当前位置: 仪器信息网 > 行业主题 > >

仪器性能检测

仪器信息网仪器性能检测专题为您提供2024年最新仪器性能检测价格报价、厂家品牌的相关信息, 包括仪器性能检测参数、型号等,不管是国产,还是进口品牌的仪器性能检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合仪器性能检测相关的耗材配件、试剂标物,还有仪器性能检测相关的最新资讯、资料,以及仪器性能检测相关的解决方案。

仪器性能检测相关的资讯

  • 食品检测仪器性能竞赛活动将举办
    中国出入境检验检疫协会将在第二届国际检验检测技术与装备博览会(以下简称:检博会)期间举办&ldquo 食品检测仪器性能竞赛活动&rdquo ,竞赛项目涉及:原子荧光光谱仪、液相色谱仪的仪器性能测试。   据悉,此次活动由中国检科院及北京海淀所起草活动方案、设计竞赛内容、组建专家组,采取盲样检测的方式,集中式或分散式召集各相关企业测试,在规定时间内提交检测结果(提交内容由专家组确定)。经专家组研究讨论后,在检博会上公布盲样内容与仪器性能竞赛效果,根据专家意见给出盲样检测排名(或仪器设备性能评测排名),并颁发证书。邀请科技司、计财司对全国仪器设备竞赛结果进行适当应用和推荐。   报名阶段:6月12日-7月5日   竞赛阶段:7月14-18日   颁奖阶段:7月31日   活动详情:http://www.ciitee.com/news_view.asp?id=134
  • 第二届检博会食品检测仪器性能竞赛引发业内广泛关注
    2014年第二届国际检验检测技术与装备博览会(以下简称&ldquo 检博会&rdquo )将于7月31日在北京拉开帷幕。随着展期的临近,由中国出入境检验检疫协会主办的&ldquo 食品检测仪器性能竞赛活动&rdquo 也快速升温。此竞赛作为国内外仪器性能评价和参数比对的重要活动,成为2014年检测行业最受关注的热门话题之一。   本次竞赛活动是为了更好地促进检验检测技术与装备的推广应用,增强设备生产研发单位的自主创新能力和市场竞争力,提高检验检测技术水平。活动以原子荧光光谱仪的仪器性能测试、液相色谱仪的仪器性能测试两个项目进行竞赛,由国内外从事研发设计、加工生产、销售本次竞赛活动规定的仪器设备的单位自愿报名参加。为做好食品检测仪器竞赛活动,中国出入境检验检疫协会专门成立了专家工作组,负责竞赛活动方案的制定、组织和评分等工作。竞赛阶段地点设在中国出入境检验检疫协会检测技术培训基地,现场由评审专家工作组根据评测标准对竞赛结果进行评审并给出综合得分,并推荐获奖的设备和单位。   竞赛活动作为检博会亮点活动之一,设立金奖、银奖,比赛结果将会于第二届检博会举办期间公布,由相关领导、专家现场向获奖厂家颁奖,获奖产品信息将在总局网站政府采购栏目进行公布。
  • 高性能智能化无菌检测仪研发受到重大仪器研发专项支持
    近期,由浙江泰林生物技术股份有限公司牵头承担、联合浙江大学、中国食品药品检定研究院、浙江省计量科学研究院、正大青春宝药业有限公司、杭州电子科技大学等多家单位组织开发的“高性能智能化无菌检测仪的开发和应用”项目,获得“国家重点研发计划”-“重大科学仪器设备开发”专项立项,该项目计划总投资4500万元,实施周期为2016年7月至2020年6月,项目成功实施后将有望大幅提升我国无菌检查效率和水平,支撑突发事件应急检测,提升国产仪器市场占有率。  近年来,我国发生的多起食品、药品质量安全事件,使得政府和民众对食药品的质量保证高度重视。无菌检查作为食品药品质量控制的关键项目,在最新的2010版GMP《药品生产质量管理规范》和2015版药典都提出了明确的要求,是企业和监管机构对合格产品检验的重要项目。常规无菌检查在一个受控的环境中安装单向气流的层流台,在层流台上放置一台集菌仪来完成无菌试验。无菌检查仪包含了无菌隔离器、薄膜过滤系统(集菌操作仪和集菌培养器)、微生物培养箱等部件,替代常规无菌检查方法,提供受控无菌环境并实施无菌检验,具有集成度高、投入成本低、环境可控性更好的特点,越来越受到重视,得到广泛的应用。  这几年国内企业通过持续的研发投入,市场占有率持续上升,已经超过国外仪器,但是高端仪器仍然被国外厂家控制,急需提高产品的质量和性能。就目前的技术而言,现有无菌检查还存在以下不足:灭菌剂浓度等关键参数监测与控制技术不成熟,易导致假阳性或假阴性风险 集菌操作和无菌检测均依赖人工,自动化、集成化和智能化水平低,无菌检查效率低 部分关键器件依赖进口,如VHP(Vaporized Hydrogen Peroxide,气化过氧化氢)浓度传感器和微孔滤膜等。  为解决上述问题,本项目拟开展高性能智能化食品药品无菌检测仪的仪器研发、应用研究和工程化产业化研究工作。针对无菌检测仪的高性能要求,研究持续可控的无菌隔离环境,避免灭菌效果不稳定导致无菌检查的假阳性或者假阴性,重点开展高效稳定的VHP汽化技术研究和快速实时的VHP浓度检测技术研究 针对无菌检测仪的智能化要求,开展仪器操作的自动化智能化研究工作,替代当前的手工操作模式,提高无菌检查的检测效率,重点开展自动化集菌操作技术、自动检测技术和智能化系统集成技术研究 针对企业和药检机构的应用要求,研究具有针对性的操作方法和软件,解决仪器在代表性应用单位的特定检测需求,重点开发面向食品药品检验机构专用的多种样品无菌检查软件和面向生产企业大批量样品检测流程优化技术 针对仪器的工程化和产业化要求,研究可靠性方案、质量控制方案等相关产业化方案,保证仪器工程化产业化的顺利实施。  项目完成后,精确传递机构和多功能机械手的定位技术在隔离器内应用,再配套自动精准加样和阳性菌自动加注技术,将使无菌检查的流程标准化、模式化,整个流程完全受控,避免以往无菌检查全部依赖人员操作,结果受人为原因影响较大的弊病。大大提高无菌检查的效率和无菌检查结果的准确率和可信度。  无菌制剂企业或其他检测机构产品或样品的无菌检查一直是劳动密集型行业,在应用该项目产品进行无菌检查后,只需按照设定程序系统将自动进行定位、加样、培养观察,全过程结果实时记录分析,并可做到所有数据在监管系统上同步可查,这一应用将大大降低企业的劳动成本,并成倍提高无菌检查的效率。同时。无菌检查效率准确率的提高也同时降低了以往由于人员操作不规范或者人员失误导致的无菌检查样品长菌的情况,降低了企业重复检测、原因分析等方面的支出,同时所有数据的实时上传,可对可能出现的异常情况做到早发现、早预防、早处理。  本项目的牵头单位,浙江泰林生物技术股份有限公司成立于2002年,国家级高新技术企业,拥有省级高新技术企业研发中心,是国内规模最大的无菌及微生物检测仪器、耗材等产品的供应商之一,也是国内最早开发无菌及微生物限度检测系统、汽化过氧化氢灭菌系统、无菌隔离系统并实现产业化的企业之一。公司拥有专利120余项,其中发明12项,先后参与并制定国家标准和行业标准14项,其中7项为第一作者,是细分行业的领导者。公司自成立以来,一直以科技创新为立足点,多次承担了国家创新基金、国家火炬计划、国家重点新产品等项目,此次“高性能智能化无菌检测仪的开发和应用”获得国家重点研发计划的立项,公司也将以此为契机,进一步夯实研发和管理基础,以攻克前瞻性、基础性关键共性技术为己任,引领行业在高端技术层面上快速前行。
  • 梅特勒托利多参加“纺织检测仪器性能竞赛”获得优异成绩
