当前位置: 仪器信息网 > 行业主题 > >

超高真空探针台

仪器信息网超高真空探针台专题为您提供2024年最新超高真空探针台价格报价、厂家品牌的相关信息, 包括超高真空探针台参数、型号等,不管是国产,还是进口品牌的超高真空探针台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高真空探针台相关的耗材配件、试剂标物,还有超高真空探针台相关的最新资讯、资料,以及超高真空探针台相关的解决方案。

超高真空探针台相关的资讯

  • 我司在北京某研究所成功安装美国Janis公司生产的高低温真空探针台 2016-11
    我司于2016年11月在北京某研究所成功安装美国Janis公司生产的高低温真空探针台。该探针台变温范围大(8K-675K (LHe),80K-675K(LN2)),温度稳定性好(优于10mK)。配三同轴探针臂,漏电流优于50fA。配无油分子泵组,低温下真空度优于5*10-6mbar。与Keithley 4200半导体特性仪匹配使用,用于功能材料、拓扑绝缘体、纳米结构和器件等变温测试,也可以用于半导体器件、MEMS器件、超导器件与封装前在真空下做原位测试以及高低温的老化测试。 高低温真空探针台系统
  • SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势
    SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势高真空对于电扫描探针显微镜的优势Advantages Of High Vacuum For Electrical Scanning Probe Microscopy 来自IMEC和比利时鲁汶大学物理与天文学系的Jonathan Ludwig,Marco Mascaro,Umberto Celano,Wilfried Vandervorst,Kristof Paredis学者们利用Park NX-Hivac原子力显微镜对MoS2在形态和电学方面进行了研究。2004年,石墨烯作为一类新材料原型的被发现,引起了人们对二维(2D)层状材料的极大兴趣。从那时起,人们合成并探索了各种各样的二维材料。 其中,过渡金属二氯代物 (TMDs) 因其固有的带隙、小的介电常数、高的迁移率和超薄的材质而引起了人们的广泛关注, 这使其有望成为将逻辑技术延伸到5 nm以上节点的候选材料。然而,在300 mm兼容的制造环境中集成此类材料仍然面临许多挑战,尤其是因为在薄片或单个晶粒中观察到的有用特性,高质量TMD层的可控生长、转移和加工仍然是一个关键障碍。 扫描探针显微镜作为一种固有的高分辨率二维技术,是研究TMDs形态和电学特性的强大工具。本技术说明以MoS2为例,利用Park NX-Hivac原子力显微镜系统的功能,探讨了高真空用于电学测量的优势。调查:材料和方法MoS2 用MOCVD在蓝宝石衬底上生长了一系列不同层厚的MoS2样品。所有的测量都是在生长的、未转移的MoS2 / 蓝宝石上进行的。相同材料制成的元件的室温迁移率高达μm~30 c㎡/Vs,较厚样品的平均迁移率更高。图1:(a-c)所研究样品的AFM形貌图。(d)用于测量蓝宝石上多层MoS2的C-AFM装置示意图。(e)显示悬臂在高摩擦区域扫描时如何扭曲的动画。(f)对应于(b)中黑线的形貌横截面,在MoS2岛边缘显示0.6 nm台阶,在蓝宝石台地上显示0.2 nm台阶。所有的图像都是用Gwydion绘制的。比例尺为500 nm。 所有被测样品的原子力显微镜(AFM)图像如图1所示。总共测量了三个样品,其层厚为1-2层,3-4层,还有一个具有金字塔结构,这里称为多层MoS2。1-2层样品由一个完全封闭的单层MoS2薄膜组成,在顶部形成额外的单层岛。这些单层岛构成了第二层生长的开始,在形貌图上可以识别为浅色区域。与此相似,3-4层样品由一个完全封闭的三层MoS2薄膜和附加的单层岛组成。图1(d)显示了3-4层样品的样品结构示例。在这里,每个绿色层代表一层MoS2。除了MoS2岛,我们还看到对角线贯穿每个样本。这些是蓝宝石衬底上的台阶,可以通过2D薄膜看到。蓝宝石阶梯与MoS2层之间可以通过台阶高度明确区分,c面蓝宝石为0.2nm,单层MoS2台阶为0.6 nm,如图1(f)横截面所示。多层样品与其他两个样品不同之处在于MoS2表面具有3D金字塔状结构。这些金字塔位于一个完全封闭的三层结构上,其形成是由于随着层厚的增加,生长机制由逐层向三维转变。增长的细节可以在参考文献12中找到。导电扫描探针显微镜 本文采用两种导电扫描探针显微镜(SPM)来表征MoS2的电子性质:导电原子力显微镜(C-AFM)和扫描隧道显微镜(STM)。在C-AFM中,悬臂梁与材料表面接触,并且同时记录形貌和电流。为了测量电流,在样品台上施加一个偏压,并通过连接到导电AFM探针的外部电流放大器来测量电流。材料的电接触是通过在材料的顶部和侧面涂上银漆来实现的。我们使用商用Pt-Ir涂层探针,如PPP-CONTSCPt或PPP-NCSTPt,其标称弹簧常数在0.2-7N/m之间。由于C-AFM是一种基于接触的AFM技术,它还能够实现其他C-AFM通道的同时一起记录侧向力。横向力显微镜(LFM)测量激光在PSD上的横向偏转,这是由于悬臂梁在扫描表面时的扭转或扭曲而引起的,如图1(e)所示。LFM图像的正向和反向的差异与物质的摩擦力成正比,后者不同于C-AFM,因为裁剪的Pt-Ir导电导线,在我们的例子中,用于测量当探针高于表面几埃时探针与样品之间的隧穿电流。STM可以通过保持高度恒定并记录电流(称为恒定高度模式)或使用反馈保持电流水平恒定并记录高度(恒流模式)来执行。在恒流模式下,高度图像包含形貌和电学信息。C-AFM 在空气中与在高真空中 为了证明二维材料表面水层的重要性,我们分别对空气和高真空(HV)中的相同MoS2样品进行了C-AFM测量,如图2(a-b)和(c-d)。虽然在空气中和在高真空环境中扫描的形貌图像非常相似,但是C-AFM图像有很大的不同。最值得注意的是,在高真空下测量的电流增加了三个数量级。在5V偏压下,空气中的平均电流水平为1.4nA,而在高真空下,平均电流水平为1.1μA。电流水平的提高是由于去除了空气中始终存在于样品表面的薄水层。该水层对MoS?尤其成问题,因为它对材料进行p-掺杂,有效地切断了它的电性。从类似的CVD生长的MoS2器件的电输运来看,在暴露于去离子水两小时后,通态电流严重退化,迁移率降低了40%。图2: 3-4 MoS2样品的C-AFM显示高真空下电流水平和灵敏度增加。(a)和(b)分别是在空气中5V偏压下的形貌图和电流图像。(c)和(d)是在0.5 V偏压下泵送至高真空后立即拍摄的形貌图和电流图像。在空气和高真空中采集的数据采用相同的参数:相同的探针,弹簧常数k为7 N/m,设定值为10 nN,扫描频率为1 Hz。比例尺为500 nm。 除了电流的增加,高真空下的C-AFM图像也显示了更多的细节。从空气中的图像来看,电流是相对均匀的。除此之外,C-AFM 在空气中针对此样品提取不出太多的信息。相比之下,从真空下扫描的电流图,我们可以清楚地看到MoS2层中的晶界。尽管C-AFM探针与材料直接接触,但施加的力很小,因此在重复扫描过程中不会去除MoS2材料。图3所示为同一样品在高压下以~30nN力进行5次扫描后的形貌图,探针的标称弹簧常数为~7N/m。图3: (a)是3-4层MoS2的最初形貌图,(b)是在0.1V设定值下连续扫描5次后的形貌图,使用弹簧常数约为7 N/m的PPP NCSTPt探针。比例尺为50nm。专为晶界分析的C-AFM和LFM 当使用低弹簧常数探针成像时,例如标称弹簧常数为0.2N/m的PPP-CONTSCPt,我们可以用C-AFM同时获得摩擦数据,从而考虑到形貌、电学和材料特性之间的相关性。图3显示了1-2层MoS2样品的高度、摩擦和电流图像。在图3(a)中,第一层和第二层区域分别标记为1Ly和2Ly。晶界处的摩擦比原始区域高,因此它们在摩擦中表现为黑线。通过比较电流和摩擦力,可以看出摩擦图像中的黑线与电流中的黑线相匹配。然而,由于衬底对2D薄膜的局部导电性的影响,电流图像显示了额外的特征。图4:(a)形貌,(b)摩擦,(c)在1-2层生长的MoS2 / 蓝宝石样品上同时获得的电流。各区域的层厚如(a)所示。比例尺为200 nm。扫描隧道显微镜观察MoS2 借助Park NX-Hivac原子力显微镜,我们还能够获得高质量的STM图像,而无需复杂的超高真空系统和特殊的样品制备/处理。图4显示了在恒流模式下成像的多层MoS2样品的500 nm扫描,Iset=0.5nA, Vbias=1V。由于STM给出了形貌与电子结构的卷积,我们在高度图像中看到了层岛和晶界。图5:多层膜的MoS2 / 蓝宝石的STM图像。裁剪的Pt-Ir导线在恒流模式下 。Iset=0.5nA, Vbias=1V。比例尺为200nm。结论 本研究利用Park NX-Hivac AFM系统,对过渡金属二氯生化合物(TMDs)家族的二维材料二硫化钼(MoS2)进行了形态和电学方面的研究。在AFM形貌图像上观察了单层和多层的差异。此外,在多层图像上确定了由逐层生长机制引起的三维金字塔状结构的细节。 利用导电SPM(C-AFM和STM)研究了MoS2在空气中和高真空条件下的电学性能。在高真空条件下,尽管存在氧化层,但测量到的电流信号清晰、均匀、较高。最后,结合C-AFM和LFM获得了晶界分析的形貌、电学和力学信息。这种方法可以在晶界上找到更具体和更详细的结构。 二维层状材料广泛应用于工业和学术的各个研究领域。二维材料电性能和力学性能的表征与探索是材料研究领域的一个重要课题。原子力显微镜是一种多功能的成像和测量工具,它允许我们使用各种成像模式从多个角度评估二维材料。本研究强调材料分析的改进策略。此外,这些结果强调了多方向和多通道分析二维材料的重要性,其中包括半导体工业高度关注的过渡金属二氯代物。References1. K. S. Novoselov, A. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, &A. A. Firsov. Electric field effect in atomically thin carbon films. Science306, 666–669 (2004).2. A. K. Geim & I. V. Grigorieva. Van der Waals heterostructures. Nature499, 419–425 (2013).3. K. F. Mak, C. Lee, J. Hone, J. Shan, & T. F. Heinz. Atomically Thin MoS 2?: A New Direct-Gap Semiconductor. Phys Rev Lett105,136805 (2010).4. H. Liu, A. T. Neal, Z. Zhu, Z. Luo,X. Xu, D. Tománek,&P. D. Ye. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano8, 4033–4041 (2014).5. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao,&K. Wu. Rise of silicene: A competitive 2D material. Prog Mater Sci83, 24–151 (2016).6. