当前位置: 仪器信息网 > 行业主题 > >

吸烟仪的原理

仪器信息网吸烟仪的原理专题为您提供2024年最新吸烟仪的原理价格报价、厂家品牌的相关信息, 包括吸烟仪的原理参数、型号等,不管是国产,还是进口品牌的吸烟仪的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吸烟仪的原理相关的耗材配件、试剂标物,还有吸烟仪的原理相关的最新资讯、资料,以及吸烟仪的原理相关的解决方案。

吸烟仪的原理相关的资讯

  • 被动吸烟的危害
    被动吸烟是指生活和工作在吸烟者周围的人们,不自觉地吸进烟雾尘粒和各种有毒物质。被动吸烟者所吸入的有害物质浓度并不比吸烟者为低,吸烟者吐出的冷烟雾中,烟焦油含量比吸烟者吸入的热烟雾中的多1倍,苯并芘多2倍,一氧化碳多4倍。研究发现,经常在工作场所被动吸烟的妇女,其冠心病发病率高于工作场所没有或很少被动吸烟者。据国际性的抽样调查证实,吸烟致癌患者中的50%是被动吸烟者。大量流行病学调查表明,丈夫吸烟的妻子的肺癌患病率为丈夫不吸烟的1.6~3.4倍。孕妇被动吸烟可影响胎儿的正常生长发育。有学者分析了5000多名孕妇后发现,当丈夫每天吸烟10支以上时,其胎儿产前死亡率增加65%;吸烟越多,死亡率越高。吸烟家庭儿童患呼吸道疾病的比不吸烟家庭为多。ELISA试剂盒被动吸烟的危害: 一、被动吸烟对健康的影响 被动吸烟对健康的危害已有相当确凿的证据。 1、环境烟草雾的化学成分 较之缺氧和热量裂化所形成的主流烟雾而言,它含有更多的燃烧产物。其中一氧化碳,侧流烟雾是主流烟雾的5倍,焦油和烟碱是3倍,苯并芘是4倍,亚硝胺是50倍。 2、被动吸烟与肺癌 1992年美国环境保护署关于被动吸烟与呼吸道健康的报告认同了1986年美国外科总署和美国国家研究委员会报告的观点,即从当时的证据看来被动吸烟是非吸烟者中肺癌发生的一个原因。 最近(1997年)由Hackshaw等对37个发表了的研究进行了Meta-analysis,结果显示,和吸烟者结婚的非吸烟者,其患肺癌的超额危险度为24%(95%C1=13%,36%),调整由饮食引起的潜在偏性和混杂后,此估计值不变。该Meta-analysis支持1998年英国科学委员会有关烟草的报告,认为被动吸烟是肺癌的一个原因。? 3、被动吸烟与冠心病?ELISA试剂盒 冠心病是美国和其他工业化国家的首位死因。在很多发展中国家,由冠心病引起的死亡增长很快,也成为死亡的首要原因。主动吸烟是冠心病最重要的明确的危险因素之一。 1997年,加利福尼亚环境保护署认为,冠心病总的危险度的30%是由于暴露于被动吸烟引起的。1998年英国烟草与健康科学委员会也认为被动吸烟不仅能提高心脏病的发病危险,而且是导致心血管疾病和死亡的主要的可预防的原因。 4、被动吸烟与儿童疾患? 由外科总署和美国国家研究院所评述的12个研究和美国环境保护署所评述的14个研究中,有充足的证据表明,在家里暴露于被动吸烟的儿童患急性下呼吸道疾病的危险性要比不暴露者高许多。被动吸烟对儿童健康的危害是相当大的。目前一般认为,危害主要有以下方面:(1)可引起支气管炎和肺炎,(2)在儿童期由于被动吸烟导致的下呼吸道感染或其他疾病,可进一步发展为哮喘,并可加重已有哮喘的严重性,(3)儿童被动吸烟暴露与中耳疾病有因果关系,(4)证据亦支持儿童被动吸烟与婴儿猝死综合征(AIDS)之间的关系,无论是出生前暴露还是出生后暴露于被动吸烟,都能够提高婴儿猝死综合征的发病危险。 5、对健康的其他影响ELISA试剂盒 对健康的成人不吸烟者,被动吸烟还会引起呼吸道症状,如咳嗽、泌谈及降低肺功能等。 另外,除了直接的健康危害外,大部分的非吸烟者会由于暴露于被动吸烟而产生不适感。这主要是由于环境烟草烟雾会对个体的眼结膜、鼻腔、咽喉以及下呼吸道粘膜产生刺激作用所致。 在烟雾弥漫的环境中用衣物捂住鼻子防止被动吸烟有点作用,但作用不是太大. 美国加利福尼亚大学的研究人员最近发现,维生素C可能有助于预防被动吸烟引起的伤害,这为你不得不呆在烟雾缭绕环境中的不吸烟者提供了一种自我保护的方法。 这一研究成果刊登在最新一期的《营养与癌症》杂志上。研究人员将67名不吸烟的人请进烟雾缭绕的环境中,结果显示,那些每天服用500毫克维生素C的人所受的伤害很小。有关专家介绍说,被动吸烟会对人体造成氧化损害,但这种损害能被维生素C中含有的抗氧化剂所抵消。 但他们同时指出,这项研究成果并不是鼓励人们吸烟,而是希望那些不得已呆在有烟环境中的人们通过服用维生素C来保护自己,尤其要注意多吃水果和蔬菜。
  • 吸烟对消化道的影响
    对消化道的影响 吸烟可引起胃酸分泌增加,一般比不吸烟者增加91.5%,并能抑制胰腺分泌碳酸氢钠,致使十二指肠酸负荷增加,诱发溃疡。烟草中烟碱可使幽门括约肌张力降低,使胆汁易于返流,从而削弱胃、十二指肠粘膜的防御因子,促使慢性炎症及溃疡发生,并使原有溃疡延迟愈合。此外,吸烟可降低食管下括约肌的张力,易造成返流性食管炎。ELISA试剂盒 吸烟对妇女的危害更甚于男性,吸烟妇女可引起月经紊乱、受孕困难、宫外孕、雌激素低下、骨质疏松以及更年期提前。孕妇吸烟易引起自发性流产、胎儿发育迟缓和新生儿低体重。其他如早产、死产、胎盘早期剥离、前置胎盘等均可能与吸烟有关。妊娠期吸烟可增加胎儿出生前后的死亡率和先天性心脏病的发生率。以上这些危害是由于烟雾中的一氧化碳等有害物质进入胎儿血液,形成碳氧血红蛋白,造成缺氧;同时尼古丁又使血管收缩,减少了胎儿的血供及营养供应,从而影响胎儿的正常生长发育。女性90%的肺癌、75%的COPD和25%的冠心病都与吸烟有关。吸烟妇女死于乳腺癌的比率比不吸烟妇女高25%。已经证明,尼古丁有降低性激素分泌和杀伤精子的作用,使精子数量减少,形态异常和活力下降,以致受孕机会减少。吸烟还可造成睾丸功能的损伤、男子性功能减退和性功能障碍,导致男性不育症。吸烟可引起烟草性弱视,老年人吸烟可引起黄斑变性,这可能是由于动脉硬化和血小板聚集率增加,促使局部缺氧所致。最近,美国一项研究发现,在强烈噪声中吸烟,会造成永久性听力衰退,甚至耳聋。ELISA试剂盒英文名称 Homo sapiens (Human) 膜联蛋白A10(ANXA10)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 膜联蛋白A1(ANXA1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Mus musculus (Mouse) 膜联蛋白A1(ANXA1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 膜辅蛋白(MCP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫抑制酸性蛋白(IAP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫缺陷伴血小板减少综合征蛋白家族成员2(WASF2)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96TELISA试剂盒英文名称 Homo sapiens (Human) 免疫缺陷伴血小板减少综合征蛋白(WASP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫球蛋白重链(IGH)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫球蛋白样EGF样域酪氨酸激酶1(Tie1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Rattus norvegicus (Rat) 免疫球蛋白样EGF样域酪氨酸激酶1(Tie1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T
  • 吸烟对心、脑血管和呼吸道的影响
    对心、脑血管的影响 许多研究认为,吸烟是许多心、脑血管疾病的主要危险因素,吸烟者的冠心病、高血压病、脑血管病及周围血管病的发病率均明显升高。统计资料表明,冠心病和高血压病患者中75%有吸烟史。冠心病发病率吸烟者较不吸烟者高3.5倍,冠心病病死率前者较后者高6倍,心肌梗塞发病率前者较后者高2~6倍,病理解剖也发现,冠状动脉粥样硬化病变前者较后者广泛而 严重。高血压、高胆固醇及吸烟三项具备者冠心病发病率增加9~12倍。心血管疾病死亡人数中的30%~40%由吸烟引起,死亡率的增长与吸烟量成正比。烟雾中的尼古丁和一氧化碳是公认的引起冠状动脉粥样硬化的主要有害因素,但其确切机理尚未完全明了。多数学者认为,血脂变化、血小板功能及血液流变异常起着重要作用。高密度脂蛋白胆固醇(HDL-C)可刺激血管内皮细胞前列环素(PGI2)的生成,PGI2是最有效的血管扩张和抑制血小板聚集的物质。吸烟可损伤血管内皮细胞,并引起血清HDL-C降低,胆固醇升高,PGI2水平降低,从而引起周围血管及冠状动脉收缩、管壁变厚、管腔狭窄和血流减慢,造成心肌缺氧。尼古丁又可促使血小板聚集。烟雾中的一氧化碳与血红蛋白结合形成碳氧血红蛋白,影响红细胞的携氧能力,造成组织缺氧,从而诱发冠状动脉痉挛。由于组织缺氧,造成代偿性红细胞增多症,使血粘滞度增高。此外,吸烟可使血浆纤维蛋白原水平增加,导致凝血系统功能紊乱;吸烟还可影响花生四烯酸的代谢,使PGI2生成减少,血栓素A2相对增加,从而使血管收缩,血小板聚集性增加。以上这些都可能促进冠心病的发生和发展。由于心肌缺氧,使心肌应激性增强,心室颤动阈值下降,所以有冠心病的吸烟者更易发生心律不齐,发生猝死的危险性增高。 据报告,吸烟者发生中风的危险是不吸烟者的2~3.5倍;如果吸烟和高血压同时存在,中风的危险性就会升高近20倍。此外,吸烟者易患闭塞性动脉硬化症和闭塞性血栓性动脉炎。吸烟可引起慢性阻塞性肺病(简称COPD),最终导致肺原性心脏病。对呼吸道的影响 吸烟是慢性支气管炎、肺气肿和慢性气道阻塞的主要诱因之一。实验研究发现,长期吸烟可使支气管粘膜的纤毛受损、变短,影响纤毛的清除功能。此外,粘膜下腺体增生、肥大,粘液分泌增多,成分也有改变,容易阻塞细支气管。在狗实验中,接触大量的烟尘可引起肺气肿性改变。中国医科大学呼吸疾病研究所的一项研究发现,吸烟者下呼吸道巨噬细胞(AM)、嗜中性粒细胞(PMN)和弹性蛋白酶较非吸烟者明显增多,其机制可能是由于烟粒及有害气体的刺激,下呼吸道单核巨噬细胞系统被激活,活化的AM除能释放弹性蛋白酶外,同时又释放PMN趋化因子,使PMN从毛细血管移动到肺。激活的AM还释放巨噬细胞生长因子,吸引成纤维细胞;以及PMN释放大量的毒性氧自由基和包括弹性硬蛋白酶、胶原酶在内的蛋白水解酶,作用于肺的弹性蛋白、多粘蛋白、基底膜和胶原纤维,从而导致肺泡壁间隔的破坏和间质纤维化。据报导,1986年美国患COPD者近1300万人,1991年死亡9万多人,吸烟是其主要病因。吸烟者患慢性气管炎较不吸烟者高2~4倍,且与吸烟量和吸烟年限成正比例,患者往往有慢性咳嗽、咯痰和活动时呼吸困难。肺功能检查显示呼吸道阻塞,肺顺应性、通气功能和弥散功能降低及动脉血氧分压下降。即使年轻的无症状的吸烟者也有轻度肺功能减退。COPD易致自发性气胸。吸烟者常患有慢性咽炎和声带炎。
  • 吸烟危害到底多大?实验室求证:烟霾胜于雾霾?