    为贯彻落实国务院《质量发展纲要》,更好的落实总局科技兴检战略,提高检验检测技术装备的相互学习促进检验检测技术与装备的推广应用,增强设备生产研发单位的自主创新能力和市场竞争力,中国出入境检验检疫协会在“第二届国际检验检测技术与装备博览会”期间举办“纺织检测仪器性能竞赛活动”。梅特勒托利多公司应邀参加此次竞赛。食品检测仪器及纺织检测仪器性能竞赛活动是本届“检博会”全新推出、备受关注的亮点活动之一。展会现场,评审专家现场紧密而细致的对评测标准对竞赛结果进行了评审,有关领导也莅临活动现场走访。上图:全国政协委员、检验(检测)检疫学会会长 魏传忠参观竞赛现场“纺织检测仪器性能竞赛——pH计竞赛”决赛在“检博会”现场进行,梅特勒托利多SevenCompact S220 pH计秉着优异的性能进入决赛。据介绍,此次竞赛是按照JJG-2005《实验室pH(酸度)计计量检定规程》,分别对结果获得时间、仪器示值误差、仪器示值重复性、操作速度等指标进行考核。评审专家现场根据评测标准对竞赛结果进行评审并给出综合得分。 上图:纺织检测仪器性能竞赛现场专家评审 最终梅特勒托利多参赛仪器Seven Excellence S400/0.001在第二届国际检验检测技术与装备博览会“检验仪器性能竞赛”中获得银奖;Seven Compact S220/0.001在第二届国际检验检测技术与装备博览会“检验仪器性能竞赛”中获得参与奖。 上图:Seven Excellence S400/0.001在第二届国际检验检测技术与装备博览会“检验仪器性能竞赛”中获得银奖 上图:Seven Compact S220/0.001在第二届国际检验检测技术与装备博览会“检验仪器性能竞赛”中获得参与奖 附录:S400 Seven Excellence? pH/mV 测量仪及S220 Seven Compact? pH/离子计Seven Excellence? 操作便捷,易于理解,并提供高度的测量精确性和出色的灵活性。仪表具有电容式触摸屏和 7 英寸超大显示屏,操作非常直观,并且提供 10 种语言菜单。该仪表可高效地用于各种复杂的应用并且符合监管环境严苛的要求,同时还可为实验室常规测量任务增值。Seven Excellence? 系列共有 4种不同的预配置型号,其中每种都可随时进行模块化扩展,以便添加测量参数。 所包含的电极支架进行完全垂直的uPlace?移动,可帮助您将电极置于对您的样品产生最佳效果的位置。 这就能够进行更快地测量,并降低样品容器翻倒或者电极损坏的风险。 l 便捷的触摸屏操作–易于掌握,快速使用l 10 种语言的菜单指导–用户友好的操作l 井然有序的大彩色显示屏–信息一目了然l 可随时扩展模块–高度灵活性l 可连接多种外围设备–高效l 智能电极管理–避免各种错误,令人高枕无忧l 包括 EQPac 在内的全方位服务–运行时间长,符合要求 上图:S400 Seven Excellence? pH/mV 测量仪 S220 Seven Compact? pH/离子计这款全新的彩色显示屏带有设计合理的图标和 10 种语言菜单设置,使操作变得真正直观。应用范围从常规测量到样品分析、数据处理和数据检索,符合 GLP 规定。创新的设计可满足通用、易于操作的 pH/离子仪要求。 l 为高要求的用户提供用户友好的仪器l 采用智能电极管理 (ISM?) 实现安全性和高再现性l 通过专业的校准支持提高测量的质量l 包括 IQ/OQ 在内的综合服务包l 集成的 USB 和 RS232 接口用于数据交换 上图:S220 Seven Compact? pH/离子计 更多信息,请登录梅特勒托利多网站:www.mt.com
  • 山东省特检院装配莫帝斯新型热防护性能检测仪器
    山东省特种设备检验研究院始建于1978年8月,是山东省质量技术监督局直属的从事锅炉、压力容器、压力管道、电梯、起重机械、游乐设施、客运索道和厂内机动车辆等特种设备法定检验的公正的第三方社会公益性科研事业单位,具备经国家认可的特种设备法定检验资格,是山东省高级人民法院入册的特种设备司法鉴定单位,是山东省特种设备行业的权威检验机构。2007年7月,山东省质监局部署对全省部署对全省特检机构整合,至2007年底整合顺利完成。根据鲁编办〔2007〕77号文件,撤销除济南、青岛以外的全省十五个地市原有55个锅炉压力容器、特种设备检验机构,设立山东省特检院淄博分院等15个分院。2008年1月1日,整合后的山东省特检院按照新的管理体系开始运行,由省院对分院实行人、财、物及业务统一管理。整合四年来全院在人才队伍建设,技术装备建设,检验质量提高,科研开发创新等方面成效显著,全院正努力向集检验、科研、救援“三位一体”的全国一流的综合性特检机构快速迈进。山东省特检院通过安装莫帝斯安全头盔耐燃测试仪、对流热试验装置、接触热传递性能测试仪、防护服火焰蔓延测试仪、垂直燃烧仪,可用于对焊接服、防护服、安全手套、安全头盔等产品进行热防护性能检测!莫帝斯燃烧技术(中国)有限公司成立于2008年,100%的中国民族企业,其产品品牌为“莫帝斯”,其取义为Metis,她在古希腊神话中是水文和聪慧女神,是大洋河流之神俄刻阿诺斯和大洋女神泰西斯的女儿,也是雅典娜的母亲,她在一切生物中是最聪明的。“莫帝斯”品牌的寓意在于,我们的目标就是要制造出人性化和智能化的测试仪器,同时,当我们走出国门,进行品牌的推广时,便于提高海外市场的认知程度,避免因为品牌直译而产生的歧义。 莫帝斯燃烧技术(中国)有限公司自成立以来,在国内拥有众多知名用户,如公安部四川消防研究所、公安部天津消防研究所、公安部上海消防研究所、公安部沈阳消防研究所、中国标准化研究院、中国铁道科学研究院、中国船级社远东防火检测中心、中国科学院力学研究所、中国科技大学、北京理工大学、浙江理工大学、北京化工大学、浙江工业大学、中原工学院、中国南车、德国TUV南德意志集团、瑞士SGS通标标准技术服务有限公司、青岛四方车辆研究所等,莫帝斯致力于提供优质的燃烧测试仪器,为中国的阻燃材料以及燃烧测试研究提供最为有力的科研及检测武器。
  • 拜耳材料科技(中国)有限公司添置B1级燃烧性能检测仪器
    拜耳材料科技公司是拜耳集团旗下独立运营的子集团,业务覆盖全球。目前,拜耳材料科技的所有产品几乎都在市场中占据主导地位,其创新的高性能材料广泛应用于日常生活的各个方面。拜耳材料科技为众多行业,包括汽车、电气电子、建筑、信息技术、体育运动和休闲等行业的客户提供优质产品服务。 拜耳材料科技公司,基于聚氨酯原材料的涂料、粘合剂与特殊化学品系统,在保护表面抵抗风化和化学腐蚀的同时,还能保证高效的机械性能。例如,环保型涂料原材料Bayhydrol® Bayhydur® 用于水性聚氨酯涂料系统中,可大大降低涂料对环境造成的影响。 高品质的Makrolon® , Makrofol® 和 Apec® 聚碳酸酯和Bayblend® 、Makroblend® 聚碳酸酯共混物都是在拜耳材料科技中的最畅销产品。它们广泛运用于生产汽车配件、CD、DVD等数据存储介质以及诸多日常生活产品的的生产。 聚氨酯产品是日常生活中的重要组成部分。它的应用领域从床垫、汽车座椅、冰箱隔热保温,到汽车车档、甚至鞋底等。主打产品品牌为Desmodur® 和 Desmophen® 。 热塑性聚氨酯结合了高品质聚氨酯弹性体的优良属性和热塑性塑料的易加工特性。Desmopan® 和Texin® 树脂被用于薄膜、纺织面料、汽车零部件中的软管、电缆等等,还应用于体育和休闲行业(如滑雪板、运动鞋和其他体育装备)、以及农业和机械工程和其它工业应用领域。 日前,拜耳材料科技(中国)有限公司从莫帝斯燃烧技术(中国)有限公司,订购了用于建筑材料GB 8624 标准的,B级燃烧性能检测仪器,包含了可燃性试验仪和氧指数测定仪,应用于其材料的阻燃性能检测。通过该检测仪器的配备,拜耳可为市场提供更加阻燃、更加安全和更加负责任的产品。 www.firetester.cn www.motis-tech.com
  • 想更全面了解COD测定仪,氨氮测定仪,总磷总测定仪等主要水质检测仪器性能和功效吗?
    想更多的了解深昌鸿产品吗?想更全面的了解水质监测仪的性能和功效器吗?深昌鸿市场部经理闫雷与您相约“仪商汇”面对面沟通,一 一为您解答! 深昌鸿为了给新老客户提供更好的服务,现对公司COD测定仪,氨氮测定仪,总磷测定仪,总氮测定仪,多功能数控消解仪,BOD测定仪,重金属离子测定仪,浊度测定仪,色度测定仪,悬浮物测定仪,浊度色度仪等主要产品为您解答。附: “仪商汇”仪器渠道峰会将于8月4日在辽宁省沈阳市香格里拉今旅酒店三楼(大宴会厅)隆重召开!本次“仪商汇”沈阳站活动的参与代表以本省数百名代理商、经销商为主体,同时拟邀请大型仪器使用单位、辽宁省分析科学研究院领导、仪器仪表行业协会领导、仪器渠道专家、知名厂商代表参会。 本次活动亮点:行业分析报告、行业资深专家分享、企业好产品及渠道政策分享、慈善拍卖(单品超低价起拍)、食品安全实验室(好产品解决方案推送)、仪器产品免费抽奖大放送!! 目前参与企业有:东西分析、美国华志、上海伍丰、青岛埃仑、上海科哲、北京大龙、美国CIF、武汉恒信、上海亚荣、杭州赛智、山东赛克赛斯、上海色谱、奥普乐、蜀科离心机、安莱立思、上海佳航、北京汇龙、四川优普、沈阳汉威、上海光谱、赛多利斯、普析通用、厦门绿安、上海天美、博大精科、深昌鸿、上海龙跃、桑翌实验室、优莱博等!