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, & J. Hone.Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol5, 722–726 (2010).7. X. Xu, W. Yao, D. Xiao, &T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.10, 343–350 (2014).8. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K.Banerjee,& L. Colombo. Electronics based on two-dimensional materials. Nat Nanotechnol9, 768–779 (2014).9. X. Xi, L. Zhao,Z. Wang, H. Berger, L. Forró, J. Shan,& K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol.10, 765–769 (2015).10. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, &A. Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater.2, 17033 (2017).11. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande,&Y. H. Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today20, 116–130 (2017).12. D. Chiappe, J. Ludwig, A. Leonhardt, S. El Kazzi, A. Nalin Mehta, T. Nuytten, U. Celano, S. Sutar, G. Pourtois, M. Caymax, K. Paredis, W. Vandervorst, D. Lin, S. Degendt, K. Barla, C. Huyghebaert, I. Asselberghs, and I. Radu, Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity. Accepted Nanotechnology (2018).13. E. R. Dobrovinskaya, L. A.Lytvynov,& V. Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
  • 岛津高分辨率扫描探针显微镜SPM-8000FM 新品发布
    ——首款可分析固液界面结构的扫描探针显微镜 岛津高分辨率扫描探针显微镜SPM-8000FM 日本岛津制作所于2014年1月6日推出了最新型号扫描探针显微镜——高分辨率扫描探针显微镜SPM-8000FM,不同于现有扫描探针显微镜/原子力显微镜多采用调幅(AM)方式,而采用更高灵敏度、更高稳定性的调频(FM)方式,因此称为高分辨率HR-SPM(High Resolution Scanning Probe Microscope)扫描探针显微镜。并突破了FM方式只能在真空环境中观察这一瓶颈,成为首款可在大气溶液环境下进行原子级的结构观察和物性测定的扫描探针显微镜,并达到真空环境中超高分辨率水平。 SPM-8000FM可在大气˙溶液环境下分析薄膜、结晶、半导体、有机材料等多种样品。首次实现了在固体和液体的临界面(固液界面)进行水化、溶剂化的观察,因此也可以作为固液界面结构的观察分析仪器。例如,可实现锂离子电池中电解液和电极界面发生的结构变化,或者脂类等生物分子溶液中的结构观察等研究,为电子设备、纳米材料、催化剂、生物材料等纳米技术领域的研发工作带来新手段。 在尖端纳米技术领域的研发过程中,不仅要在真空环境中,更需要在实际使用环境中进行原子级的结构观察和物性测定,准确把握样品特性。岛津制作所与京都大学等科研机构共同研发的SPM-8000FM高分辨率扫描探针显微镜充分满足了纳米研究人员的理想。据悉,该款仪器将于3月展开在中国市场的销售应用服务工作。 SPM-8000FM特点1. 突破超高真空瓶颈,实现大气˙溶液中的超高分辨率观察由于SPM检测悬臂位移的光学杠杆检测系统的固有噪音水平较高,所以只能在真空中完成超高分辨率观察。岛津高分辨率扫描探针显微镜SPM-8000FM通过提高光学杠杆检测系统的效率、降低激光干扰等技术研发,将现有光杠杆检测系统的噪音水平降低95%,开创了SPM在大气˙溶液中的超高分辨率观察。因此,利用SPM-8000FM可以清晰的观察到大气中酞菁铅晶体薄膜的分子排列结构、水中氯化钠(NaCl)的原子结构等。还可以进行有机分子在溶液中特定反应的功能性评价、反应评价,所以在有机元件的开发领域将发挥巨大作用。 2. 不再局限于表面观察,实现了固液界面的局部三维结构的观察分析目前已知固液界面会在溶质与水(溶媒)的相互作用下形成复杂的层状结构,称之为水化溶剂化层,可对固液界面的化学反应、电荷移动、润滑、热传导等产生很大的影响。但是水化溶剂化层非常薄,在临界面的垂直方向上呈现不均一的结构,所以水化溶剂化层的显微观察迄今为止都是一个难题。SPM-8000FM利用超高灵敏度的力检测系统实现了水化溶剂化结构的观察分析。通过采用新的扫描方式,首次实现了三维结构的解析。不仅可以观察电极、聚合物在界面活性剂、生物界面等溶液中的表面形态,还可以进行固液界面结构的观察分析。
  • “100家实验室”专题:访北京离子探针中心
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第五十四站:北京离子探针中心,该中心学术秘书王晨女士热情地接待了仪器信息网到访人员。   北京离子探针中心(以下简称“中心”)成立于2001年12月18日,是由科技部、国土资源部和中科院共同出资1800万元,以共建共享方式建立的国家大型科学仪器中心,现依托于中国地质科学院地质研究所。该中心成立九年以来,坚定不移地走大型仪器共建共享的道路,仪器运行效率和科研成果产出率都进入了国际先进行列。   中心副主任张玉海高级工程师(左三)、杨之青工程师(右二)、王晨女士(左二)与仪器信息网工作人员合影   王晨女士首先为我们介绍了中心的主要仪器及其在实验室相关测试、研究业务中发挥的重要作用。“中心的核心仪器是高分辨二次离子探针质谱((Sensitive High Resolution Ion Microprobe II ,SHRIMPⅡ)。相应的配套仪器包括扫描电镜及阴极发光探头、水冷系统、超净台、显微照相、空气压缩机以及用于制样的镀金仪、抛光机等。”   北京离子探针中心的主要仪器情况   拥有国内唯一两台高分辨二次离子探针质谱,测试业务专门面向地质学相关领域开放   “中心于2001年5月引进的SHRIMPⅡ是世界上第九台、国内第一台SHRIMPⅡ,它是专门针对同位素地质年代学、宇宙年代学、地球化学和宇宙地球化学等地质学相关研究中的重同位素分析而设计,特别是锆石微区定年。该仪器是磁质谱,配备单接收器,当时购买价格为1800万元。”   “多年来,SHRIMPⅡ运行情况一直良好,坚持每天24小时,每周7天不间断运行,年分析机时(指仪器进行样品或标准样品分析的时间)保持在7200小时左右,达到科技部有关大型仪器运行效率规定的优秀标准(1600小时/年)四倍之多,成为世界上运行效率最高的一台SHRIMP。”   “鉴于SHRIMPⅡ的超高使用效率以及仪器维护保养方面的考虑,财政部2005年出资3000万元为北京离子探针中心添置了第二台二次离子探针质谱——SHRIMPⅡe-MC,该仪器相比于SHRIMPⅡ,离子源添加了铯源,在分析重同位素的同时又能分析轻同位素,且配备了多个接收器。鉴于北京离子探针中心的新基地还未建好,所以该仪器暂且还停放在澳大利亚,预计2011年会移至新基地。”   高分辨二次离子探针质谱(SHRIMPⅡ)   样品前处理:精“挑”细“选”、细致“打磨”   “矿物样品在进入SHRIMPⅡ分析之前,要经过一系列的前处理,大约需要一周的时间。首先是选矿,将采来的岩石标本粉碎成粉末,经过筛选、磁选、手工挑选等步骤后,挑选出其中的锆石颗粒,一般一个样品会挑选出几十颗至上千颗锆石颗粒。”   “其次是样品制靶,将选出的锆石颗粒,固定在双面胶上,将标样与样品排列在指定位置,随后用模具注入环氧树脂,抽真空,烘干,使树脂固化后对其进行打磨、抛光,使靶表面光滑。”   样品靶   (图注:靶上面的“线”即是锆石颗粒阵列。)   “第三是用显微镜给靶照相,该步骤的目的有二:一是给锆石样品定位,二是通过显微镜的透、反射光对样品的照射,分析锆石颗粒的内部结构以及检查其表面是否有裂隙、瑕疵,为SHRIMPⅡ分析时选点提供依据。”   “最后是阴极发光照相,将显微镜照相后的靶进行超声波清洗,在靶的检测光面上镀上金膜,随后放在扫描电子显微镜下做阴极发光照相,以确定锆石颗粒内部同位素的分布情况。经过这些步骤后,靶才可以放入SHRIMPⅡ内进行分析了。”   日立S-3000N扫描电子显微镜   (图注:该仪器配备GATAN公司Chroma阴极发光探头,可提供彩色及黑白阴极发光照片。)   S-3000N拍摄的锆石照片   奉行“开放、共享、高效”的运行原则,仪器使用率与开放程度堪称典范   “中心自成立之日起就奉行‘开放、共享、高效’的运行原则,面向国内外地学界全方位开放共享。2005年12月,中心项目组研发出了离子探针远程共享控制系统(SROS,SHRIMP Remote Operation System),该系统实现了在Internet公共网络环境下,实时远程控制SHRIMPⅡ,观测样品图像实时变化,在线获取试验数据、远程协同信息交流等远程实验功能,达到了亲临北京离子探针中心进行实验的效果,更好地实现了SHRIMPⅡ的开放、共享。”   “开放、共享的运行机制给中心带来了巨大的工作量和众多的访问者。中心成立九年以来,共有来自国土资源部、中科院、大专院校以及港台地区的30多个相关单位的数百名科研工作者使用中心的SHRIMPⅡ对自己的样品进行了分析研究。另外,一批来自美国、英国、法国、意大利、德国、澳大利亚、韩国、巴西、古巴、蒙古国、波兰和土耳其等国的学者也来中心完成锆石定年工作和短期访问,其中不乏国际一流的地质学家。正是因为如此,北京离子探针中心的仪器利用率和开放程度均居国际同类实验室的前列。”   打造“测试、技术、研究”三位一体的实验室,从事质谱仪器研发   在谈到中心的总体发展情况时,王晨女士转述了中心主任刘敦一研究员的看法:“北京离子探针中心如果仅作为一个测试平台,其功能是有限的,要发挥它的巨大作用,我们就应当坚持测试、技术、研究这三方面并行发展的策略。通过测试业务,我们了解到科学家们对SHRIMPⅡ的性能有哪些方面要求,进而中心的技术人员对仪器进行改进,然后仪器使用者再使用,并给予反馈。如此反复,我们仪器相关技术水平越来越高,而这方面水平的提高也促进了中心的研究工作。所以测试、技术、研究这三方面是相互促进的,三者的融合让我们有可能实现各种革新与突破。”   “中心现在主要从事的研究有:从事地质年代学和宇宙年代学研究 进行必要的矿物微区稀土地球化学研究 解决重大地球科学研究课题中的时序问题,特别是太阳系和地球的形成及早期历史研究 主要造山带的构造演化研究 地质年代表研究 大型和特殊矿床成矿时代研究 发展定年新技术新方法等。”   “除此之外,中心还从事科学仪器研发。中心主任刘敦一研究员认为:科学仪器自主研发能力的重要性再明显不过。一个国家如果没有独立自主的科学仪器研发能力,其科学技术的发展不可能领先,其工业、农业创新体系不可能形成,独立自主的国防体系不可能建立,因而科学仪器自主研发能力是关系到国家安全和民族发展的大事。目前北京离子探针中心承担了《二次离子质谱仪器核心技术及关键部件的研究与开发》项目,正从事二次离子质谱(SIMS)及飞行时间(TOF)串联质谱的若干关键技术和关键部件的研究。”   王晨女士(中)向仪器信息网工作人员介绍SHRIMPⅡ   附录:北京离子探针中心   http://www.bjshrimp.cn/