    禁烟范围扩大至&ldquo 吸烟室&rdquo &ldquo 吸烟区&rdquo   今年6月1号起,新版《北京市控制吸烟条例》将正式生效。这次控烟条例主要的焦点用一句话概括就是,&ldquo 带顶&rdquo 的场所均不让吸烟,像电梯、走廊、楼梯间、卫生间等都在禁烟范围之内。在新规定之下,以前设立的&ldquo 吸烟室&rdquo 和&ldquo 吸烟区&rdquo 也将被禁止,成为历史。   不仅如此,此次即将实施的《条例》中还明确了处罚规定。如果个人在禁止吸烟场所或者排队等候队伍中吸烟,处以50-200元罚款 场所经营者、管理者违反相关规定,将被处以2000元以上10000元以下罚款。此外,违规设立吸烟区的最高可以罚款3万元。   街头调查:支持&ldquo 最严禁烟令&rdquo 担忧实施难度大   那么对于这项即将实施的控烟新措施,大家是怎么看的呢?我们的记者在北京街头展开了一场微调查。   实验室求证:烟霾胜于雾霾?   这次禁烟令的最大一个改动,就是在室内全面禁烟。那么室内吸烟危害到底有多大呢?最近有一种说法,就是室内吸烟产生的空气污染要比雾霾天更严重,您相信吗?为此我们的记者也是找到了专业机构展开实验求证。   记者来到清华大学室内环境检测中心,在一个四十平米左右的会议室模拟有人抽烟的会议场景。   实验前,室内的PM2.5浓度是每立方米0.22毫克。随后测试人员开始吸烟,10分钟后平均PM2.5浓度达到200多,为点烟前的十倍。   同时,记者回调测试过程数据时发现,在很长一段时间内,PM2.5的数值可以达到300-400,部分图表显示,数值甚至曾高达1.85,也就是PM2.5浓度达到1800以上,比通常我们认为的重污染天气还要高数倍。而这仅仅是在设置了一名抽烟者抽一根烟的实验条件下测到的数值。   实验室求证:吸烟有害物质可致癌?   这些吸烟中的有害物质就这样以烟霾的形式进入我们人体,那么对吸烟伤害健康的方式有很多种说法,其中之一就是吸烟致癌,对此,中国科学院动物研究所的科研人员,也是经过长期试验,证明了这一点。   我们请一位测试人员吸烟后,将烟吐在一张干净的湿纸巾上。即使是吸食这样有长过滤嘴的烟,仅仅吐了三口烟,湿纸巾上就留下了明显的暗黄色的污渍,这些物质不是被吸烟者吸入体内,就是呼出到空气中,形成我们之前实验中所说的&ldquo 烟霾&rdquo 。科学研究表明,烟草燃烧能形成的化合物高达5000多种,其中70余种是具有致癌作用的。那么这些物质进入体内,就能引发癌症么?   周光飚,中国科学院动物研究所研究员,长期从事吸烟引起癌症的机理研究,过去的几年中,他一直在寻找吸烟与癌症的关系。   周光飚领导的研究团队就在这样一个专业实验室,利用动物实验展开了对吸烟致癌原因的研究。   试验中选择了比较容易模拟肺癌形成机理的特殊小黑鼠,工作人员选取部分吸烟产生的有害物质,对小黑鼠进行了喂食。一段时间后,对比被喂食的的小黑鼠和健康鼠的肺部CT结果可以看到,小黑鼠的肺部产生癌症组织。   内窥镜告诉您一个真实的&ldquo 烟肺&rdquo   在刚刚的小实验当中,我们看到吸烟者吐出的烟让纸巾变脏。同样的道理,长期吸烟,肺部会变得很脏,那么到底会变成什么样子呢?我们通过医生的内窥镜来告诉您一个真实地&ldquo 烟肺&rdquo 。在这里要提醒您一下,接下来的图片可能会引起不适。   这组内窥镜下的肺部影像,是韩国医生在给病人看病时候纪录下来的。由于长期吸烟,肺部会有很多黑色的斑点。而经验丰富的医生,根据肺部的颜色,就可以马上判断出患者的烟龄。   通过高清摄像头,医生给出了不吸烟者、15年烟龄、30年烟龄的患者肺部对比图像。其中,非吸烟者的肺呈现鲜明的淡粉红色,看上去充满生气。 不吸烟者肺部   在15年烟龄患者的肺部影像图中,由于焦油等致癌物质长期沉积,肺部布满了大块黑色斑点。  15年烟龄患者的肺部   而30年烟龄患者的肺部影像图则更触目惊心,整个肺部就像被泼上了黑色的墨汁,就连内部组织也布满了致癌物质。医生表示,尽管患者目前还没有发病症状,可事实上他已经患上了肺癌。 30年烟龄患者的肺部   &ldquo 禁烟令&rdquo :为禁烟 更为健康   正如医生所说,肺部一旦因吸烟而受到损伤,便很难恢复原状。所以,要想保证肺部健康的唯一办法,就是戒烟。而禁烟令的实施,不仅为控烟,也为了大家的健康。   张建枢,北京控制吸烟协会会长,此次&ldquo 最严禁烟令&rdquo 的起草者之一,他表示,此次禁烟条例多项禁烟措施的升级,首要目的仍然是进一步保障非吸烟者的健康权益。   北京控制吸烟协会会长 张建枢:我们北京市调查结果显示,有400万烟民,吸烟率是22.8%,过去可能考虑到吸烟人的方便,有些地方给他留个吸烟室,但事实证明由于空调空气流动,它解决不了问题,还是会进入到整个大循环,给人造成伤害,而且妇女、儿童对吸二手烟的危害有很多数据都证明,对人的健康有很大危害的。   因此,除了对公共的室内场所进行全面禁烟外,此次出台的《北京市控制吸烟条例》所划定的禁烟范围,甚至包括一些室外的区域,尤其对于妇幼保健院等一些特殊的场所。这些更加严格的控烟措施,也是经过了多次调研和考量。   张建枢表示,近年来由于人们对于吸烟给健康带来的危害逐步深入,严格的控烟工作也得到了很多吸烟者的支持。   北京控制吸烟协会会长 张建枢:我们是一部倡导法,更主要是劝阻,处罚不是目的,我们就是要让大家形成文明健康的生活方式,大家都有一个良好的生活环境。
  • 小菲课堂|为何不能在加油站吸烟?
    2019年8月11日,在湖北天门某中石化加油站,一名66岁的李某酒后无证购买散装汽油。被拒后心生不满,便故意在加油机旁点烟。为避免造成安全事故,加油站工作人员立即用灭火器对其喷射,并及时报警。在加油员对其进行第二次喷射时,李某才将车驶离加油站。李某在具有火灾爆炸危险场所吸烟的行为,已经违反了《中华人民共和国消防法》。警方依法对其处以行政拘留。去过加油站的人都知道在加油站都设有明确的禁止标识 吸烟是一大忌!具体是为什么呢?小菲带你亲眼见证下!在视频中,我们可以看到一团团的黑云,那其实就是飘散在空气中的汽油蒸汽,它非常易燃,随时可能燃烧。尽管许多加油站都采取措施减少抽气时允许逸出的蒸汽量,但空气中的蒸汽量永远不会为零。这也是为什么加油的时候要关掉发动机,因为空转的汽车会增加空气中的汽油蒸气。除了在加油的过程中,会飘散汽油蒸汽,加油站储存了大量汽油、柴油,这些油在常温下也会发生汽化,产生大量燃油蒸汽,这些蒸汽遇火很容易燃烧而发生危险。根据研究,汽油的低引爆能量仅有0.2毫焦,相当于一枚大头针从1米高的高度落到水泥地上所产生的能量,这样微小的引爆能量,任何微小的火花或肉眼看不到的静电都可能达到。因此我们在加油站加油时,一定要注意安全,不要让香烟、打火机和其他潜在的火源靠近加油站。在我们的工作中,可能会泄漏很多看不见的有害气体,因此就需要专业设备及时查找泄漏的气体,将气体泄漏的危害扼杀在摇篮里!FLIR GF系列光学气体成像热像仪能够快速、精确、安全地检测天然气、VOCs、SF6 、制冷剂、氨气和CO2等泄漏,无需关闭系统或接触部件。肉眼不可见的气体泄漏在透过光学气体热像仪观察时呈烟雾状,可从较远距离发现,及时修补泄漏。FLIR光学气体成像热像仪(OGI)帮助您检测各种泄漏的气体FLIR还将不断设计新的产品和附件满足您更多的需求想知道自己最适合哪款FLIR GF系列热像仪?
