创研的可行路径》当前智能化改造是实现我国医疗装备国产化的重大机遇,用AI技术可用来提升医疗装备性能,解决“卡脖子”难题,更优质地服务于人民健康。徐院士介绍了在这一方向上的两大探索,一是分布式微剂量CT,二是快速/超快MRI。徐院士讲到,X射线辐射是一类致癌物,新一代CT系统的核心应该是低剂量,当前的国际专家共识是:真正的低剂量成像时代尚未到来,目标是追求sub-mSv的微剂量成像。其次,分布化是新一代CT系统的发展趋势,分布式CT影像中心有多个应用场景,能够解决院际/院内自由部署、集成度高难以实现低剂量等诸多问题,让CT的商业价值、医疗价值、社会价值更大。目前徐院士团队成功研发分布式微剂量CT已经在有些医院安装,其算法效果已经达到甚至超过商业化CT系统,同时还在做小型化便携式CT系统。此外,徐院士介绍了新一代MRI的趋势,核心是解决成像速度慢的问题。徐院士最后总结了智能化带动国产化的可行性技术途径:软硬分离、数物融通、用计算换性能、个性化代替菜单式、上下游贯通、大数据与AI技术的深度使用。王振常 中国工程院院士、北京友谊医院党委常委、副院长《基于CT的结直肠癌前病变智能检测系统的创建》王院士介绍了国内外结直肠癌病变筛查的情况,2020年全球结直肠癌新发193.2万,死亡93.5万,超过93%的结直肠癌源于腺瘤性息肉,从息肉增生到癌变周期5-10年。有数据显示,CTC检出息肉灵敏度≥6mm为80%,≥10mm为88%,结直肠癌灵敏度为96%,CTC≥10mm的癌前病变及结直肠癌的灵敏度可与肠镜媲美。美国2008年将CTC列入指南,2018年将其列入联邦医保。我国结直肠癌新发已上升到全球第二位,由于医疗资源不足、依从性低,肠镜很难用于筛查。结直肠癌缺乏有效防控体系,现有CTC技术存在检测精度低、效率低、无法实现自动识别和定位等问题,急需系统创新。在此背景下,王院士团队开展了智能检测系统的研究工作,核心创新包括三点:基础算法创新、多视角联动技术和病变识别方法创新。目前已经获得二类医疗器械注册证,并发表了相关论文,下一阶段重点是降低假阳性。这项工作充分体现了算法、工科和专用系统等多方面的交叉融合。陈学思 中国科学院院士、中国科学院长春应用化学研究所研究员《生物医用可吸收高分子材料与器件》陈院士介绍了生物降解高分子材料制备及产业化进展和可吸收医用高分子材料与器件的开发情况。可降解高分子材料中,微生物合成高分子材料(酸酯类等)的特点是性能可调、成本偏高;化学合成高分子材料(聚乳酸等)特点为从硬塑料到柔性材料,成本可控,应用前景好;和天然高分子材料(淀粉、纤维素等)成本较低、可塑性差,需进行预处理方可塑化加工。陈院士介绍了团队己内酯合成研究进展,对这类材料的表征结果进行了详细介绍,结果表明,合成的可降解高分子材料的性能和聚乙烯、聚丙烯等材料性能一致。己内酯应用场景可拓展至外科医疗、手术缝合线、胶黏剂、航天阻尼、农用地膜等。陈院士还详细介绍了聚乳酸合成研究成果和应用领域。聚乳酸产业市场现状:2022年全球聚乳酸总产能约63万吨,应用领域如制作吸管、3D打印等。目前,陈院士团队已获得Ⅲ类医疗器械注册证14个,Ⅱ类医疗器械注册证11个,Ⅰ类器械注备案证24个。陈院士讲到,做科学研究,不仅要发文章,更要产业化,实现应用。苏州市高新区科技招商中心主任端洪菊作高新区创新创业环境推介苏州市2023年地区生产总值2.46万亿元,规上工业总产值4.43万亿元,全国第二,被网友称为“地表最强地级市。”是经济强市、工业强市、产业强市。苏州高新区于1990年开发建设,1992年获批全国首批国家级高新区,经过30多年发展,占苏州2.5%的土地,创造出近8%的经济总量,综合发展水平走在全国高新区前列。2023年地区生产总值1835亿元,蝉联全市高质量发展综合考核第一等次。这里创新资源高度聚集,产业集群活力迸发,不仅有多个院所平台和国家级重点实验室等科研力量,还有新一代信息技术、高端装备制造主导产业和新能源、光子及集成电路、医疗器械及大健康等新兴产业。主论坛主持人 中国科学院苏州生物医学工程技术研究所周连群研究员主论坛后,大会特别设置了“生物医学成像技术前沿论坛”、“消化健康与显微成像前沿技术论坛”、“生物医用材料前沿交叉论坛”、“生物医学仪器与康复治疗前沿交叉论坛”、“人工智能生物医学工程前沿交叉论坛”5个专题论坛,80余位科研专家、临床专家、产业专家分享了报告,其中不乏领域学术带头人,充分展示了近年来在上述方向的新技术、新进展,论坛的成功召开为推动“生-医-工交叉融合”和生物医学工程领域高质量发展贡献了力量。分论坛掠影茶歇交流企业风采