  • 岛津扫描探针SPM-8000FM 获得"十大新产品奖"
    岛津高分辨率扫描探针显微镜SPM-8000FM荣获日刊工业新闻社主办的2014年第57届 “十大新产品奖 ”制造奖。该奖项是从当年度开发并投放到市场的产品中,评选出能够促进制造业发展,并提升日本国际竞争力的产品。2014年共有60家公司的65款产品参加角逐,共17款产品获得此奖项。岛津产品已经连续3年荣膺此奖项。 2014年第57届 “十大新产品奖 ”制造奖 岛津高分辨率扫描探针显微镜SPM-8000FM 日本岛津制作所于2014年1月6日推出了最新型号扫描探针显微镜——高分辨率扫描探针显微镜SPM-8000FM,不同于现有扫描探针显微镜/原子力显微镜多采用调幅(AM)方式,而采用更高灵敏度、更高稳定性的调频(FM)方式,因此称为高分辨率HR-SPM(High Resolution Scanning Probe Microscope)扫描探针显微镜。并突破了FM方式只能在真空环境中观察这一瓶颈,成为首款可在大气溶液环境下进行原子级的结构观察和物性测定的扫描探针显微镜,并达到真空环境中超高分辨率水平。 SPM-8000FM可在大气溶液环境下分析薄膜、结晶、半导体、有机材料等多种样品。首次实现了在固体和液体的临界面(固液界面)进行水化、溶剂化的观察,因此也可以作为固液界面结构的观察分析仪器。例如,可实现锂离子电池中电解液和电极界面发生的结构变化,或者脂类等生物分子溶液中的结构观察等研究,为电子设备、纳米材料、催化剂、生物材料等纳米技术领域的研发工作带来新手段。 在尖端纳米技术领域的研发过程中,不仅要在真空环境中,更需要在实际使用环境中进行原子级的结构观察和物性测定,准确把握样品特性。岛津制作所与京都大学等科研机构共同研发的SPM-8000FM高分辨率扫描探针显微镜充分满足了纳米研究人员的理想。据悉,该款仪器已于2014年3月展开在中国市场的销售应用服务工作。 SPM-8000FM特点1. 突破超高真空瓶颈,实现大气˙溶液中的超高分辨率观察由于SPM检测悬臂位移的光学杠杆检测系统的固有噪音水平较高,所以只能在真空中完成超高分辨率观察。岛津高分辨率扫描探针显微镜SPM-8000FM通过提高光学杠杆检测系统的效率、降低激光干扰等技术研发,将现有光杠杆检测系统的噪音水平降低95%,开创了SPM在大气溶液中的超高分辨率观察。因此,利用SPM-8000FM可以清晰的观察到大气中酞菁铅晶体薄膜的分子排列结构、水中氯化钠(NaCl)的原子结构等。还可以进行有机分子在溶液中特定反应的功能性评价、反应评价,所以在有机元件的开发领域将发挥巨大作用。2. 不再局限于表面观察,实现了固液界面的局部三维结构的观察分析目前已知固液界面会在溶质与水(溶媒)的相互作用下形成复杂的层状结构,称之为水化溶剂化层,可对固液界面的化学反应、电荷移动、润滑、热传导等产生很大的影响。但是水化溶剂化层非常薄,在临界面的垂直方向上呈现不均一的结构,所以水化溶剂化层的显微观察迄今为止都是一个难题。SPM-8000FM利用超高灵敏度的力检测系统实现了水化溶剂化结构的观察分析。通过采用新的扫描方式,首次实现了三维结构的解析。不仅可以观察电极、聚合物在界面活性剂、生物界面等溶液中的表面形态,还可以进行固液界面结构的观察分析。
  • 新一代无液氦亚3K低温扫描探针显微镜研制获进展
    低温在凝聚态物理研究中扮演越来越重要的角色,是对多体系统中强相互作用的复杂行为开展深入研究的必要条件。随着液氦资源的日趋紧张和无液氦制冷技术的不断发展,基于无液氦制冷的设备将逐步成为低温科研仪器的主流方向。迄今为止,磁共振成像、超导磁体、综合物性测量系统等诸多仪器设备已实现了无液氦化。然而,具有亚原子分辨能力的扫描探针显微系统(SPM)对震动水平的要求极为苛刻,因此实现无液氦闭循环制冷技术在低温SPM领域的应用面临挑战。近十年来,世界上多个团队和公司尝试将制冷机安装在扫描单元附近实现无液氦低温SPM,而单级制冷的基础温度仅能达约5K水平,且制冷机震动对成像的影响仍然显著。中国科学院物理研究所/北京凝聚态物理国家研究中心郇庆研究团队(N13组)致力于高端科研仪器的研发与应用,在真空、低温、材料制备等领域核心关键部件、成套系统、电路控制系统方面取得了系列成果。高鸿钧院士团队(N04组)多年来致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要突破。N13组和N04组长期合作,陆续在尖端科研仪器装备自主研发方向取得一系列重要进展:一套商业化四探针SPM系统的彻底改造、超高真空光学-低温扫描探针显微镜联合系统的研制和应用于多探针显微镜的分时复用电路系统等。合作团队再次“仪器”携手,攻关新一代无液氦低温SPM技术。该研究研制了一套无液氦亚3K低温SPM系统。这一系统颠覆了现有无液氦SPM近端安装制冷机的方式,将低频大幅震动的制冷机安装在远端的独立制冷腔体。通过数月的连续测试验证,该设备实现了~2.8K的基础温度、接近±0.1mK的温度稳定性、约1pm震动水平、小于10pm/h的温度漂移,能够从低温到室温宽温区内连续变温成像。在非接触原子力显微镜原子级分辨成像、扫描隧道谱以及非弹性电子隧道谱的性能方面,该系统达到了与传统液氦杜瓦的湿式SPM系统相媲美的水平。相较已有无液氦SPM方案存在制冷机近端安装带来的诸多问题(不耐烘烤、磁场敏感、安装角度受限、橡胶波纹管透气结冰和难以升级等),这种闭循环远端制冷方案展现了多方面的优势:高性能:少量氦气(~10 L)实现3K以下基础温度,并可长时间连续运行,震动水平与湿式系统相当;拓展性:利用此远端液化4He方案预冷3He方便实现亚开尔文范围拓展;兼容性:与强磁场、光学通路等其他物理环境的良好兼容性,显著降低来自制冷机的电磁干扰;灵活性:便捷地将现有湿式SPM系统改造为无液氦SPM,并可应用在其他需求低温且对振动敏感的领域。这一闭循环无液氦低温SPM实现了TRL8级的技术就绪度。近期,相关研究成果发表在《科学仪器评论》上(Review Scientific of Instruments,DOI:10.1063/5.0165089)。该工作将为凝聚态物理研究、材料科学、生物医学等领域提供高性能的低温超低振动解决方案,并有望推动相关领域的研究取得更大突破。一位审稿人评价道:“在我看来,采用氦连续流低温恒温器和低温制冷机技术相结合的理念来解决无液氦低温扫描探针显微镜及相关领域长期存在的隔振问题,不仅具有创新性,而且鉴于世界范围内的液氦短缺困境,该技术方案的提出十分重要且及时。”研究工作得到国家杰出青年科学基金项目、中国科学院关键技术研发团队项目、国家重大科研仪器研制项目、国家自然科学基金青年科学基金项目和北京市科技计划怀柔科学中心项目的支持。图1. 新一代无液氦亚3K低温扫描探针显微镜的三维模型和原理图。图2. (a)基于连续流液氦恒温器的降温效果;(b)闭循环无液氦远端制冷的降温效果;(c)载入样品后的温度变化;(d)样品在4K温度的稳定性。图3. Au(111)和Ag(110)表面的成像测试和谱学表征。图4. Ag(110)表面CO分子的拾取和二阶谱学表征与谱学成像。图5. qPlus AFM探针在NaCl(100)表面的测试结果。图6. 已有基于液氦杜瓦的湿式SPM系统升级成远端制冷闭循环无液氦SPM的方案示意图。
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 高鸿钧院士团队成果:多探针扫描隧道显微镜分时复用切换技术
    科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021) doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。图1:分时复用切换方案图2:分时复用系统硬件设计图3:分时复用切换系统软件架构图4:分时复用切换系统部分图形用户界面图5:单STM探针空间定位图6: 多探针切换与空间定位附:Rev. Sci. Instrum. 92, 103702 (2021).pdf
  • 预算656万,北京量子信息科学研究院采购扫描探针显微镜
    p style=" text-indent: 2em " 近日,华诚博远工程咨询有限公司受北京量子信息科学研究院委托,对科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目进行公开招标。详情如下: /p p style=" text-indent: 2em " strong 一、项目名称: /strong 科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目 /p p style=" text-indent: 2em " 项目联系方式: /p p style=" text-indent: 2em " 项目联系人:杨楠 /p p style=" text-indent: 2em " 项目联系电话:18618127731 /p p style=" text-indent: 2em " strong 二、采购单位联系方式 /strong /p p style=" text-indent: 2em " 采购单位:北京量子信息科学研究院 /p p style=" text-indent: 2em " 地址:北京市海淀区西北旺东路10号院西区3号楼 /p p style=" text-indent: 2em " 联系方式:陈春融,010-83057516 /p p style=" text-indent: 2em " strong 三、代理机构联系方式 /strong /p p style=" text-indent: 2em " 代理机构:华诚博远工程咨询有限公司 /p p style=" text-indent: 2em " 代理机构联系人:杨楠,18618127731 /p p style=" text-indent: 2em " 代理机构地址: 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A /p p style=" text-indent: 2em " strong 四、采购内容 /strong /p p style=" text-indent: 2em " 货物名称:多功能超高真空低温扫描探针显微镜综合系统 /p p style=" text-indent: 2em " 数量:1套 /p p style=" text-indent: 2em " 简要规格描述: /p p style=" text-indent: 2em " 1.