复合材料检测

仪器信息网复合材料检测专题为您提供2024年最新复合材料检测价格报价、厂家品牌的相关信息, 包括复合材料检测参数、型号等,不管是国产,还是进口品牌的复合材料检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合复合材料检测相关的耗材配件、试剂标物,还有复合材料检测相关的最新资讯、资料,以及复合材料检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

复合材料检测相关的仪器

  • 复合材料高温蠕变持久检测仪测量材料的蠕变性能和持久性能,同时亦可做松弛试验 优鸿高温蠕变持久试验机精准测试,持久而稳定,值得信赖。高温蠕变持久试验机直销、高温蠕变持久松弛测试仪资料、金属合金高温蠕变持久检验仪、100KN高温蠕变持久试验机标准、300~1000℃高温蠕变持久试验机口碑好、金属材料高温蠕变持久试验机价格、主营机械式高温蠕变持久试验机、复合材料高温蠕变持久检测仪咨询UHRJ系列主要用于金属材料、合金材料、复合材料及结构件在一定的温度和恒定的拉伸负荷作用下,测量金属材料的蠕变性能和持久性能。同时亦可做松弛试验。复合材料高温蠕变持久检测仪蠕变变形测量采用进口光栅尺,线性度好,分辨力高,抗干扰能力强,长期工作稳定性好。200℃~1100℃YHWK高温炉、200℃~1200℃高温炉,300℃~1100℃YHWK高温炉、200~1300℃高温炉可选;在高温测试方面,优鸿更专业更值得信赖,优鸿技术工程师,您将会得到帮助。 满足标准制造标准:Q/UHTS2000-2009《高温蠕变、持久强度试验机》检验标准:JJG276-2009《高温蠕变、持久强度试验机》试验方法:GB/T2039-1997《金属拉伸蠕变及持久试验方法》HB5151-1996《金属高温拉伸蠕变试验方法》HB5150-1996《金属高温拉伸持久试验方法》 技术参数1.型 号:UHRJ104-A1 UHRJ304-A1/A2 UHRJ504-A1/A2 UHRJ105-A22.zui大试验力 10kN 30kN 50kN 100kN3.试验机级别 0.5级/1级4.试验力测量范围 0.2kN~10kN 0.6~30kN 0.75~50kN 1.0~100kN5.试验力示值相对误差 示值的±1%以内/示值的±0.5%以内(A2)6.上下夹头偏心率 ≤10%7.zui小砝码力值 0.5N A1型1N / A2型0.5N 1N8.杠杆比 1:15 1 :40 1:50 1:1009.杠杆级数 1 级 1 级/2 级 2级10.杠杆偏移量(自动调平范围) ±0.10mm ±0.12mm ±0.14mm11.下拉杆移动速度 慢速(自动调平) 2.5mm/min 快速 50 mm/min12.调平电机功率 180W 370W 550W 1.1KW13.加载电机功率 100W14.下拉杆行程 200W15.电源:380V±10%16.炉体:对开式/圆筒式 加热方式:三段加热17.工作温度范围:200-1300℃ 均温带长度 150mm18.炉膛尺寸约:Φ90×300mm 变形分辨力 0.0001mm优鸿高温蠕变持久试验机精准测试,持久而稳定,广泛应用于冶金部门、科研机构、质检部门、车辆制造、机械制造、石油化工、建筑材料、高等院校等部门。
    留言咨询
  • 高分子材料和复合材料■揭示微小细节 ■分析微观结构的组分,编织方式和孔隙等 ■定量分析缺陷,纤维直径和倾向SKYSCAN 1275仅需按下启动按钮即可启动μCT快速桌面解决方案!X射线显微CT:最先进的无损三维显微镜显微CT即Micro-CT,为三维X射线成像,与医用CT(或“CAT”)原理相同,可进行小尺寸、高精度扫描。通过对样品内部非常细微的结构进行无损成像,真正实现三维显微成像。无需样本品制备、嵌入、镀层或切薄片。单次扫描将能实现对样品对象的完整内部三维结构的完整成像,并且最后可以完好取回样本品!优势介绍 特点超高速度、优质图像 SKYSCAN 1275专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X射线源(100kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。 由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。 SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单 您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视 化。 选配自动进样器,SKYSCAN 1275可以全天候工作。 灵活易用、功能全面 除了Push-Button-CT 模式,SKYSCAN 1275还可以提供有经验用户所期待的μCT系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置最佳参数。即使在分辨率低于5μm的情况下,典型扫描时间也在15分钟以内。无隐性成本:一款免维护的桌面 μCT 封闭式X射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。 X射线源:涵盖各领域应用,从有机物到金属样品 标称分辨率(最大放大倍数下的像素尺寸):检测样品极小的细节 X射线探测器:3MP(1,944x1,536)有效像素的CMOS平板探测器,高读取速度,高信噪比 样品尺寸:适用于小-中等尺寸样品 辐射安全:满足国际安全要求 供电要求:标准插座,即插即用
    留言咨询
  • 碳纤维作为一种高比轻度,高比模量的增强纤维在先进的复合材料中得到了广泛的应用。碳纤维复合材料作为一种超高温耐烧蚀的先进复合材料之一,被广泛运用在航空航天,军工等领域上,为了防止碳纤维复合材料在高温工作环境中被氧化,通常需要对碳纤维材料表面进行涂覆,可以在不损失其机械性能的前提下,改变其物理性能。碳纤维表面的涂层可以是金属涂覆层,无机非金属陶瓷涂层以及有机高分子涂层。碳纤维复合材料表面涂层厚度不达标,将会影响其性能,导致构件失效甚至会酿成安全事故,因此精确测量表面涂层厚度非常重要。为了更好测厚碳纤维表面涂层厚度,瑞士涂魔师研发了一种高精度的无损非接触式复合材料涂层测厚仪。涂魔师复合材料涂层测厚仪 VS传统碳纤维涂层测厚仪与电磁感应测厚设备相比,涂魔师复合材料涂层测厚仪能精准测量碳纤维复合材料上的涂层厚度。与其他基于光热法、激光和超声波原理的设备相比,它具有安全可靠、使用方便、精度高和重复性好、校准简便并无需严格控制测试距离和角度等测量优势。涂魔师复合材料涂层测厚仪目前,涂魔师复合材料涂层测厚仪主要有4种型号:Flex手持式,Inline在线式,Atline实验型、3D整体膜厚成像。常用的是Flex 手持式和Lnline在线式。Flex手持式复合材料涂层测厚仪技术参数如下:烘干前湿漆测量范围:1-400 微米固化前的粉末涂料测量范围:1-400 微米固化后粉末涂料/烘干后干漆 测量范围:1-1000 微米测量时间:0.3 秒允许测量距离:2 – 15 厘米允许倾斜角度:±45°能否测量运动工件:允许相对标准偏差: 1%(取决于涂层/基材类型)访问测试数据方式:通过ERP和浏览器实时访问数据IP防护等级:IP20Inline在线式复合材料涂层测厚仪技术参数如下:固化前的粉末涂料测量范围:1-2000 微米测量时间:0.5秒允许测量距离:10 – 120 厘米(取决于涂层/基材材料 )允许倾斜角度:±45°(取决于涂层/基材材料)相对标准偏差: 2% (测量距离为5厘米,测量铝底材上60微米的未固化粉末涂料(包括白色的所有颜色) )被测物体移动速度:120米/分钟适合涂层颜色:所有颜色(包括白色等浅色)测量数据导出方式:自动导出涂魔师复合材料涂层测厚仪优势?测湿膜直接显示干膜厚度在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等,及时调整工艺偏差,有效降低次品率和返工率?非接触无损测厚技术涂魔师采用先进的热光学专利技术,不同型号最长能达到100厘米距离内轻松进行非接触式涂层厚度测量?无需严格控制测量条件允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域)?适合生产车间现场使用便携灵活的手持式设计,能够连续实时测量生产线上的移动工件,对于摇摆晃动的工件都能精确测量膜厚?数据自动记录及生产全过程100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况?测量时间短,一键即可完成膜厚测试涂魔师Flex测量精度高且操作简单,测试时间仅需0.5秒翁开尔是涂魔师中国总代理,欢迎致电【400-6808-138】咨询
    留言咨询