  • 上海台雄洗眼器六大特点 专业值得信赖
    台雄洗眼器所采用的所有材料、零部件均为自主定制、研发以及开模生产,是其它企业无法达到和可以比拟的!台雄凭借其专业的技术自主研发洗眼器,定制生产内壁为镜面的卫生级304不锈钢管,采用进口蜡精铸三通等零部件,辅以精湛的生产工艺、持续的技术革新以及一流的售后服务,坚持&ldquo 态度、诚信、专业、服务&rdquo 的理念,产品深受各界专业人士的推崇与信赖,稳占高端市场份额第一、产品美誉度第一的位置。     一、SAN台雄洗眼器旗下共有十大类洗眼器,产品多达上百种,其中更以电伴热冲淋洗眼器、防冻型冲淋洗眼器、紧急冲淋洗眼房、复合式冲淋洗眼器尤为有名    1)台雄电伴热冲淋洗眼器采用的自限温型电热带,具备双重保护技术,温度控制稳定,允许多次交叉重叠使用,即使在继电器损坏的情况下,也不会出现过热点及烧毁的现象,产品更加安全、更加节能。自主研发的电伴热洗眼器外壳,材质为高强度树脂材料,壳体外面经过喷漆,牢度强,抗紫外线性能好,抗老化性能明显优于玻璃钢、PVC和ABS;壳体经压制成型,不但精度高、外观美观,更重要的是热密封性好,保证了电伴热功能的稳定发挥。    2)台雄自排空防冻洗眼器依据二位三通阀原理进行生产并进行了改进;将洗眼器装置自身的进水管设置在洗眼器排水管内部,与二位三通阀直通,能够更好的排水,从来达到更好的防冻效果。在气温较低的地区,在不使用时排空洗眼器内部的水,不让洗眼器内部的水结冰,从而防止洗眼器内部结冰而影响洗眼器的使用。    3)台雄紧急冲淋洗眼房有普通型和耐强腐蚀型两类产品,特别是耐强腐蚀型冲淋洗眼器,房体采用全PP结构密封,冲淋洗眼器主体是达标304不锈钢加环氧树脂烤漆,保证产品本身所有的金属部件均不裸露于腐蚀环境中,使用寿命长。     二、台雄洗眼器拥有市场上绝无仅有的专利连接件,通过将管道连接件由传统螺纹式改为插入式,用户可以根据使用者需要的位置直接定位洗眼器和冲淋器的位置,不仅大大缩短了安装工时,而且还有效地避免了传统密封材料可能造成的漏水困扰;同时避免了传统安装中出现的管道拧紧后产生的管件倾斜,影响使用效果;     三、绝对采用达标304不锈钢,S和P系列洗眼器绝对采用达标卫生级304锈钢,NI含量高于8%,耐腐蚀性能远比不达标304不锈钢强,而其他厂家则采用不达标304不锈钢,NI含量低于5%。    四、采用冷扎工艺钢管,相比于冷拔钢管,冷轧管内壁为光滑镜面,不生锈,无油脂,无毒,适合于食品、医药、卫生等行业;冷轧钢管韧性好,做成的产品强度高,经久耐用;并且冷轧钢管横截面的圆非常标准、不变形,产品精度高,方便安装。采用精铸工艺,所有管件和阀门都由我司自行开模精铸,确保采用高精度、高成本的模具,洗眼器成品精度非常高; 五、上海台雄的SAN洗眼器每个部件均可简单拆卸、更换、检修更方便,有效的弥补了市场上大部分产品不可拆卸、强度低、耐用性差等缺点。台雄洗眼器有别于传统密封方式,将传统密封带改为&ldquo O&rdquo 型密封圈,给安装带来了极大的便利,节省了安装工时,减少安装成本,投入使用后,不易漏水,让您使用起来更安全可靠。 六、台雄通过国际ISO9001质量管理体系认证,严格依照美国ANSI/ISEA Z358.1-2009行业标准生产,洗眼器产品率先通过国际权威机构德国TÜ V检测认证,是目前中国唯一一家通过TUV认证的高端洗眼器专业生产商。 关于产品更多介绍 www.saneyewash.com
  • 上海台雄洗眼器走进某石化企业
    上海台雄洗眼器经过10年的发展,已深得广大企业、业主的信赖和认可,台雄SAN标示LOGO已在各大化工厂、海上油田、沙漠油田、疾病预防控制中心、港口作业等危险场所中,随处可见。 近日上海台雄工程师走进一家山东某石化工程公司(原中国石化下属设计研究院,现已在香港上市),在经过详细了解和市场分析之后,对我公司洗眼器非常感兴趣,特邀请我公司前往山东就洗眼器做技术交流。 我司工程师正在给在会人员讲解台雄洗眼器功能 欢迎各位到我们洗眼器产品网站访问 www.saneyewash.com
  • 上海台雄SAN洗眼器再次中标阿克苏诺贝尔项目
    阿克苏诺贝尔为什么再次选择上海台雄SAN品牌紧急冲淋洗眼器呢? 其实阿克苏诺贝尔最早使用的不是上海台雄生产的洗眼器,而是使用国内某厂家的洗眼器,因产品质量不过关,使用不到一年,洗眼器开始生锈、渗水,慢慢出现漏水,公司员工只好把水阀关闭,最后洗眼器彻底&ldquo 寿终正寑&rdquo ,最后联系到上海台雄,觉得标书中介绍的还不错,并买了几十台复合式冲淋洗眼器,使用一年之后,产品依然如初,各方面性能良好,在有了上一次使用之后,上海台雄洗眼器已深得阿克苏诺贝尔相关领导和一线员工的认可,并在此次项目中毫无悬念地选择了上海台雄。 台雄一直以"态度、诚信、专业、服务"为宗旨,时刻谨记:让台雄品质、服务、成本的优势变成客户最大的利益。 阿克苏诺贝尔之所以再次选择上海台雄,完全是产品的品质得到了客户的信赖。 更多内容请访问www.saneyewash.com
  • 实验称室内PM2.5大约九成来自烟草
    “控烟新武器”——空气PM2.5测试仪“智能防暴粉尘仪”亮相   今年3月1日是《上海市公共场所控制吸烟条例》贯彻实施三周年。今天,本市针对“问题”网吧、餐饮和娱乐场所等开展全市统一 “控烟执法行动日”活动,“控烟新武器”——空气PM2.5测试仪也同时亮相。一项由市健康促进委员会办公室与复旦大学公共卫生学院联合开展的 “二手烟雾对室内PM2.5浓度影响因素”实验结果显示,吸烟产生的烟雾对PM2.5“贡献”非常大。据悉,室内PM2.5大约九成来自烟草。   屋内一点烟,PM2.5数值飙升   近日,上海市健促办工作人员在复旦大学公共卫生学院专业指导下,开展 “二手烟雾对室内PM2.5浓度影响因素”的实验。记者跟随有关人员,在一间密闭的房间里通过吸烟,对室内进行PM2.5检测。   记者看到,这台室内PM2.5测试仪名叫“智能防暴粉尘仪”,价格约3万元人民币左右,外包装更像一个有按键的保温饭盒,接着一根塑料(10845,20.00,0.18%)管,空气从这根管子里进入,在内部检测。 “新武器”的工作原理是利用内置气泵,将气溶胶微粒吸入光学室中,再由光的散射量来测微粒的浓度。工作人员用它测定室内PM2.5的数值,可检查公共场所控烟效果。   “以前检查时,被检查的人会把烟灰缸藏在抽屉里,开窗散味! ”操作这台仪器的复旦大学公共卫生学院社区卫生与健康促进专业的付文捷说,现在用这台仪器一测就清楚。在这间20平方米的屋内,待仪器稳定5分钟后,显示室内PM2.5的平均浓度为52微克/立方米。在进行二手烟雾检测过程中,首先吸第一支烟,4分钟后当第一支烟吸完时,距离吸烟者2至3米处PM2.5浓度达到251微克/立方米 两分钟后,同时吸第二支烟,4分钟后当二支烟吸完时,距离吸烟者2至3米处PM2.5浓度达到648微克/立方米 两分钟后,再同时吸第三支烟,四分钟后当三支烟吸完时,距离吸烟者2至3米处PM2.5浓度达到955微克/立方米。将正在燃烧的两支烟置于距仪器检测口40厘米处,显示PM2.5浓度瞬间上升至1454微克/立方米。   实验结束后,吸烟人员离开室内区域,未开任何通风设备,仪器继续测量,10分钟后,PM2.5浓度达到1130微克/立方米 20分钟后,PM2.5浓度达到1035微克/立方米 30分钟后,PM2.5浓度虽下降,但仍高达872微克/立方米。   室内通风和加湿可降低PM2.5   PM2.5,也称为可入肺颗粒物,它可以到达呼吸系统深部,如细支气管、肺泡,甚至可以穿过细胞膜进入身体的其他器官,包括脑部,从而对人体造成伤害。付文捷说,烟草产生的烟雾,对室内空气中的PM2.5浓度,有着举足轻重的影响。有国外研究表明,在吸烟的状况下,室内的PM2.5,大约90%至93%源于烟草烟雾。而我国室外PM2.5的国家标准是75微克/立方米,室内参照室外标准。   现在,一些饭店、餐厅或写字楼等各场所实行控烟,环境总体不错。但有一个死角,就是公共卫生间,偶尔有顾客躲在男厕所里吸烟,如果卫生间没有窗子通风,PM2.5的数值可能会超标上百倍。还有一些人喜欢躲在办公大楼的楼梯间等角落里吸烟,如果大楼通风情况不好,对PM2.5数值也会有影响。   人每天在室内逗留时间最长,如何降低或消除室内的PM2.5?有专家说,最有效果的是通风,加速室内悬浮颗粒物流出。虽然很多人担心室外PM2.5也可能较高,但通风还是比封闭要好。还有一个办法就是加湿,促使悬浮颗粒物沉降。保持室内湿润,可促使悬浮颗粒物沉积。最健康安全的办法,是保持室内环境清洁无烟,就餐与住宿选择无烟饭店和宾馆。
  • “烟草院士”当选遭多方质疑
