搜索
我要推广仪器
下载APP
首页
选仪器
耗材配件
找厂商
行业应用
新品首发
资讯
社区
资料
网络讲堂
仪课通
仪器直聘
市场调研
当前位置:
仪器信息网
>
行业主题
>
>
光度计的原理
仪器信息网光度计的原理专题为您提供2024年最新光度计的原理价格报价、厂家品牌的相关信息, 包括光度计的原理参数、型号等,不管是国产,还是进口品牌的光度计的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光度计的原理相关的耗材配件、试剂标物,还有光度计的原理相关的最新资讯、资料,以及光度计的原理相关的解决方案。
光度计的原理相关的方案
FP6400A火焰光度计在检测土壤钾中的应用方法
土壤全钾含量一般在1~2%左右,其中结构钾(土壤矿物晶格或深受结构束缚的钾)约占90一98%,纷效钾占2—8%,速效钾占0.1—2%。 根据钾的存在状态和植物吸收性能,可将土壤钾素分为四部分:土壤古钾矿物(难溶性钾),非交换性钾(缓效性钾),交换性钾;水溶性钾。后两种钾为速效钾,可直接被作物吸收利用。用1N中性醋酸铵提取的速效钾与钾肥肥效相关性良好,特别是旱地土壤。待液中钾的测定,有重量法、容量法,比色法、比浊法,火焰光度法和原子吸收分光光度法。 现在多采用火焰光度法,因为它们既快速、简便,又灵敏、准确。 (一)1N中性醋酸铵提取—火焰光度法或原于吸收分光光度法的测定原理 以lN中性醋酸铵溶液为浸提剂时,NH4+与土壤胶体表面的K+进行交换,连同水溶液K+(二者合称速效钾)一起进入溶液。浸出液中的钾直接用火焰光度计或原子吸收分光光度计(简称AAS)测定。
FP6400A火焰光度计在检测土壤钾中的应用方法
土壤全钾含量一般在1~2%左右,其中结构钾(土壤矿物晶格或深受结构束缚的钾)约占90一98%,纷效钾占2—8%,速效钾占0.1—2%。根据钾的存在状态和植物吸收性能,可将土壤钾素分为四部分:土壤古钾矿物(难溶性钾),非交换性钾(缓效性钾),交换性钾;水溶性钾。后两种钾为速效钾,可直接被作物吸收利用。用1N中性醋酸铵提取的速效钾与钾肥肥效相关性良好,特别是旱地土壤。待液中钾的测定,有重量法、容量法,比色法、比浊法,火焰光度法和原子吸收分光光度法。现在多采用火焰光度法,因为它们既快速、简便,又灵敏、准确。(一)1N中性醋酸铵提取—火焰光度法或原于吸收分光光度法的测定原理以lN中性醋酸铵溶液为浸提剂时,NH4+与土壤胶体表面的K+进行交换,连同水溶液K+(二者合称速效钾)一起进入溶液。浸出液中的钾直接用火焰光度计或原子吸收分光光度计(简称AAS)测定。
紫外可见分光光度计和荧光分光光度计的可定量浓度范围的差异
紫外可见分光光度计和荧光分光光度计都经常用于样品定量。使用紫外可见分光光度计进行定量时基于朗伯比尔定律,测定的吸收值一定范围内与样品浓度成正比。另一方面,利用荧光分光光度计时,使用荧光强度。在低浓度时,荧光强度与浓度成正比,所以,可以用于定量。本次使用紫外可见分光光度计和荧光分光光度计两台仪器分别测定了罗丹明B溶液。罗丹明B是用于纤维和皮革的染色的荧光物质。关于测定结果,对两个机种的定量、检测下限值和标准曲线的线性度进行了比较。
超微量分光光度计检测方法研究
超微量分光光度计目前成为现代分子生物实验室常规仪器,广泛应用于生命科学实验室蛋白质组学和基因组学等领域。应用液体的表面张力特性,检测时经上下臂的接触拉出固定的光径,达到快速、微量、高浓度检测吸光度的特点。本文阐述了如何用现有的国家标准物质对超微量分光光度计进行检测,并举例说明对超微量分光光度计透射比、波长和杂散光等主要指标检测方法。最后对超微量分光光度计日常检测过程中可能遇到的问题并对其进行分析。
UV-1800A分光光度计在核酸蛋白测量中的应用
UV-1800A分光光度计在核酸蛋白测量中的应用UV-1800A分光光度计在核酸蛋白测量中的应用UV-1800A分光光度计在核酸蛋白测量中的应用
高档分光光度计在环境监测中的用途