  • Nature技术突破:质谱和显微技术首次完成“图像融合”
    来自范德比尔特大学的研究人员完成了质谱分析和显微技术的第一次&ldquo 图像融合&rdquo ,这一技术突破将能极大的提高癌症的诊断效率和治疗疗效。这一研究成果公布在Nature Method杂志上。   显微技术能帮助研究人员获得组织的高分辨率图像,但&ldquo 这种技术无法给你具体的分子信息,&rdquo 范德比尔特大学的生化和质谱研究中心主任,文章的通讯作者Richard Caprioli博士说。   而质谱技术能完成组织中蛋白,脂质及其它分子的各种精确分析,但是图像处理过于粗糙。如果能将这两种技术的优点结合起来,将能令研究人员获得高分辨率的体内分子构成。   &ldquo 对我来说,这是一项重要的技术突破,&rdquo Caprioli博士说。   Caprioli表示这项技术能重新定义外科范畴,比如肿瘤外科手术时癌细胞与正常细胞边界的界限。目前这一界限是由组织学决定的,也就是通过显微镜观察细胞外观获取的。但是不少癌症患者在手术后又会复发,这有可能是因为一些癌细胞看上去像是正常细胞,如果利用质谱技术进行蛋白成分分析,那么就能精确标记癌细胞范围了。   这一技术成果由多名研究人员完成,包括荷兰代尔夫特理工大学Raf Van de Plas博士,范德比尔特大学Junhai Yang博士等。   在这项研究中,他们采用了一种称为回归分析(regression analysis,编者译)的数学方法,从而能将质谱信息的每个像素投射到显微成像的对应位置上,获得一个全新的&ldquo 预测&rdquo 图像。   这在概念上类似于绘制标准曲线的实验点,Caprioli 说,虽然在这些真实测量点之间没有&ldquo 实际点&rdquo ,但是可以通过之前的实验进行预测。&ldquo 我们预测数据也采用了相同的方法,&rdquo 他说。
  • 朱旭华:让物联网人工智能和植保专业深度融合 推进植保智能测报的进程
    为进一步推广普及大数据应用技术,加快病虫测报自动化、智能化、信息化建设,5月28日-30日,全国农业技术推广服务中心在云南昆明举办植保大数据及智慧测报应用技术培训班。来自全国司各省(区、市)植保(植检、农技)站(局、中心)分管领导、测报科科长、防治科长和有关专家以及有关智能测报工具研发单位代表等共一百余人参加会议,托普云农作为植保智慧测报应用技术的先行企业代表之一出席会议。 会上,托普云农常务副总经理朱旭华作了专题汇报,报告围绕托普在智能型虫情测报灯的研发过程与应用成效等内容展开。朱副总经理在汇报里提到,托普从2012年开始研发智能型虫情测报灯,中途遇到了不少技术与应用难题,例如设备如何克服高温、低温、台风等恶劣环境,他对这些主要的关键难点与解决策略进行了分析,向友商敞开心扉,共享经验心得。 副总经理还表示,托普云农研发的虫情测报灯的诞生,离不开产学研模式的深度结合,他强调,智能测报灯是电子及信息技术与植保专业深度融合的产物,产品的成功需要我们厂家深厚的技术实力与体系内专家的专业紧密融合。目前,基于这种模式,托普研发的虫情测报灯在各种应用环境下的测试验证,优化迭代,已在二十多个省份的进行推广应用,并且取得了阶段性的成效。 “我们的智能型测报灯在各地有效地进行了虫情的自动识别和测报,对植保系统机器换人,减轻工作量,提高测报及时性等方面都起到了很好的效果,比如内蒙古草地螟的及时监测发现。” 据资料显示,去年6-7月份,托普云农在兴安盟科右前旗境内负责搭建的两个测报点内单灯诱蛾分别为3.76万头、1.12万头,这些数据帮助相关部门快速获取、分析、判断虫情,及时制定防治方案,指导虫情防治工作,快速、有效地遏制了虫情的大规模蔓延,成功守护了区域内350万亩种植地的粮食安全。托普云农在兴安盟的植保支撑工作受到了认可与感谢 在报告的最后,朱副总经理呼吁道,希望大家多提宝贵意见和建议,促使产品不断优化和迭代升级。基于推动加快病虫测报自动化、智能化、信息化建设的目的,互通有无,深入交流,针对问题难点,凝练解决方案,并建立行业执行标准,有效推进相关任务的工作进程。“如今,虫情测报工作形式严峻,我们更应敢作敢为,担起更大的责任。众人拾柴火焰高,托普愿与大家携手并进,为推动植保信息化乃至农业信息化的进程而贡献一份托普力量。”
  • 日程更新|首届新材料与科学仪器产业融合创新发展论坛第二轮通知