    相关新闻专题:聚焦2011年中科院、工程院院士增选 网友刘志峰发微博 中国工程院新晋院士谢剑平研究员   1质疑:新晋院士研究高效杀人?   “研究更高效杀人,却当选院士?”12月8日上午10点,网友刘志峰发微博,质疑工程院新晋院士谢剑平,“中国每年上百万人因吸烟死亡,而政府却沦为GPD的奴隶,资助这种坑人的研究”。一石激起千层浪,人们纷纷将目光聚焦在这位新院士身上。   1959年出生于江苏常州,23岁毕业于南京师范大学化学系,3年后获郑州烟草研究院工学硕士学位,现任该院科研副院长,今年52岁的谢剑平,历经4年3次提名,终于当选工程院环境与轻纺工程学部院士。   新华网河南频道9日刊登报道《在卷烟“减害”研究领域求突破》,文中引用谢剑平的话“减害降焦是我们烟草科技工作者的责任和使命”。这正是他的研究方向,探索有中国特色的卷烟“减害降焦”法,并引入中草药,选择性降低烟气有害成分,研制开发“神农萃取液”。   当选院士前,谢剑平已三度获国家科技进步二等奖,早在19年前,他已成为“烟草系统有突出贡献专家”,享受国务院政府特殊津贴。   郑州烟草研究院是我国唯一直属于国家烟草专卖局,即中国烟草总公司的烟草科研与开发机构。该院名誉院长、92岁的朱尊权院士,是此前我国烟草行业唯一一位院士,也是谢剑平的导师。   记者数次尝试联系谢剑平,遗憾的是,数个电话及短信均未得到回应。   2质疑:“降焦减害”是个伪命题?   事后,网友刘志峰坦言,与谢剑平并无个人恩怨,封其“杀人院士”有点偏激,但他坚称,以卷烟“降焦减害”等方式降低大家对健康危害的防范,是更长远而隐蔽的“杀人”,这项研究本质上助力烟草。   随后两天,著名打假人士方舟子、国家控烟办主任杨功焕,也相继在微博上公开质疑,矛头直指谢剑平所做的研究卷烟“减害降焦”。   “这是个伪命题,降焦根本不能减害,是全世界已认同的科学道理”,接受本报记者采访时,中国疾病预防控制中心副主任、最早介入控烟的工作者杨功焕直截了当地指出,谢剑平的研究“一点都不新鲜”,几十年来、多个国家、成千上万个研究早已证明,任何降焦、任何添加剂,包括中药,都无法让卷烟“减害”。   方舟子列出《世界卫生组织烟草控制框架公约》条文,上面明文写道:“烟草制品使用‘低焦油’等词语属于虚假、误导、欺骗。吸极低焦油、低焦油卷烟患肺癌死亡的风险和吸中度焦油卷烟一样”。   对于谢剑平的创新研究在卷烟中添加中草药,选择性降低烟气有害成分,方舟子也毫不留情地指出,“降焦本来就够骗人的了,这中草药减害就更害人了”。   新探健康发展研究中心主任王克安也认为,加中草药的方式“可笑”,卷烟一燃烧,有害物质必会产生,且香烟与食品添加剂不同,不存在量多少的安全水平。王克安直言,研发“无害”卷烟不可能实现。   3质疑:经费来自烟企如何自律?   杨功焕表示:“我们都知道,一个科学研究要公正的话,不可以拿企业经费来做,而谢剑平所在研究院直属烟草公司,几十项研究都是烟草业界资助的,在这方面怎么自律?”   她指责谢剑平拿烟草业的钱做研究,公正性难以让人信服,客观上起到帮烟草公司营销的效果。“国际上包括世界卫生组织,把拿烟企钱做研究的人都列入黑名单,予以公布。而我国确实有不少烟草企业拿钱收买科学家”。   “我并不是说研究烟草的人就不能当院士,但他研究的是降焦减害,这会误导老百姓吸烟,帮助烟草企业卖烟”,杨功焕介绍,“低焦油”成为很多卷烟厂主打品牌的营销策略,而近几年我国卷烟销量一直增长,公众误以为真的低害,反而吸得更多,减少了戒烟意愿。   就在前天,疾控中心受卫生部委托,正式发布《全球成人烟草流行病学调查中国报告》。调查发现,我国有85%的人不知道,或干脆认为低焦油香烟少危害,甚至医生、教师等高教育水平人群的错误认识比例更高。   资料显示,除烟草公司经费外,谢剑平还主持、负责过国家科技部、自然基金委等资助的重大项目。“在国外,政府绝对不可能拿钱资助这样的研究”,新探健康发展研究中心主任王克安认为,这项研究不仅不能保护人民健康,反而可能增加吸烟者数量。   4质疑:谢剑平该不该当选院士?   质疑焦点最后落在这里:谢剑平应不应当选院士?   “这是中国科学界的耻辱!这是中国工程院的耻辱!”在微博上,杨功焕连用两个感叹号加“耻辱”,表达对“烟草院士”谢剑平当选的惊愕。她表示,是我们参评院士群体不了解全球健康研究的进展,集体“无知”,还是因为其他原因而“劣币驱逐良币”?   谢剑平所在学部,在工程院9学部中规模最小,除资深院士外剩余34人,只需2/3投票通过即可,相比其他学部更易当选。同时,该学部大部分为环境、气象、海洋等领域专家,与烟草科技相距较远。   “如果放在医药卫生学部,肯定不可能当选”,王克安认为,因此研究关涉健康,更合理的方式应有医药卫生学部相关专家参与评审。但目前仅工程管理学部候选人会放到相关学部,其余均由本学部内部选举产生。   据公开资料显示,谢剑平2007年、2009年、2011年连续3次以“部位遴选”方式参选,即由所在单位提名,报送归口部门,前两次分别止步于第一轮、第二轮评审,这次终于笑到最后。   “院士评选机制有很多漏洞”,方舟子认为,每间隔两年评选,“回炉”院士多,新增院士质量贬值,且目前的选举方式易导致各机构包装候选人、大肆活动、造势炒作等现象,“国外院士选举,被提名者自己都不知道,内部推举然后投票,其他机构很难掺和进来”。   回应工程院副院长旭日干:众院士投票自有其道理   就相关质疑,工程院副院长旭日干表示,因其自身所在非环境与轻纺工程学部,对专业情况不了解,因此不能妄下评判,也无法回答专业性的问题。“学术上的不同看法也是允许的,有不同想法可以向工程院反映,我们有专门负责处理的”。   对于工程院在院士选举中,是否会考量研究的独立性、公益性等问题,旭日干表示也不好回答,“所说的是不是这回事,我不清楚”。他同时认为,经两轮选举,且当选不是一票两票,而是那么多院士一起投票选出来的,“总是有道理的”,但具体需问专业人员才能知道。   对话杨功焕:无害卷烟有违常识   京华时报:您在微博上说,谢剑平的当选是工程院的耻辱?   杨功焕:为烟草业推销做的研究,怎么可以作为国家层面上认同的科学?这在预防慢性病、预防吸烟带来危害的大背景下,很不合适。院士是我们国家的最高荣誉,如果不代表先进文化,不关注老百姓健康,将被人民抛弃。   京华时报:谢剑平曾说,现代烟草科技当务之急,是满足人们对烟草消费嗜好的同时,研究出最大限度减少危害的新方法,您对此怎么看?   杨功焕:这是错误说法,科学是无国界的,如果他与国际科学潮流接轨,与非烟草界的人多交流,会明白这种想法实际上受了烟草商的驱动,表面上说低害、无害,事实上是骗人的东西。   京华时报:谢剑平的导师朱尊权,是我国烟草行业第一位工程院院士,他曾说他的梦想,是让中国卷烟真正少害,甚至开发出有一定保健作用的卷烟。   杨功焕:这不符合基本的科学原理常识。国家不应鼓励花大力气做这方面的研究,而应把精力放在如何降低人们的吸烟率,减少对健康的危害上。   数说:我国当前吸烟者总人数3亿   我国当前非吸烟者遭受二手烟危害的总人数7.4亿   总吸烟人群(包括现在及曾经吸烟者)的戒烟率16.9%   吸烟人群中,91.8%的人从未接受过任何戒烟服务   一半人购买5元/盒及更低价位的卷烟,中国卷烟价格处于世界非常低的水平   “低焦油低危害”早已被科学证明是错误观点,对此高教育水平人群错误认识的比例更高,其中医生达54.7%   数据来自疾控中心于前天正式发布的《全球成人烟草流行病学调查中国报告》   质疑的声音:   12月8日上午9点,中国工程院正式对外发布54名新增院士名单。仅一小时后,新晋院士谢剑平便在网上被冠名“杀人院士”“烟草院士”,这恐怕令他始料未及。作为中国烟草总公司郑州烟草研究院副院长,谢剑平的主攻方向是卷烟“减害降焦”研究。“谢剑平的当选是中国科学界和中国工程院的耻辱”,国家控烟办主任杨功焕指出,卷烟减害是“伪命题”,不仅不可能实现,还误导公众,变相推销。打假人士方舟子也认为,此研究“骗人又害人”。   方舟子(知名打假人士)   在世界医学界大力要求禁烟的今天,中国竟然产生了一位拿烟草公司的钱搞研究的烟草院士,简直就是笑话。这代表的是烟草公司的利益,保证烟草业在工程院里头还有发言权。   杨功焕(中国疾病预防控制中心副主任、国家控烟办主任)   居然把研究“卷烟减害降焦”这种虚假命题的人评为院士,反映我们参加评选的院士群体知识贫瘠,评选机制有问题。中国烟草商和国际烟草商一样,收买科学家研究“降焦减害”,为烟草商服务。   王克安(新探健康发展研究中心主任、原中华预防医学会副会长)   研究证明,目前没有任何一种卷烟可以“减害降焦”,这是西方早已放弃的研究,我们却捡起来做。卷烟本身有害,降也好,减也好,花那么多钱去改良,还是不好的东西,不吸不更好?谢剑平当选院士,有违严厉控烟的世界潮流,有违中国公众期待,让中国工程院的学术声誉声名扫地。今后谢剑平以中国工程院最高荣誉称号的身份去推广他的研究,情何以堪?