所谓“高档” 分光光度计,首先它不是仅用于在某一波长测定吸光度,而是能够在指定的波长范围内自动进行扫描,并能在扣除相应的空白后,将各波长的吸光度值储存在微机中的自动控制的扫描式分光光度计。通常,分光光度计的主要技术指标为光学指标,这些指标当然是十分重要的,但是,在这里要特别强调的是:用微机进行各种数据处理的功能,这里所说的数据处理并不仅仅是标准曲线的回归、浓度的计算,而主要是指能用微机对一次扫描中所得到的各个波长的吸光度值(即对吸收曲线)进行较复杂的数学运算,如求导数(微分)、解联立方程等。
LAMBDA分光光度计 分析水质:硝酸根 氮(NO3-N) Brucine 法
本文使用抗坏血酸法对硝酸根氮进行定量分析。数据由LAMBDA 465 UV/Vis分光光度计快速采集并经UV Lab 软件处理。原理水样中硝酸根离子在硫酸环境下经抗坏血酸处理,产生黄色化合物。可测定该化合物在410的吸收得到硝酸根氮的含量。使用LAMBDA 465 和 UV Lab软件定量分析了水中硝酸根氮(NO3-N)。光谱测定快速,灵敏度良好。决定系数R2达0.9991。UV Lab软件可高效进行定量分析和处理数据。
影响石墨炉原子吸收分光光度计石墨管寿命主要因素的分析
本文通过对石墨炉原子吸收分光光度计工作原理、工艺操作及仪器维护保养等方面的说明, 分析影响石墨管使用寿命的主要因素, 找到了解决问题的途径, 改善了仪器的测试条件和延长石墨管使用寿命, 达到了减少损耗, 节约检测成本的目的。
分光光度计在核酸蛋白测量中的应用
分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。
岛津紫外-可见-近红外分光光度计应用数据集册
光学性能是材料常用且非常重要指标之一。随着行业的发展,光学性能测试相关标准越来越多,对光学性能测试要求也越来越高。玻璃、陶瓷、薄膜、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。光学性能是一个大指标,主要由 太阳光的透过率、太阳光的反射率、太阳光的吸收率、可见光透射率、可见光反射率、紫外线阻隔率、遮蔽系数、偏光性、雾度、色度等小指标组成。光学性能表征一般用紫外-可见-近红外分光光度计来进行。因此紫外-可见-近红外分光光度计被广泛应用干电子电器及工业制造等行业,比如眼镜镜片、光学镜头、光学薄膜、滤光片、偏光片、建筑玻璃、建筑隔热涂层、汽车贴膜材料等的光学性能测试。针对不断扩大的市场需求,岛津公司积极应对市场,为帮助客户更好地了解和使用紫外-可见-近红外分光光度计,特编写了《岛津紫外-可见-近红外分光光度计应用数据集册》供相关检测单位和分析测试人员参考。
UV-1100紫外可见分光光度计中的暗电流
UV-1100紫外可见分光光度计中的暗电流UV-1100紫外可见分光光度计中的暗电流UV-1100紫外可见分光光度计中的暗电流
UV-1100紫外可见分光光度计测材料的光学带隙
UV-1100紫外可见分光光度计测材料的光学带隙UV-1100紫外可见分光光度计测材料的光学带隙UV-1100紫外可见分光光度计测材料的光学带隙
分光光度计常见故障处理方法
本文总结了用户使用分光光度计测量样品时,经常遇到的一些问题,并分析了这些问题出现的原因,再针对每种原因给出了相应的解决办法。
紫外分光光度计应用于农业检测的主要用途
紫外分光光度计应用于农业检测的主要用途紫外分光光度计应用于农业检测的主要用途紫外分光光度计应用于农业检测的主要用途紫外分光光度计应用于农业检测的主要用途
-UV-1100分光光度计测定水中微量铁离子的含量
-UV-1100分光光度计测定水中微量铁离子的含量-UV-1100分光光度计测定水中微量铁离子的含量-UV-1100分光光度计测定水中微量铁离子的含量
UV-1100紫外可见分光光度计稳定性的技术要求
UV-1100紫外可见分光光度计稳定性的技术要求UV-1100紫外可见分光光度计稳定性的技术要求UV-1100紫外可见分光光度计稳定性的技术要求
UV-1100紫外可见分光光度计的线性技术指标
UV-1100紫外可见分光光度计的线性技术指标UV-1100紫外可见分光光度计的线性技术指标UV-1100紫外可见分光光度计的线性技术指标