    一、 论坛背景随着国家新质生产力的不断壮大和高质量发展的深入推进,新材料产业作为战略性新兴产业,正日益展现其强大的发展潜力和广阔的应用前景。作为支撑行业创新和质量保障的关键环节,新材料检测技术与仪器的重要性日益凸显,已经成为科研界、新材料产业界及社会各界共同关注的焦点。值得注意的是,近年来工业市场对于科学仪器的需求潜力持续旺盛,诸多仪器品类在工业市场的需求已反超科研市场,成为业界不可忽视的发展趋势。这一变化不仅反映了工业领域对于科学仪器技术的迫切需求,也蕴含着科学仪器行业未来的广阔市场前景。鉴于此,在即将召开的十七届科学仪器发展年会(ACCSI2024)同期,仪器信息网携手北京化工大学新材料校友会,将共同举办“新材料与科学仪器产业融合创新发展论坛”,邀请新材料产业端研发、品控人员,仪器检测技术专家,科学仪器企业代表等各方力量,共同探讨新材料产业仪器检测技术的最新进展、技术需求以及新材料与科学仪器产业的融合创新发展路径。1、 组织机构主办单位:仪器信息网 协办单位:北京化工大学新材料校友会2、论坛主题:双向赋能,共筑新质生产力3、论坛目的:• 探讨新材料与科学仪器产业融合发展的政策趋势与战略机遇;• 分享新材料与科学仪器产业的前沿技术、创新成果与应用案例;• 促进产学研用深度合作,推动新材料与科学仪器产业的创新发展;• 提升我国新材料与科学仪器产业的国际竞争力与影响力。4、论坛时间:4月19日09:00-17:00二、 目标参会人群新能源、半导体、新型功能材料等新材料产业领域研发、品控代表,新材料领域的研究人员与学者,仪器技术研发与生产企业的代表,新材料检测与认证机构的专家,政府相关部门的代表,对新材料检测技术与仪器技术感兴趣的其他人士等。三、 论坛日程(以官网最终日程为准)四、联系方式1、新材料论坛仪器信息网:杨厉哲,15311451191,yanglz@instrument.com.cn 北京化工大学新材料校友会:王志强,18911912781,502765675@qq.com2、参会报名ACCSI 2024大会官网报名:https://accsi.instrument.com.cn 或扫码报名3、ACCSI 2024大会报告及参会报名:黄女士17600646530 赞助及媒体合作:魏先生13552834693附件:第十七届中国科学仪器发展年会(ACCSI2024)第三轮通知为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,“第十七届中国科学仪器发展年会(ACCSI2024)”将于2024年4月17-19日在苏州狮山国际会议中心召开。ACCSI2024以“融合创新,质领未来”为主题,力争对往年中国科学仪器产业最新进展进行较为全面的总结,在最短的时间内把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等,以多种形式呈现给各位参会代表。会议期间将举办“3i奖:仪器及检测风云榜颁奖盛典”,颁发“2023年度优秀新品”、“2023年度绿色仪器”、“2023年度用户关注仪器”、“2023年度研发贡献奖”、“2023年度企业年度人物”、“2023年度领军企业”、“2023年度成长潜力企业”、“2023年度售后服务十佳企业”、“2023年度数字营销奖”、“2023年度杰出雇主”、“2023年度TIC优秀第三方检测机构”等多项年度行业大奖,引领科学仪器产业及检验检测方向。1、 组织机构指导单位:苏州高新区管委会(虎丘区人民政府)主办单位:仪器信息网 (instrument.com.cn) (北京信立方科技发展股份有限公司旗下网站)协办单位:中国仪器仪表学会分析仪器分会南京市产品质量监督检验院我要测网(woyaoce.cn) 中国科学院高端光学显微成像技术联盟江苏省分析测试协会支持单位:中国认证认可协会中国仪器仪表学会近红外光谱分会中国科学器材产销联合会中国生物检测监测产业技术创新平台中国技术市场协会企业科技工作委员中国石化联合会高端专用化学品专委会中国传感器与物联网产业联盟AOAC中国分部 中国检验检疫协会实验室与仪器设备分会 国家贵金属及珠宝质检中心技术联盟全国检验检测认证职业教育集团全国实验室创新发展联盟中国科学院先进医疗器械产业孵化联盟 上海分析仪器产业技术创新战略联盟中国生物物理学会肠道菌群分会长三角科学仪器产业技术创新战略联盟天津市分析测试协会云南省分析测试协会 青岛市分析测试学会北京中关村科技服务有限公司北京怀柔仪器和传感器有限公司上海启迪漕河泾科技园中国科学院分子细胞科学卓越创新中心 浙江省先进质谱技术与分子检测重点实验室清华大学蛋白质研究技术中心蛋白质制备与鉴定平台张家港长三角生物安全研究中心苏州中科医疗器械产业发展有限公司苏州市计量测试院苏州无损检测协会苏州市计量测试学会2、 