  • 高锰酸盐指数分析原理和用途
    高锰酸盐指数是指在一定条件下,用高锰酸钾氧化水样中的某些有机物及无机还原性物质,由消耗的高锰酸钾计算得出相当的氧的质量。它是反映水体中有机及无机氧化物质污染程度的综合性水质评价指标。原理:水样与过量的高锰酸盐混合,用浓硫酸酸化后,在高温高压的环境下高锰酸盐被还原,从而使混合溶液发生颜色改变,溶液颜色变化程度与水样中高锰酸盐指数成对应关系,通过测量该混合液,计算得出水样中高锰酸盐指数的值。主要应用场景有地下水、河水、湖泊水等水质比较好的水质中高锰酸盐指数的监测。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 科学仪器十月沙龙:普及养生保健知识,远离亚健康疾病
    p    strong 仪器信息网讯 /strong 亚健康是指身体介于健康与疾病之间的边缘状态,又叫做“慢性疲劳综合征”,或称“第三状态”。随着现代生活节奏的加快,人们面临着生活和工作的双重压力,越来越多的人处于亚健康状态。 br/ /p p   为了使广大科研人员进一步增强保健意识,提高保健水平和身体素质,引导人们自觉摒弃陈旧落后的思想和生活观念,养成合理、健康的生活习惯,提倡科学文明健康的生活方式和行为,北京科学仪器装备协作服务中心联合北京建材科研院研发实验服务基地、首都科技条件平台丰台工作站、慕尼黑展览(上海)有限公司,于2017年10月27日在北京悠咖啡组织了主题为“普及养生保健知识,远离亚健康疾病”的沙龙活动,活动邀请北京友谊医院副主任医师王榭从日常衣食住行等生活细节讲授了如何预防心脑血管疾病等保健知识。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/5167ab65-f4b4-4d0d-9908-00192e146f5e.jpg" title=" 王榭.jpg" / /p p style=" text-align: center " 北京友谊医院副主任医师 王榭 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/c7838981-2bc9-4ddb-ba0c-61d5ed52059b.jpg" title=" 苏立清.jpg" / /p p style=" text-align: center " 北京科学仪器装备协作服务中心协作部部长苏立清主持沙龙 /p p   本次沙龙邀请高校、科研院所、企业负责人等多位科学界人士参与,主讲人以幽默的语言讲授了心血管疾病的致病因素,并且针对长期从事办公室工作的人员教授了一套减压运动,最后针对与会人士的特例问题从用药、心里因素等多个方面给予精准解答。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/95607a6e-f61c-44cc-9fcb-114b04c06d27.jpg" title=" 现场.jpg" / /p p style=" text-align: center " 沙龙活动现场 /p p   王榭表示,心脑血管疾病与七个因素有关:年龄、高血压、高血脂、糖尿病、吸烟、叶酸摄入量、生活压力,并且,不同人种、地域等人群之间略有区别。通常,成年人具备两个因素则被视为心脑血管疾病低微人群,具备三个或以上因素则被视为高危人群。 /p p   谈及人们日常生活中的亚健康问题,王榭讲到,相对于蓝领一族,白领或金领阶层亚健康人员数量更多,主要因为运动量少、生活不规律、压力相对高等。因此,在活动现场,王榭教授了一套办公室运动,用于缓解长期从事脑力劳动人群颈椎、肩膀、腰部等肌肉群的疲劳程度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/924d4ffe-bac5-468c-82a0-0b7001413906.jpg" style=" float:none " title=" 互动2.jpg" / /p p style=" text-align: center " 教授办公室运动 br/ /p p   活动最后,王榭总结了成人健康生活几个要点,如日饮水量需2500ml(含饮食中汤食)、每天保证6.5个小时睡眠(其中深度睡眠2小时)、保持一定的运动量、适量饮酒、食用中药配方尽量少于十二味药材等。 /p p   据了解,针对科学仪器行业,首都科技条件平台每月推出不同主题的沙龙活动,使科学仪器行业从业人员更多了解日常生活中与科学、检测等相关的方方面面。本次沙龙活动首次采用聊天互动形式,获得现场参与人员的一致好评。 /p p br/ /p p    strong 首都科技条件平台检测与认证领域中心 /strong /p p   首都科技条件平台检测与认证领域中心是首都科技条件平台的组成部分,是北京市科委与北京市质监局及北京出入境检验检疫局联合建立的面向检测与工具研发领域的专业服务平台。目标是整合各类具有检测、认证资质的创新主体及其所拥有的资源,整合分析测试仪器研发机构的科技资源,汇集包括仪器生产企业在内的相关机构或企业在科技研发、成果转化、产业化项目、企业产品生产等过程中对测试、检测、认证和工具的服务需求,汇集检测机构和研发机构的科技服务需求,畅通需求与资源对接的渠道,建设一个覆盖仪器研发、生产、应用全过程、全链条的创新服务平台,一个致力于提升检测服务和检测能力的共性技术服务平台。 /p p br/ /p
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 【赛纳斯】助力电子烟专项清理整治
    为依法清理整治向未成年人销售电子烟活动,严厉打击涉电子烟违法犯罪,切实保护未成年人身心健康,近日,公安部、国家烟草专卖局、国家市场监督管理总局、教育部联合印发《清理整治向未成年人销售电子烟严厉打击涉电子烟违法犯罪专项工作方案》(以下简称《方案》),部署自即日起至4月底开展专项清理整治工作。什么是电子烟电子烟是一种模仿卷烟的电子产品,有着与卷烟一样的外观、烟雾、味道和感觉。它是通过雾化等手段,将尼古丁等变成蒸汽后,让用户吸食的一种产品。世界卫生组织专门对电子烟进行了研究,并得出了明确的结论:电子烟有害公共健康,它更不是戒烟手段,必须加强对其进行管制,杜绝对青少年和非吸烟者产生危害。什么是上头电子烟“上头”电子烟表面上看与普通电子烟无异,甚至宣称“纯植物提取”、“安全上头”,但吸食后会出现兴奋、致幻等反应,这是因为里面含有被国家整类列管的合成大麻素成分,本质上是一种新型毒 品!合成大麻素类物质是九大类新精神活性物质中的一类,不依赖于大麻种植,成本更低,获取更便捷,精神活性一般强于普通大麻素4至5倍,有些甚至强于几十倍至上百倍,成瘾性更强,对人体的危害也更大。吸食后会出现头晕、呕吐、精神恍惚、致幻等反应,滥用会出现休克、窒息甚至猝死等情况,目前已在全国范围内引发数起毒驾、故意伤害等危害公共安全事件。增强拉曼技术快速检测烟油中毒 品赛纳斯手持式拉曼光谱仪(SHINS-P700)基于拉曼光谱及表面增强拉曼光谱(SERS)技术的新精活快速检测方案,内置大量管控精神类药品和麻醉药品、毒 品数据库,结合增强试剂可实现低浓度(电子烟油合成大麻素检测步骤赛纳斯提醒各位童鞋们,提高警惕,远离毒 品,坚定意志力,不被各种伪装毒 品诱惑。如有发现售卖、吸食“上头电子烟”行为,也请及时向身边的大人或者警察蜀黍举报,为禁毒工作助一份力。
  • DIAN子烟新规即将“靴子”落地,你准备好了吗?
    近年来,DIAN子烟作为香烟的替代品,成为众多烟民的新选择,甚至被当作“健康”的戒烟神器,颇受追捧。DIAN子烟是一种手持设备,通过加热其中的DIAN子烟液,使其蒸发,以模拟吸烟的感觉,有着与传统卷烟相似的烟雾和味道。与传统烟草相比,DIAN子烟释放的致癌物质只有传统烟草的1/10。但DIAN子烟在加热过程中会释放甲醛、乙醛以及bing烯醛等有害物质,还可能改变某些化学物质的成分,产生新的潜在危害。自2004年DIAN子烟进入中国以来,DIAN子烟产品一直处于无国家标准、无质量监管、无安全评估的状态。中国电子商会于2017年发布了T/CECC 1-2017《DIAN子烟雾器具产品通用规范》和T/CECC 2-2017《DIAN子烟雾化液规范》,规定其中有害成分甲醛、乙醛、bing烯醛和2,3-丁二酮的含量限值≤20mg/L或20mg/kg。预计不久相关部门将会出台相应的法律法规,以及DIAN子烟液成分的一个具体标准。那么,怎么才能知道DIAN子烟液和DIAN子烟释放物中甲醛、乙醛、bing烯醛和丁二酮含量是否在安全限制以内呢?不用慌,赛默飞液相色谱仪帮您来了!耐压620bar的UltiMate 3000和700bar的Vanquish Core系统除了帮您应对实验室的常规项目检测以外,亦可兼容部分的快速分析项目,是实验室BI不可少的好帮手!耐压1000bar和1500bar的Vanquish Flex和Vanquish Horizon系统在复杂样品方法开发应用中可以为您提供更加优异的性能!DIAN子烟液和DIAN子烟气溶胶中的羰基化合物在酸性条件下经2,4-二硝基苯肼衍生反应后经液相色谱仪分析后就可以计算出其中的甲醛、乙醛、bing烯醛和丁二酮的含量了。原理虽然都一样,但DIAN子烟烟液和DIAN子烟释放物的样品前处理差别还不小哦。对于DIAN子烟液来说,只要称取一定量烟液样品,再加入一定量的衍生化试剂即可完成衍生过程;但对于DIAN子烟释放物来说,需要有固定的捕获装置才能收集到气溶胶样品(该装置成为捕获肼),捕获肼外形及尺寸如下:每个捕获肼内加入一定量的衍生化试剂,按下图连接装置捕获一定数量的DIAN子烟气溶胶样品并与捕获肼内衍生化试剂衍生后转移稀释后就可以上机测试了。那我们就赶紧来看看采用赛默飞液相色谱仪来检测DIAN子烟液及气溶胶中甲醛、乙醛和bing烯醛的结果吧!01对照品的色谱图(浓度为5 μg/mL)02线性结果(浓度范围0.1 μg/mL-10 μg/mL)甲醛,乙醛,bing烯醛的相关系数R2均0.9999.03样品测试色谱图Hypersil Gold C18赛默飞超快速液相色谱仪样品太多,检测任务太重该怎么办?有无更高效的方法?没问题,赛默飞超快速液相色谱仪可以帮到您!以下例子就是采用赛默飞Hypersil Gold C18(2.1×100 mm, 1.9 μm)色谱柱,0.4 mL/min流速,每个样品分析仅用六分钟即可完成,大大缩短了分析时间,提高了分析效率,同时还节省了大量溶剂。
  • 清华教授解析:一天中什么时候雾霾最严重?