  • 大气环境监测移动实验室仪器配置及性能指标详解
    p   随着我国经济的快速发展,大气环境污染事故频发,气象灾害日益增多,雾霾污染严重。大气环境监测移动实验室已在大气、噪声、光等污染防治的监督管理等领域得到越来越广泛的应用,移动监测监督稽查将得到生态环境部重视。日前,全国移动实验室标准化技术委员会发布关于通知,对《大气环境监测移动实验室通用技术规范》征求意见。 /p p   “大气环境监测移动实验室通用技术规范件”是大气环境监测标准体系中的一个重要组成部分,对污染源进行移动特性识别,建立规范移动特性参数和配备设施及设备等一系列特性条件,有利于保证移动监测车在移动中队污染源的检测效性,为推动国家环境移动实验室健康发展起作重要作用。本标准为首次制定,技术归口单位为全国移动实验室标准化技术委员会,起草单位有江西江铃汽车集团改装车股份有限公司、武汉天虹环保产业股份有限公司、聚光科技(杭州)股份有限公司、北京雪迪龙科技股份有限公司、中国环境监测总站、沈阳质量监督检验研究院等。 /p p   标准中给出了大气环境监测移动实验室宜配备大气环境监测仪器设备及性能指标。明确指出:移动实验室所有配置的仪器设备应完全自动化、智能化,并具有移动特性,符合GB/T 29476-2012中的规定;移动实验室应配备服务器数据处理系统,具备现场进行数据分析及数据输出和远程在线交互能力;移动实验室的采样及监测设备,满足设备监测性能,可独立或集中分离采样;移动实验室设备应具备自校准功能;移动实验室设备应具备时间同步功能,测试数据与时间同步,报告日期不可修改;移动实验室的实验舱内设备、器具与载具的安装连接应牢固、可靠,根据设备性能要求增加减振措施;移动实验室设备应具备电磁兼容性,应符合GB/T 18268.1的规定。 /p p   详细要求如下: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" strong 仪器设备监测内容 /strong /a /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 115" p style=" text-align:center " 监测类别 /p /td td width=" 138" p style=" text-align:center " 监测内容 /p /td td width=" 85" p style=" text-align:center " 性能指标 /p /td td width=" 267" p style=" text-align:center " 参考标准或依据 /p /td /tr tr td width=" 115" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 空气VOC /a /p /td td width=" 138" p style=" text-align:center " VOC /p /td td width=" 85" p style=" text-align:center " 见附录A /p /td td width=" 267" p style=" text-align:center " 环保部《2018年重点地区环境空气挥发性有机物监测方案》的通知,VOC监测项目 /p /td /tr tr td width=" 115" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 常规气态污染物 /a /p /td td width=" 138" p style=" text-align:center " S02、NOx、CO、O3 /p /td td width=" 85" p style=" text-align:center " 见附录B /p /td td width=" 267" p style=" text-align:center " HJ/T & nbsp & nbsp 193-2013中附录A表A.1 /p /td /tr tr td width=" 115" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 颗粒物 /a /p /td td width=" 138" p style=" text-align:center " PM2.5/PM10 /p /td td width=" 85" p style=" text-align:center " 见附录C /p /td td width=" 267" p style=" text-align:center " HJ/T & nbsp & nbsp 193-2005中附录A表A.2 /p /td /tr tr td width=" 115" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 大气气象参数 /a /p /td td width=" 138" p style=" text-align:center " 风速、风向、温度、湿度、气压 /p /td td width=" 85" p style=" text-align:center " 见附录D /p /td td width=" 267" p style=" text-align:center " HJ/T & nbsp & nbsp 193-2005中附录A表A.3 /p /td /tr tr td width=" 115" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 自动校准设备 /a /p /td td width=" 138" p style=" text-align:center " - /p /td td width=" 85" p style=" text-align:center " 见附录E /p /td td width=" 267" p style=" text-align:center " HJ/T & nbsp & nbsp 193-2005中附录A表A.4 /p /td /tr /tbody /table p strong br/ /strong /p p style=" text-align: center " strong 附录A& nbsp a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 大气环境挥发性有机物监测项目 /a /strong /p table width=" 605" border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr class=" firstRow" td width=" 121" p 序号 /p /td td width=" 123" p 类型名称 /p /td td width=" 395" valign=" top" p style=" text-align:center " 监测项目 /p /td /tr tr td width=" 121" p 1 /p /td td width=" 123" p 监测项目 /p /td td width=" 395" valign=" top" p style=" text-align:left " 非甲烷碳氢化合物、含氧有机物、卤代烃 /p /td /tr tr td width=" 121" p 2 /p /td td width=" 123" p 目标物名称 /p /td td width=" 395" valign=" top" p 1、监测因子:非甲烷碳氢化合物58种& nbsp & nbsp br/ & nbsp & nbsp & nbsp 序号 名称 化合物 化学式 br/ & nbsp & nbsp & nbsp 1 Ethane 乙烷 C2H6 br/ & nbsp & nbsp & nbsp 2 Ethylene 乙烯 C2H4 br/ & nbsp & nbsp & nbsp 3 Propane 丙烷 C3H8 br/ & nbsp & nbsp & nbsp 4 Propene 丙烯 C3H6 br/ & nbsp & nbsp & nbsp 5 isobutane 异丁烷 C4H10 br/ & nbsp & nbsp & nbsp 6 n-Butane 正丁烷 C4H10 br/ & nbsp & nbsp & nbsp 7 Acetylene 乙炔 C2H2 br/ & nbsp & nbsp & nbsp 8 & nbsp & nbsp trans-2-Butene 反—2—丁烯 C4H8 br/ & nbsp & nbsp & nbsp 9 1-Butene 1-丁烯 C4H8 br/ & nbsp & nbsp & nbsp 10 & nbsp & nbsp cis-2-Butene 顺—2—丁烯 C4H8 br/ & nbsp & nbsp & nbsp 11 isopantane 异戊烷 C5H12 br/ & nbsp & nbsp & nbsp 12 Isobutene 异丁烯 C4H8 br/ & nbsp & nbsp & nbsp 13 & nbsp & nbsp 1,3-Butadiene 1,3-丁二烯 C4H6 br/ & nbsp & nbsp & nbsp 14 1-Pentene 1—戊烯 C5H10 br/ & nbsp & nbsp & nbsp 15 Pentane 正戊烷 C5H12 br/ & nbsp & nbsp & nbsp 16 & nbsp & nbsp trans-2-Pentene 反—2—戊烯 C5H10 br/ & nbsp & nbsp & nbsp 17 Isoprene 异戊二烯 C5H8 br/ & nbsp & nbsp & nbsp 18 & nbsp & nbsp cis-2-Pentene 顺—2—戊烯 C5H10 br/ & nbsp & nbsp & nbsp 19 & nbsp & nbsp 2,2-Dimethylbutane 2,2—二甲基丁烷 C6H14 br/ & nbsp & nbsp & nbsp 20 & nbsp & nbsp 2,3-Dimethylbutane 2,3—二甲基丁烷 C6H14 br/ & nbsp & nbsp & nbsp 21 & nbsp & nbsp 2-Methylpentane 2-甲基戊烷 C6H14 br/ & nbsp & nbsp & nbsp 22 & nbsp & nbsp Cyclopentane 环戊烷 & nbsp & nbsp C5H10 br/ & nbsp & nbsp & nbsp 23 & nbsp & nbsp 3-Methylpentane 3-甲基戊烷 C6H14 br/ & nbsp & nbsp & nbsp 24 1-Hexene 1-己烯 C6H12 br/ & nbsp & nbsp & nbsp 25 n-Hexane 正己烷 C6H14 br/ & nbsp & nbsp & nbsp 26 & nbsp & nbsp 2,4-Dimethylpentane 2,4-二甲基戊烷 C7H16 br/ & nbsp & nbsp & nbsp 27 & nbsp & nbsp Methylcyclopentane 甲基环戊烷 C6H12 br/ & nbsp & nbsp & nbsp 28 & nbsp & nbsp 2-Methylhexane 2-甲基己烷 & nbsp & nbsp C7H16 br/ & nbsp & nbsp & nbsp 29 & nbsp & nbsp 2,3-Dimethylpentane 2,3-二甲基戊烷 C7H16 br/ & nbsp & nbsp & nbsp 30 Cyclohexane & nbsp & nbsp 环己烷 C6H12 br/ & nbsp & nbsp & nbsp 31 & nbsp & nbsp 3-Methylhexane 3-甲基己烷 & nbsp & nbsp C7H16 br/ & nbsp & nbsp & nbsp 32 Benzene 苯 C6H6 br/ & nbsp & nbsp & nbsp 33 2,2,4-Trimethylpentane & nbsp & nbsp 2,2,4-三甲基戊烷 C8H18 br/ & nbsp & nbsp & nbsp 34 n-Heptane 正庚烷 C7H16 br/ & nbsp & nbsp & nbsp 35 & nbsp & nbsp Methylcyclohexane 甲基环己烷 C7H14 br/ & nbsp & nbsp & nbsp 36 & nbsp & nbsp 2,3,4-Trimethylpentane 2,3,4-三甲基戊烷 C8H18 br/ & nbsp & nbsp & nbsp 37 & nbsp & nbsp 2-Methylheptane 2-甲基庚烷 C8H18 br/ & nbsp & nbsp & nbsp 38 & nbsp & nbsp 3-Methylheptane 3-甲基庚烷 C8H18 br/ & nbsp & nbsp & nbsp 39 Toluene 甲苯 C7H8 br/ & nbsp & nbsp & nbsp 40 Octane 正辛烷 C8H18 br/ & nbsp & nbsp & nbsp 41 Tetrachloroethylene & nbsp & nbsp 四氯乙烯 C2Cl4 br/ & nbsp & nbsp & nbsp 42 & nbsp & nbsp Ethylbenzene 乙苯 & nbsp & nbsp C8H10 br/ & nbsp & nbsp & nbsp 43 n-Nonane 正壬烷 C9H20 br/ & nbsp & nbsp & nbsp 44 m/p-Xylene 对/间二甲苯(p/m﹚ C8H10/C8H10 br/ & nbsp & nbsp & nbsp 45 o-Xylene 邻﹙O﹚二甲苯 C8H10 br/ & nbsp & nbsp & nbsp 46 Styrene 苯乙烯 C8H8 br/ & nbsp & nbsp & nbsp 47 & nbsp & nbsp Isopropylbenzene 异丙苯 & nbsp & nbsp C9Hl2 br/ & nbsp & nbsp & nbsp 48 & nbsp & nbsp n-Propylbenzene 正丙基苯 & nbsp & nbsp C9H12 br/ & nbsp & nbsp & nbsp 49 & nbsp & nbsp m-Ethyltoluene 3-乙基甲苯 & nbsp & nbsp C9H12 br/ & nbsp & nbsp & nbsp 50 & nbsp & nbsp p-Ethyltoluene 4-乙基甲苯 & nbsp & nbsp C9H12 br/ & nbsp & nbsp & nbsp 51 & nbsp & nbsp 1,3,5-Trimethylbenzene 1,3,5-三甲基苯 C9H12 br/ & nbsp & nbsp & nbsp 52 & nbsp & nbsp O-Ethyltoluene 2-乙基甲苯 & nbsp & nbsp C9H12 br/ & nbsp & nbsp & nbsp 53 & nbsp & nbsp 1,2,4-Trimethylbenzene 1,2,4-三甲基苯 C9H12 br/ & nbsp & nbsp & nbsp 54 & nbsp & nbsp 1,2,3-Trimethylbenzene 1,2,3-三甲基苯 C9H12 br/ & nbsp & nbsp & nbsp 55 & nbsp & nbsp 1,3-Diethylbenzene 1,3-二乙基苯 C10H14 br/ & nbsp & nbsp & nbsp 56 & nbsp & nbsp 1,4-Diethylbenzene 1,4-二乙基苯 C10H14 br/ & nbsp & nbsp & nbsp 57& nbsp Udecane 正十一烷 C11H24 br/ & nbsp & nbsp & nbsp 58& nbsp Dodecane 正十二烷 C12H26 br/ & nbsp & nbsp & nbsp 含氧有机物13种 br/ & nbsp & nbsp & nbsp 