重要时间安排• 4月17日10:00-20:00, 注册报到+CMO论坛+战略座谈会• 4月18日全天(09:00-20:00)大会主会场+3i奖颁奖典礼• 4月19日全天(09:00-17:00)主题分论坛+工厂参观• 4月18日、19日(09:00-17:00)展示展览及参观交流3、 会议日程(最终以年会官网显示信息为准)4月17日10:00-20:00, 注册报到4月17日14:00-17:00,第五届科学仪器CMO高峰论坛内容嘉宾洞察买家需求,布局营销战略苏宇辰 北京信立方科技发展股份有限公司 买家运营主管CEO如何定位和评估市场部价值张振方 海能未来技术集团股份有限公司 总经理精细化运营:CMO如何优化资源利用创造新价值胥 康 马尔文帕纳科中国区市场经理拒绝内卷,中小企业差异化营销之道张 磊 骇思仪器科技(上海)有限公司总经理做好营销的最后一公里 ——数字化工具助力企业降本增效曾明泉 仪器信息网运营部经理3i奖-2023年度科学仪器行业数字营销奖颁奖仪式赵 鑫 仪器信息网CEO圆桌论坛主题:1) 在AI时代,您如何看待这一技术?是机遇还是挑战?市场营销人员应如何拥抱AI?2) 关于出海、电商、后市场等话题,您如何看待这些新机遇,以及您和您的团队是如何利用这些机遇给企业带来增长的?3) 当下,贵司市场部如何调整优化预算结构?4) 市场部如何创造被认可的新价值?5) 市场营销人员如何做好自己的职业发展规划,塑造和提升个人品牌,并成长为一名CMO?主持人:赵鑫 仪器信息网 CEO参会嘉宾(按公司首字母顺序排序):董 磊 北京卓立汉光仪器有限公司 副总经理韩 鹏 欧波同集团 战略投资部/市场部 总监胡家祥 岛津企业管理(中国)有限公司分析计测事业部市场部部长雒丽娜 北京莱伯泰科仪器股份有限公司 市场部经理王海鉴 珀金埃尔默 亚太区市场总监郑 欣 安捷伦科技(中国)有限公司助理副总裁兼大中华区高级市场总监4月17日14:00-17:00,第四届科学仪器发展战略座谈会(闭门论坛,定向邀请)4月18日09:00-16:30,大会特邀报告+高峰论坛内容嘉宾苏州市科学仪器产业政策解读(拟)苏州高新区苏州市高新区管委会 领导智能时代背景下的科学仪器与物联网技术褚君浩中国科学院上海技术物理研究所 中国科学院院士丹纳赫40年,创新再出发——丹纳赫本土创新生态建设韦春艳 丹纳赫集团 丹纳赫中国对外事务副总裁国产品牌技术创新及发展机会丁良成 北京卓立汉光仪器有限公司 董事长从大数据看科学仪器产业发展新趋势武自伟 北京信立方科技发展股份有限公司 产业研究主任食品安全检测技术的发展:精准、实时、可视化张 峰 中国检验检疫科学研究院 副院长/研究员科学仪器后市场的未来展望孙大鹏 安捷伦 全球副总裁兼大中华区总经理石油炼制与化工产业高质量转型发展及其对科学仪器的需求徐广通 中石化石油化工科学研究院有限公司 首席专家AI在科学仪器领域的颠覆性创新应用杨磊 南京清湛人工智能研究院 执行副院长i100峰会之中国科学仪器发展高峰论坛圆桌论坛主题:穿越周期 行稳致远(拟)主持人:李博 仪器信息网生命科学主编参会嘉宾(按公司首字母顺序排序):王德滨 安东帕中国区总经理董青云 丹东百特仪器有限公司董事长兼总经理朱新勇青岛盛瀚色谱技术有限公司董事长周晓斌 赛默飞中国分析仪器事业部商务副总裁4月18日16:50-17:50,“质”造新未来,“谱”写新征程——安益谱高端质谱新品发布会4月18日18:00-20:00,仪器及检测3i奖颁奖盛典4月19日 09:00-17:00,分论坛1:第八届中国质谱产业化发展论坛内容嘉宾主持人:丁传凡宁波大学 材料科学与化学工程学院院长国家重点战略与科学仪器——深海质谱仪的研制陈池来 中国科学院合肥智能机械研究所 研究员食品安全标准新进展与质谱分析技术的应用现状及趋势肖晶 国家食品安全风险评估中心 标准四室主任质谱新技术进展及在环境中的应用张新星 南开大学化学学院杰出教授小仪器,大舞台:如何用质谱实现超高分辨的分子结构分析?