    田埂(清华大学医学院 )   生活在北方城市的人们近三年普遍感受到,雾霾的发生频率在不断增加,特别是2013年和2014年, 雾霾发生的次数之频繁,持续时间之长,污染程度之重都创下了记录,2013年1月北京发生了 PM2.5污染历史峰值,2014年1月发生了有记录以来持续时间最长的污染期,即便是在理论上不会出现雾霾的春夏两季雾霾也频繁发生。雾霾不仅困扰着人们的工作生活,也对人们的心理投下了巨大的阴影。应对雾霾,政府在做各种努力,例如出台了包括《北京市大气污染防治条例》等一系列政策,&ldquo 京津冀&rdquo 联动治霾等一致行动的确立, 科学家们也绞尽脑汁,针对雾霾展开了一些列研究,试图通过科学研究帮助人们了解雾霾,治理雾霾。但是至今人们依然无法回答一些基本的问题:雾霾到底从何而来,如何精确测试,如何避免 雾霾对人类的健康造成了哪些危害 而人类究竟如何在雾霾长期存在的情况下保护健康,少受危害。   什么是雾霾?   气象学上的定义:雾 (Frog): 近地面空气中的水汽凝结成大量悬浮在空气中的微小水滴或冰晶,导致水平能见度低于1公里的天气现象。相对湿度95%以上的低能见度 霾 (Haze): 大量极细微的干尘粒等均匀地浮游在空中,使水平能见度小于10公里的空气普遍混浊现象,相对湿度小于80%。雾霾: 雾和霾的混合物,相对湿度80%-95%。通俗的讲:云是飘在天上的雾,雾是落在地上的云,霾也就是漂浮在空气中的细颗粒物。   PM2.5(完整拼写为Particulate Matter2.5,称为细颗粒物)是指空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。PM10则是指空气动力学当量直径&le 10微米的颗粒物称为可吸入颗粒物。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,富含大量的有毒、有害物质且在大气中的停留时间长、传输距离远,因而对人体健康和大气环境质量的影响更大。   雾霾真正被人们所认识,是从1952年伦敦雾霾事件和二十世纪40年代初期发生在美国洛杉矶的光化学污染开始,作为工业时代的的城市之伤,雾霾似乎伴随着人类工业化的脚步进入人们的生活,而人们与雾霾的斗争,一般都要持续数年。   在北京的雾霾天,有时一天空气污染物的增加浓度最高达到200-400ug/m3。按北京市区面积为16807.8*106平方米计算,污染带正常在0-500米高度内变化不大,而从500米到1600米直线下降,所以平均厚度可以为1000米. 这样算下来,在雾霾天即一天积累的细颗粒物值大约总量(PM2.5):3360-6720吨。要想短时间去除数量如此庞大的污染物,必须从源头了解它的成因。   雾霾是如何形成的?   毫无疑问,化石燃料燃烧是我国PM2.5的重要来源,根据北京和上海两座城市环保局公布的统计数字,PM2.5成分中,40~75%的重金属来自化石燃料燃烧,超过50%的黑碳来自化石燃料燃烧,城市的一次排放中主要来源是燃煤、机动车等化石燃料燃烧。北京师范大学研究者2013年在《气溶胶和空气质量研究》杂志上发表的相关数据也证实了这一点。而要了解雾霾形成的过程,必须了解一个计算公式:  从公式中我们可以看出,污染的浓度与以下几个因素相关:散发源散发出的污染物浓度,也就是气象污染物排放的量 散发的气象条件 化学成分以及沉降。当污染物从源头释放到空气中后,如果气象条件适合污染物在城市中较长时间的存在,而且在光和水等气象条件的作用下,细小的化学组分可能发生反应,形成颗粒物悬浮,这个过程叫做&ldquo 成核作用&rdquo ,通过成核作用,化学成分相互作用形成了新的颗粒物,从而造成二次污染。最后就是细小的颗粒物彼此碰撞反应,从而形成更大的颗粒,最后沉降下来落在地表。   雾霾污染物的来源和成分分析 来自2011年北京市环保局发布数据北京市PM2.5排放源解析 来自2012年上海市环保局发布数据上海市PM2.5排放源解析   2011年北京市环保局发布数据表明,在北京的颗粒物污染中,机动车排放的贡献为22%,燃煤排放17%,工业扬尘16%,工业设施16%,农业养殖和秸秆焚烧4.5%,周围输入(河北、天津)24.5%。而上海市环保局2012年发布数据表明 的数字,机动车排放25%,工业扬尘10%,工业设施15%,干洗、餐饮民用涂料5%,农业养殖和秸秆焚烧5%,周边影响20%。两座城市大同小异。   2012年北京煤炭总使用量2000多万吨,其中四个大电厂用煤920万吨,工业加供热700多万吨,散煤400多万吨。大型电厂用煤都经过了脱硫等处理,相对来讲对空气污染的排放较少,工业加供热方面,国家采取了多项控制措施,排放也得到很好的控制,但是散煤使用则很难得到有效控制,污染贡献很大。没有净化设施的条件下,1kg煤可能产生16g到1600mg/Nm3的SO2(1%硫量)也可能同时产生 ~5g到500mg/Nm3的NOx(氮氧化物)。   根据北京市环保局机动车排放管理处提供的数字,目前北京市535万辆机动车每年消耗燃油700多万吨,其中汽油400多万吨、车用柴油200多万吨 年排放污染物总量约90万吨,含碳氢化合物7.7万吨,氮氧化物8万多吨。而洛杉矶在发生光化学污染的数年间,其汽车保有量不过200万辆。   化石燃料燃烧后最终的排放到空气中的污染物包括:NOx(氮氧化合物)、SO2(二氧化硫)、VOC(是指那些沸点等于或低于250℃的化学物质,易挥发)、CO、BC(Black Carbon黑炭)、OC(Organic Carbon有机碳)、NH3、CO2以及PM2.5等,形成了雾霾的初次排放。   初次排放的这些污染物,在成核作用以及水和光的作用下,产生二次污染物,学术上叫做&ldquo 新粒子:,新粒子的成分就比较复杂了,因为排放物本身成本就比较复杂,而二次反应的过程,是粒子在空气中随机碰撞作用的结果,这一过程产生大量细小粒子,空气动力学粒径在0.1-1微米之间的颗粒,这些颗粒在数量上和危害上都很大,而且非常难以防控。   雾霾的健康危害   权威杂志《柳叶刀》曾刊登过我国科学家终南山先生的文章,指出在我国因吸烟和固体燃料燃烧导致的可吸入颗粒物污染,将在2003-2033年间导致6千5百万人死于慢性肺病,1千8百万人死于肺癌 而权威杂志《新英格兰医学杂志》也曾发表过美国的数字,PM2.5的浓度减少10 &mu g/m3,预期寿命增长约0.61± 0.20年。2010年美国环保部发表的《颗粒物的综合科学研究》中将颗粒物浓度与多种疾病关联,其中包括:呼吸道刺激,咳嗽,呼吸困难,降低肺功能,加重哮喘,慢性支气管炎,不规则的心跳,非致命性心脏发作,某些癌症等。 在全球致死的数字中,空气污染相关的疾病排在第8位,而我国则排在第4位 清华大学研究人员报道了2013年北京雾霾微生物,其中也存在引起感染的微生物。人们也形象的把雾霾引起的呼吸道刺激症状称为 &ldquo 北京咳嗽&rdquo 。在雾霾天与雾霾相关的呼吸系统疾病门诊病例显著增加。   虽然有多种研究表明空气污染与疾病的发生相关,但是正如荷兰乌德勒支大学的B.Brunekreef教授所言:到目前为止,我们一直无法找到一个或几个确定的组分是细颗粒物污染中对健康造成主要影响的,也没有充足的证据证明某种具体的成分的浓度对健康是无害的。   一天中什么时候雾霾最严重?   从这张图种可以看出,污染物在清晨也就是7点到8点间达到开始迅速增加,到10点开始进入线性增加期,而到傍晚时分开始下降,并于晚间回归较低的值,这一现象与我们前文提到的公式有很大关系,因为白天在水气和阳光的作用下,一次排放的污染物发生二次反应,从而快速积累,而人的活动也在白天达到高峰,排放物的增加和积累,促使污染在下午达到高峰,而晚间,由于光照的减少,二次反应降低,排放也因为人们的活动减少而降低,从而使得空气污染得到缓解。但是北京的雾霾曲线则与普通的空气污染曲线不同,空气污染往往在晚间达到峰值,而白天则处于不断积累的过程中。这也表明北京的空气污染有其特殊性,需要更详细的机制分析,才能最终解答来源的问题。   室外雾霾对室内环境的影响   王贝贝等2010年在《环境科学研究》中发表的文章显示,人们在工作日和休息日分别有57%和75%的时间在家居环境,室外的空气污染主要通过室内环境作用于人体。而根据清华大学建筑学院的研究结果,在门窗紧闭的情况下,室内PM2.5浓度大约为室外的1/2-2/3,而这部分颗粒,主要集中在0.1~1微米的粒径范围,也就是室外污染物中那些粒径小毒性大的颗粒会进入室内。当然,这也跟建筑物本身的密闭性,门窗开启的频率等相关,颗粒物从室外到室内的过程,可以通过穿透系数来计算。   如何在室内消除雾霾影响?   常规保证室内清洁的方法有两种,一种是正压环境,例如医院的ICU病房或超净实验室,让室内的压力大于室外,这样室外颗粒就无法进入室内 一种是空气过滤,将室内的空气通过过滤装置净化,只要室内净化装置的净化效率大于室外污染物渗入的速度,那么室内就可以保持洁净。对我们生活在北京的普通人而言,把家或者办公室装修成&ldquo 正压环境&rdquo 显然从经济投入到可操作性都不现实,开启空气净化器无疑是最简洁和方便的解决办法,每天开窗通风完后,对室内环境进行10~20分钟的高功率净化,将室内颗粒物进行快速清除,而后维持一定的净化功率,就可以达到较好的净化效果 。   