序号 化合物 化合物 化学式 br/ & nbsp & nbsp & nbsp 1 acrolein 丙烯醛 C3H4O br/ & nbsp & nbsp & nbsp 2 Propanal 丙醛 C3H6O br/ & nbsp & nbsp & nbsp 3 Acetone 丙酮 C3H6O br/ & nbsp & nbsp & nbsp 4 Acetonitrile & nbsp & nbsp 乙腈 C2H3N br/ & nbsp & nbsp & nbsp 5 MTBE 甲基叔丁基醚 C5H12O br/ & nbsp & nbsp & nbsp 6 Methacrolein & nbsp & nbsp 2-甲基丙烯醛 C4H6O br/ & nbsp & nbsp & nbsp 7 n-Butanal 正丁醛 C4H8O br/ & nbsp & nbsp & nbsp 8 Methylvinylketone & nbsp & nbsp 甲基乙烯基酮 C4H6O br/ & nbsp & nbsp & nbsp 9 Methylethyl & nbsp & nbsp ketone 甲基乙基酮 C4H8O br/ & nbsp & nbsp & nbsp 10 2-pentanone & nbsp & nbsp 2-戊酮 C5H10O br/ & nbsp & nbsp & nbsp 11 3-Pentanone & nbsp & nbsp 3-戊酮 C5H10O br/ & nbsp & nbsp & nbsp 12 n-pentanal正戊醛 C5H10O br/ & nbsp & nbsp & nbsp 13 n-Hexanal 正己醛 C6H12O br/ & nbsp & nbsp & nbsp 卤代烃31种 br/ & nbsp & nbsp & nbsp 序号 化合物英文名称 化合物中文名称 化学式 br/ & nbsp & nbsp & nbsp 1 & nbsp & nbsp Freon114(C2F4Cl2) 氟利昂114 C2F4Cl2 br/ & nbsp & nbsp & nbsp 2 & nbsp & nbsp Chloromethane 氯甲烷 & nbsp & nbsp CH3Cl br/ & nbsp & nbsp & nbsp 3 & nbsp & nbsp Vinylchloride 氯乙烯 & nbsp & nbsp C3H3Cl br/ & nbsp & nbsp & nbsp 4 Bromomethane & nbsp & nbsp 溴甲烷 CH3Br br/ & nbsp & nbsp & nbsp 5 Chloroethane & nbsp & nbsp 氯乙烷 C2H5Cl br/ & nbsp & nbsp & nbsp 6 & nbsp & nbsp Freon11(CFCl3) 氟利昂11 & nbsp & nbsp CCl3F br/ & nbsp & nbsp & nbsp 7 & nbsp & nbsp 1,1-Dichloroethylene 1,1-二氯乙烯 C2H2Cl2 br/ & nbsp & nbsp & nbsp 8 & nbsp & nbsp Freon113(C2F3Cl3) 氟利昂113 C2F3Cl3 br/ & nbsp & nbsp & nbsp 9 Methyl & nbsp & nbsp iodide 碘甲烷 & nbsp & nbsp CH3I br/ & nbsp & nbsp & nbsp 10 & nbsp & nbsp Dichloromethane 二氯甲烷 & nbsp & nbsp CH2Cl2 br/ & nbsp & nbsp & nbsp 11 & nbsp & nbsp 1,1-Dichloroethane 1,1-二氯乙烷 C2H4Cl2 br/ & nbsp & nbsp & nbsp 12 & nbsp & nbsp cis-1,2-Dichloroethylene 顺-1,2-二氯乙烯 C2H2Cl2 br/ & nbsp & nbsp & nbsp 13 Chloroform 氯仿 CHCl3 br/ & nbsp & nbsp & nbsp 14 & nbsp & nbsp 1,1,1-Trichloroethane 1,1,1-三氯乙烷 C2H3Cl3 br/ & nbsp & nbsp & nbsp 15 & nbsp & nbsp Carbontetrachloroide 四氯化碳 CCl4 br/ & nbsp & nbsp & nbsp 16 & nbsp & nbsp 1,2-Dichloroethane 1,2-二氯乙烷 C2H4Cl2 br/ & nbsp & nbsp & nbsp 17 & nbsp & nbsp Trichloroethylene 三氯乙烯 C2HCl3 br/ & nbsp & nbsp & nbsp 17 & nbsp & nbsp 1,2-Dichloropropane 1,2-二氯丙烷 C3H6Cl2 br/ & nbsp & nbsp & nbsp 18 & nbsp & nbsp Bromodichloromethane 溴二氯甲烷 CHBrCl2 br/ & nbsp & nbsp & nbsp 20 & nbsp & nbsp trans-1,3-Dichloropropene 反-1,3-二氯丙烯 C3H4Cl2 br/ & nbsp & nbsp & nbsp 21 & nbsp & nbsp cis-1,3-Dichloropropene 顺-1,3-二氯丙烯 C3H4Cl2 br/ & nbsp & nbsp & nbsp 22 & nbsp & nbsp 1,1,2-Trichloroethane 1,1,2-三氯乙烷 C2H3Cl3 br/ & nbsp & nbsp & nbsp 23 & nbsp & nbsp Tetrachloroethylene 四氯乙烯 C2Cl4 br/ & nbsp & nbsp & nbsp 24 & nbsp & nbsp 1,2-Dibromoethane 二溴乙烷 C2H4Br2 br/ & nbsp & nbsp & nbsp 25 & nbsp & nbsp Chlorobenzene 氯苯 & nbsp & nbsp C6H5Cl br/ & nbsp & nbsp & nbsp 26 & nbsp & nbsp 1,3-Dichlorobenzene 1,3-二氯苯 C6H4Cl2 br/ & nbsp & nbsp & nbsp 27 & nbsp & nbsp 1,4-Dichlorobenzene 1,4-二氯苯 C6H4Cl2 br/ & nbsp & nbsp & nbsp 28 & nbsp & nbsp Benzylchloride 苄基氯﹙氯甲苯)C7H7Cl br/ & nbsp & nbsp & nbsp 29 & nbsp & nbsp 1,2-Dichlorobenzene 1,2-二氯苯 C6H4Cl2 br/ & nbsp & nbsp & nbsp 30 Bromoform 溴仿CHBr3 br/ & nbsp & nbsp & nbsp 31 1,1,2,2-Tetrachloroethane & nbsp & nbsp 1,1,2,2-四氯乙烷 & nbsp & nbsp C2H2Cl4 /p /td /tr /tbody /table p strong br/ /strong /p p style=" text-align: center " strong 附录B& nbsp a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 大气环境监测移动实验室系统 /a /strong strong (NO2、SO2、O3、CO)监测仪器性能指标 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 128" rowspan=" 2" p style=" text-align:center " 检测项目 /p /td td width=" 510" colspan=" 4" p style=" text-align:center " 性能指标 /p /td /tr tr td width=" 128" p style=" text-align:center " NO2分析仪器 /p /td td width=" 128" p style=" text-align:center " SO2分析仪器 /p /td td width=" 128" p style=" text-align:center " O3分析仪器 /p /td td width=" 128" p style=" text-align:center " CO分析仪器 /p /td /tr tr td width=" 128" p style=" text-align:center " 零点噪声 /p /td td width=" 128" p style=" text-align:center " ≤1 ppb /p /td td width=" 128" p style=" text-align:center " ≤1 ppb /p /td td width=" 128" p style=" text-align:center " ≤1 ppb /p /td td width=" 128" p style=" text-align:center " ≤0.25 ppb /p /td /tr tr td width=" 128" p style=" text-align:center " 最低检出限 /p /td td width=" 128" p style=" text-align:center " ≤2 ppb /p /td td width=" 128" p style=" text-align:center " ≤2 ppb /p /td td width=" 128" p style=" text-align:center " ≤2 ppb /p /td td width=" 128" p style=" text-align:center " ≤0.5 ppb /p /td /tr tr td width=" 128" p style=" text-align:center " 量程噪音 /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤1 ppb /p /td /tr tr td width=" 128" p style=" text-align:center " 示值误差 /p /td td width=" 128" p style=" text-align:center " ± 2%F.S. /p /td td width=" 128" p style=" text-align:center " ± 2%F.S. /p /td td width=" 128" p style=" text-align:center " ± 4%F.S. /p /td td width=" 128" p style=" text-align:center " ± 2%F.S. /p /td /tr tr td width=" 128" p style=" text-align:center " 20% 量程精密度 /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤5 ppb /p /td td width=" 128" p style=" text-align:center " ≤0.5 ppm /p /td /tr tr td width=" 128" p style=" text-align:center " 80% 量程精密度 /p /td td width=" 128" p style=" text-align:center " ≤10 ppb /p /td td width=" 128" p style=" text-align:center " ≤10 ppb /p /td td width=" 128" p style=" text-align:center " ≤10 ppb /p /td td width=" 128" p style=" text-align:center " ≤0.5 ppm /p /td /tr tr td width=" 128" p style=" text-align:center " 24h零点漂移 /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 1 ppm /p /td /tr tr td width=" 128" p style=" text-align:center " 24h20%量程漂移 /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 5 ppb /p /td td width=" 128" p style=" text-align:center " ± 1 ppm /p /td /tr tr td width=" 128" p style=" text-align:center " 24h80%量程漂移 /p /td td width=" 128" p style=" text-align:center " ± 10 ppb /p /td td width=" 128" p style=" text-align:center " ± 10 ppb /p /td td width=" 128" p style=" text-align:center " ± 10 ppb /p /td td width=" 128" p style=" text-align:center " ± 1 ppm /p /td /tr /tbody /table p strong br/ /strong /p p style=" text-align: center " strong 附录C& nbsp a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 空气质量可吸入颗粒物自动监测仪 /a /strong strong 技术性能指标 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 425" colspan=" 2" p style=" text-align:center " 测量范围 /p /td td width=" 213" p style=" text-align:center " 0~1mg/m3或0~10 mg/m3(可选) /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 50%切割粒径 /p /td td width=" 213" p style=" text-align:center " 10 μm± 1μm空气动力学直径 /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 最小显示单位 /p /td td width=" 213" p style=" text-align:center " 0.001mg/m3 /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 采样流量偏差 /p /td td width=" 213" p style=" text-align:center " ≤± 5%设定流量/24h /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 仪器平行性 /p /td td width=" 213" p style=" text-align:center " ≤± 7% 或5μg/m3 /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 校准膜重现性 /p /td td width=" 213" p style=" text-align:center " ≤± 2%标准值 /p /td /tr tr td width=" 213" rowspan=" 3" p style=" text-align:center " 