UV-1100紫外可见分光光度计中的单色器结构
UV-1100紫外可见分光光度计中的单色器结构UV-1100紫外可见分光光度计中的单色器结构UV-1100紫外可见分光光度计中的单色器结构
UV-1800紫外可见分光光度计在食品酶分析中的应用
UV-1800紫外可见分光光度计在食品酶分析中的应用UV-1800紫外可见分光光度计在食品酶分析中的应用UV-1800紫外可见分光光度计在食品酶分析中的应用
UV-1100紫外可见分光光度计在生命科学中的应用
UV-1100紫外可见分光光度计在生命科学中的应用UV-1100紫外可见分光光度计在生命科学中的应用UV-1100紫外可见分光光度计在生命科学中的应用
原子吸收分光光度计测食品中铅元素
ZA3000系列是一款新型原子吸收分光光度计,在确保基本性能(例如:高精度和高灵敏度)的前提下,采用其他原子吸收分光光度计无法实现的技术,提升其性能和可靠性。基本性能提升石墨炉分析获得更高的精度。专用石墨管实现更高精度的双进样功能。待机中可自动关闭空心阴极灯,降低能耗,实现节能。新增功能在石墨炉分析中引入暴沸自动检测功能。本功能可对试样干燥过程中导致分析精度降低的试样暴沸进行自动检测。通过新增石墨管残留清除功能和自动进样器的快速进样,也可实现更快和更高精度的分析。操作简便且可靠“提升的基本性能”和“新增功能”的实现是基于日立原子吸收分光光度计的直流偏振塞曼校正技术。所有元素都可实现高可靠性的背景校正,用户可完全通过软件实现相应分析。
UV-1100紫外可见分光光度计测定油样中沥青质含量
UV-1100紫外可见分光光度计测定油样中沥青质含量UV-1100紫外可见分光光度计测定油样中沥青质含量UV-1100紫外可见分光光度计测定油样中沥青质含量
原子吸收分光度计测定动物饲料中金属离子含量
键词:原子吸收分光光度计;动物饲料;重金属;美析www.macylab.com; 1仪器 AA1800型原子吸收分光光度计 1.1 AA1800原子吸收分光光度计,带有空气一乙炔火焰和一个校正 设备或测量背景吸收装置。 1.2坩埚:铂金、石英或瓷质,不含钾、钠,内层光滑没有被腐蚀,上部直径为4cm-6cm,下部直径为2cm-2.5cm,高5cm左右,使用前用盐酸(2.3)煮。
紫外可见分光光度计测定水中油含量
UV-2600是一款双光束紫外可见分光光度计,配置岛津独有的Lo-Ray-Light 光栅,拥有卓越的光学特性,低杂散光等性能。使用岛津紫外可见分光光度计测定水中石油类物质,正己烷代替四氯化碳,既满足实验测定的要求,还符合环保理念,该方法简单方便,是测定水中石油类物质的理想分析方法。
使用 Agilent Cary 3500 紫外-可见分光光度计测定丙氨酸氨基转移酶催化活性浓度
本研究参照《IFCC 在 37 ° C 酶催化活性浓度测量的原级参考方法第 4 部分:丙氨酸氨基转移酶催化浓度测定参考方法》[1],使用 Agilent Cary 3500 紫外-可见分光光度计对丙氨酸氨基转移酶 (ALT) 的催化活性浓度进行监测。该方法中的基本原理是:在 37 ° C 的恒温条件下,L-丙氨酸与 2-酮戊二酸在 ALT 的催化下生成丙酮酸和 L-谷氨酸,丙酮酸与烟酰胺腺嘌呤二核苷酸 (NADH) 在乳酸脱氢酶的作用下生成乳酸和 NAD+(如以下反应方程式所示);然后通过监测 339 nm 下 NADH 的氧化速率(即吸光度的下降速率)来测定丙氨酸氨基转移酶的催化活性浓度,二者呈正比关系。
日立荧光分光光度计固体样品支架附件
当测定固体样品或高浓度溶液样品的荧光时,需要使用固体样品支架,测定样品表面的荧光。日立荧光分光光度计配备有独特设计的固体样品支架,在入射角为30° 的同时,还将样品表面倾斜10° ,这可以大大减少镜面反射光和杂散光,从而获得精确的荧光测量。
细菌中光密度测定检测方案(紫外分光光度计)