复合材料检测相关的方案

复合材料检测相关的论坛

  • 3月25日,听专家讲“脆性材料及复合材料检测的标准及方法选择”

    会议名称:“材料力学性能测试技术与标准”网络主题研讨会会议介绍: 为提高广大材料力学性能测试用户的应用水平,该项技术的发展现状和应用,仪器信息网于2015年3月25日举办“材料力学性能测试技术与标准”网络主题研讨会,力邀业内知名专家学者以及仪器厂商,共同探讨材料力学性能测试与评价新技术、分享材料力学测试标准应用经验。举办时间:2015年3月25日 14:00-17:00报告专家及报告方向:1、玻璃钢/复合材料力学测试技术标准——王冬生(上海玻璃钢研究院)报告要点:复合材料的研究深度和应用广度,生产发展的速度和规模已成为衡量一个国家科学技术先进水平的重要标志之一。适用于复合材料力学性能测试的标准主要有ISO国际标准及GB/T国家推荐标准,还可参照ASTM等国际先进标准,本讲将主要介绍如何根据产品特性选择相应标准及检测方法。2、脆性材料力学性能测试技术——包亦望(中国建材检验认证集团)报告要点:在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏,具有这种特性的材料即为脆性材料。模拟现场工况对脆性材料的可靠性做出正确的评价,即可保证构件安全可靠,还能对其失效时间做出预测。本讲主要介绍如何检测脆性材料的性能,模拟材料在实际工况条件下的可靠性,提高产品质量。3、此次研讨会还有标乐(依工测试)及英斯特朗的资深工程师带来相关材料检测的新产品及新技术应用报告,敬请期待。报名地址:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1374http://bimg.instrument.com.cn/show/NewsImags/images/2015210111214.png定期了解研讨会信息:网络讲堂官方微信:仪器学堂网络讲堂QQ交流群:379196738网络讲堂:http://www.instrument.com.cn/webinar/

  • 【原创大赛】多层复合材料的层间结合强度检测

    【原创大赛】多层复合材料的层间结合强度检测

    [align=center][/align][align=left][font='宋体'][color=#333333][back=#ffffff] 复合材料是人们运用先进的材料制备技术将不同性质的材料组分优化组合而成的新材料。[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]在[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]航空航天[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]、[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]汽车工业[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]、[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]化工、纺织和机械制造[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]、医学、体育运动器件、建筑等领域都[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]有广泛的应用[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]。[/back][/color][/font][/align][align=left][font='宋体'][color=#333333][back=#ffffff] 由于基体材料不同,复合材料有多[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]种[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]不同的成型方法。[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]而对于多层复合材料,[/back][/color][/font][font='宋体'][color=#333333][back=#ffffff]层间结合强度是对之评价的非常重要的参数。[/back][/color][/font][/align][align=left][font='宋体'][color=#333333][back=#ffffff][b]测试原理[/b][/back][/color][/font][/align][align=left][font='宋体'][color=#333333][back=#ffffff][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121746181195_244_5247763_3.png!w690x423.jpg[/img][/back][/color][/font][/align][align=left][font='宋体'][color=#333333][back=#ffffff][/back][/color][/font][/align][align=left][font='宋体'][color=#333333][back=#ffffff] LUMiFrac采用CAT技术,如上图所示。随着离心转速的增加,径向离心力Fc逐渐增加,当离心力超过样品的粘结力,粘结部分发生分离,基座发生位移后接触检测器,检测器自动记录该信号,并通过软件内计算断裂时的力和强度。[/back][/color][/font][/align][align=left][font='宋体'] 本文选取了[/font][font='宋体']5[/font][font='宋体']种双层聚合物复合材料,利用LUMiFrac测量其层间结合强度。[/font][/align][align=left][font='宋体']测试前,需要将样品进行[/font][font='宋体']铣削[/font][font='宋体'],如下图[/font][font='宋体']1[/font][font='宋体']所示:[/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121543192829_6673_5247763_3.png[/img][/align][align=left][font=宋体]铣削的效果:将比较薄一层完全削断,露出较厚一层[/font][/align][align=left][font='宋体']测试条件:[/font][/align][align=left][font='宋体']样品:[/font][font='宋体']双层聚合物复合材料,两层厚度分别为1mm,[/font][font='宋体']3[/font][font='宋体']mm[/font][/align][align=left][/align][align=left][font='宋体']预处理:丙酮清洁样品及粘附体表面[/font][/align][align=left][font='宋体']测试基座:TS7-M[/font][/align][align=left][font='宋体']粘附体:铜,直径[/font][font='宋体']7[/font][font='宋体']mm[/font][/align][align=left][font='宋体']胶黏剂:环氧树脂[/font][/align][align=left][font='宋体']固化条件:室温4[/font][font='宋体']8[/font][font='宋体']小时[/font][/align][align=left][font='宋体']负载增加方式:线性5N[/font][font='宋体']/s[/font][/align][align=left][font='宋体']制备好的样品[/font][font='宋体']上[/font][font='宋体']图[/font][font='宋体']2[/font][font='宋体']所示[/font][font='宋体']。[/font][/align][align=left][font='宋体']测试结果:[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121543196570_605_5247763_3.png[/img][/align][align=left][font='宋体']失效模式:[/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121543201990_3525_5247763_3.png[/img][/align][align=left][font='宋体']结果:1号样品的层间结合强度介于10-12.2MPa,2号样品的层间结合强度介于5.8-6.4MPa,3号样品的层间结合强度介于4.3-5.1MPa,4号样品的层间结合强度介于6.5-7.2MPa,5号样品的层间结合强度介于5.9-7.7MPa.[/font][/align][align=left][font='宋体']结论:利用LUMiFrac可以测试复合材料的层间结合强度,并且可以评价不同的失效模式,如:层间结合失效,表层内聚力失效,底层内聚力失效等。[/font][/align]