与参比方法比较 /p /td td width=" 213" p style=" text-align:center " 斜率 /p /td td width=" 213" p style=" text-align:center " 1± 0.1 /p /td /tr tr td width=" 213" p style=" text-align:center " 截距 /p /td td width=" 213" p style=" text-align:center " 0± 5 μg/m3 /p /td /tr tr td width=" 213" p style=" text-align:center " 相关系数 /p /td td width=" 213" p style=" text-align:center " ≥0.95 /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 输出信号 /p /td td width=" 213" p style=" text-align:center " 模拟信号或数字信号 /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 工作电压 /p /td td width=" 213" p style=" text-align:center " AC & nbsp & nbsp 220V± 10%,50 Hz /p /td /tr tr td width=" 425" colspan=" 2" p style=" text-align:center " 工作环境温度 /p /td td width=" 213" p style=" text-align:center " 0~50 ℃ /p /td /tr /tbody /table p strong br/ /strong /p p style=" text-align: center " strong 附录D& nbsp a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 大气环境监测 /a /strong strong 移动实验室气象设备技术性能指标 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 159" p style=" text-align:center " 测量项目 /p /td td width=" 160" p style=" text-align:center " 测量范围 /p /td td width=" 160" p style=" text-align:center " 测量精度 /p /td td width=" 160" p style=" text-align:center " 输出信号 /p /td /tr tr td width=" 159" p style=" text-align:center " 风速 /p /td td width=" 160" p style=" text-align:center " 1~60 m/s /p /td td width=" 160" p style=" text-align:center " ± 0.3m/s /p /td td width=" 160" rowspan=" 5" p style=" text-align:center " 模拟信号或数字信号 /p /td /tr tr td width=" 159" p style=" text-align:center " 风向 /p /td td width=" 160" p style=" text-align:center " 0~360 /p /td td width=" 160" p style=" text-align:center " ± 3° /p /td /tr tr td width=" 159" p style=" text-align:center " 温度 /p /td td width=" 160" p style=" text-align:center " -40~60 ℃ /p /td td width=" 160" p style=" text-align:center " ± 0.2℃ /p /td /tr tr td width=" 159" p style=" text-align:center " 湿度 /p /td td width=" 160" p style=" text-align:center " 0~100%RH /p /td td width=" 160" p style=" text-align:center " ± 2% /p /td /tr tr td width=" 159" p style=" text-align:center " 气压 /p /td td width=" 160" p style=" text-align:center " 300~1200 hPa /p /td td width=" 160" p style=" text-align:center " ± 1 hPa /p /td /tr /tbody /table p strong br/ /strong /p p style=" text-align: center " strong 附录E 大气环境监测移动实验室自动校准设备技术性能指标 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" tbody tr class=" firstRow" td width=" 159" p style=" text-align:center " 设备名称 /p /td td width=" 160" p style=" text-align:center " 性能指标 /p /td td width=" 160" p style=" text-align:center " 技术要求 /p /td td width=" 160" p style=" text-align:center " 备注 /p /td /tr tr td width=" 159" rowspan=" 5" p style=" text-align:center " 多气体校准装置 /p /td td width=" 160" p style=" text-align:center " 稀释比例 /p /td td width=" 160" p style=" text-align:center " 1/200~1/2000 /p /td td width=" 160" rowspan=" 12" p style=" text-align:center " 1.要求所有的稀释源使用含氧量为20.9± 0.2%的无干扰干燥气体; br/ & nbsp & nbsp & nbsp 2.渗透室温度为渗透室中渗透管周围的温度; /p /td /tr tr td width=" 160" p style=" text-align:center " 流量计准确度 /p /td td width=" 160" p style=" text-align:center " ± 1% /p /td /tr tr td width=" 160" p style=" text-align:center " 渗透室温度准确度 /p /td td width=" 160" p style=" text-align:center " ± 0.1 ℃ /p /td /tr tr td width=" 160" p style=" text-align:center " 臭氧发生准确度 /p /td td width=" 160" p style=" text-align:center " ± 2% /p /td /tr tr td width=" 160" p style=" text-align:center " 工作环境 /p /td td width=" 160" p style=" text-align:center " 0~40 ℃ /p /td /tr tr td width=" 159" rowspan=" 7" p style=" text-align:center " 零气发生器 /p /td td width=" 160" p style=" text-align:center " 用于 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" SO2监测分析仪 /a /p /td td width=" 160" p style=" text-align:center " SO2体积分数<0.5× 10?9 /p /td /tr tr td width=" 160" p style=" text-align:center " 用于 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" NO2监测分析仪 /a /p /td td width=" 160" p style=" text-align:center " NOx体积分数<0.5× 10?9 /p /td /tr tr td width=" 160" p style=" text-align:center " 用于 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" O3监测分析仪 /a /p /td td width=" 160" p style=" text-align:center " O3体积分数<0.5× 10?9 /p /td /tr tr td width=" 160" rowspan=" 4" p style=" text-align:center " 用于 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" CO监测分析仪 /a /p /td td width=" 160" p style=" text-align:center " NOx<5× 10?9 /p /td /tr tr td width=" 160" p style=" text-align:center " O3体积分数<1× 10?9 /p /td /tr tr td width=" 160" p style=" text-align:center " 不含HC /p /td /tr tr td width=" 160" p style=" text-align:center " CO体积分数<10× 10?9 /p /td /tr /tbody /table p br/ /p
  • “高性能免疫现场快速检测系统研发”项目正式启动 亚辉龙任牵头单位
    12月16日,由亚辉龙(688575)任牵头单位、中国医学科学院阜外医院周洲教授担任项目负责人的“高性能免疫现场快速检测系统研发”项目启动会在深圳成功召开,该项目属于“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项,由一支产学研医检的多学科优势团队共同参与,本次项目启动会旨在交流心脑血管诊断研究进展,讨论快速免疫检测系统关键技术与项目实施方案,以保证高质量完成重点专项。  中国科学院院士、南方科技大学代理副校长顾东风,加拿大健康科学院院士、香港中文大学(深圳)医学院创院院长郑仲煊,国家卫健委中国生物技术发展中心副主任郑玉果,深圳市发展和改革委员会副主任王浚,深圳市科技创新委员会副主任钟海,龙岗区人民政府副区长张玉庆等领导出席会议。在数百名专家和嘉宾的共同见证下,“高性能免疫现场快速检测系统研发”项目正式启动,并在会议上成立了项目指导专家组。  专家代表在会议提问环节向记者表示,心脑血管疾病是中国居民致死率最高的疾病之一,在急性心梗的死亡病例中,约有50%-70%的患者都是因为在到达医院前没能得到及时正确的抢救而耽误了救治,高性能免疫现场快速检测便成为了心脑血管急危重症临床诊疗的必要手段。针对现场快速免疫检测准确定量的临床需求,项目通过关键技术攻关,构建并优化高性能免疫现场快速检测系统,完成多种心脑血管标志物检测试剂的研发,致力于解决现场全血检测干扰多、微量检测灵敏度低、检测环节点多耗时长等问题,整体提升现有危急重症等特定场景下的医疗服务能力。  据亚辉龙介绍,项目重点攻关的技术之一就是开发基于微流控化学发光技术的心脑血管疾病检测系统,涵盖仪器、试剂、芯片三大部分,这也是公司目前重点布局的研究方向。微流控免疫检测技术是一种对微纳升流体进行操控的新兴科学技术,相比以往大部分疾病检测需要在特定的医护条件下在大型仪器上进行抽血、上机、离心等复杂操作,微流控技术可将样本分离和免疫检测的多个步骤集成到微小芯片上,可仅用一台电脑主机大小的仪器实现即时检测,用血量也大大减少。与同类其他技术相比,微流控表体比大、传质短、传热快、反应体系转化率高,具有样本用量少、分析速度快和易实现多联检的优势,为心脑血管多标志物现场快速检测提供了一个新的平台,为抢救病人争夺了宝贵的黄金时间。公司负责人表示,该项目预计在4年的执行期内完成多项相关创新产品的发布,实现微流控芯片和光检测装置国产化。  资料显示,亚辉龙是国产化学发光的领导品牌之一,在自身免疫、生殖健康、糖尿病、感染性疾病等诊断领域拥有突出优势,拥有国内领先的体外诊断产品研发能力和成果转化能力。  亚辉龙董事长胡鹍辉表示,本项目的获批,是国家对亚辉龙在生物医药检测领域的研发和应用能力的认可,体现了其在技术创新实力、组织管理能力和人才积累等方面的优势,有利于亚辉龙进一步加强微流控前沿生物检测技术研发,对于全面提升心脑血管病急危重症诊疗能力具有重要意义。“未来,亚辉龙将继续坚持做好研发创新,主动扛起社会责任的大旗,发扬优势和特色,进一步深化与各高校、医院及国内外科研机构的紧密合作,合力推动”产、学、研、用“一体化发展,共同探索和推进前沿科学技术的研究和应用,打造更多具有创新技术和竞争力的产品,为解决百姓看病难、看病贵做出更多努力,为国家医疗卫生事业的高质量发展持续贡献力量!”
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 安捷伦科技加强版溶出度工作站软件实现更出色的仪器控制和更好的药物成分监测性能
    安捷伦科技加强版溶出度工作站软件实现更出色的仪器控制和更好的药物成分监测性能 2013 年 8 月 1 日,北京 &mdash 安捷伦科技公司(纽约证交所:A)今日发布了加强版溶出度工作站软件,具有更好的数据整合、分析方法更改控制和仪器监控功能,可有效控制多个溶出系统。溶出度测量是广泛用于制药领域的一种技术,用于测定纯的活性药物成分溶解的速率。 该软件支持实验室在一个界面上完成所有溶出方法和检测报告的建立、编辑、检索、调取、执行和存档。为了提升效率,新增功能使用户能够: 在同一位置保存和维护电子数据,还可选择将信息导出至实验室信息管理系统或是商业软件,如 SAP Crystal Reports 或 Microsoft Excel 使用可选仪器模块时可监测溶出仪所受震动、周围环境影响以及协助故障调查 遵循最新的加强版机械认证指南,如在每次测试前验证附件 新增自动化系统清理步骤,每次分析方法运行结束后自动进行,有效延长溶出仪的使用寿命 安捷伦溶出系统业务市场总监 Allan Little 说道:&ldquo 其中一项最重要的新增功能是为溶出度工作站软件增加了震动监控,尽管目前还没有关于震动测量的指导标准,但是让实验室了解到震动可能对他们的溶出度测试结果产生影响也是很重要的。基于 x 轴、y 轴和 z 轴的震动基线值,可持续监测溶出系统及其周围环境。这一新增功能可用于在研究初期针对特定方法建立内部容差,或是作为成熟方法的质量控制的其中一项。&rdquo 溶出度工作站软件可为所有安捷伦溶出仪整理、执行和管理实验方法和信息,包括 Agilent 708-DS、709-DS、BIO-DIS、Apparatus 7 和溶出取样系统。连续的审计跟踪功能可为实验方法和系统操作提供可靠的可追踪性,大幅减少手动记录信息所花的时间。 如需了解溶出度工作站软件的更多信息,请访问 www.agilent.com/lifesciences/dissolutionsoftware. 关于安捷伦科技公司 安捷伦科技(NYSE 代码:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com/go/news.