周晓煜 清华大学副教授国产质谱软件现况与质谱领域人工智能技术发展趋势展望田润涛 科迈恩(北京)科技有限公司 总经理药品质量分析及研究领域对质谱技术的需求及未来热点展望张 益 江苏艾苏莱生物科技有限公司 首席科学家串联质谱在临床质谱市场发展趋势与展望崔相华 北京华大吉比爱生物技术有限公司 营销中心副总经理MALDI-TOF技术在临床领域的应用新进展林水潮 中元汇吉生物技术股份有限公司 厦门研发中心负责人4月19日 09:00-17:00,分论坛2:新材料与科学仪器产业融合创新发展论坛(待更新)内容嘉宾致辞赵鑫 仪器信息网CEO致辞包雷 北京化工大学新材料校友会执行副会长原位电镜技术在工业催化剂中应用进展蒋复国 北京低碳清洁能源研究院 分析表征中心经理X射线衍射技术在新材料中的应用进展张吉东 中国科学院长春应用化学研究所研究员电子显微学在合金材料中的应用进展贾志宏 南京工业大学教授圆桌论坛主题:产学研用各方在新材料检测领域的深度合作;仪器技术需求与产业发展对接交流;新材料检测技术与仪器技术的未来发展与挑战待定(主持人)4月19日 09:00-17:00,分论坛3:人工智能赋能光谱仪器新产业论坛内容嘉宾主持人:褚小立 中石化石油化工科学研究院教授级高工高光谱仪器与人工智能刘银年 中国科学院上海技术物理研究所、 南通智能感知研究院 院长/首席科学家/研究员光谱仪小型化研究杨宗银 浙江大学研究员基于近红外分析技术的化工过程智能感知与监控栾小丽 江南大学教授,院长基于人工智能算法的水果品质在线无损检测方法研究黄文倩 北京农林科学院农业智能装备研究中心主任、研究员人工智能赋能拉曼光谱鉴定和表征微生物傅 钰 中国科学院微生物研究所研究员人工智能在表面增强拉曼光谱中的应用和挑战陈 舟 上海交通大学 生物医学工程学院 助理研究员基于近红外技术的原料配方智能替换研究张翼鹏 云南中烟工业有限责任公司技术中心高级工程师微小型光谱仪器与深度学习算法的结合应用褚小立 中石化石油化工科学研究院教授级高工4月19日 09:00-17:00,分论坛4:第六届生命科学仪器发展论坛内容嘉宾生命科学仪器成果转化痛点与商业化成功要素宋明轩 苏州国科医工科技发展(集团)有限公司总裁多维活细胞结构光超分辨显微席 鹏 北京大学未来技术学院教授阻抗流式技术:单细胞表征新方法王文会 清华大学精密仪器系副教授生物制药行业发展趋势展望及仪器设备需求分析周 新 华佰诺达集团 CSO分析超速离心仪器软件和检测器的开发李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师极瞳S-CLASS,新一代高通量非标记分子互作分析系统陈雍硕 极瞳生命科技(苏州)有限公司市场总监fMOST三维成像技术及其应用程 柯 武汉沃亿生物有限公司市场营销部总监融资租赁/经营性租赁——生物医药企业提高资本配置效率的新思路牛 童 国药控股(中国)融资租赁有限公司 高级厂商合作经理可无创免抽血动态监测循环(肿瘤)细胞的光学活体流式细胞仪魏勋斌 北京大学医学技术研究院副院长/教授单分子定位超分辨成像整体解决方案及其生物医学应用潘雷霆 南开大学教授合成生物学产业发展及仪器设备需求分析方 诩 山东大学微生物技术研究院 教授超快速、超灵敏瞬态吸收显微镜王 璞 振电(苏州)医疗科技有限公司首席执行官/CEO圆桌论坛主题:嘉宾开放讨论(生命科学公共平台建设仪器设备更新需求等)主持人:边 玮 中科院分子细胞科学卓越创新中心正高级工程师参会嘉宾(按公司首字母顺序排序):方三华 浙江大学医学院 公共技术平台执行副主任/博士李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师熊 缨 上海科技大学 分子细胞平台主任俞珺璟 中科院分子细胞科学卓越创新中心 细胞分析技术平台副主任孙正龙 深圳湾实验室 生物影像平台主管(资深技术专家)/博士边 玮 中科院分子细胞科学卓越创新中心 正高级工程师姜 民 复旦大学脑科学研究院 影像平台主任/博士谭 莉 上海脑科学与类脑研究中心 高级工程师苏 黎 北京大学 流式平台负责人王 策 苏州医工所 研究员蔡文娟 中国科学院分子植物科学卓越创新中心 高级工程师李晓明 上海科技大学生命科学与技术学院 分子影像平台主管(资深技术专家)/博士徐晓雪 首都医科大学 副主任技师吴航军 浙江大学冷冻电镜中心 执行副主任/博士孙菲菲 国科大杭州高等研究院生命健康学院公共技术平台负责人/博士张 蕾 厦门大学 实验中心副主任房中则 天津医科大学 教授原丽华 原中国科学院苏州纳米技术与纳米仿生研究所 高级工程师刘春春 清华大学 细胞功能分析平台主管(资深技术专家)/博士樊 峥 中国科学院微生物研究所 高级工程师4月19日 09:00-17:00,分论坛5:第七届检验检测产业峰会内容嘉宾华测数字化实验室的建设与思考曾啸虎华测检测认证集团股份有限公司 集团副总裁,建筑工程及工业服务事业部总裁双碳检测领域的实践案例及启示陈 璐 中国国检测试控股集团股份有限公司 党委副书记、总经理检验检测数字化转型在建设工程领域的思考与探索李维涛 