  • 【资料】复合材料力学

    [color=#00008B] 复合材料力学是固体力学的一个新兴分支,它研究由两种或多种不同性能的材料,在宏观尺度上组成的多相固体材料,即复合材料的力学问题。复合材料具有明显的非均匀性和各向异性性质,这是复合材料力学的重要特点。 复合材料由增强物和基体组成,增强物起着承受载荷的主要作用,其几何形式有长纤维、短纤维和颗粒状物等多种;基体起着粘结、支持、保护增强物和传递应力的作用,常采用橡胶、石墨、树脂、金属和陶瓷等。 近代复合材料最重要的有两类:一类是纤维增强复合材料,主要是长纤维铺层复合材料,如玻璃钢;另一类是粒子增强复合材料,如建筑工程中广泛应用的混凝上。纤维增强复合材料是一种高功能材料,它在力学性能、物理性能和化学性能等方面都明显优于单一材料。 发展纤维增强复合材料是当前国际上极为重视的科学技术问题。现今在军用方面,飞机、火箭、导弹、人造卫星、舰艇、坦克、常规武器装备等,都已采用纤维增强复合材料;在民用方面,运输工具、建筑结构、机器和仪表部件、化工管道和容器、电子和核能工程结构,以至人体工程、医疗器械和体育用品等也逐渐开始使用这种复合材料。[/color]

复合材料检测相关的耗材

  • Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料
    Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料?保证* 干燥器板不易打破,与瓷制品相比,具有更强的耐热冲击性。火抛光、耐腐蚀、惰性、不粘任何东西的玻璃表面与金属黏合。该板标有编号的象限,可以更容易的确定坩锅和其它容器的位置。每板有24 个孔,中心为7/8 in.,建议与5309-0250、5310-0250 和5311-0250 一起使用。可高温高压灭菌订货信息:Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料目录编号 5312-0230外径,mm230外径,in.9-1/16每盒数量1每箱数量6
  • M40 复合式4气体检测仪
    M40 复合式4气体检测仪产品参数:外壳:高强度,耐冲击复合材料 - 抗射频干扰(RFI)及电磁干扰(EMI)外形尺寸:10.9cm x 6.22cm x 3.48cm重量:244克;326克(带泵)传感器配置:M40有1、2、3或4气体配置可选,包括氧气、硫化氢、一氧化碳(电化学传感器)及可燃气/碳氢化合物(催化燃烧式传感器)量程:气体符号测量范围分辨率一氧化碳CO0-999ppm1 ppm硫化氢H2S0-500ppm1 ppm氧O20-30%Vol0.1%可燃气体LEL0-100%LEL1%M40具有爆炸下限超量程保护功能电源:可充电式锂离子电池运行时间:18小时 - 仪器(无报警)12小时 - 仪器带泵(无报警)显示器: 大屏幕液晶显示屏可同时显示四种气体的浓度读数。大字体、高对比度字符、图形符号及独特的琥珀色背景灯可在弱光环境下提供清晰的可视度。报警装置:振动报警、90分贝及超亮指示灯声光报警。高/低浓度报警、短期暴露极限报警、时间加权平均值报警及低电池量报警。与SP40型泵(选配)配合使用时还提供流量报警指示器。数据记录:可记录长达75小时的数据温度范围:-20o ~50oC湿度范围:15~95% RH(常规),0~99% RH(间歇)(非冷凝)防护等级:IP65认证:UL实验室(UL)- 1级,I 类,A、B、C、D组;T4加拿大标准协会(CSA)- 1级,I 类,A、B、C、D组;T4Cenelec (ATEX) – EEx ia d IIC T4澳大利亚 - Ex ia s Zone 0 IIC T4中国计量、防爆认证M40 复合式4气体检测仪
  • 美国英思科M40 复合式四合一气体检测仪,存货,现货
    美国英思科M40 复合式四合一气体检测仪,存货,现货,性能特点,特价,热卖:销售热线:15300030867,13718811058,张经理,欢迎您的来电咨询和购买!性能优点体积小,重量轻,耐用的ABS机壳紧凑的机身同样提供可靠性能,不给用户增加任何重量负担。该设备重244克,可持在掌心内,或夹在口袋、安全帽或皮带上。坚固的ABS构造提供经久耐用的保护,不受撞击或跌落而造成的损坏。锂离子电池组提供更长的运行时间,带泵或不带泵均可。可在设备内直接进行快速充电。标准数据记录功能内存可记录长达75小时的数据记录,用于存档。快速校准同时校准所有传感器,节省时间。与标准校准程序相比,该设备可减少每次校准所需气量,从而节约成本。图形式液晶显示器液晶显示器显示所有被监测气体的实时读数。图形式操作图标显示电池充电状态、传感器丢失情况及其他相关数据。振动报警额外的告警功能可就嘈杂环境中报警,向用户发出提示。视觉及听觉报警明亮的指示灯视觉报警及90分贝听觉报警可在危险环境下提供保护。美国英思科M40 复合式四合一气体检测仪,存货,现货,性能特点,特价,热卖,技术参数:外壳:高强度,耐冲击复合材料 - 抗射频干扰(RFI)及电磁干扰(EMI)外形尺寸:10.9cm x 6.22cm x 3.48cm重量:244克;326克(带泵)传感器配置:M40有1、2、3或4气体配置可选,包括氧气、硫化氢、一氧化碳(电化学传感器)及可燃气/碳氢化合物(催化燃烧式传感器)量程:气体符号测量范围分辨率一氧化碳CO0-999ppm1 ppm硫化氢H2S0-500ppm1 ppm氧O20-30%Vol0.1%可燃气体LEL0-100%LEL1%M40具有爆炸下限超量程保护功能电源:可充电式锂离子电池运行时间:18小时 - 仪器(无报警)12小时 - 仪器带泵(无报警)显示器:大屏幕液晶显示屏可同时显示四种气体的浓度读数。大字体、高对比度字符、图形符号及独特的琥珀色背景灯可在弱光环境下提供清晰的可视度。报警装置:振动报警、90分贝及超亮指示灯声光报警。高/低浓度报警、短期暴露极限报警、时间加权平均值报警及低电池量报警。与SP40型泵(选配)配合使用时还提供流量报警指示器。数据记录:可记录长达75小时的数据温度范围:-20o ~50oC湿度范围:15~95% RH(常规),0~99% RH(间歇)(非冷凝)防护等级:IP65认证:UL实验室(UL)- 1级,I 类,A、B、C、D组;T4加拿大标准协会(CSA)- 1级,I 类,A、B、C、D组;T4Cenelec (ATEX) – EEx ia d IIC T4澳大利亚 - Ex ia s Zone 0 IIC T4中国计量、防爆认证