  • 口腔膜剂力学性能的检测
    口腔膜剂是指药物与适宜的成膜材料经加工制成的膜状制剂,供口服和粘膜使用。良好的机械性能能防止膜剂使用中撕扯破损,保持膜剂的完整性和剂量的准确性。成膜材料、膜剂的厚度以及增塑剂都是膜剂机械性能的影响因素,通过科学的性能检测能实现膜剂机械性能的合理控制。2020版《中国药典》对膜剂的定义为药物与适宜的成膜材料经加工制成的膜状制剂,供口服或粘膜使用。今天我们依据《口腔膜剂的制备与质量评价》来详细的了解一下口溶膜剂的性能检测项目及方法。 口腔膜剂在取用、贴敷过程中受到外力的拉扯,若韧性和强度不够,往往易发生撕裂断裂。这就体现了力学性能的重要性。 口腔膜剂的力学性能指标主要包括抗拉强度和断裂伸长率,反映了膜剂材料在拉断时截面上承受的最大应力值,以及膜剂材料受力拉伸时断裂时增加的长度与原始长度的比值。测试仪器: ETT-AM电子拉力试验机  抗拉强度和断裂伸长率的测试方法一般参照GB/T1040-2006《塑料拉伸性能的测定》:将膜剂裁切成5个长3cm,宽2cm的试样,每个试样采用ETT-AM智能电子拉力机纵向拉伸,选择“拉伸强度"模式,拉伸速度为10mm/min,直至膜剂断裂。仪器自动计算抗拉强度和断裂伸长率。为了提升口腔膜剂的力学性能,生产企业在制剂处方中加入一定比例的增塑剂,并适当增加膜剂的基本厚度。当然,口腔膜剂厚度也应控制在合理的范围内,防止其过分延展造成药剂分量不准。厚度仪采用PTT-03A厚度测试仪口腔膜剂厚度采用接触式测量方法,首先仪器清洁测量头,取宽100mm、无褶皱和其他缺陷的试样放在测试台上,开始测量。仪器自动计算试样结果。
  • 泰林生物牵头承担的“十三五”国家重大科学仪器设备开发专项——“高性能智能化无菌检测仪的开发和应用”项目顺利通过中期验收
    2018年9月12日,国家科技部在杭州组织召开“十三五”国家重点研发计划重大科学仪器设备开发专项——“高性能智能化无菌检测仪的开发和应用”项目中期现场检查会议,科技部高技术研究开发中心有关负责同志和专家组出席会议。浙江泰林生物技术股份有限公司作为项目牵头承担单位,与浙江省计量科学研究院、浙江大学、杭州电子科技大学、正大青春宝药业有限公司等主要参与单位参加会议。 项目负责人夏信群汇报了自立项两年以来的研究开发情况和各项阶段性成果。检查组专家审阅了项目的相关材料,听取了项目组的情况汇报并进行了质询,对阶段性研究成果给予肯定,一致同意通过中期检查。此外,检查组专家也对项目组的后续工作计划提出了积极建议。 泰林生物承担的高性能智能化无菌检测仪开发和应用项目,采用关键技术研究-模块研究-系统集成-应用研究-工程化产业化的技术实施路线,项目研究成果的应用将大幅提升我国无菌检查的效率和水平,并为突发事件的应急检测提供支撑,推动食品、药品安全事业发展进步。
  • 国家重点研发计划“重大科学仪器设备研发”专项“大型复杂结构件力学性能全域微磁无损检测仪”项目正式启动
    p    strong 仪器信息网讯 /strong 2019年3月17日,钢铁研究总院牵头的国家重点研发计划“重大科学仪器设备开发”专项“大型复杂结构件力学性能全域微磁无损检测仪”项目启动会在京召开。 /p p   启动会在项目牵头单位钢铁研究总院召开。中国工程院王海舟院士,中国分析测试协会吴波尔副理事长,国务院国资委综合局科技创新处方磊处长,科技部高技术中心“专项办”项目主管赵春洋博士,科技部重大仪器专项总体专家组副组长、中科院微电子所夏洋研究员,项目责任专家、中国航空工业集团公司北京长城航空测控技术研究所杨超研究员,以及项目单位主要领导、“两组一委”专家等50余人参加本次会议。仪器信息网作为合作媒体参加并报道了此次项目启动会活动。 /p p style=" text-align: center " /p
  • 防水性能检测标准和方法
    标准集团(香港)有限公司专业生产(供应)销售织物防水性能测试系列产品,公司具有良好的市场信誉,专业的销售和技术服务团队,凭着经营织物防水性能测试仪器系列多年经验,熟悉产品的各项技术支持,供货周期短,价格最优,欢迎来电咨询!1. 防水性能测试标准  纺织品防水性能检测也称抗水性检测,主要分为抗水渗透性(静水压)检测、表面拒水性(喷淋)检测和淋雨测试,国内外常用的检测方法见下表1:表1 国内外主要检测标准   上表中的国家标准和日本JIS方法体系的技术方法基本上等效采用ISO,而AATCC方法检测方法与ISO 的主要不同之处在于:AATCC的静水压检测只要求至少有3个样品,而喷淋检测的评级采用打分制且可评中间级别 而淋雨检测使用不同的淋雨仪且只衡量吸水纸的质量变化。2. 防水性能测试方法2.1 静水压(ISO 811-1981)2.1.1 应用范围及原理  静水压检测适用于测定紧密织物(如帆布、油布、帐篷布及防雨服装布等)水渗透时的压力,理论上纺织品的静水压(P)可以用以下公式求得:  式中:  γL——水的表面能   θ ——微孔内壁与水的接触角   r ——微孔半径   g ——重力加速度。  由公式可见,当90°θ180°时,θ越大,织物表面能越低,微孔的半径(r)越小,静水压(P)越高。而静水压的检测结果在样品和试验液体一定的条件下,与水温、测试面积和水压上升速率有关。试验结果表明,织物的静水压性能中大约有52%是由织物表面孔径决定的,有44%是由织物表面能决定的,有4%是由其他因素决定的。故防水级别要求高的织物在织物的表面必须有微小而均匀的孔和非常低的表面能。2.1.2 试验仪器  耐静水压测试仪,如图1。  图1 耐静水压测试仪2.1.3 试验步骤及结果  在织物有不同部位取5块代表性试样,一般情况下,水压上升速率选0.59kPa/min,水温为20℃,按规定在标准大气条件下调湿试样后,织物试验面与水接触,对试样施加递增的水压,并不断观察渗水的现象,记录织物上第3处渗水时的静水压值,重复测试取平均值。检测结果的计量单位用kPa和Pa表示。结果越大,表明抗静水压性能越好。2.2 喷淋试验(ISO 4920-1981)2.2.1 应用范围和原理  喷淋检测适用于测定各种已经或未经拒水整理织物表面抗湿的能力。该性能表示液体在纺织品表面的润湿情况,与检测液体和纺织品表面的表面能和固液接触角θ有关。根据Young方程式:  式中:  θ——固-液-气三相边界处的接触角   γsv——固体与气体界面的表面能   γsl——固体与液体界面的表面能   γlv——液体与气体界面的表面能。  由公式可见,γsv一定时,γlv越小,θ越小,液体越容易润湿固体。  因而在试样、液体种类和温度一定的条件下,喷淋检测的试验结果与检测液体流速、样品在仪器上如何摆放等有关。2.2.2 试验仪器  喷淋式拒水性能测试仪,如图2。  图2 喷淋式拒水性能测试仪2.2.3 测试步骤及结果  在织物有不同部位至少取3块具有代表性的试样。一般情况下,水温为20℃,按规定在标准大气条件下调湿试样后,织物试验面与水接触接受喷淋,试样经向与水流方向平行。将250ml的水迅速而平衡地注入漏斗中,淋水一停,迅速使夹持器连同织物试验面朝下几乎成水平,轻轻敲打2次,根据标准文字描述或图片评定观察到的试样润湿程度的级别,从5级到1级,5级最佳,1级最差,不评中间等级,评级由至少2名有喷淋评级经验的检测人员进行。重复测试获得3个试验数据,报告每个测试样品的试验结果。2.3. 淋雨试验(ISO 9685-1991)2.3.1 应用范围及原理  淋雨检测适用于测定织物在运动状态下经受阵雨的防水性能,其中包括表面沾湿和纺织品润湿吸收水分的能力,在拒水性原理的基础上,还有纺织品润湿原理,可用Young-Laplace’s方程解释:  式中:  γ——试验液体的表面张力   r ——测试孔的半径   θ——润湿液体对孔壁的接触角。  由上式可见,纺织品润湿吸水的检测结果在样品与试验液体一定的条件下,与水温、测试面积和水压有关。2.3.2 试验仪器  邦迪斯门淋雨性测试仪,如图3。  图3 邦迪斯门淋雨性测试仪2.3.3 测试步骤及结果  在织物上至少取4块代表性试样,按规定在标准大气下调湿样品。试验或校验前,先校正流量 ,移上挡雨板,称量调湿后试样的质量(m1)。试样的测试面平整无张力地放于样杯上,用夹样环夹住,拉开挡雨板,使试样受淋10min。用参比样照目测评定试样的拒水性(类似喷淋检测的评级),试样离心脱水15s,立即称出其质量(m2)。计算吸水率(W),以质量百分比表示,公式如下:3. 性能评价  目前,国际上纺织品的防水检测方法中均没有对防水性能评价的规定,相关检测机构对纺织品防水性能的评价往往是用户根据纺织品的种类和用途来确定检测要求。纺织品的用途和档次不同导致了防水性能有较大差异,评价要求也不同。由于纺织品的防水与透湿性能往往是一对矛盾的共同体,防水性能好的产品的透湿性能相对较差。目前,防水和透湿性能都好的产品往往是最高档的产品,所以也极大限制了防水纺织品的使用范围。  国际上著名的防水纺织品品牌,如:“Teflon”“Scotchgard”“Gore-Tex”等品牌检测认证程序,往往是根据服用纺织品、家居纺织品或产业用纺织品等不同用途来确定产品的具体性能指标要求。美国军用标准中防水纺织产品的耐水压最低要求为13.68kPa,日本自卫队雨衣的耐水压在13.73kPa以下。我国公共安全行业标准GA 10-1991规定,防护服抗渗水内层耐静水压不得小于3.92kPa。而ASTM D3781要求:织物拒水性水洗前应达到4级以上,一次水洗后仍能达到3级以上 淋雨检测的要求往往是吸水质量最大为1g。GB 12799要求纺织品水洗前拒水性达到5级,水洗30次仍至少为≥1级。  更多关于 织物防水性能测试仪器资料信息,请关注:http://www.standard-groups.cn/chanpin/zwjfz/gnxcs/1005.html   标准集团(香港)有限公司专注于检测仪器行业13年,有着丰富的技术经验积累和众多成功的案列,同全国各大企业有着广泛的合作关系,服务和产品质量一流、我们的仪器,价格合理、品质保障、供货周期短服务热情周到,欢迎来电咨询 座机:021-64208466 手机:13671843966。
  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。   高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。   经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • 增加近千台仪器设备,AMD将在苏州扩建高性能CPU封测项目