快速进样室 /p p style=" text-indent: 2em " & #8230 & #8230 /p p style=" text-indent: 2em " 1.2 配备直线型磁力耦合的存放装置,用于存储样品托和针尖托。 /p p style=" text-indent: 2em " & #8230 & #8230 /p p style=" text-indent: 2em " 简要技术需求:满足招标文件中的货物技术规格及要求说明 /p p style=" text-indent: 2em " strong 五、招标文件的发售时间及地点等 /strong /p p style=" text-indent: 2em " 预算金额:656 万元(人民币) /p p style=" text-indent: 2em " 时间:2020-04-21 09:30 至 2020-04-26 17:00(双休日及法定节假日除外) /p p style=" text-indent: 2em " 地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A /p p style=" text-indent: 2em " 获取招标文件的方式:现场领购 /p p style=" text-indent: 2em " strong 六、投标截止时间 /strong :2020-05-15 13:30 /p p style=" text-indent: 2em " strong 七、开标时间和地点 /strong /p p style=" text-indent: 2em " 开标时间:2020-05-15 13:30 /p p style=" text-indent: 2em " 开标地点:北京市海淀区中关村软件园二期北京量子信息科学研究院620会议室 /p p style=" text-indent: 2em " strong 八、附件 /strong /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/9a5e9f05-15e3-46fa-8a09-e9366c609077.pdf" title=" 科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目-招标公告.pdf" 科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目-招标公告.pdf /a /p p br/ /p
  • 国产高端扫描探针显微镜突破,北大江颖团队实现成果转化
    近日,北京大学物理学院、轻元素先进材料研究中心江颖教授课题组与刘开辉教授课题组合作,自主研发了一台qPlus型光耦合扫描探针显微镜。该显微镜性能达到国际最好水平,其中原子力传感器振幅噪音和品质因子国际领先。相关技术细节发表在国际著名科学仪器杂志《科学仪器评论》(Review of Scientific Instruments)。相关专利技术已经成功实现转让,并完成了首台商业化样机。有望打破长期的国际垄断局面。图1. 自行研制的qPlus型光耦合扫描探针显微镜商业化样机由于技术受限和经验缺乏,我国的高端扫描探针显微镜多年来一直严重依赖进口。在这种被动的局面下,江颖课题组十多年来一直致力于研发扫描探针显微镜的核心部件以及高分辨成像和谱学技术,不断挑战扫描探针技术的探测极限。尤其是成功研发出一套具有自主知识产权的基于qPlus传感器的非侵扰式扫描探针显微术,该技术通过探测极其微弱的高阶静电力,刷新了扫描探针显微镜的空间分辨率,国际上首次实现了水分子中氢原子的直接成像,将水的微观实验研究带入一个全新的时代。图2. 自制qPlus型光耦合扫描探针显微镜的核心部件。A和B,光耦合扫描探头的三维设计图和实物图。C,qPlus原子力传感器。D,聚焦离子束刻蚀后的针尖。在关键技术获得突破的基础上,江颖课题组的程博伟博士、博士研究生吴达和边珂副研究员进一步与刘开辉课题组紧密合作,成功搭建了一台qPlus型光耦合扫描探针显微镜商业化样机(专利1)。该设备兼容超高真空和低温(液氦)环境,电路噪音背底低至5 fA/Hz1/2,针尖高度振动噪音峰小于200 fm/Hz1/2,热漂移小于0.1 pm/min,各项指标达到国际最好水平。同时,该设备的qPlus传感器具有极低的背底振幅噪音(~2 pm)和优异的品质因数(最高140000),达到国际领先水平。此外,该显微镜系统还具备独特性设计,其扫描探头上直接集成了可驱动光学透镜的三维纳米定位器(专利2),大幅提升了光激发与光收集效率,避免了激光聚焦光斑的微抖动问题,使得该显微镜兼备十分优异的光学兼容性,是研究多种分子和材料体系的结构、化学成分及动力学行为的理想工具。图3. 自制qPlus型光耦合扫描探针显微镜的原子力显微成像测试结果。A,qPlus力传感器频率扫描曲线。B和D,不同针尖高度下Au(111)表面二维冰的恒高原子力显微图像(频移图)。C,二维冰表面不同位置的力谱。E和F,二维冰的原子结构图。相关论文:Bowei Cheng, Da Wu, KeBian, Ye Tian, Chaoyu Guo, Kaihui Liu, Ying Jiang, A qPlus-based scanning probe microscope compatible with optical measurements. Review of Scientific Instruments 93, 043701 (2022).(https://doi.org/10.1063/5.0082369)相关专利:[1] 江颖、程博伟、边珂、吴达,一种基于qPlus的光耦合扫描探针显微镜,中国,202121333378.5,2021-09-03。[2] 江颖、程博伟、吴达、边珂,一种透镜三维移动装置,中国,202120697032.7,2021-05-07
  • 牛津仪器收购超高真空仪器供应商Omicron公司
    世界领先的科学仪器跨国集团公司牛津仪器公司日前宣布收购Omicron公司,并将其纳入公司的纳米科学部门,而该部门已汇集了纳米分析技术、等离子技术与纳米科学等先进产品。   据了解,Omicron纳米科技公司前身为Omicron Vakuumphysik有限公司,成立于1984年,总部位于德国Taunusstein市,是国际著名的专业开发和生产超高真空表面分析和扫描探针显微学系统的公司。   在过去的28年中,Omicron公司已发展成为纳米技术研究部门提供超高真空科学仪器和系统的领先供应商。通过该公司的扫描隧道显微镜以及电子能谱系统,OMICRON为科学家们提供了观察纳米世界的“眼睛”。今天,OMICRON公司的业务和价值观念都反映在其“前沿技术”、“德国制造”的质量标准以及全球的客户关系中。   由于两家公司的客户群体大致相同,再加上完美的技术合作,牛津仪器纳米科学部与Omicron公司在技术与业务上实现共享,并期望双方紧密合作,为客户创造更高价值的优秀产品。   牛津仪器纳米科学部总经理Jim Hutchins先生评价说:“对于Omicron公司的加入,牛津仪器纳米科学部的每一位员工都表示热烈欢迎,而这次业务合并的效果也是显著的。我们预计,二者世界领先技术的结合,将会为迅速发展的纳米技术市场提供一系列新式而独特的解决方案。例如将Omicron公司的探针显微技术与牛津仪器公司的低温强磁装置结合,将是一个很不错的集成方案。”   牛津仪器公司(www.oxford-instruments.com)   牛津仪器公司于1959年创建于英国牛津,现已成为世界领先的科学仪器跨国集团公司,拥有分布于英国、美国、德国、芬兰和中国的十几个工厂以及遍及全球的分公司或办事处,其产品和服务已经延伸到了一百多个国家和地区。本公司属于高科技行业,其产品包括高精度的分析仪器、半导体设备、超导线材、超导磁体、超低温设备、低温泵等。   Omicron公司(www.omicron.de):   Omicron创建于1984年,拥有20多年开发和创新的经验,是国际著名的专业开发和生产超高真空表面分析和扫描探针显微学系统的公司。Omicron的产品显示出卓越的多功能和实用性,在全球众多研究单位,尤其是在一流重点实验室中得到普遍应用。例如,Omicron超高真空扫描隧道显微镜目前全球销售量接近1000台;而新开发的系统如NanoESCA、NanoSAM等产品一次次将纳米领域研究推到更高水平。
  • 进口率超九成,美日仪器垄断市场——全国共享探针台盘点
    探针台是一种很专业的仪器,它主要的功能就是针对半导体元件进行检测,这里面说的半导体元件指的是集成电路,分立器件,光电器件,传感器等元件以及封装的测试。通过探针台配合测量仪器可完成集成电路的电压,电流,电阻和电容电压特性曲线等参数检测。可以适用于对芯片进行科研分析,抽查检测等;可以保证这些半导体元件的质量,缩短研发时间和器件制作工艺的成本,所以,它的存在对于制造半导体的企业来说是非常重要的。随着半导体市场的逐步开放和增长,作为半导体检测的必备仪器—探针台的市场也在逐年增长和扩大中,不论是海外品牌还是国产品牌,近几年在半导体检测仪器市场中的规模都在逐年扩大。由于高校的管理模式及制度,探针台大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对探针台的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。不同地区(省/市)仪器分布情况本次统计,共涉及探针台的总数量为235台,涉及20省(直辖市/自治区),84家单位。其中,上海市共享磁测量仪器数量最多达63台,占比29%,涉及17所高校、研究院所和企事业单位等,上海如此高的占比主要是由于其集成电路等半导体产业发达。上海市探针台主要来自于上海华岭集成电路技术股份有限公司,共有25台,占上海市总共享探针台的11%。仪器所属学科领域分布从仪器所属学科领域分布可以看出,探针台主要用于电子与通信技术、物理学和材料科学研究,占比分别为32%、17%和14%。不过,信息科学与系统科学和信息与系统科学相关工程与技术两个学科重合度较高,合计占比达16%,比材料科学略高。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域。仪器所属单位性质分布那么这些仪器主要分布在哪些单位呢?统计结果表明,共享探针台主要分布于高校中,占比达60%,这一结果主要是因为共享仪器平台的仪器由高校上传所致,统计结果并不能体现出此类仪器的市场分布。不过共享仪器最多的确实企业中的上海华岭集成电路。而高校和科研院所共享数量TOP5分别为清华大学、苏州大学、中国科学院上海微系统与信息技术研究所、东南大学、北京大学,这些高校院所都具有集成电路研发的基础。探针台主要品牌分布探针台品牌所属地区分布这些探针台主要品牌为美国Cascade、美国Lake Shore和日本东京精密,占比分别为28%、23%和16%。Cascade是全球领先的的探测系统、探针、探测器等产品的设计生产商,公司成立于1983年,总部设在美国俄勒冈州西北部城镇,为全球晶圆级测试的销售、服务和应用而存在,自主拥有150多项专利技术。