复合材料检测相关的资料

复合材料检测相关的资讯

  • 浅析6种航空器复合材料的无损检测技术
    p style=" text-align: justify text-indent: 2em " 航空器复合材料缺陷和损伤有层板分层、脱胶、裂纹、气泡、夹杂、侵蚀、不恰当固化、芯材变形、基体开裂等。此外在使用过程中也可能产生表面划伤、表面裂纹、进水、穿透穿孔、芯材压坏、冲击损伤等。 /p p style=" text-align: justify text-indent: 2em " 这些缺陷和损伤产生的原因多种多样,复合材料中的缺陷可能表现为一种类型,也可能多种并存。它们的产生和存在将降低材料的物理性能和力学性能甚至造成不可预见的严重后果。有的存在于表面,肉眼可见。有的产生于材料内部,必须要借助无损检测方法才能识别。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202005/uepic/31bce36b-6d02-4c4a-a919-76c44871d2c6.jpg" title=" 航空.jpg" alt=" 航空.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 复合材料无损检测技术 /strong /p p style=" text-align: justify text-indent: 2em " 1、目视检查 /p p style=" text-align: justify text-indent: 2em " 目视检查是发现材料表面损伤最简单有效的方法,它可以发现划痕、剥落、表面开裂、龟裂、近表面的分层、严重的脱粘等。配合使用高强度手电、纤维镜和内窥镜等可以先行判定损伤发生的区域。然而它的缺点是显而易见的,无法彻底检查内部损伤的类型、程度、尺寸等。 /p p style=" text-align: justify text-indent: 2em " 2、敲击法 /p p style=" text-align: justify text-indent: 2em " 敲击法是用硬币、小锤等轻质硬物敲击材料表面,声学反馈可以显现材料内部是否存在损伤。敲击法可有效地检测2mm厚复合材料层板的脱粘、脱层等损伤,并且该方法尤其适用于蒙皮结构, 蜂窝结构的损伤检测。人工敲击法虽然成本低、速度快,但依赖于操作者主观经验,人为因素大。 /p p style=" text-align: justify text-indent: 2em " 为了提高检测效率,消除人为因素发展出了自动敲击法。其原理是通过采集分析敲击后的振动信号,与无损伤区域的频谱特征进行比较来识别损伤。自动敲击法设备简单,成本低,使用简便、快速精确,不受周围环境影响。但它无法检测微小损伤,如裂纹。 /p p style=" text-align: justify text-indent: 2em " 3、超声无损波检测 /p p style=" text-align: justify text-indent: 2em " 由于复合材料本身及缺陷能够影响超声波的传播和反射,因此通过检测衰减信号或者回波信号可以确定损伤所在的区域和尺寸。超声波能够检出航空器复合材料板分层、孔隙、裂纹和夹杂等。超声波检测,设备便携便于操作,能够精确检出损伤发生的区域和尺寸。但操作者须经专门培训,对于不同类型的缺陷还需使用不同的探头和耦合剂,而且对于航空器上经常使用的薄壁结构或者复杂部件难以检测。 /p p style=" text-align: justify text-indent: 2em " 4、微波无损检测技术 /p p style=" text-align: justify text-indent: 2em " 微波无损检测原理与超声波无损检测类似,但由于微波相比超声波穿透性能良好,在复合材料中衰减小。对复合材料结构中的孔隙、疏松、基体结构开裂、层板分层和脱胶等缺陷具有较高的灵敏度,能够准确检出复合材料内部较深处的缺陷。微波无损检测操作方便,无需耦合剂。相比于射线,微波对人体无害。 /p p style=" text-align: justify text-indent: 2em " 5、射线无损检测 /p p style=" text-align: justify text-indent: 2em " 目前射线检测主要采用胶片照相法,其原理是当X射线照射被检工件时,损伤区域对射线吸收率与正常区域不同,比较两者间差异来判别损伤位置。射线检测对复合材料中的孔隙、夹杂(特别是金属夹杂)具有良好的检出能力。并且可以提供直观的检查图像结果。但它不能检出与射线垂直方向上的裂纹,并且设备复杂,操作人员须经安全防护,必须经过相关专业培训。 /p p style=" text-align: justify text-indent: 2em " 计算机断层扫描成像(CT)技术也被广泛用于复合材料的无损检测。计算机断层扫描成像(CT)技术是利用X射线在材料内不同的衰减系数为基础,采用数学方法经计算机处理,从而重现每个断层图像的方法。它能够显示出每一个断层上的结构和组份的分布情况,可以克服一般X射线检测造成的影像重叠和模糊,利用CT扫描技术可在一定范围内精准检出损伤尺寸,但其设备庞大复杂,不适合外场使用。 /p p style=" text-align: justify text-indent: 2em " 6、红外热成像无损检测技术 /p p style=" text-align: justify text-indent: 2em " 红外热成像无损检测技术分析被检对象的红外辐射特性,当被检工件内部存在缺陷或损伤时,将改变其表面温度分布,通过红外热成像可检出损伤位置。该方法尤其适用于厚度较薄复合材料的检测,可检出分层、脱粘、夹杂等,结果直观,快速、精准、可靠,效率高。但它要求材料表面热传导率高。 /p p style=" text-align: justify text-indent: 2em " strong 航空器复合材料无损检测技术的选用 /strong /p p style=" text-align: justify text-indent: 2em " 适用于航空器复合材料的无损检测有技术很多,但由于不同类型的检测技术对不同缺陷的检出灵敏度差别很大,同时还与材料类型、材料生产方式、生产工艺、缺陷损伤所处位置等有关。应当充分考虑检测效率,检测成本,设备可达性,对航空器适航性的影响等。所以不可能采用单一类型检测技术判别航空器复合材料中的缺陷类型、位置、尺寸。