上海建科检验有限公司 总经理半导体第三方分析检测现状及展望李晓旻 胜科纳米(苏州)股份有限公司 董事长实验室智能化系统为检测行业新质生产力提供支撑黄 华 上海程析智能科技有限公司 总经理智慧化监测赋能城市基础设施检测新航道杨 刚 建科股份新经济集团常安城市公共安全技术有限公司 总经理能力验证在行业仪器应用趋势分析、实验室检测质量控制中的应用张 亮 北京中实国金国际实验室能力验证研究有限公司 副总经理/高级工程师从大数据看第三方检测市场发展宋建民 北京信立方科技发展股份有限公司 我要测网事业部总经理智能化与分析检测方法优化赖登闻 梅特勒托利多 市场主管技术型企业的发展及实践分享贾梦虹 上海微谱检测科技集团 总裁助力新兴产业跨越“绿色壁垒”夏 波 德国莱茵TUV 大中华区产品服务事业群副总裁4月19日 09:00-12:00,分论坛6:分析仪器创新应用场景探索论坛内容嘉宾微型分析仪器在载人航天和深海探测中的应用耿旭辉 中国科学院大连化学物理研究所 研究员植物碳循环研究及对分析检测技术需求平建峰 浙江大学教授电网检测需求及自组装分子层技术应用李 远 清华大学副教授柔性材料研究及分析检测需求卢宝阳 江西科技师范大学教授水域环境监测的现状与前景及渔业传感器技术的创新与应用吴立冬 中国水产科学研究院研究员圆桌论坛主题:科学仪器如何成为新质生产力主持人:吴立冬中国水产科学研究院 研究员参会嘉宾(按公司首字母顺序排序):耿旭辉 中国科学院大连化学物理研究所 研究员平建峰 浙江大学 教授李 远 清华大学 副教授卢宝阳 江西科技师范大学 教授吴立冬 中国水产科学研究院 研究员4月19日 09:00-12:00,分论坛7:低场磁共振技术发展与应用论坛内容嘉宾主持人:姚叶锋 华东师范大学上海市磁共振重点实验室主任/研究员NMR技术在高分子材料研究中的一些应用姚叶锋 华东师范大学上海市磁共振重点实验室主任/研究员低场核磁共振技术在非常规油气储层评价中的应用研究朱 峰 中国石化石油勘探开发研究院 无锡石油地质研究所副主任/助理研究员考虑原位应力对油饱和煤中动态孔隙-裂缝演变和多相渗流影响的实验研究张 通 安徽理工大学 副教授低场核磁共振技术在煤矿领域应用的研究进展徐吉钊 中国矿业大学 副教授基于分层核磁技术的多孔介质精细化表征及重构建模方法研究赵新礼 常州大学石油与天然气工程学院 讲师多孔介质核磁共振岩石物理技术发展现状吴 飞 苏州纽迈分析仪器股份有限公司 研发经理4月19日 09:00-12:00,分论坛8:科学仪器渠道变革论坛内容服务or产品?—科学仪器电商渠道的转型之路沈林斌 力辰科技总经理数字化工具助力渠道商降本增效曾明泉 仪器信息网运营部经理区域代理商的优劣势分析及破局之道待定招行金融政策to渠道商招商银行总公司 领导路演三:待定成都今是科技有限公司招商银行医药行业专业化解决方案张晓鸿 招商银行股份有限公司-总行医养行业战略客户部路演四:一个文科生的科学仪器梦陈伟雄 厦门埃癸斯流体控制设备有限公司总经理路演五:高精度温室气体在线监测仪杨龙 河北子曰机械设备有限公司总经理
  • 告别盲人摸象,传感器融合才是智能社会的标配
    今天,我们的生活高度依赖传感器。传感器作为人类“五感”的延伸,去感知这个世界,甚至可以观察到人体感知不到的细节,这种能力也是未来智能化社会所必须的。不过,单个传感器的性能再卓越,在很多场景中还是无法满足人们要求。比如汽车中昂贵的激光雷达可以根据生成的点云,判断出前方有障碍物,但想准确得知这个障碍物是什么,还需要车载摄像头帮忙“看”一眼;如果想感测这个物体的运动状态,可能还需要毫米波雷达来助阵。这个过程就好比我们熟悉的“盲人摸象”,每个传感器基于自己的特性和专长,只能看到被测对象的某一个方面的特征,而只有将所有特征信息都综合起来,才能够形成更为完整而准确的洞察。这种将多个传感器整合在一起来使用的方法,就是所谓的“传感器融合”。对于传感器融合,一个比较严谨的定义是:利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。这些作为数据源的传感器可以是相同的(同构),也可以是不同的(异构),但它们并不是简单地堆砌在一起,而是要从数据层面进行深度地融合。实际上,传感器融合的例子在我们生活中已经屡见不鲜。归纳起来,使用传感器融合技术的目的主要有三类:●获得全局性的认知。单独一个传感器功能单一或性能不足,加在一起才能完成一个更高阶的工作。