Lake Shore公司成立于1968年,位于美国俄亥俄州哥伦布市,是低温与磁场科研设备的国际领导者。主要产品包括:振动样品磁强计、低温真空探针台、霍尔效应测量系统、低温控温仪、低温传感器、高斯计、磁通计等。可以看出,目前我国高校院所的探针台仍以进口为主,大部分市场被美日产品垄断,进口产品占比超过90%。此外,在统计过程中,笔者发现探针台常与半导体参数测量仪搭配联用,而搭配的半导体参数测量仪主要是美国Keithley的4200-SCS型号的产品。这是美国泰克旗下的吉时利品牌的一款产品。不过目前该型号已下架,最新款是4200A-SCS型号,4200A-SCS 参数分析仪支持许多手动和半自动晶片探测器和低温控制器,包括 MPI、Cascade MicroTech、Lucas Labs/Signatone、MicroManipulator、Wentworth Laboratories、LakeShore Model 336 低温控制器。Keithley 4200A-SCS 参数分析仪本次共享探针台仪器盘点,涉及等Cascade、Lake Shore、东京精密、MPI、Janis、SUSS、东京电子、奕叶、Signatone、ARS、FORMFACTOR、MPI等三十多家厂商,呈现出三超多强局面。探针台高校院所市场将爆发随着集成电路产业的爆发式发展,2018 年开始,将集成电路设置成一级学科的提案开始出现。2018 年中国科学院院士王阳元在新时期中国集成电路产业论坛中提议,微电子学科提升为一级学科。学术界和产业界对集成电路成为一级学科异常关注。2019 年 10 月 8 日,工信部官网发布《关于政协十三届全国委员会第二次会议第 2282 号(公交邮电类 256 号)提案答复的函》中表示,工信部与教育部等部门将进一步加强人才队伍建设,推进设立集成电路一级学科,进一步做实做强示范性微电子学院。去年12月30日,国务院学位委员会、教育部正式下发关于设置“集成电路科学与工程”一级学科的通知。过去一年来,北京航空航天大学、安徽大学、广东工业大学、中山大学、清华大学等国内多所高校均成立集成电路相关学院。随着集成电路学院的纷纷成立,高校院所对半导体相关仪器设备需求将剧增,探针台作为半导体检测的重要仪器,相关市场将爆发。
  • 纳米所重大项目:深紫外扫描近场光电探针系统研制
    p /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 648" colspan=" 4" table width=" 600" border=" 1" align=" center" cellpadding=" 0" cellspacing=" 0" tbody tr /tr /tbody /table /td /tr tr td width=" 122" p 成果名称 /p /td td width=" 526" colspan=" 3" p style=" text-align:center " 深紫外扫描近场光电探针系统 /p /td /tr tr td width=" 122" p 单位名称 /p /td td width=" 526" colspan=" 3" p style=" text-align:center " 中科院苏州纳米所 /p /td /tr tr td width=" 122" p 联系人 /p /td td width=" 157" p 刘争晖 /p /td td width=" 149" p 联系邮箱 /p /td td width=" 220" p zhliu2007@sinano.ac.cn /p /td /tr tr td width=" 122" p 成果成熟度 /p /td td width=" 526" colspan=" 3" p ■正在研发 □已有样机 □通过小试 □通过中试 □可以量产 /p /td /tr tr td width=" 122" p 合作方式 /p /td td width=" 526" colspan=" 3" p □技术转让 □技术入股 □合作开发& nbsp & nbsp ■其他 /p /td /tr tr td width=" 648" colspan=" 4" p strong 成果简介: /strong br/ & nbsp & nbsp & nbsp & nbsp 本设备在国家自然科学基金委重大科研仪器研制项目(自由申请)的支持下,自2014年起,针对波长200~300 & nbsp & nbsp nm的深紫外波段微区光电性质测试分析这样一个难题,研制一套深紫外扫描近场光电探针系统。将深紫外共聚焦光路引入到超高真空扫描探针显微镜系统中,采用音叉反馈的金属探针,在纳米尺度的空间分辨率上实现形貌和紫外波段荧光、光电信号的实时原位测量和综合分析,为深入研究这一光谱范围半导体中光电相互作用的微观物理机制、实现材料的结构和性质及其相互关系的研究提供新的实验系统,目前国内外均未有同类设备见诸报道,为国际首创。该系统中创新性研制的闭环控制低温超高真空原子力显微镜扫描头、波长在200nm-300nm可调谐的深紫外脉冲光源、基于原子力显微镜的深紫外光电压谱测试和分析方法、深紫外近场荧光寿命的高空间分辨测试和分析方法等核心设备和技术均为本项目单位自主研制,具有完全自主知识产权。 /p /td /tr tr td width=" 648" colspan=" 4" p strong 应用前景: /strong br/ & nbsp & nbsp & nbsp & nbsp 近年来,深紫外,特别是280nm以下日盲波段的半导体探测和发光器件,以其巨大的经济军事应用价值,逐渐成为研究重点。然而,相较于可见光半导体光电器件,深紫外波段半导体光电器件的性能包括光电转换效率、探测灵敏度等距人们的需求还有较大差距。其中一个重要原因是缺乏究深紫外半导体材料中光电相互作用的微观物理机制的有效研究手段。而本设备的研制将极大地丰富超宽带隙半导体材料和器件研究的内涵,推进相关材料和器件的发展。 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp & nbsp 本设备相关的装置和技术均申请了发明专利保护,其中已获授权11项,已申请尚未获得授权6项,如下所示: br/ & nbsp & nbsp & nbsp & nbsp 已授权专利: br/ & nbsp & nbsp & nbsp & nbsp 1、一种扫描近场光学显微镜 br/ & nbsp & nbsp & nbsp & nbsp 2、材料的表面局域电子态的测量装置以及测量方法 br/ & nbsp & nbsp & nbsp & nbsp 3、半导体材料表面缺陷测量装置及表面缺陷测量方法 br/ & nbsp & nbsp & nbsp & nbsp 4、材料界面的原位加工测试装置 br/ & nbsp & nbsp & nbsp & nbsp 5、多层材料的减薄装置及减薄待测样品的方法 br/ & nbsp & nbsp & nbsp & nbsp 6、界面势垒测量装置及测量界面势垒的方法 br/ & nbsp & nbsp & nbsp & nbsp 7、导电原子力显微镜的探针以及采用此探针的测量方法 br/ & nbsp & nbsp & nbsp & nbsp 8、半导体材料测量装置及原位测量界面缺陷分布的方法 br/ & nbsp & nbsp & nbsp & nbsp 9、材料表面局部光谱测量装置及测量方法 br/ & nbsp & nbsp & nbsp & nbsp 10、采用原子力显微镜测量样品界面势垒的装置以及方法 br/ & nbsp & nbsp & nbsp & nbsp 11、制备金属针尖的装置及方法 br/ & nbsp & nbsp & nbsp & nbsp 已申请未授权专利: br/ & nbsp & nbsp & nbsp & nbsp 1、半导体材料表面微区光电响应测量装置及测量方法 br/ & nbsp & nbsp & nbsp & nbsp 2、一种同时测量表面磁性和表面电势的方法 br/ & nbsp & nbsp & nbsp & nbsp 3、超高真空样品转移设备及转移方法 br/ & nbsp & nbsp & nbsp & nbsp 4、用于近场光学显微镜的探针及其制备方法 br/ & nbsp & nbsp & nbsp & nbsp 5、探针型压力传感器及其制作方法 br/ & nbsp & nbsp & nbsp & nbsp 6、阴极荧光与电子束诱导感生电流原位采集装置及方法 br/ & nbsp & nbsp & nbsp & nbsp 此外本设备研制相关软件著作权登记1项:“中科院苏州纳米所原子力显微镜与光谱仪联合控制软件”。 /p /td /tr /tbody /table p br/ /p p /p
  • 780万!上海交通大学低温强磁场扫描探针显微镜和原子力显微镜采购项目
    一、项目基本情况1.项目编号:0834-2441SH24A039项目名称:上海交通大学低温强磁场扫描探针显微镜预算金额:620.000000 万元(人民币)最高限价(如有):590.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1低温强磁场扫描探针显微镜1套1.4 *配备2路射频同轴电缆连接室温大气与扫描隧道显微镜,带宽10 GHz,高真空热隔绝腔与超高真空腔体间漏率签订合同后12个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后12个月内本项目( 不接受 )联合体投标。2.项目编号:0834-2441SH24A037项目名称:上海交通大学原子力显微镜预算金额:160.000000 万元(人民币)最高限价(如有):160.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1原子力显微镜1台包含不少于三个全数字锁相放大器,能提供定量相位成像功能:-180°到+180°全线性相位成像。 (详见第八章)签订合同后6个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年02月21日 至 2024年02月28日,每天上午9:30至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市共和新路1301号D座二楼方式:详见其他补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:上海市东川路800号        联系方式:钟老师86-21-54747337,技术联系人:彭老师 86-21-68693117      2.采购代理机构信息名 称:上海中招招标有限公司            地 址:上海市共和新路1301号D座二楼            联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com            3.项目联系方式项目联系人:林佳文、吴乾清电 话:  86-21-66271932、86-21-66272327
  • 基于NV色心的超分辨量子磁学显微镜和高性能NV探针再度升级,让磁学成像更精准!