应当根据材料中可能存在的缺陷类型以及缺陷所处的大概位置、方向等因素选择多种适当的方法进行综合检测。另外,必须严格依据飞机结构修理手册或者维护手册的规定来实施无损探伤。比如SR20飞机维护手册中就规定对可疑区域(包括明显的损伤),应当首先使用目视法和敲击法来进行预先检查。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(127, 127, 127) " i 以上内容摘自:孙延军.航空器复合材料无损检测技术及评价[J].科技创新导报,2020,17(03):2-3. /i /span /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f898e092-409e-4c76-8a6a-7dacc74c5e44.jpg" title=" 1920_420cl.jpg" alt=" 1920_420cl.jpg" / /a /p p style=" text-align: justify text-indent: 2em " 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。 /p p style=" text-align: justify text-indent: 2em " 为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流, span style=" color: rgb(227, 108, 9) " strong 仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会 /strong /span ,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。 /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " strong 报告日程更新中 /strong /span a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" span style=" color: rgb(227, 108, 9) " (点击免费报名 /span span style=" color: rgb(227, 108, 9) " 听会) /span /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/pic/d3fa6168-5270-47d4-b9d8-3276bf1473ff.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) " strong 参会方式(手机电脑均可参会) /strong /span /p p style=" text-align: justify text-indent: 2em " 1、官网报名( a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/apply.html?temp=0.9525740171262658" target=" _self" style=" text-decoration: underline color: rgb(227, 108, 9) " span style=" color: rgb(227, 108, 9) " 点击报名链接 /span /a ); /p p style=" text-align: justify text-indent: 2em " 2、报名成功,通过审核后您将收到通知; /p p style=" text-align: justify text-indent: 2em " 3、会议当天您将收到短信提醒,点击短信链接,输入报名手机号,即可参会。 /p p br/ /p
  • 【综述】红外热成像技术在FRP复合材料无损检测应用中的研究现状与进展
    引言红外热成像是具有非接触、检测面积大、检测结果直观等突出优势的新兴无损检测技术,近年来被广泛应用于金属、非金属、纤维增强复合材料以及热障涂层等的无损检测与评价。碳纤维增强复合材料(CFRP)与玻璃纤维增强复合材料(GFRP)是目前发展最为成熟、已被广泛应用于航空航天、船舶、交通运载和风力发电等领域的结构复合材料。然而,它们的层状以及非均匀微观结构使得它们在生产和使用过程中极易萌生和发展为多种类型的缺陷,如涂层脱粘、界面分层等,极大地降低了复合材料/涂层结构件的使用性能与寿命,严重时甚至酿成灾难性事故。热障涂层作为一种陶瓷层可沉积在基体材料的表面,对基体材料起到隔热保护的作用,目前已被广泛用作航空发动机、聚变反应堆、火箭喷管等高端装备的高温热防护部件。图1 某航空发动机及其涡轮叶片热障涂层结构示意图为控制FRP复合材料/涂层结构的质量,确保高端装备的安全可靠运行和低维护成本,开发先进的无损检测与评价方法或技术对其进行高效、可靠地检测与评价是非常必要的。目前比较有代表性的无损检测与评价技术有射线检测、超声检测、磁粉检测、渗透检测和电磁检测等。但这些方法各有所长,也有其各自的局限性。例如,超声法中耦合剂的使用会致使检测表面受到污染;电磁法虽易于实现自动化检测,但仅适用于非铁磁性材料,且多用于检测近表面缺陷信息。红外热波成像技术由于具有非接触、快速、检测面积大、检测结果直观等优点,非常适合于复合材料/涂层结构的在线检测与缺陷表征,近年来得到人们的重视和广泛关注。01 红外热波成像技术任何高于绝对零度的物体都会向周围环境发出电磁热辐射,根据Stefan-Boltzmann定律,其大小除与材料种类、形貌和内部结构等本身特性有关外,还与波长和环境温度有关,而红外热波成像技术即是利用红外热像仪通过遥测材料表面温度场,从而实现对材料结构特性和物理力学性能的无损检测与评价。根据被测对象是否需要施加外部热激励,该技术可分为主动式与被动式,其中主动式红外热波无损检测技术由于具有更高的热对比度与检测分辨率,近年来受到极大的关注。主动式红外热波检测技术是利用外界热源对待测试件进行热激励,同时利用红外热像仪记录其表面温度场的演化历程,并通过对所获得的热波信号进行特征提取分析,以达到检测材料表面损伤和内部缺陷的目的。根据外激励热源的不同,该技术又可被分为光激励红外热成像、超声红外热成像与电涡流红外热成像等。图2总结了目前主动式红外热波成像检测技术中的主要分类依据及分类结果。