背景细菌培养基的光密度( OD) 测定是微生物学中使用的一种常见技术。 研究人员主要依靠分光光度计来进行这些测定, 然而实际上这个测定是基于培养基的光散射量而不是光吸收量。 在其标准配置中, 分光光度计并未对光散射测定进行优化, 这通常会导致仪器间所测得吸光度上的差异。方法该研究调查了不同的分光光度计光学配置对在分批培养基中生长的大肠杆菌JM109光密度测定的影响。分光光度计检测包括了使用阵列检测的反向光学系统、 基于单色器的传统系统以及一种配备积分球配件( ISA) 的单色器系统。 在每个仪器上测定OD600生长曲线, 同时, 对McFarland进行CFU/mL计数来进一步对每个光学系统进行鉴定。结果来自相同光学配置类别的分光光度计其OD数据是相当的。 用反向光学系统测定较高OD时数据变化更大,这是由较低杂散光所导致。 基于单色器的系统测试较高OD时准确度较高, 主要是因为与来自反向光学系统的多色光相比, 单色光具有更好的杂散光去除能力。然而, 反向光学系统测定OD时却有具有良好的动态范围。 使用ISA产生出的数据与用其它系统产生出的数据不同, 这是因为其具有捕捉几乎所有前向散射光的能力。 而对McFarland标准品的测定确认了这些现象。结论分光光度计进行可靠的光散射测定的能力在很大程度上取决于其光学配置; 因此, 具有不同光学配置的分光光度计会呈现出不同的OD测定值。 理想状态下, 高度散射样品( 如细胞培养基) 的吸光度是使用ISA进行测定的, 目的是为了捕捉几乎所有的散射光。 培养基生长可使用OD600测定, 然而每当改变分光光度计时, 就应该计算和应用一个换算因数。
美析仪器:原子吸收分光度计测定动物饲料中金属离子含量
键词:原子吸收分光光度计;动物饲料;重金属; 1仪器 AA1800型原子吸收分光光度计 1.1 AA1800原子吸收分光光度计,带有空气一乙炔火焰和一个校正 设备或测量背景吸收装置。 1.2坩埚:铂金、石英或瓷质,不含钾、钠,内层光滑没有被腐蚀,上部直径为4cm-6cm,下部直径为2cm-2.5cm,高5cm左右,使用前用盐酸(2.3)煮。
原子吸收分光光度计的组成和日常维护保养
原子吸收分光光度计又称为原子吸收光谱仪,是利用光源发出被测的特征光谱辐射,被经过原子化器后的样品蒸气中的待测元素基态原子所吸收,通过测定特征辐射被吸收的大小,来求出被测元素的含量。
使用LAMBDA UV/Vis分光光度计测定总蛋白:Bradford法
总蛋白的定量方法是一种建立最久的基础且重要的生物科学实验。UV/Vis分光光度计被广泛用于蛋白的测定。本应用报告描述了经典的蛋白方法,Bradford法。使用LAMBDA 465 UV/Vis分光光度计快速获取数据,并使用UV Lab软件进行分析。
相关专题
德国耶拿SPECORD® 紫外可见分光光度计50周年
哈希公司DR1900的非诚勿扰 内藏福利
企业标准“领跑者”——助力科学仪器高质量发展
饮用水中抗生素检测
华测检测“科学仪器试用、采购计划”
徕卡:臻于真像,星耀未徕
仪器导购周刊第二期—VOC分析仪
PerkinElmer75周年系列庆典活动
热分析方法与仪器原理剖析
仪器导购周刊第十期—酶标仪
厂商最新方案
离心法应用于脑脊液细胞学检查
双压法微泄漏密封测试仪
玻璃瓶盖扭力试验仪
阴极发光设备(SEM-CL)在量子异质结构方面的应用
实验方案:微滴/微球制备仪制备含Oligo DNA的可降解凝胶珠
可降解薄膜材料的透湿性能测试
肉制品真空包装的密封性能测试
煤气的顶空气相色谱分析
在线浓度计在碳酸钠浓度监测中的应用
口腔清洁用品-牙磨块染色测试
相关厂商
天津市拓普仪器有限公司(天津市光学仪器厂)
河南省华丰化学试剂
吉泰精密仪器(沈阳)有限公司
上海傲谱分析仪器有限公司
济南泰博仪器设备有限责任公司
上海美谱达仪器有限公司
翱艺仪器(上海)有限公司
上海菁一科技有限公司
上海素秋仪器设备有限公司
上海忻一精密仪器有限公司
相关资料
分光光度计分析法及光度计-工作原理
分光光度计原理
荧光分光光度计的工作原理
分光光度计基本原理
分光光度计的原理及结构
火焰光度计的构造原理
分光光度计的原理是什么?
新款光度计使用方法简单原理
UV-1100分光光度计原理,分光光度计结构
火焰光度计的构造原理