    磁性材料的显微观测有助于材料的微观结构及其形成机理的研究。随着科学技术的发展,磁性材料研究的尺度已经趋向于亚微米级甚至纳米级。因此,超高分辨率和超高灵敏度的测试非常有助于这类尺寸材料的研究。 源于苏黎世联邦理工学院自旋物理实验室的Qzabre公司,结合多年的NV色心磁测量技术与扫描成像技术研发出了基于NV色心的超分辨量子磁学显微镜QSM和NV色心探针。该技术能够实现高灵敏度和高分辨率的磁学成像,并且可以实现定量的磁学分析,所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。超高分辨率、超高灵敏度的量子磁学显微镜! Qzabre公司自主研发的基于NV色心的超分辨量子磁学显微镜QSM集高性能、友好性、灵活性于一身,使其成为研究纳米尺度磁现象的理想工具,在表面的高分辨率和定量磁性分析方面提供了非常可靠的性能。QSM显微镜采用经过验证的低漂移设计,具有高精度闭环扫描、大范围测量、高效率光学测量、直观的用户界面和简单的针尖更换等优势。基于NV色心的超分辨量子磁学显微镜外观图(左)和内部构造图(右) 相比于传统的显微观测设备如克尔显微镜(分辨率~300 nm),磁力显微镜MFM(分辨率~50 nm ),该设备除了拥有优于30 nm的磁学分辨率外,还可以进行样品表面磁场大小的定量测试,而且NV色心作为单自旋探针, 所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。典型应用更耐用、更灵敏、可定制化的NV色心探针! 传感器针尖是任何扫描氮空位 (NV) 系统的核心,也是决定设备性能的关键因素。Qzabre对传感器针尖进行不断改进,使其更具光亮、坚固和高性能。金刚石部分与音叉相连,可以为原子力显微镜的操作提供力反馈,整个组件安装在陶瓷芯片上,具有操作简便,性能优异,随时可用等特性。基于陶瓷基片的NV色心探针 在与 NV 轴对齐的磁偏置场下,每个扫描针尖都具有严格的特性。标准探头的灵敏度分为七个等级。也可以根据客户需要,定制各种不同类型的探针。不同灵敏度的NV色心探针(标准探针) 在 NV 实验中,磁杂散场的测量总是投射到 NV 轴上。该轴线取决于制作针尖的金刚石晶体取向。最常见的切割方法是,其 NV 方向与法线成 54.7°。 针对特定应用,我们还提供平面内和平面外取向的针尖。由于信号会随着离轴磁场的增加而减弱,因此这两种针尖非常适用于在较高磁偏压下的测量。平面外针尖也可用于消除方向。不同取向的NV色心探针 为了便于操作,Qzabre将金刚石针尖集成在一个即插即用的传感器芯片上。极小厚度的载体设计确保了传感器可以安装在垂直空间狭小的显微镜中,同时可以根据要求定制金刚石探针的倾斜度。陶瓷芯片载体上的尺寸和接触馈线与Akiyama探针的基底面兼容。整个传感器芯片可兼容真空和低温环境。另外可根据需要提供两种针尖与 PCB 方向的标准配置:向上和向下。向上(左)和向下(右)配置的NV色心探针成功交付于多家国际科研院所机构! Qzabre公司的基于NV色心的超高分辨量子磁学显微镜已在多家国际院校投入使用,目前在全球范围内已成功交付9套!以下为已成功验收安装的国际用户名单及部分用户验收图。左)在法国Jean Lamour研究所交付使用的带有定制化光路的QSM系统右)法国国家科学研究中心/Thales联合物理研究所kim教授与新安装的QSM系统
  • 先进晶圆探针台制造商森美协尔完成新一轮近亿元融资
    据紫金港资本官微消息,近日,国内先进晶圆探针台制造商深圳市森美协尔科技有限公司(以下简称森美协尔)完成新一轮的近亿元融资。本轮融资由紫金港资本领投,前海嘉翔、深圳高新投等多家机构参与完成。本轮融资将主要用于森美协尔全球市场拓展和技术研发。森美协尔成立于2010年,专注于高性能晶圆探针台的自主研发,服务主要包括半导体芯片测试解决方案和标准型半导体测试设备两大类,可满足晶圆厂、芯片设计公司和科研院校等不同领域应用需求。曾两次引领国内半导体测试设备潮流,率先推出国内首台拥有自主知识产权的高低温真空探针台和激光修复机,填补了国内半导体测试设备空白。据悉,此前森美协尔已经获得深圳高新投、华登国际等多家投资机构的数轮投资。
  • 国内首套超高真空无液氦低温STM与样品制备联合系统成功落户复旦大学物理学院
    近日,由美国RHK公司研发的超高真空无液氦低温STM系统与样品制备联合系统在复旦大学物理学院顺利完成安装使用。 图1 RHK超高真空无液氦低温STM系统该多功能联合系统兼备了样品制备、处理与表征于一体,同时配有高精度的原为CCD,可实现2um的空间分辨,满足特殊用户对二维材料等体系的原位快速寻找和测试。除此之外,该联合系统中的样品制备与处理部分,可实现样品原位高温烘烤,电子束轰击(配有Ar枪),可配备XPS、LEED等表征测量选件,同时Manipulator可原位加热(高于1000K)和低温(低于100K)处理样品,并配有使用不同构型的多个sample holders。该系统样品生长部分可以扩展多个生长源,可实现MBE 分子束蒸发,热蒸发等多种模式选择。 该联合制备表征系统中STM表征部分,除兼具RHK PanScan Freedom-LT之前已有的优异的隔振性能和无液氦制冷的操作简便性外,还新研发推出了可在低温扫描头温度屏蔽罩外侧加装原位低温样品储藏架,可长时间不间断低温(低于40K)存储特殊低温需要的样品。图2 超高真空无液氦低温STM与样品制备联合系统现场安装调试图3 RHK公司 Adam先生向用户现场介绍并进行讨论RHK公司产品以其技术创性和稳定性、高的精度和良好的用户体验得到了国内外众多表面科学、低温、真空等研究领域著名科学家和研究组的认可和青睐。相关产品及链接:1、 RHK无液氦UHV LT STM/ AFM-qPlus系统:http://www.instrument.com.cn/netshow/C205015.htm2、 RHK 超高真空扫描探针显微镜系统:http://www.instrument.com.cn/netshow/C44442.htm3、 UHV PAN式低温扫描探针显微镜系统:http://www.instrument.com.cn/netshow/C159540.htm4、 R9扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/C159539.htm5、 R9plus扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/C44532.htm
  • 赛默飞推出电镜、探针等新品 增强亚洲半导体领域业务
    p   上海2018年3月14日电, SEMICON China 2018 -- 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新产品,增强半导体制造的质量控制和产量。这些新产品将于2018年3月14日至16日在SEMICON China (N5馆5619号展位)展出。 /p p   赛默飞半导体副总裁兼总经理Rob Krueger表示:“赛默飞深耕用于控制生产工艺和诊断半导体和显示器制造过程和产品故障根本原因的先进分析技术。 strong 本周,我们将推出新产品,帮助推动亚洲,特别是中国的半导体制造业快速创新和持续拓展 /strong 。” /p p   strong  Verios G4极高分辨率扫描电子显微镜 /strong /p p   Thermo Scientific Verios G4极高分辨率(XHR)扫描电子显微镜(SEM)提供确定根本原因缺陷、产量损失以及过程和产品故障所需的能力和灵活性。 /p p   Krueger表示:“Verios G4是源于我们大获成功的Helios DualBeam系列 (聚焦离子束/扫描电子显微镜)仪器的扫描电子显微镜解决方案。它提供各种环境下行业领先的性能,尤其是用于先进工艺的光束敏感材料所需的低电压环境。” /p p    strong Hyperion II快速高效的纳米探针 /strong /p p   纳米探测器直接对单个晶体管进行电测量。新的Thermo Scientific Hyperion II是基于原子力显微镜的唯一商用纳米探针,无需真空要求和基于扫描电子显微镜纳米探测器的电子束/样品相互作用。Hyperion II的自动操作和成像模式专为提高速度和易用性而设计。此外,其精确定位电气故障的能力可以提高DualBeam或者TEM后续分析的速度和效率。 /p p    strong iCAP TQs电感耦合等离子体质谱仪推动快速可靠的化学监测 /strong /p p   Thermo Scientific iCAP TQs电感耦合等离子体质谱仪(ICP-MS)是信誉卓著的iCAP TQ ICP-MS的专用半导体版本。它提供了超高纯度化学品中快速、可靠和可重复的低水平污染物测量,以支持先进半导体生产过程的自动化在线监测和统计过程控制。iCAP TQs ICP-MS 在一个高性能解决方案中提供了新的超低检测水平和简单性。有了这个新系统,如今将化学分析从实验室移到工厂成为可能,并支持对化学浴进行在线控制,从而优化响应时间。 /p p    strong 赛默飞世尔科技简介 /strong /p p   赛默飞世尔科技是科学服务领域的世界领导者,根据赛默飞发布的2017年财报显示,公司2017年全年营收达到了209. 2亿美元。在全球拥有超过70,000名员工。其使命是携手客户,让世界更健康、更清洁、更安全。公司帮助客户加速生命科学领域的研究、解决在分析领域遇到的复杂挑战,促进医疗诊断发展、提高实验室生产力。借助于其主要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,赛默飞提供结合创新技术、便捷采购和全方位支持的无与伦比的解决方案。 /p
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • Sapphire平台助力SARS-CoV-2 Mpro抑制剂和活性探针研究