比如我们熟悉的9轴MEMS运动传感器单元,实际上就是3轴加速传感器、3轴陀螺仪和3轴电子罗盘(地磁传感器)三者的合体,通过这样的传感器融合,才能获得准确的运动感测数据,进而在高端VR或其他应用中为用户提供逼真的沉浸式体验。●细化探测颗粒度。比如在地理位置的感知上,GPS等卫星定位技术,探测精度在十米左右且在室内无法使用,如果我们能够将Wi-Fi、蓝牙、UWB等局域定位技术结合进来,或者增加MEMS惯性单元,那么对于室内物体的定位和运动监测精度就能实现数量级的提升。●实现安全冗余。这方面,自动驾驶是最典型的例子,各个车载传感器获取的信息之间必须互为备份、相互印证,才能做到真正的安全无虞。比如当自动驾驶级别提升到L3以上时,就会在车载摄像头的基础上引入毫米波雷达,而到了L4和L5,激光雷达基本上就是标配了,甚至还会考虑将通过V2X车联网收集的数据融合进来。总之,传感器融合技术恰似一个“教练”,能够将性能各异的传感器捏合成一个团队,合而为一又相互取长补短,共同去赢得一场比赛。选定了需要融合的传感器,怎么融合则是下一步要考虑的问题。传感器融合的体系结构,按照融合的方式分为三种:●集中式:集中式传感器融合就是将各个传感器获得的原始数据,直接送至中央处理器进行融合处理,这样做的好处是精度高、算法灵活,但是由于需要处理的数据量大,对中央处理器的算力要求更高,还需要考虑到数据传输的延迟,实现难度大。●分布式:所谓分布式,就是在更靠近传感器端的地方,先对各个传感器获得的原始数据进行初步处理,然后再将结果送入中央处理器进行信息融合计算,得到最终的结果。这种方式对通信带宽的需求低、计算速度快、可靠性好,但由于会对原始数据进行过滤和处理,会造成部分信息的丢失,因此原理上最终的精度没有集中式高。●混合式:顾名思义,就是将以上两种方法相结合,部分传感器采用集中式融合方式,其他的传感器采用分布式融合方式。由于兼顾了集中式融合和分布式的优点,混合式融合框架适应能力较强,稳定性高,但是整体的系统结构会更复杂,在数据通信和计算处理上会产生额外的成本。对于传感器融合方案,还有一种按照数据信息处理阶段进行分类的思路。一般来说,数据的处理要经过获取数据、特征提取、识别决策三个层级,在不同的层级进行信息融合,策略不同,应用场景不同,产生的结果也不同。按照这种思路,可以将传感器融合分为数据级融合、特征级融合和决策级融合。●数据级融合:就是在多个传感器采集数据完成后,就对这些数据进行融合。但是数据级融合处理的数据必须是由同一类传感器采集的,不能处理不同传感器采集的异构数据。●特征级融合:从传感器所采集的数据中提取出能够体现监测对象属性的特征向量,在这个层级上对于监测对象特征做信息融合,就是特征级融合。这种方式之所以可行,是由于部分关键的特征信息,可以来代替全部数据信息。●决策级融合:在特征提取的基础上,进行一定的判别、分类,以及简单的逻辑运算,做出识别判断,在此基础上根据应用需求完成信息融合,进行较高级的决策,就是所谓的决策级融合。决策级融合一般都是应用导向的。如何选择传感器融合的策略和架构,没有一定之规,需要根据具体的实际应用而定,当然也需要综合算力、通信、安全、成本等方面的要素,做出正确的决策。不论是采用哪种传感器融合架构,你可能都会发现,传感器融合很大程度上是一个软件工作,主要的重点和难点都在算法上。因此,根据实际应用开发出高效的算法,也就成了传感器融合开发工作的重中之重。在优化算法上,人工智能的引入是传感器融合的一个明显发展趋势。通过人工神经网络,可以模仿人脑的判断决策过程,并具有持续学习进化的可扩展能力,这无疑为传感器融合的发展提供了加速度。虽然软件很关键,但是在传感器融合过程中,也并非没有硬件施展拳脚的机会。比如,如果将所有的传感器融合算法处理都放在主处理器上做,处理器的负荷会非常大,因此近年来一种比较流行的做法是引入传感器中枢(Sensor Hub),它可以在主处理器之外独立地处理传感器的数据,而无需主处理器参与。这样做,一方面可以减轻主处理器的负荷,另一方面也可以通过减少主处理器工作的时间降低系统功耗,这在可穿戴和物联网等功耗敏感型应用中,十分必要。有市场研究数据显示,对传感器融合系统的需求将从2017年的26.2亿美元增长到2023年的75.8亿美元,复合年增长率约为19.4%。可以预判,未来传感器融合技术和应用的发展将呈现出两个明显的趋势:●自动驾驶的驱动下,汽车市场将是传感器融合技术最重要的赛道,并将由此催生出更多的新技术和新方案。●此外,应用多元化的趋势也将加速,除了以往那些对于性能、安全要求较高的应用,在消费电子领域传感器融合技术将迎来巨大的发展空间。总之,传感器融合为我们洞察这个世界提供了更有效的方法,让我们远离“盲人摸象”般的尴尬,进而在这个洞察力的基础上,塑造更智能的未来。