如何选择和正确使用空气净化器?   目前市面上常见的净化设备,就其原理主要分过滤(通过滤材拦截颗粒)和静电除尘(静电力吸附颗粒,电场中释放除尘)两种。静电除尘的优势是阻力低、不需更换滤材,但是其工作原理决定其除尘过程会产生臭氧,造成二次污染,因此不推荐使用。而通过滤膜的过滤优势是副产物少,有效去除各类颗粒物,而劣势则是需定期维护(更换滤料),阻力大,而工业界也对滤膜过滤的仪器开放更感兴趣,使用者的接受度也更高,产品种类更丰富一些。   CADR(Clean Air Delivery Rate,洁净空气输出比率),是美国家电制造商协会(AHAM)按照严格的测试标准进行测试得出的空气净化器输出洁净空气的比率。CADR数值越高,则表示净化器的净化效能越高。由此可见,虽然市场上有好多这样那样的空气净化产品,但只要用这两个条件去衡量,就能区分出来哪种更好。   除了CADR值之外,当我们采购一台空气净化设备时,我们还要考虑价格和功耗等因素,这里提供一个计算公式,也就是CADR值/(功率*价格),得到的值越大越好。   采购到合适的净化设备,不只要了解如何挑选性价比高的空气净化器,还要考虑到房屋的面积(体积),开启和使用时间,以及净化器的摆放位置等。我们举一个例子,如果我们把自己正面面对空气净化器的进气口,那么净化器抽气过程中聚集的粒子就被我们呼了进去,而被空气净化器净化的空气,则离我们较远。   雾霾中还有哪些&ldquo 危险分子&rdquo ?   2014年初,清华大学的研究者对2013年历史雾霾峰值期间收集的PM10和PM2.5样本进行了宏基因组研究,发现了雾霾中的1300种微生物,发现空气中的微生物大部分都来自土壤,最丰富的门类是放线菌,变形杆菌,绿弯菌,厚壁菌,拟杆菌,和广古菌。其中有3种可引起疾病的微生物, 包括肺炎链球菌,烟曲霉,和人腺病毒C。肺炎链球菌最常见于社会获得性肺炎(CAP ) ,在将近50%的的社会获得性肺炎中可分离出肺炎链球菌。而烟曲霉,以孢子的形式存在,被认为是一种主要的引起过敏的真菌,是免疫缺陷的人群气道或肺的条件致病菌。这两种病原微生物在重度污染天都有增加。   治理雾霾,我们应该怎么做?   从成因来讲,雾霾问题其实就是能源问题,而能源问题归根结底是发展问题,治理的方式就是转变发展的模式,实现经济增长方式的转变,能源消费结构改善,减少污染物排放,清洁能源的普及,能源利用率的提高。这是一个长期的过程,需要多年的努力。   短期来讲,在雾霾发生过程中,我们应该做到更好的&ldquo 清洁调度&rdquo ,建立相应的清洁调度机制和技术手段,实现在预测基础上的应急清洁调度:不是基于成本,而是基于污染物排放的调度方式。专门针对严重污染期,进行清洁能源的储备,在应急期采用清洁燃料,减少燃煤量,用燃气替代煤炭 提高燃煤锅炉脱硫、脱硝和除尘的效率 减少汽车数量 工业生产整体合理安排 建筑工地停工安排等。   而对于我们个人,应该极力提倡低碳环保的生活方式。使用清洁能源、出行乘坐轨道交通、使用环保用品、控制和减少用电等等,从我做起践行绿色生活,也是在为治理雾霾做贡献。   (本文整理自清华大学医学院的雾霾研讨会,作者授权赛先生刊发)
  • 烟民噩耗:公共场所尼古丁采集仪“上岗”
    尼古丁被动采集仪  9月13日从兰州市公共场所尼古丁被动检测培训启动会上了解到,作为全国2016年空气中尼古丁采样检测试点城市之一,兰州市将在城关区、七里河区随机抽取50家公共场所(10家行政部门、40家餐饮场所)安装尼古丁被动采集仪。  通过检测到的尼古丁数据,来客观分析兰州市在餐饮场所、政府办公场所二手烟暴露的情况,以进一步检验《兰州市公共场所控制吸烟条例》颁布实施以来的控烟成效 同时为评估兰州市控烟法规执行实际效果提供科学数据,为更好监控控烟法律的执行提供科学方法。另据了解,《兰州市公共场所控制吸烟条例》将于明年修订。  国家控烟办副主任杨杰表示,兰州市总体控烟情况逐步好转,人们对生存环境安全性的关注度不断提高,对创建无烟环境的呼声也越来越强烈,但公众仍存在对控烟法律知晓度不高、对公共场所吸烟的引导劝阻工作做得还不够等不容忽视的问题。为了进一步做好禁烟、控烟工作,今年,国家在北京、深圳、兰州三个城市试点实施空气中尼古丁被动检测。  揭秘尼古丁采集仪  模样:质量轻体积小  “你看,这就是尼古丁被动采集仪!别看它个头小,但它的嗅觉可灵敏了,公共场所里如果有人吸烟,它就能将产生的尼古丁捕捉到。”兰州市控烟办工作人员手里拿着一个用透明塑料袋装着的小仪器如是说。  尼古丁被动采集仪体积很小、携带方便。其外形是一个直径约5厘米,高4-5厘米的圆柱形装置,圆柱体的最中间装着一个过滤膜。通过空气的自然流动,尼古丁即被吸附到过滤膜上。之所以称其为被动采集仪,是因为只要将其安放在室内一个秘密的地方,其本身就有能力让尼古丁自动“送”上门来。采集环境空气中尼古丁的过程,是利用尼古丁在空气中的自由扩散作用,透过采集仪上的过滤膜来将尼古丁吸附到膜上。  作用:评价控烟是否得力  相比较于其他评价二手烟的方式,检测空气中的尼古丁浓度具有较高的灵敏性与特异性。每个尼古丁被动采集仪在室内秘密的地方放置7天之后,将其中的过滤膜取出来送到专门的实验室检测,通过检测到的过滤膜上尼古丁的数量计算出这一区域里的尼古丁浓度。  众所周知,取证难依然是公共场所控烟最头疼的事。有了尼古丁被动采集仪,就能真实地了解到一个区域内是否有人吸烟,为控烟工作提供科学评价。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 四方光电受邀参加湖南新晃县基层呼吸疾病早期筛查干预能力提升(肺功能检查仪)项目培训会
    全国基层呼吸系统疾病早期筛查干预能力提升项目于2020年九月份正式启动,四方光电作为项目肺功能检查仪、定标筒及呼吸模拟器与配套系统的服务提供商,积极参与全国项目的实施工作。四方光电以实际行动响应政策要求,销售技术团队深入全国各地县乡镇级基层医疗机构,普及推广和规范基层医疗卫生机构人员的肺功能检查标准化操作,提升基层呼吸系统疾病早期筛查干预能力。  去年12月,湖南省新晃县“基层呼吸疾病早期筛查干预能力提升项目培训会”在新晃县疾病预防控制中心成功召开,四方光电作为该项目肺功能检查仪与配套系统的服务提供商,受邀参加,现场为县级各医疗机构演示手持式肺功能检查仪Gasboard-7020肺功能检查的标准化操作,讲解产品的便捷性与安全性。  培训过程中,参会人员在四方光电销售技术经理的指导下,现场练习如何指导患者配合使用超声波肺功能检查仪进行肺功能检查,同时熟悉肺功能检查仪设备的检查操作,比如容量定标、线性验证、数据生成以及报告解读等。同时,四方光电团队介绍了配套系统的数据联网、数据管理与数据安全以及云平台操作规范。   肺功能检查的重要性  慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。推行高危人群首诊测量肺功能,发现疑似慢阻肺患者及时提供转诊服务,并特别强调要推动各地为社区卫生服务中心和乡镇卫生院配备肺功能检查仪等设备。本次新冠肺炎疫情使得居民进一步认识到呼吸系统疾病的危害性,有助于居民在日常生活中加强对呼吸慢病的关注、预防和筛查。未来随着肺功能仪检测及肺功能康复训练仪器的普及。  如何选择肺功能检查仪?首选超声波。  随着现代电子技术和生物工程学的飞速发展,肺功能仪器也不断推陈出新,日趋精密和完善,从过去的水封式、楔形式、干式滚筒式等容量型肺量计,逐渐发展出各类基于电子计算机配合的设备。  在2000年以后,国际上已经普通使用超声式肺功能仪取代传统压差式、涡轮式和热敏式肺功能检查仪,主要原因是这三种原理存在一些共性的使用局限性:  1、卫生问题:难以清洁,长期使用存在非常高的交叉感染的风险  2、无法测量非常低的流量  3、对气体成分和温度的依赖性太高  4、需要标定和校准   超声波时差法是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质(气体或液体)中的顺流和逆流的传播时间差来间接测量流体的流速,再通过流速来计算流量的一种间接测量方法。  超声波原理的流量测量仅取决于流量和几何形状,不依赖于温度,气体成分,湿度或压力,因此是一种完美的替代压差式和涡轮式原理,适用于肺功能检查仪的最好选择。  超声波检测原理的肺功能仪,其最大的特点和优势汇总如下:  ▶ 无漂移,无预热,无需定标,不需维护(流量测量仅取决于时间测量和传感器的几何形状,因此无需校准)  ▶ 非接触式流量探测技术、超声探头与病人不接触,杜绝交叉感染  ▶ 测量精确高,尤其是非常微弱的气流  ▶ 直接的流量测量、线性范围广、无非线性失真  ▶ 呼吸管道中间没有任何障碍物,无呼吸阻力  ▶ 不怕水汽、实时BTPS校正  ▶ 传感器不受湿度、气压和污染的影响  ▶ 可以同时获得气体浓度信息  ▶ 大大扩展了应用范围:成人 –儿童—新生儿   关于四方光电  四方光电是一家专业从事气体传感器及其增值应用的高新技术企业,产品广泛应用于健康医疗、家电电子、汽车电子、工业控制、环保监测、能源计量等众多领域。四方光电董事长、创始人熊友辉为华中科技大学博士,教授级高级工程师,国务院特殊津贴专家。  依托省级技术中心、湖北省气体仪器仪表工程中心两个技术平台,四方光电积极融入国家技术创新体系,先后获得国家科技部创新基金重点项目、重大科学仪器专项、工信部物联网发展专项、湖北省重大技术创新项目、武汉市重大科技成果转化项目等多个项目的支持,逐步建立了包括红外、紫外、热导、激光拉曼、超声波、电化学、MEMS金属氧化物半导体等原理的气体传感器技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。  四方光电手持式肺功能检查仪Gasboard-7020采用超声波时差法流量技术,是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。  未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 香烟市场乱象 金索坤翘首以盼相关标准出台