    近日,苏州通富超威半导体有限公司公示了《苏州通富超威半导体有限公司高性能中央处理器等集成电路封装测试项目》。公示信息显示,苏州通富超威半导体有限公司将在江苏省苏州工业园区苏对高性能中央处理器等集成电路封装测试项目进行扩建,总投资达18.97062亿元。据了解,超威半导体技术(中国)有限公司成立于2004年3月,位于苏州工业园区苏桐路88号,是尖端的微处理器(CPU)制造企业,主要从事微处理器(CPU)、集成电路等的封装、测试,是一家有着世界顶级设备和优秀管理人员的现代化工厂。2016年05月23日,该公司名称变更为苏州通富超威半导体有限公司。苏州通富超威半导体有限公司目前主要进行CPU的生产。项目于2010计划建设13条新型可控坍塌芯片连接技术封装生产线,最终形成年产和测试13000万颗CPU的能力,但实际只建成及验收 5 条封装生产线,实际年产CPU5000万颗。由于市场需求发生变化,为抢占市场份额,企业拟购置新设备,采用倒装封装技术及先进测试技术,在新增封装线的同时对现有封装工艺五条线进行技术改造,调整现有产能,建成后预计最终年产CPU(中高端集成电路封装)1.4 亿颗。同时,本项目还将引进晶圆研磨机,用于加工半导体晶圆,使晶圆的尺寸达到公差范围内,预计年研磨片数4.0万片。同时购入圆片级测试机,新增晶圆级测试工艺,改造完成后有助于本土集成电路产业链的延伸,实现企业在晶圆制造后的全制程能力,预计可实现年产能5.0万片。根据公示信息透露出的本次扩建涉及到的设备信息,估计变化量达近千台。该项目涉及CPU封装工艺流程、产品测试工艺流程及晶片测试工艺流程等。CPU封装工艺流程晶圆检测:在高倍显微镜下对每叠芯片进行抽检,其余部分用裸眼全检,检测有没有焊球损坏或焊球变形,芯片碎裂或芯片背面损坏情况,同时在晶圆表面贴上晶圆胶带。 激光开槽:使用激光开槽机在激光切割保护液的保护下对晶圆进行开槽,随后使用纯水对晶圆进行冲洗。 机械切割:使用机械切割机对开槽后的晶圆进行进一步切割,同时使用纯水对晶圆进行冲洗、降温。UV固化:UV固化机对晶圆表面进行固化使表面膜跟晶圆更加贴合。抓取分拣:使用晶圆分拣机将晶圆按性能分拣归类。基板烘烤:使用基板烘烤机在125℃(电加热)条件下对基板烘烤约 2.5h,使其拥有更好的绝缘度。锡膏印刷:从干燥箱中取出已经烘烤结束的基板,冷却到室温,喷洒助焊剂,印刷锡膏;使用完成后的钢网需进行清洁,使用沾有异丙醇的擦拭纸进行擦拭。贴电容、贴芯片、回流焊:使用电容贴片机、晶圆贴片机分别将电容、晶圆芯片摆放在焊接位置,采用回流焊接的方式,利用热风和红外高温使焊接处的锡膏融化、回流、冷却使接点焊接牢固,焊接电容、芯片;随后进行检测,若有焊接不牢固产品,则用无尘纸沾取少量异丙醇对焊点处进行人工擦拭,然后进行返工。助焊剂清洗1:将助焊剂清洗剂与纯水按照一定比例进行配比,使用助焊剂清洗机对焊接后的半成品进行冲洗。底封胶填装:利用毛吸现象原理,使用底封胶填充机在晶元和基板间填充粘胶,来填充焊接球与基板间的缝隙,减少热应力的危害。固化:为保护电容,部分产品继续填充紫外线固化剂,后在 165℃(电加热)条件下 对半成品烘烤一定时间。锡球植球、回流焊:使用锡球植球将锡球摆放在焊接位置并喷洒助焊剂,采用回流焊接的方式,利用热风和红外高温使焊接处的锡球融化、回流、冷却使接点焊接牢固。 助焊剂清洗2:焊接后送入清洗槽内浸泡 5-10min,清洗槽内为溶有清洗剂的纯水 (50℃),将其表面粘附的助焊剂清洗干净。开闭路测试:通过开路和闭路测试,检测封装工艺是否完好,此过程会产生一定量的不良品,其中智能移动终端及图像处理集成电路及高性能中央处理器集成电路测试完成后合格品进行包装入库,CPU 流入下一工序。点胶、加盖子、烘干:使用点胶机在基板的四周点上粘胶,并用热传导贴胶机在芯片背面刷热传树脂,同时用贴盖机对集成电路加上散热盖,在烘干炉里加热烘干。产品测试工艺流程测试工艺流程1:封装后的集成电路经功能性测试、系统测试、激光打标、质量抽检、外观检测、Pin 脚测试后包装入库,测试过程均会产生一定量的不良品,外观检测时用无尘纸沾取少量无 水乙醇对进行人工擦拭(擦拭灰尘)。测试工艺流程2:对需要测试的产品进行登记记录,使用 X-ray 设备对需要进行检测的产品进行 X 光照 射进行分析,使用盐酸进行破坏性测试,根据实验结果对分析的结果进行分析并出具实验报告。晶片测试工艺流程来料接收:根据物流的到料信息,进行晶圆的到料接收,物料收入后,存放于氮气柜中。 备料:根据排料计划进行提前准备。 来料检查:对来料晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插, 有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失等异常。 探测:晶圆探测是对晶片上的每个晶粒进行针测,在检测头装上探针,与晶粒上的接点接触,测试其电性能力和电路机能,不合格晶粒会被标记淘汰,不再进行后端的一些制程,以免增加制造成本。在探针的正常维护和修理过程中,会使用无尘布沾取少量酒精对针处进行人工擦拭。出站检查:对测试后的晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插,有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失,针痕伤害等异常。存储:将需要出货的晶圆放置在氮气柜中存储。打包:将晶圆、干燥剂、湿度指示卡放入静电袋中,贴上晶圆信息的标签。若铝箔袋破损、标签信息错误,或者湿度指示卡变色,都需要废弃。出货检查:确认打包后的晶圆实物与标签一致,且标签完整,合格品厂内自用。
  • 力学性能的检测拉力试验机在医学、药业的应用
    口腔膜剂是指药物与适宜的成膜材料经加工制成的膜状制剂,供口服和粘膜使用。良好的机械性能能防止膜剂使用中撕扯破损,保持膜剂的完整性和剂量的准确性。成膜材料、膜剂的厚度以及增塑剂都是膜剂机械性能的影响因素,通过科学的性能检测能实现膜剂机械性能的合理控制。 2020版《中国药典》对膜剂的定义为药物与适宜的成膜材料经加工制成的膜状制剂,供口服或粘膜使用。今天我们依据《口腔膜剂的制备与质量评价》来详细的了解一下口溶膜剂的性能检测项目及方法。口腔膜剂在取用、贴敷过程中受到外力的拉扯,若韧性和强度不够,往往易发生撕裂断裂。这就体现了力学性能的重要性。口腔膜剂的力学性能指标主要包括抗拉强度和断裂伸长率,反映了膜剂材料在拉断时截面上承受的最大应力值,以及膜剂材料受力拉伸时断裂时增加的长度与原始长度的比值。  抗拉强度和断裂伸长率的测试方法一般参照GB/T1040-2006《塑料拉伸性能的测定》:将膜剂裁切成5个长3cm,宽2cm的试样,每个试样采用ETT-AM智能电子拉力机纵向拉伸,选择“拉伸强度"模式,拉伸速度为10mm/min,直至膜剂断裂。仪器自动计算抗拉强度和断裂伸长率。为了提升口腔膜剂的力学性能,生产企业在制剂处方中加入一定比例的增塑剂,并适当增加膜剂的基本厚度。当然,口腔膜剂厚度也应控制在合理的范围内,防止其过分延展造成药剂分量不准。厚度仪采用PTT-03A厚度测试仪口腔膜剂厚度采用接触式测量方法,首先仪器清洁测量头,取宽100mm、无褶皱和其他缺陷的试样放在测试台上,开始测量。仪器自动计算试样结果。设备图片: ETT-AM智能电子拉力机
  • 青岛众瑞-口罩的防护性能检测方案
    防霾利器之【口罩】背后的那些事儿霾核心物质为空气中悬浮的灰尘颗粒,气象学上称为气溶胶颗粒。防霾口罩?一般指PM2.5口罩,指能有效过滤PM2.5微粒的口罩,口罩的密闭性决定了滤过悬浮颗粒分子的能力。一根头发丝的横截面,可容纳二十个PM2.5微粒。因此如此细小的颗粒物,普通棉布口罩和纱布口罩是无法进行拦截的。而且,目前棉布、纱布口罩常见的结构,导致口罩无法与佩戴者面部有效密合,即密闭性不佳,颗粒物不仅可以从口罩穿透,还能从口罩与面部的缝隙处通过。另外PM2.5等颗粒物有油性和非油性之分。我们在雾霾天里所遭遇的主要是非油性颗粒物,而油性颗粒物主要出现在厨房油烟、柴油发动机的尾气、炼油工业等环境中。如今口罩已经成为“雾霾天”外出的必备品,在让人措手不及的大面积雾霾中,全国口罩销量井喷式增长。然而对于市场上琳琅满目的防霾口罩~小瑞也心存疑虑哪一种真的能起到防霾的作用呢?(材质不同,对雾霾的过滤效果也不同)哪一种又真的适合自己呢?明星爆款就真的好用吗?那么多的型号都是什么意思?各种指标又代表了什么?......在人们首先反应上,选择标有PM2.5的就可以呗,因为据说这样的就防雾霾......然而小小口罩背后,还有很多我们不知道的事儿~口罩防护性能=高过滤效果?KN系列是中国标准,N系列是美国标准,FFP系列是欧洲标准,数字越大防护等级也越高,即FFP3>FFP2=N95=KN95>KN90。密闭性(面部贴合度)有效防护的前提是密合,戴口罩时,口罩和脸部的贴合部位之间如果存在泄漏,即使口罩滤料的过滤性能好也是徒劳。所以选择密合良好的口罩比选择非常高的过滤效率的口罩就更有意义。呼吸阻力另外,如果口罩的过滤效率越高,通常口罩对呼吸气流的阻力也越大,相对容易产生不舒适感,进而会影响佩戴的时间长短。▲在空气污染超标的情况下,空气污染物无时无处不在,所以在确保防护口罩具备了有效的基本的防护功能后,应尽量选择适合自己脸型的、呼吸阻力较低的、佩戴整体舒适感较强的口罩,帮助自己更容易适应佩戴口罩,也才能更长时间地避免接触空气污染物。---如何检测---上述这些判别口罩防护效能的维度,需要通过专门的仪器来进行检测。过滤效率ZR-1002型口罩颗粒物过滤效率及呼吸阻力检测仪是在体积为500L自净检测舱内安放国标头模,将待检口罩佩戴在头模上,通过发生中值直径为0.6μm、发生浓度为25mg/m3的盐性气溶胶,和中值直径为0.3μm、发生浓度为25mg/m3的油性气溶胶输入自净检测舱内,头模做正弦曲线模拟呼吸,利用上下游光度计采样检测口罩前和口罩后盐性气溶胶和油性气溶胶的浓度,从而计算口罩颗粒物的过滤效率,并自动检测呼吸阻力。执行标准GB/T6165-2008 高效空气过滤器性能试验方法 效率和阻力 颗粒物防护效果的技术要求和测试方法GB/2626-2006 呼吸防护用品 自吸过滤式防颗粒物呼吸器GB/T 32610-2016 日常防护型口罩技术要求ZR-1000型口罩细菌过滤效率(BFE)检测仪主要性能指标符合《医用外科口罩技术要求》YY0469-2011中附录B细菌过滤效率(BFE)试验方法第B.1.1.1试验仪器的要求,并同时符合美国试验材料学会ASTMF2100、ASTMF2101、欧洲EN14683标准中规定的要求。负压柜内置蠕动泵,A、B两路六级安德森(Andersen),双气路同时对比采样方法,提高了采样的准确性。呼吸阻力ZR-1210型口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力。适用于口罩生产厂家、国家劳动防护用品检验机构对口罩产品进行相关的检测和检验。自动恒流控制,样品自动合格判定。合格判定压力差、样品编号等参数均可设置。执行标准GB2626-2006 呼吸防护用品——自吸过滤式防颗粒物呼吸器密闭性ZR-1220型口罩密合度测试仪是一套口罩/呼吸器密合度测试的专用仪器,同时兼容OSHA和国标《GB19083-2010医用防护口罩技术要求》中关于口罩密合度测试的要求。采用凝结核粒子检测,保证高检测精度。支持自动清洗测量腔,气路可自动切换,使用简单快速。有关众瑞研制的口罩及防护器材检测设备的更多详细介绍,欢迎移步展台查看或给小瑞留言呦~
  • 仪器情报,科学家研发高性能反钙钛矿X射线探测器!