图2 主动式红外热成像检测技术的主要分类依据及结果虽然红外热成像无损检测技术种类众多,但由于所检测对象琳琅满目,且结构与物理特性比较复杂,因此在实际应用中需结合检测对象本身特性,选择一种相对合适且高效的主动式红外热波成像无损检测方法,从而达到对待测对象进行高分辨率、高精度、快速可靠检测与评价的目的。光激励红外热成像是主动红外热成像中一种相对高效的无损检测方法,由于其非接触、非破坏、检测时间短、检测面积大、易于实施等突出优点,在热障涂层结构、纤维增强复合材料无损检测与评价中备受关注。在该方法中,当外激励光源入射到待测试件时,基于光热转换效应所产生的热波扩散并与内部界面或缺陷相互作用,同时,利用红外热像仪远程记录待测试件表面的瞬态热响应,即红外热图像序列。然后,借助先进的后处理算法对所获取的热图像序列进行综合分析,从而实现待测试件的无损检测与定量表征。图3为光激励热成像技术原理和目前常用光激励红外热成像检测系统。图3 光热无损检测原理及典型闪光灯激励热成像检测系统此外,根据热激励形式的不同,红外热成像技术又可被分为红外脉冲热成像、红外锁相热成像与红外热波雷达成像,这也是根据红外热成像发展历程、目前最为常用的分类方法之一。红外脉冲热成像技术检测效率高,但其探测深度通常较浅,无法满足对材料深层缺陷高分辨率检测的要求;且其检测结果易受表面加热不均匀、表面反射率及发射率不均等影响,瞬时高能量脉冲也易使材料表面产生热损伤。为克服红外脉冲热成像技术的局限性,红外锁相热成像技术应运而生,但由于该技术在单一调制频率热激励下仅能探测与其热扩散长度相对应深度的内部缺陷,因此对FRP复合材料或热障涂层类结构内不同深度或不同铺层界面的缺陷,需选择不同调制频率对待测试件进行激励,因此,该方法检测时间仍相对较长且易出现漏检。红外热波雷达是一种新兴的无损检测技术,具有红外脉冲热成像与红外锁相热成像技术所无法比拟的突出优势,如高分辨率、高检测效率、大探测深度等,近年来备受关注。表1总结了红外脉冲热成像、红外锁相热成像以及红外热波雷达成像这3种技术的优缺点及适用范围。02 FRP复合材料光激励红外热成像无损检测研究现状2.1 红外脉冲热成像检测技术红外脉冲热成像技术是发展最早且目前应用最为广泛的一种红外热波无损检测技术,该技术是使用高能光源(如激光、卤素灯、闪光灯)对待测试件进行非常短时间(通常几毫秒)的脉冲激励加热,由于内部界面或缺陷的热阻效应会对待测试件表面温度场产生差异,然后,利用红外热像仪同步记录这种温度差异,并借助于先进的后处理算法可实现对待测试件内部界面或缺陷的无损检测与评价。红外脉冲热波检测技术检测速度快,且对厚度较小的试件具有较好的检测结果,但其探测深度非常有限,不适用于检测大厚度构件。此外,该技术还易受表面加热不均、表面发射率不均等影响,瞬时高能量脉冲也易使试件表面产生热损伤。FRP复合材料的强各向异性和显著内部界面效应,极易使得其产生界面分层等类型缺陷,极大影响FRP复合材料结构或装备的使用性能。[英国巴斯大学Almond等]对CFRP复合材料裂纹状缺陷的边缘效应进行了研究,并提出了一种瞬态热成像法测量缺陷尺寸的方法。[加拿大拉瓦尔大学Maldague等]提出了一种将脉冲热成像与调制热成像技术相结合的红外脉冲相位热成像检测技术,该技术基于傅里叶变换可获得能无损表征CFRP复合材料的相位图像,因此克服了脉冲热成像技术对表面加热均匀性的限制。[意大利学者Ludwig等]研究了红外脉冲热成像检测技术中的热损失与三维热扩散对缺陷尺寸测量的影响。[加拿大拉瓦尔大学Maldague等]为了克服脉冲热成像技术的局限性,提出了双脉冲激励热成像检测技术,并表明该技术可进一步增强热对比度。[加拿大学者Meola等]利用脉冲热成像法对GFRP复合材料的低速冲击损伤进行了无损检测。[英国巴斯大学Almond等]又通过解析法研究了脉冲热成像技术的缺陷检测极限与缺陷径深比、激励能量以及缺陷深度都密切相关。[伊朗桂兰大学Azizinasab等]还提出了一种使用局部参考像素矢量来处理脉冲热成像检测结果的瞬态响应相位提取方法,实现了CFRP复合材料缺陷检测和深度预测。此外,为增强FRP复合材料缺陷检测效果,许多集成先进特征提取方法的脉冲热成像检测技术也被提出,例如主成分热成像、矩阵分解热成像、正交多项式分解热成像和低秩稀疏主成分热成像。国内的哈尔滨工业大学、电子科技大学、湖南大学、东南大学、火箭军工程大学、首都师范大学、南京诺威尔光电系统有限公司等科研单位也对FRP复合材料红外脉冲热成像无损检测技术开展了大量研究工作,并取得了丰硕的研究成果。[首都师范大学]研究了GFRP复合材料脉冲热成像检测的热图像序列的分割与三维可视化,并提出了一种基于局部极小值的图像分割算法。[北京航空航天大学]对FRP复合材料次表面缺陷红外脉冲热成像无损检测的检测概率进行了深入研究,并分析了阈值、特征信息提取算法等对检测概率的影响。此外,国内研究学者还提出集成了稀疏主成分分析、矩阵分解基算法、流形学习[30]和快速随机稀疏主成分分析等算法的红外脉冲热成像检测技术。2.2 红外锁相热成像检测技术红外锁相热成像技术是20世纪90年代初发展起来的一种新型数字化无损检测技术,该技术是利用单频正弦调制的热激励源对待测试件进行加热,然后,待测试件内部将也产生一个呈周期性变化的温度场,由于缺陷区与无缺陷区处的表面温度场存在差异,因此采用锁相算法可对表面温度场进行幅值与相位提取,最终实现对材料表面损伤或内部缺陷进行无损检测与评价。红外锁相热成像检测技术的探测范围要大于红外脉冲热成像检测技术,此外,通过降低激励频率大小可增大探测深度。英国华威大学和意大利那不勒斯大学等研究学者较早地将红外锁相热成像技术用于CFRP航空件缺陷检测,并证实了该技术与瞬态热成像与超声C扫描无损检测技术相比,更适于CFRP航空件表面冲击损伤的快速无损检测。[Pickering等]研究了同等激发能量下,红外脉冲热成像和红外锁相热成像对CFRP复合材料分层缺陷的检测能力。[Montanini等]证实了红外锁相热成像技术也可用于厚GFRP复合材料的无损检测,并深入研究了与缺陷几何形状和深度相关的检测极限问题。[Lahiri等]发现随着GFRP复合材料缺陷深度增加,利用红外锁相热成像技术所获得的相位对比度增大,而热对比度却减小。[Oliveira等]提出了一种融合光学锁相热成像和光学方脉冲剪切成像的CFRP复合材料冲击损伤高效表征方法。国内哈尔滨工业大学、浙江大学和东南大学等科研人员也对FRP复合材料红外锁相热成像检测开展了较多有价值的研究工作。[哈尔滨工业大学]对CFRP复合材料分层缺陷的大小和深度以及热物性的无损检测与定量评价,开展了系统的理论与实验研究,并提出了多种先进特征增强算法来提高其内部分层缺陷的可视性。