    几乎所有人都知道吸烟有害健康,但具体有哪些危害就不是每个人都可以阐述清楚地的了。实际上,香烟中的有毒物质除了人们熟知的尼古丁、焦油之外,还可能含有重金属。在一篇发表在美国健康政策杂志的《烟草控制》报告中指出中国13个品牌的香烟中重金属含量是加拿大香烟的2~3倍。据此,很多媒体称之为“中国香烟重金属门”事件,并将之称之为烟草界的“三聚氰胺事件”。据了解,我国香烟中主要的重金属毒物主要有镍、镉、铬等。按照GB 2762-2012 所要求的限定量,镍小于1.0mg/kg;镉小于0.1mg/kg;铬小于1.0mg/kg。对于镍、镉、铬元素的检测通常会使用石墨炉原子吸收光谱法,从2017年2月之后,对于镍、镉、铬等重金属元素的检测又有了一种新的选择—火焰原子荧光光谱法。就在2017年2月,金索坤公司研发生产的SK-880火焰原子荧光光谱仪通过了北京理化分析测试中心的实地检测,鉴定组专家一致认为:该产品达到了国内领先水平,国内未见技术特征相同的国内公开文献报道,具有首创性。SK-880 火焰原子荧光光谱仪的原理与氢化法原子荧光光谱仪有所区别,它是液态样品经高效雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧产生的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空芯阴极灯激发至高能级,处于高能级的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。原子荧光的强度与被测元素在样品中的含量成正比,从而得到被测元素的浓度。由于是专用光源只能发射出特定波长的光辐射,且在接收装置前加入被测元素特定波长的滤光装置,所以火焰原子荧光对其他元素的检测几乎不存在干扰。SK-880火焰原子荧光光谱仪的技术参数测试元素Au AgCuCd ZnMn检出限(DL)ng/mL测试元素InNiCrCo Fe Hg Pb检出限(DL)μg/mL线性范围大于三个数量级首先和大家分享的一个应用SK-880火焰原子荧光光谱仪检测镉的推荐分析条件:标准储备液的配制:称取1.0000g高纯Cd,加入20mL1:1HNO3,低温加热溶解,冷却后移入1000mL容量瓶中,用蒸馏水稀释至刻度,摇匀,此溶液Cd浓度为1000μg/mL。标准系列配制:吸取1.00mL浓度为1000μg/mL的标准储备液的移入1000mL容量瓶中,用1% HNO3 (v/v)稀释至1000mL,摇匀,此溶液Cd浓度为1.00μg/mL。用此溶液配制下表的标准系列:标准号加入1.0μg/mL标准体积(mL)加入HNO3体积 (mL)最终体积 (mL)标准浓度μg/mL10.001.001000.0021.001.001000.0132.001.001000.0245.000.951000.05510.000.901000.10测定条件:光源:空芯阴极灯,灯电流60~80mA负高压:-260~-300V主气流量:为定值,一般在1600mL/min左右辅气流量:800~1000mL/min燃气流量:60~100 mL/min检出限(参考值):0.05ng/mL从SK-880的技术参数可以看出,SK-880完全可以完成对于香烟中镍、镉、铬的检测。而且和石墨炉原子吸收光谱仪相比,SK-880灵敏度高,线性范围宽,干扰元素少。在通过使用成本对比表可以看出,在相同情况下,使用SK-880火焰原子荧光光谱仪检测镍、镉、铬等重金属元素更具有优势。使用成本对比测试方法耗材耗材单价(元)单个耗材可测样品个数(个)平均每个样品所需价格(元)每个样品总成本(元)石墨炉原子吸收法石墨管进口45010000.45进口0.59元素灯进口3500700000.05氩气18020000.09火焰-原子荧光法喷雾器650200000.03250.0805元素灯800200000.045液化石油气150500000.003 从事香烟对人体危害研究的李强认为“香烟是世界上唯一一种合法贩售,并且主要功效就是杀死一半消费者的商品。”业内人士表示目前并没有香烟中重金属含量的标准。所以,健全香烟中重金属含量的标准势在必行,作为原子荧光技术的发源地以及原子荧光行业的领跑者,北京金索坤技术开发有限公司将会一如既往地为原子荧光技术的发展探索乾坤,为助力香烟行业的检测而努力。 金索坤SK-880 火焰原子荧光光谱仪
  • 掠入射X射线衍射原理、测试方法及其应用
    掠入射X射线衍射是一种用于薄膜材料结晶结构表征的高级测试方法,具有可以消除或减小基底信号的影响、增强衍射信号、得到薄膜的三维结晶结构信息等优点,目前被广泛应用于功能薄膜材料的研究中。7月18日,中国科学院长春应用化学研究所张吉东研究员将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,介绍掠入射X射线衍射的原理和测试方法以及数据分析方法,并结合其在有机高分子薄膜材料中的典型性结果展示该方法的应用。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • 烟的致癌作用
    吸烟会引起的不良反应及原因 有些人吸烟会引起头晕,恶心,ELISA试剂盒面色发黄等症状,严重者甚至站立不稳等。原因大约有三点,尼古丁中毒,缺氧及过敏症状。尼古丁中毒主要由于吸烟过量导致,通常是老烟枪面对的问题,情况严重时会猝死或引发心脏病等;而对于吸烟新手来说由于吸烟导致吸入一氧化碳,从而引起大脑缺氧,应及时呼吸新鲜空气严重时吸氧;而有些人对于香烟中含有的尼古丁与烟焦油等成分有过敏反应,就算吸入量不是很大也会有很严重的反应,因个人体质而异,最好及时就医。 香烟点燃后产生对人体有害的物质大致分为六大类: (1)醛类、氮化物、烯烃类,这些物质对呼吸道有刺激作用。 (2)尼古丁类,可刺激交感神经,引起血管内膜损害。 (3)胺类、氰化物和重金属,这些均属毒性物质。 (4)苯丙芘、砷、镉、甲基肼、氨基酚、其他放射性物质。这些物质均有致癌作用。 (5)酚类化合物和甲醛等,这些物质具有加速癌变的作用。ELISA试剂盒 (6)一氧化碳能减低红血球将氧输送到全身去能力。致癌作用 吸烟致癌已经公认。流行病学调查表明,吸烟是肺癌的重要致病因素之一,特别是鳞状上皮细胞癌和小细胞未分化癌。吸烟者患肺癌的危险性是不吸烟者的13倍,如果每日吸烟在35支以上,则其危险性比不吸烟者高45倍。吸烟者肺癌死亡率比不吸烟者高10~13倍。肺癌死亡人数中约85%由吸烟造成。吸烟者如同时接触化学性致癌物质(如石棉、镍、铀和砷等)则发生肺癌的危险性将更高。烟叶烟雾中的多环芳香碳氢化合物,需经多环芳香碳氢化合物羟化酶代谢作用后才具有细胞毒和诱发突变作用,ELISA试剂盒在吸烟者体内该羟化酶浓度较不吸烟者为高。吸烟可降低自然杀伤细胞的活性,从而削弱机体对肿瘤细胞生长的监视、杀伤和清除功能,这就进一步解释了吸烟是多种癌症发生的高危因素。吸烟者喉癌发病率较不吸烟者高十几倍。膀胱癌发病率增加3倍,这可能与烟雾中的β-萘胺有关。此外,吸烟与唇癌、舌癌、口腔癌、食道癌、胃癌、结肠癌、胰腺癌、肾癌和子宫颈癌的发生都有一定关系。临床研究和动物实验表明,烟雾中的致癌物质还能通过胎盘影响胎儿,致使其子代的癌症发病率显著增高。
  • 总磷分析原理和用途
    总磷是水体中磷元素的总含量,是评价水质的重要指标。其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。水体中的磷是藻类生长需要的一种关键元素,过量磷是造成水体污秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。原理:水中的含磷化合物在高温高压的条件下被强氧化剂氧化为正磷酸盐,正磷酸盐在钼酸盐酸性溶液中,生成磷钼酸杂多酸还原为蓝色的磷钼酸盐,通过测量该磷钼酸盐的吸光度,从而得到水样中总磷的含量。主要应用场景有企业雨水、污水的监测,市政管网、提升泵站、地下水、河水、湖泊水、海水等水质中总磷含量的监测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制