    2020年10月22日,由Wioletta Rut 、Katarzyna Groborz、Linlin Zhang和Xinyuanyuan Sun等在《nature chemical biology》期刊发表了《SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging》的文章。SARS-CoV-2的主要蛋白酶(Mpro)是关键的抗病毒药物靶标,作者首先获得了该蛋白酶的荧光底物(HyCoSuL)靶向库,并确定了P4-P2位点的底物特异性,比较了SARS-CoV和SARS-CoV-2主要蛋白酶的底物偏好性。其次,作者设计并合成了一种有效的SARS-CoV-2抑制剂(Ac-Abu-dTyr-Leu-Gln-VS)和两种活性探针,其中一种探针与SARS-CoV-2 Mpro配合物的晶体结构被确定。最后,作者观察了SARS-CoV-2 Mpro在COVID-19感染患者鼻部咽上皮细胞中的活性。这些数据为COVID-19有效诊断和治疗的化合物设计提供了支撑。在本次研究中,作者使用美国Azure Biosystems Sapphire平台检测SARS-CoV-2 Mpro 探针的敏感性,其中抑制剂是Ac-QS5-VS(Ac-Abu-dTyr-Leu-Gln-VS),活性探针是Bodipy-QS5-VS(Bodipy-PEG(4)-Abu-dTyr-Leu-Gln-VS)。Sapphire以其超高的分辨率,更宽的动态范围和更高的检测灵敏度助力此项研究。▲ Sapphire双模式多光谱激光成像系统☑ 双模式成像:扫描检测和CCD成像双模式。☑ 4个固态激光器激光激发:488nm(蓝色)、520nm(绿色)、658nm(红色) /685nm/638nm、784nm(NIR),给用户更多荧光选择。☑ 唯一的3种检测器设计:PMT,APDs和CCD检测器,PMT检测器用于蓝色荧光检测和磷屏成像;3个独立的APD检测器用于绿色、红色荧光检测和双近红外荧光检测,高分辨CCD用于高灵敏化学发光检测。☑ 扫描方式:4通道同时扫描,扫描更快速。☑ 分辨率更高:可达10微米的分辨率,成像更清晰。☑ 动态范围更宽:同时定量低丰度蛋白和高丰度蛋白,定量更准确 。
  • 我国引进首台纳米离子探针通过验收
    我国引进的第一台NanoSIMS 50L型纳米离子探针验收会于近日在中国科学院地质于地球物理研究所召开。中国科学院地质于地球物理研究所副所长吴福元研究员为组长的专家组认真听取了法国CAMECA公司纳米离子探针设计师、Franç ois Hillion博士所作的验收报告。专家组对仪器的验收指标有关问题进行了提问,一致认为该仪器的技术参数不仅全部达到合同要求,大部分还优于合同要求的验收指标。 纳米离子探针   纳米离子探针具有极高的空间分辨率(Cs+源束斑小于 50nm,O-源束斑小于200nm),与我所已有的CAMECA ims 1280高精度离子探针互补,构成国际上非常先进的的离子探针分析平台。新引进的NanoSIMS 50L型纳米离子探针配置了7个信号检测器(每个配置法拉第杯和电子倍增器),可以同时测量7个同位素(或元素),分析精度好于千分之一。该仪器可以分析除稀有气体以外,元素周期表中从H至U的全部同位素(元素),并能获取同位素分布的高分辨图像。纳米离子探针的引进,为我国比较行星学、地球科学、材料科学、以及生命科学等领域提供了新的大型实验分析平台。
  • “荧光探针”点亮细胞世界
    p style=" text-indent: 2em text-align: justify " 走进山东师范大学化学化工与材料科学学院实验室,在激光显微镜下,“荧光探针”使细胞呈现出色彩斑斓的效果,形态各异的图案仿佛将人带入鲜花与极光交融的海洋。然而,你能想象这不起眼的“荧光探针”通过成像监测,便能实现尽早地发现和预防重大疾病吗? /p p style=" text-indent: 2em text-align: justify " 山东师范大学化学化工与材料科学学院唐波、董育斌、李平、王鹏、李娜等领衔的科研团队,经过近二十年的刻苦攻关,有效地解决了细胞成像这一难题,极大地推动了该领域的国际研究步伐,他们完成的“细胞稳态调控活性分子的荧光成像研究”项目于近日获得2018年度国家自然科学二等奖,成为首个以第一完成单位获得国家自然科学奖的山东省省属高校。 /p p style=" text-indent: 2em text-align: justify " 早在2000年前后,当时国内的生命科学和光学成像等研究领域刚刚兴起,团队领头人唐波教授便敏锐地意识到分析化学和生命科学的紧密结合,必将推动一个新型交叉研究领域的兴起。从此,一个以化学、生物学、医学等多学科为支撑,以揭示重大疾病的发现和治疗为使命的团队应运而生。 /p p style=" text-indent: 2em text-align: justify " 2013年初,以山东师范大学为项目牵头单位、唐波为首席科学家的国家重大科学研究计划(973)项目“重大疾病相关的若干重要难检活性小分子细胞内纳米传感研究”正式启动。“一定要把目光瞄准国际科研领域的最前沿,只有站位高、视野宽、反应快,才能把握住科研领域的时代脉搏,产出高质量的研究成果。”唐波不仅自己以此为标杆,还将这一理念植入了全体科研团队的“基因”之中。 /p p style=" text-indent: 2em text-align: justify " 自然科学奖评审的核心指标就是原创性,而这正是“细胞稳态调控活性分子的荧光成像研究”项目的“撒手锏”。该项目在国际上率先构建成多种新型发光材料,解决了材料量子产率低与波长不可调的关键问题,为研制具有高灵敏度与光谱空间可分辨探针的筛选、设计、构建奠定了重要的理论基础。 /p p style=" text-indent: 2em text-align: justify " “在原有的检测方法中,荧光信号灵敏度差、转换效率较低,会直接影响成像质量,从而会导致医生对病人的病情错判。我们的成果创新性地运用特异性识别活性分子的机理与能量转移、电子转移等光信号转换机制,成功实现了对糖蛋白、葡萄糖、microRNA等活性分子的高选择性识别,检测速度和准确性都得到了极大提高。”长江学者董育斌教授说。 /p p style=" text-indent: 2em text-align: justify " “在疾病发生之前,我们可以通过细胞内特定指标的变化来作出预警,从而尽早地预防和治疗。而这种指标变化,需要找到特殊的化合物即‘探针’,注入活体细胞后,用高能荧光显微镜来检测‘探针’光学信号的改变来确定。”为团队作出重要贡献的徐克花教授介绍说,他们的工作就是寻找化合物、研发新材料“探针”,实现高准确度和超高灵敏检测的突破。 /p p style=" text-indent: 2em text-align: justify " “这与现阶段医学临床上采用的肿瘤检测方式不同。传统的血液检测,可能因样本离开人体而导致准确性下降,假阳性比例很高,比如前列腺癌的假阳性比例最高达60%。而使用CT检查,当发现病灶时,病情一般已进入中晚期。”青年长江学者李娜教授说,“因此,使用荧光成像方法,通过新材料‘探针’在活细胞里面检测活性物质,且是在体外保真环境进行,无创伤,无伤害。” /p p style=" text-indent: 2em text-align: justify " 目前,团队师生所在的化学学科近十年来稳居ESI全球前1%,团队成员均有稳定的国家级课题作为依托,堪称精兵强将。“我们研究团队,不仅有化学专家,还引进了生物、医学、物理等方面的人才。大家学术背景非常多元,团队在开拓新的研究领域和方向时也非常方便。”泰山学者青年专家高雯说。 /p
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 北京2台离子探针仪器全球“最忙”
    在过去10年里,北京离子探针中心的两台高分辨二次离子探针质谱仪(SHRIMP Ⅱ和SHRIMP Ⅱe-MC)或许是全球最忙及成绩最好的科学仪器。在12月18日该中心十周岁庆祝会上,中心主任刘敦一教授表示,以这两台仪器为核心的大型科学仪器共享平台,极大推动了我国地球科学的发展。   过去10年,SHRIMP仪器处于样品分析的机时平均为266.8昼夜/年,开放机时平均为76%。自2007年起,单台SHRIMP仪器的科研论文产出量已连续位居世界同类仪器的第一位。   高效源于中心建立的SHRIMP远程共享控制系统。该网络不仅实现了国内科研人员可实时观测样品图像、在线获取实验数据等应用,还使跨国远程共享科学仪器进入常态,开创了通过远程共享系统共享国外SHRIMP仪器的功能。   “十一五”以来,该中心又联合国内外22家高校及科研院所,在SHRIMP远程共享平台的基础上,整合了一批微束类分析仪器,构建起网络虚拟实验室,为进一步建立以远程操作为主要手段的大型仪器虚拟中心奠定基础。   刘敦一透露,该中心将继续发展以SHRIMP为代表的大型科学仪器远程共享网络,尽快在西班牙和巴西建立服务器系统,在美国华盛顿大学(圣路易斯)建立远程工作站。该中心还将积极投入大型科学仪器自主研发工作,逐步建立起一个具有优秀技术专家和研发设施的科学仪器自主创新基地。   据了解,SHRIMP Ⅱ在锆石微区年龄测定上具有无可替代的优势,引领锆石年代学进入微区、原位分析的新时代。2001年,我国引进第一台该机器,北京离子探针中心也于当年成立。该中心今年被科技部和财政部认定为首批国家级科技基础条件平台。
  • 扫描探针显微镜系统的系列创新——访朱良漪分析仪器青年创新奖获得者郇庆
    p   2018年8月8日,由中国仪器仪表学会分析仪器分会、长三角科学仪器产业技术创新战略联盟主办的“第五届中国分析仪器学术年会”(ACAIC 2018)在苏州召开。主办方于当晚颁发2018年“朱良漪分析仪器创新奖”,中国科学院物理研究所郇庆博士荣获“青年创新奖”。仪器信息网于次日采访了郇庆博士,介绍其在扫描探针显微镜研制及产业化的创新成果。 /p p   “朱良漪分析仪器青年创新奖”评审组认为:郇庆在超高真空高精尖仪器的研发方向做出了国际前沿水平的工作。从科学研究读对高精尖科学仪器的需求出发,针对进口科研仪器性能上的不完全匹配,通过一系列核心原理及器件的创新,不仅研制了高性能的仪器并在多家科研单位推广,且以仪器为依托支撑了高水平科研成果的产出。 /p p   团队在高精尖仪器的研发上取得了多项成就,如对扫描探针显微镜成套系统进行改进和研制,研发了电子束加热蒸发源在内的多项关键部件,扩展了分子束外延联合系统的等。据了解,中科院物理研究所今年也将成立专门的高新技术企业,将以更商业化的模式来推广这些研究成果。 /p p   更多详情,点击视频查看: /p script src=" https://p.bokecc.com/player?vid=1C812ECDD29A59529C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p br/ /p