  • Nature | 我国科学家开发融合蛋白质图像和相互作用的细胞多尺度结构模型
    细胞是跨越了至少四个数量级的、复杂而精妙的模块化系统【1】。对细胞内模块化系统的刻画主要有两种方式,一是蛋白质荧光成像,一是蛋白质生物物理特性,这两种方面的技术可以产生大量的数据,但是这两种方式所产生的数据库具有不同的质量和分辨率,通常需要分别进行处理。那如何将两种方式的优点进行同时整合呢?近日,美国加州大学圣地亚哥分校Trey Ideker研究组(第一作者为博士生秦越)与瑞典皇家理工学院以及斯坦福大学Emma Lundberg研究组合作发文题为A multi-scale map of cell structure fusing protein images and interactions,将来自于人类蛋白质图谱(Human Protein Atlas)【2】的免疫荧光图像与BioPlex数据库【3】中亲和纯化结果进行整合,构建了多维度细胞整合图谱MuSIC1.0(Multi-scale integrated cell),对人类细胞中的结构层次进行了统一化的分析,从而解析出69个亚细胞系统,为整合各种各样不同类型的数据来创建全蛋白细胞模型铺平了道路。真核细胞由多种大的组分组成,比如细胞器、凝聚体或者蛋白质复合体,从而形成一个多维度的结构。人类蛋白图谱系统性地对人类细胞中蛋白质在亚细胞结构中定位进行了全面解析,与此同时质谱与亲和纯化(Mass spectrometry combined with affinity purification, AP-MS)技术将临近标记引入蛋白质组学探究之中,从而能够快速检测蛋白和蛋白之间的相互作用。因此,如果能将蛋白质成像与生物物理之间的关联结合起来,便可以对细胞结果进行更进一步地解析。为此,作者们构建了一种机器学习方法,可以将蛋白质成像与生物物理特性进行关联和集成,从而构建一个亚细胞结构组成组分的统一图谱。图1 蛋白质成像与AP-MS数据库整合策略首先,作者们使用深度神经网络(Deep neural network,DNN)对蛋白质图像与相互作用数据进行整合,确定每个平台中蛋白质的坐标,对蛋白质之间的距离进行校准和组合,从而确认在不同维度下蛋白质复合体的组装方式(图1)。这两个全方位的数据库均来自HEK293细胞。作者们对蛋白质配对之间的相互作用距离进行检测,举例来说,来自蛋白质复合体中的蛋白之间相互作用距离少于20nm,而细胞器中的蛋白质之间距离可能会超过1μm。作者们分析了661个蛋白质之间的所有距离,以识别相互接近的蛋白质组分。随着距离的变化,能够产生一个蛋白质多维度结构层次图谱(图2)。由此,作者们发现所构建的MuSIC系统能够以很广的范围对生物系统内的蛋白质相互作用进行测量和捕捉。图2 结构层次图谱建立和检测的流程在建立起该整合图谱后,作者们希望对MuSIC系统进行一个全局性的评估。MuSIC图谱中有370个蛋白以前未在AP-MS实验中用于亲和标记进行相互作用因子的钓取。因此,作者们对134个猎物蛋白进行标记进行AP-MS实验,从而检测到339个相互作用配对,进而对该整合图谱的准确性进行了全面的验证。在MuSIC发现的全新的亚细胞系统中,有一个由七个蛋白质复合体组成的直径估计为81nm的系统,作者们将此系统命名为前体核糖体RNA加工组装复合体(Pre-ribosomal RNA processing assembly,PRRPA)。为了对PRRPA复合体在前体rRNA加工中的作用进行确认,作者们使用siRNA对每个蛋白进行了敲降,发现所有的敲降都会一定程度上破坏核糖体RNA的成熟。另外,作者们使用RNA免疫共沉淀定量qPCR对这些蛋白结合45S前体rRNA的能力进行检测,再次证明了这些蛋白质在前体rRNA加工过程中的作用。同时作者们发现所建立的MuSIC系统也可以对一些蛋白质的功能进行更为全面的认识,包括发现已知蛋白的全新功能和未知蛋白的潜在功能。总的来说,该工作通过汲取蛋白质荧光成像与蛋白质生物物理特性两方面之长构建了多尺度细胞整合图谱MuSIC 1.0,进一步地提高了现有蛋白质荧光图像中信息的分辨率,也为蛋白质相互作用提供了空间维度的信息,为人类细胞中蛋白质组研究提供了更为全面的认识。原文链接:https://doi.org/10.1038/s41586-021-04115-9
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制