[浙江大学]使用红外锁相热成像无损检测CFRP复合材料分层缺陷,并利用深度学习对测量过程中的传感器噪声、背景干扰等进行有效去除,显著提高了CFRP复合材料次表面缺陷无损检测与定征的精度。[东南大学]针对CFRP复合材料分层缺陷红外锁相热成像无损检测中所存在的热成像数据缺失以及低帧率导致的低分辨率问题,提出了基于低秩张量填充的热成像检测技术,不仅可有效解决红外锁相热成像数据高度缺失问题,还可显著提高常用红外热像仪的帧频率。2.3 红外热波雷达成像检测技术近年来,红外热波雷达成像技术因检测效率高和灵敏度高以及不易对材料产生热损伤而受到越来越多的关注,并开始应用于FRP复合材料的无损检测与评价。红外热波雷达成像技术具有红外脉冲热成像技术与红外锁相热成像技术所无法比拟的优势,但由于被用于FRP复合材料无损检测与评价的时间并不长,尚存在一定的局限性。例如,由于通常采用较低调制频率激励源去探测较深范围的内部缺陷信息,随之而来的是热扩散长度的增大,致使检测分辨率降低;另外,为提高检测信号的信噪比,通常采用增加热流激励强度的方法来解决,但在检测重要目标构件时,为防止对检测对象的热损伤,这种方法并不适合。[加拿大多伦多大学Mandelis教授]与[印度理工大学Mulaveesala教授]首先将线性调频雷达探测技术引入到红外热成像检测技术中,提出了脉冲压缩热成像或热波雷达无损检测技术。为显著提高探测热波信号的信噪比与灵敏度,随后提出了热相干层析成像和截断相关光热相干层析成像技术,截断相关光热相干层析成像技术的具体原理如图4所示。图4 截断相关光热相干层析成像检测技术原理:(a) 截断相关光热相干层析成像数学实施;(b) 激光诱导热成像系统框图印度理工学院与印度塔帕尔工程技术大学等科研人员还将脉冲压缩热成像与红外脉冲热成像等其他检测技术在检测FRP复合材料次表面缺陷时的检测性能进行了对比,并分析了各种技术的优势所在。为增强FRP复合材料分层缺陷检测,[比利时根特大学]也提出了离散频率相位调制波形的热波雷达技术,并证明了该技术具有更高的深度分辨率。国内的科研人员也对脉冲压缩热成像或热波雷达开展了较多的研究工作,并取得了重要的创新研究成果。[哈尔滨工业大学]较早地将红外热波雷达成像技术拓展到CFRP复合材料铺向和分层缺陷的无损检测与评价,并对热波雷达检测技术的特征提取方法也开展了深入研究。[湖南大学]和[电子科技大学]还分别用感应红外热成像/热波雷达检测技术和参考脉冲压缩热成像检测技术对CFRP复合材料分层缺陷检测,并取得了较为满意的检测效果。[东南大学]也提出了正交频率相位调制波形的热波雷达检测技术,可有效增强CFRP复合材料分层缺陷的检测效果。03 热障涂层红外热波成像无损检测研究现状关于热障涂层红外热波检测技术的研究始于20世纪80年代,伴随着信息电子与计算机技术的快速发展,近年来在航空和先进装备等领域受到极大关注。在目前的热障涂层红外热成像无损检测中,仍以光激励红外热成像检测技术为主,这仍然是由于光激励红外热成像技术具有非接触、快速、检测面积大、检测结果直观等突出优点,非常适合于热障涂层结构性能与健康状况的在线检测与表征。根据激励热源生热机理的不同,除光激励红外热成像检测技术外,其他无损检测方法还包括:超声热成像、振动热成像和涡流热成像。3.1 红外脉冲热成像检测技术针对热障涂层红外脉冲热成像无损检测,国外专家学者较早地开展了相关研究,并取得了较多的研究成果。[Cielo等]利用红外脉冲热成像技术无损检测热障涂层,研究表明当光学穿透深度远小于而加热区域远大于涂层实际厚度时,该技术可有效表征热障涂层热物性和表面涂层厚度。[Liu等]提出了可无损检测热障涂层内部裂纹和厚度不均匀性的稳态热流激励热成像技术,可实现直径远小于1mm的裂纹检测。[Shepard等]利用红外脉冲热成像技术对热障涂层厚度和脱粘缺陷进行无损检测,并结合先进后处理方法提高了时空域分辨率和信噪比。[Marinetti与Cernuschi等]利用红外脉冲热成像技术结合机器学习和相位特征提取方法,系统地研究了热障涂层结构中的表面涂层厚度变化、脱粘缺陷以及涂层过厚与粘附/脱粘缺陷的区分问题。[Bison与Cernuschi等]为无损评价热障涂层老化程度以及完整性,利用红外脉冲热成像技术检测了热障涂层面内与深度方向热扩散率以及孔隙率。此外,利用红外脉冲热成像检测技术还可监测热障涂层损伤演化历程以及寿命评估,且热障涂层粘结界面处粗糙度形貌、深度以及基底强度等对其损伤演化也有重要影响。[Ptaszek等]还研究了热障涂层表面非均匀及红外透光性等对其光热无损检测的影响。[Mezghani等]利用激光激励红外脉冲热成像技术无损检测了表面涂层厚度变化。[Unnikrishnakurup等]利用红外脉冲热成像技术和太赫兹时域谱技术同时对不均匀涂层厚度进行测量,并获得了对热障涂层厚度估计小于10.3%的平均相对误差。虽然我国关于热障涂层红外脉冲热成像无损检测的研究起步较晚,但仍取得了重要研究成果。[北京航空航天大学]利用红外脉冲热成像技术,通过使用有限元数值模拟与热成像检测实验方法,对存在脱粘缺陷和厚度不均匀时热障涂层表面温度场以及热障涂层的厚度与疲劳特性进行了较为深入的研究。[北京航空材料研究院]利用闪光灯激励红外脉冲热成像技术不仅检测出直径小于0.5mm的脱粘缺陷,还识别出了肉眼无法观察到的微裂纹。近来,关于热障涂层激光扫描热成像技术的无损检测与评价研究也开始出现,[北京理工大学]和[南京理工大学]利用线型激光扫描热成像技术实现了对热障涂层脱粘缺陷以及20~150μm厚薄涂层的高精度无损检测与评价。为了检测热障涂层表面微小裂纹,[北京理工大学]还开发了一种将线型激光快速扫描模式与点激光精细扫描模式相结合的激光多模式扫描热成像检测技术,实现了仅9.5μm宽表面微小裂纹的高效检测。3.2 红外锁相热成像检测技术不同于热障涂层红外脉冲热成像无损检测研究,国内专家学者较早地开展了热障涂层红外锁相热成像无损检测的研究,而国外对此的研究还很少。[火箭军工程大学]利用红外锁相热成像技术对涂层厚度进行检测,并表明该技术可实现对涂层厚度的快速检测,且检测精度可达到95%。[哈尔滨工业大学]利用红外锁相热成像检测技术和热波信号相关提取算法对热障涂层脱粘缺陷进行检测,并研究了光源功率、分析周期数和激励频率大小等对检测结果的影响。[哈尔滨工业大学]随后利用激光激励红外锁相热成像技术高精度地量化了SiC涂层碳/碳复合材料的薄涂层厚度分布的均匀性。[上海交通大学]针对热障涂层内部裂纹缺陷的快速无损检测与评价,也提出了一种基于多阈值分割和堆叠受限玻尔兹曼机算法的红外热成像无损检测技术。