  • 东南大学116.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间: 2023-02-14 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2023-03-07 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间:2023-02-14 招标文件: 附件1 附件
  • 东南大学116.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2023-05-12 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件
  • 国内最大探针台企业矽电股份IPO成功过会
    历经近10个月的审核,矽电半导体设备(深圳)股份有限公司(下称“矽电股份”)终于即将在4月13日迎来创业板上市委的关键裁决。作为半导体设备供应商,矽电股份聚焦应用于半导体制造晶圆检测环节的探针测试技术。此番IPO,矽电股份拟发行不超过0.10亿股、募集5.56亿元,投向“探针台研发及产业基地建设”、“分选机技术研发”,“营销服务网络升级建设”以及补充流动资金。矽电股份的报告期业绩一直处于高增长态势——2020年至2022年,营业收入分别为1.88亿元、3.99亿元4.42亿元,同期归母净利润分别为0.34亿元、0.97亿元和1.16亿元。这离不开第一大客户三安光电(600703.SH)的“支持”。三安光电对矽电股份的采购额自2020年的0.57亿元一跃提升至2022年的2.29亿元,期间增长了301.75%,占比更是从30.33%提升至51.85%。三安光电董事长林志强也正是在2020年入股矽电股份,并以2.40%的持股比例成为其第13大股东。若二者合作出现变化,矽电股份的业绩能否维系或是重要的待估风险。在上市前夕,矽电股份此番还吸引了明星资本的突击加盟,华为旗下的深圳哈勃科技投资合伙企业(有限合伙)于矽电股份申报IPO 6个月前的2021年12月,从矽电股份实控人何沁修等人手中以0.80亿元价格受让了4%的股权,按照这一价格估算,华为入股时矽电股份的市值约为20亿元。技术“代差”之争矽电股份应用于晶圆检测环节的探针测试技术,一直是衡量芯片性能与缺陷的关键。据SEMI和CSA Research数据统计,截至2019年底,矽电股份在境内探针设备市场中的份额已达13%,位列中国大陆设备厂商第一名,同期占全球市场份额为3%,位列第五名。矽电股份的核心产品“探针台”按照检测对象可分为晶圆、晶粒两大类。晶圆探针台主要是对未切割晶圆上的器件进行故障检测,尺寸涵盖4英寸至12英寸,2022年创收1.13亿元,贡献了近四分之一的收入。虽然矽电股份是首家实现12英寸晶圆探针台量产的境内企业,不过该环节的收入在2022年占比仍不足2成。值得一提的是,目前A股市场尚无主营业务为检测探针台的企业,矽电股份一旦上市成功则有望成为“半导体探针台第一股。”不过深交所仍要求矽电股份说明核心技术的壁垒及相对优势。“请说明发行人核心技术技术壁垒的具体体现,结合同行业现有技术水平、衡量核心技术先进性的关键指标等,进一步分析核心技术先进性的具体表征及与境内外同行业竞争对手相比的优劣势。”深交所指出。从境外厂商的数据来看,矽电股份与全球龙头东京电子、东京精密等企业确实存在一定的差距,例如定位精度上目前东京电子可达到±0.8um,而矽电股份只有±1.3um。“因为探针台的作用就是对要检测的晶圆进行定位,让晶圆上的器件等可以和探针接触并进行逐个测试,所以精度越高就越不容易出错。如果探针这个环节没有排除出来故障的话,下一个环节成本更高。”北京一位半导体行业人士指出。矽电股份也承认其与国际大厂之间存在较大的差距。“目前,日本厂商探针台综合定位精度已达到±0.80 um水平,占据了12英寸晶圆探针台市场的主要份额。发行人在综合定位精度和12英寸高端市场份额与日本厂商存在一定差距。”矽电股份表示。但矽电股份认为和境内厂商相比,其技术仍处于领先水平。矽电股份将中电科四十五所和长川科技(300604.SZ)披露为境内竞争对手,并指出这两家公司的综合定位精度分别仅为±5um和±1.5um,自身技术相比之下仍具有领先优势。“基于发行人持续的研发投入及形成的核心技术成果,发行人在综合定位精度、机台自动化水平及多种半导体器件适配方面已领先于中国台湾和中国大陆其他厂商。”矽电股份表示。但矽电股份的这番陈述或许并不是目前半导体探针环节的全部事实。信风(ID:TradeWind01)注意到,国内厂商已在半导体探针台领域逐渐发力。早在2020年,中科院长春光机所旗下长春光华微电子设备工程中心有限公司就推出国内首台商用12英寸全自动晶圆探针台;2022年11月,深圳市森美协尔科技有限公司(下称“森美协尔”)推出了可兼容处理12英寸与8英寸标准的全自动晶圆探针台(下称“A12”)。接近森美协尔的相关人士向信风(ID:TradeWind01)确认,A12的定位精度已达到±1um的水平。若这一数据属实,则意味着该数据不仅高于矽电股份,也在接近国际龙头的技术水平。而矽电股份对于境内竞争对手的披露是否完整,或许有待其做出更多解释。大客户助力下暴增矽电股份的报告期业绩可谓“突飞猛进”。2021年,矽电股份的营业收入和归母净利润分别为3.99亿元、0.97亿元,同比增长了112.29%、189.11%。“主要系因下游行业景气度提升、客户资本性支出上升以及公司市场开拓情况良好所致。”矽电股份表示。更为关键的助力或指向了作为矽电股份前五大客户之一的三安光电。三安光电2019年对矽电股份的采购额还只有0.07亿元,但次年却突然提高了采购额——2020年至2022年,三安光电向矽电股份采购晶粒探针台的金额分别为0.57亿元、1亿元和2.29亿元。这意味着,报告期内矽电股份超5成的晶粒探针台主要销往了三安光电,后者成为了主要的收入来源。矽电股份解释称,晶粒探针台主要的应用场景是检测LED芯片,而该市场主要被三安光电所占据。据CSA Research、LEDinside等机构的数据显示,2020年、2021年三安光电在行业总产能中的比例分别为28.29%、31.68%。事实上,二者在2020年达成合作关系还有一个更重要的转折。正是在这一年,三安光电的董事长林志强成为了矽电股份的股东。2020年9月,林志强以0.28亿元认购了矽电股份的股份。截至申报前,其以2.40%的持股比例位居第12大股东,较华为入股时矽电股份20亿元的估值,林志强所持股份市值已增长了74.37%。入股后的当年12月,矽电股份对三安光电实现0.57亿元的销售收入,占当年对后者的销售额比例达到99.69%。对于入股前后猛增的订单金额,矽电股份并不愿意承认这其中可能存在的“股权换订单”交易。“林志强基于对发行人及其所处行业的看好入股发行人,入股后发行人与三安光电的交易规模快速增长是相关客户对发行人设备认可及其自身需求增长的反映。”矽电股份指出,“林志强入股发行人不存在用订单换取股权的情形。”相似情形还发生在另一大客户兆驰股份(002429.SZ)身上。2020年9月,兆驰股份前实控人顾伟之女顾乡参股矽电股份,截至申报前,其持股比例为1.74%,位居第15大股东之列。入股当年,兆驰股份就一跃成为矽电股份第二大客户,贡献了0.27亿元的收入,占比为14.23%;2022年,兆驰股份带给矽电股份0.37亿元的收入。若扣除三安光电、兆驰股份所贡献的收入,矽电股份2020年至2022年的收入分别为1.04亿元、2.97亿元和1.76亿元。以此测算,矽电股份这一期间的营业收入复合增长率仅为30.09%,较未扣除前的复合增长率低了23.23个百分点。身患“大客户依赖症”的矽电股份是否有望顺利过会,其又该如何解释这其中所存在的业绩可持续性问题似乎有待上市委的裁决。
  • 瑞柯发布瑞柯全自动四探针测试仪新品
    FT-3110系列全自动四探针测试仪一.功能描述:四点探针法,全自动化运行测量系统,PC软件采集和数据处理;参照A.S.T.M 标准方法测试半导体材料电阻率和方块电阻;可设定探针压力值、测试点数、多种测量模式选择;真空环境,可显示:方阻、电阻率、显示2D,3D扫描/数值图、温湿度值、提供标准校准电阻件. 报表输出数据统计分析.FT-3110系列全自动四探针测试仪二.适用范围晶圆、非晶硅/微晶硅和导电膜电阻率测量;选择性发射极扩散片;表面钝化片;交叉指样PN结扩散片;新型电极设计,如电镀铜电阻测量等;半导体材料分析,铁电材料,纳米材料,太阳能电池,LCD,OLED,触摸屏等. FT-3110系列全自动四探针测试仪三.技术参数: 规格型号FT-3110AFT-3110B1.电阻10^-5~2×10^5Ω10^-6~2×10^5Ω2.方块电阻 10^-5~2×10^5Ω/□10^-6~2×10^5Ω/□3.电阻率 10^-6~2×10^6Ω-cm10-7~2×106Ω-cm4.测试电流 0.1μA.μA.0μA,100μA,1mA, 10mA,100mA1A、100mA、10mA、1mA、100uA、10uA、1uA、0.1uA5.电流精度 ±0.1% 6.电阻精度 ≤0.3%7.PC软件操作PC软件界面:电阻、电阻率、电导率、方阻、温度、单位换算、电流、电压、探针形状、探针间距、厚度 、2D、3D图谱、压力、报表生成等8.压力范围:探针压力可调范围:软件控制,100-500g可调9.探针针间绝缘电阻:≥1000MΩ;机械游移率:≤0.3%圆头铜镀金材质,探针间距1mm;2mm;3mm选配,其他规格可定制10.可测晶片尺寸选购 晶圆尺寸:2-12寸(6寸150mm,12寸300mm);方形片:大至156mm X 156mm 或125mm X 125mm11.分析模式单点、五点、九点、多点、直径扫描、面扫描等模式的自动测试12.加压方式测量重复性:重复性≤3% 13.安全防护具有限位量程和压力保护 误操作和急停防护 异常警报14.测试环境真空15.电源输入: AC220V±10%.50Hz 功 耗:瑞柯全自动四探针测试仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制