此外,[韩国国立公州大学Shrestha和Kim]利用红外脉冲热成像技术和红外锁相热成像技术对热障涂层表面不均匀涂层厚度进行了无损检测与评价,并开展了有限元数值模拟与热成像检测实验分析了各种技术的优势所在。3.3 红外热波雷达成像检测技术红外热波雷达成像作为一种新兴的无损检测技术,其高信噪比、大探测范围等突出优势更利于热障涂层次表面脱粘缺陷的高精度无损检测。而目前关于热障涂层红外热波雷达成像无损检测与评价的研究还鲜有报道,目前仅有国内的哈尔滨工业大学和东南大学针对热障涂层红外热波雷达成像无损检测开展了相关的理论与热成像检测实验研究工作。[哈尔滨工业大学]利用红外热波雷达成像技术对热障涂层脱粘缺陷进行检测,该技术利用线性调频信号调制光源强度,并引入了互相关和线性调频锁相提取算法,研究表明该技术可实现热障涂层脱粘缺陷的有效检测。[东南大学]基于Green函数法,对热障涂层光热传播理论进行了较为深入的研究,并提出了一种先进非线性调频波形的脉冲压缩热成像检测技术,可实现热障涂层次表面脱粘缺陷的高信噪比、大探测深度的高分辨率检测。结语本文介绍了红外热成像技术在FRP复合材料和热障涂层无损检测应用中的研究现状和进展,通过文献调研和相关研究结果分析,可发现,由于FRP复合材料和热障涂层的复杂结构特性,使得传统的无损检测技术无法较好地实现高效可靠的无损检测与评价。作为新兴的无损检测技术,红外热波雷达成像技术由于具有高分辨率、大探测深度、检测结果直观等突出优点,为FRP复合材料和热障涂层的高精度无损检测与评价提供了新契机。此外,在对FRP复合材料和热障涂层红外热成像无损检测进行研究的过程中,笔者也发现,红外热成像无损检测技术的发展还面临着一些主要瓶颈制约问题,也促使红外热成像检测技术须向多样化、智能化、集成化和多源信息融合方向发展,呈现出以下发展趋势:1) 多样化传统无损检测方法和红外热成像等新型无损检测技术都有其各自的优缺点及适用范围,随着检测对象的多样化和检测要求的多元化,所需要的检测手段也呈现多样化发展的趋势,具体体现在:①热激励源由卤素灯、超声和电磁等向半导体激光器、相控阵超声等其他热激励形式发展;②随着计算机和电子信息技术的快速发展,传统的红外脉冲热成像和红外锁相热成像向着新兴的先进激励波形脉冲压缩热成像或热波雷达成像检测技术方向发展。2) 智能化近年来人工智能技术的快速发展使得基于深度学习模型的红外目标识别与跟踪方法取得了巨大进步,这无疑为红外热成像无损检测技术的进一步发展提供了很好的发展契机。深度学习方法的高识别率特点使其在红外目标特征识别、红外图像分割与分类方面性能优异,在精度和实时性方面,甚至远远赶超传统检测方法。人工智能赋能红外热成像检测技术,有望取代人工判断,推动红外热成像无损检测技术向着智能化检测方向发展。3) 集成化红外热成像检测系统通常需要激励热源、红外热像仪、光路等调节装置、固定装置等模块,体积较大、结构较为复杂,且仍需人工或仪器自动采样。为满足实际无损检测应用中原位测量及低能耗的需求,红外热成像检测技术需逐步向小型集成化方向发展,最终实现无损检测现场的便携式携带和操作。4) 多源信息融合发展多源多模态热成像数据能比单一热成像数据提供更多的关键信息,此外,在信息呈现和表达上,多来源、多模态红外热成像数据还增加了无损检测结果的鲁棒性。因此当检测要求较高时,常常需要采用优势互补、多种检测方法相结合的方式,通过多源多模态热成像数据的融合与集成,最终提供优质、高效、安全、可靠的无损检测解决方案。因此,红外热成像技术也需向多源信息融合方向发展。
  • 多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测
    以碳纤维增强树脂基(Carbon Fiber Reinforced Plastic, CFRP)为代表的先进复合材料,具有高比强度和比刚度、良好的耐疲劳和耐腐蚀、易于大面积成型等优点,正越来越广泛地代替金属材料用作航空/天飞行器主承力构件。受制造工艺复杂、服役环境严苛影响,CFRP容易产生材料退化,甚至分层、纤维褶皱、孔洞等缺陷,威胁结构服役安全。超声无损检测技术是实现制造质量控制和服役性能评估的有效手段,但却面临材料形状复杂、多层结构、弹性各向异性因素共同作用所致超声传播行为复杂的挑战。现有超声检测技术主要是面向声学特性较为简单的各向同性均质材料,直接沿用至CFRP结构时不可避免地存在超声信号混叠、信噪比低、成像质量差等问题。针对以上难题,中国科学院深圳先进技术研究院郭师峰研究员团队开展了系列创新性研究工作,为航空/天复合材料结构无损检测与评估提供了理论和技术支撑,包括:(1)提出了利用相控阵超声和完全非接触激光超声原位测量超声群速度分布的新方法,解决了各向异性复合材料力学性能原位、高精度测量难题,为材料强度及其退化程度定量评估提供技术支撑;(2)建立了定量描述复杂形状、多层结构、弹性各向异性对CFRP声学特性影响规律的理论模型,为复杂超声传播行为理论分析和超声成像算法研究提供可靠的模型基础;(3)提出了基于计算机科学最短路径搜索算法的声线示踪新方法,解决了高分辨率超声成像算法聚焦法则高精度计算难题,大幅提升缺陷检测灵敏度和定位/量精度。上述研究工作为航空/天复合材料结构无损检测与评估提供了理论和技术支撑。2024年9月11-12日,仪器信息网组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,郭师峰研究员团队中的曹欢庆副研究员将作大会报告《多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测》,介绍上述研究工作。本次会议于线上同步直播,欢迎材料、机械、工程、无损检测等相关科研工作者、工程技术人员、科技企业人士等报名,参会交流!关于第三届无损检测技术进展与应用网络会议无损检测,即在不破坏或不影响被检测对象内部组织与使用性能的前提下,利用射线、超声、电磁、红外、热成像等原理并结合仪器对物体进行缺陷、化学、物理参数检测的一种技术手段,被广泛应用于航空航天、交通运输、石油化工、特种设备、矿山机械、核电、冶金、考古、食品等各个领域。为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家参会交流。会议链接:https://www.instrument.com.cn/webinar/meetings/ndt2024
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制