    【科学背景】随着X射线探测技术的不断发展,如何提高探测器的性能成为了研究的热点。X射线在医学成像、安全筛查、无损检测和科学研究等领域中扮演着至关重要的角色,因此开发高性能的X射线探测器对于提升这些应用的准确性和效率具有重要意义。在各种探测技术中,半导体直接探测器因其高空间分辨率和简便的系统配置而被广泛关注。特别是卤化物钙钛矿因其优异的X射线吸收系数、低陷阱密度和较高的迁移率-寿命(μτ)乘积,成为了高度灵敏的X射线探测材料的有力候选者。然而,尽管钙钛矿材料在灵敏度和探测性能方面表现优异,但在实际应用中仍面临着许多挑战。首先,三维(3D)钙钛矿通常存在高暗电流、高检测限以及严重的离子迁移问题,而低维钙钛矿则表现出电荷传输受限、X射线灵敏度较低的问题。这些问题使得将所有所需的探测器性能集成到单一材料中变得十分困难。在半导体物理的角度,高灵敏度需要大的μτ乘积,而低暗电流和低检测限则要求高电阻率。由于材料的μτ乘积和电阻率之间存在权衡,材料的载流子寿命和浓度比值(τ/n)定义了性能的上限,因此,突破这一权衡需要提高材料的内在载流子寿命。为了解决这些挑战,江西理工大学叶恒云教授课题组联合华中科技大学牛广达教授课题组携手提出了一种新型有机-无机混合反钙钛矿((2-Habch)3Cl(PtI2)),该材料具有间接跃迁和带边缘低轨道对称性的特征。通过减少电子和空穴波函数的重叠,这种材料实现了前所未有的超长载流子寿命(3 ms),打破了μτ乘积和电阻率之间的权衡。具体而言,(2-Habch)3Cl(PtI2)展现了6.25 × 10&minus 3 cm² V&minus 1的高μτ乘积和1012 Ω cm的高电阻率,使得该材料在X射线探测器中实现了超低暗电流(0.21 nA cm&minus 2)、高灵敏度(1.0 × 10⁴ µ C Gyair&minus 1 cm&minus 2)、超低检测限(2.4 nGyair s&minus 1)和优良的操作稳定性。这些突破性进展为下一代X射线探测系统的发展奠定了坚实的基础。【仪器亮点】1. 实验首次合成了有机-无机混合反钙钛矿((2-Habch)3Cl(PtI2)),并获得了超长载流子寿命 3 ms。这种反钙钛矿材料具有间接跃迁和低轨道对称性,使其能够突破传统材料的性能极限。2. 实验通过优化材料的电子-空穴波函数重叠,显著提高了其μτ乘积,达到6.25 × 10&minus 3 cm² V&minus 1,并实现了高电阻率(1012 Ω cm)。这些改进使得该材料在X射线探测方面表现出卓越的性能,包括超低暗电流(0.21 nA cm&minus 2)、高灵敏度(1.0 × 10⁴ µ C Gyair&minus 1 cm&minus 2)、超低检测限(2.4 nGyair s&minus 1)和优良的操作稳定性(无基线漂移),超越了现有的钙钛矿单晶探测器。【科学图文】图1:反钙钛矿结构和载流子寿命表征。图2:(2-Habch)3Cl(PtI2)能带结构。图3:(2-Habch)3Cl(PtI2) 电学性质和稳定性表征。图 4: (2-Habch)3Cl(PtI2) X射线探测器的性能。【科学结论】本文的研究揭示了在X射线探测领域中,打破材料性能权衡的新途径。传统的钙钛矿材料在实现高灵敏度的同时,往往面临高暗电流和高检测限的问题,这主要由于材料的迁移率-寿命(μτ)乘积与电阻率之间的权衡。本文通过设计和合成一种新型有机-无机混合反钙钛矿((2-Habch)3Cl(PtI2)),成功突破了这一性能限制。该材料具有间接跃迁和低轨道对称性,显著延长了载流子寿命(超过3毫秒),从而在提高μτ乘积的同时保持了极高的电阻率。这种突破使得新型X射线探测器在低暗电流、高灵敏度和超低检测限等多个性能指标上表现优异,超越了现有的钙钛矿单晶探测器。本文的成果不仅展示了反钙钛矿材料在X射线探测应用中的巨大潜力,也为未来开发新一代高性能探测器提供了新的思路和技术路径,推动了探测材料的科学研究与应用进步。参考文献:Liu, L., Liu, SY., Shi, Y. et al. Anti-perovskites with long carrier lifetime for ultralow dose and stable X-ray detection. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01482-3
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 聊一聊国内材料力学性能检测技术的发展、现状与问题
    当前,材料力学性能检测试验机被广泛应用于钢铁、造船、电气、机械制造、钢构、航空航天、港口机械、建筑、大学科研院所、质量监督检验第三方检测机构等。在我国各种类型的材料试验室里,试验机数量庞大,种类齐全、高中低档皆有。乐金涛老师,自1983年开始从事金属材料力学性能检测工作,从普通的试验员开始,到试验组长、试验室主任、试验设备管理,到参与试验室项目建设、试验室项目招标评审工作、试验方法标准的审修订等,近40年来一直没有脱离过试验室工作和技术。基于长期从事金属材料的力学性能测试工作,熟悉各类金属材料的试样加工和力学性能试验标准,发表过许多有关金属材料力学测试方面的专业性文章。日前,仪器信息网特别采访了乐金涛老师,请他聊一聊国内材料力学性能检测技术的发展、现状与问题,以供业内同行深度了解与分享。仪器信息网:请您介绍一下材料常规力学性能检验项目和所涉及的试验设备主要有哪些?乐金涛老师:力学性能检测,是对钢铁等材料的各种力学性能指标进行测定的一项必不可少的工作。试验所获得的强度、韧性和变形等性能参数,对于工程设计应用和材料研究都具有很重要的参考价值,较多场合是直接以试验结果为使用依据的。材料的常规力学性能检验涉及的材料试验机主要有两类:一是材料性能试验机,用于金属材料的拉伸、冲击、硬度、落锤试验机等;二是工艺性能试验机,包括弯曲试验机、顶锻试验机、杯突试验机、扩孔试验机等。材料的常规力学性能检验项目及所涉及试验设备检验项目评价特性检验设备拉伸(屈服强度、抗拉强度、断裂延伸率、断面缩率等)提供材料在常温、高温条件下的强度和塑性判据的力学性能试验。(上屈服强度、下屈服强度;规定塑性延伸强度、总延伸强度、抗拉强度;屈服点延伸率、最大力塑性延伸率;非比例试样断后伸长率、断后伸长率;应变硬化指数、 塑性应变比等)拉伸试验机时效指数时效指数值是指将同一根试样首先拉伸到规定变形量后,进行规定时间和温度的时效处理后再拉伸,从而评判其屈服应力的增加程度。烘烤强化值用于评价BH钢烘烤强化的效果,烘烤后屈服强度提高,通过二次拉伸试验进行测定。冷弯评价金属材料承受弯曲塑性变形的能力,是一种工艺试验。弯曲试验机顶锻试验沿试样的轴线方向施加力,将试样按规定的锻压比压缩,经塑性变形后显示试样表面缺陷以判断产品表面质量,是一种工艺试验。顶锻试验机夏比冲击(冲击吸收能、剪切断面率、侧膨胀)用以评定材料的缺口敏感性和冷脆倾向,是对材料抵抗冲击载荷的能力的评价。评价指标主要为试样在冲击试验力作用下折断时吸收的能量。摆锤冲击试验机时效冲击用于评价钢经应变时效后,韧性下降的程度。落锤DWTT其特点是从断口形貌形式转变温度出发,对材料的韧脆转变行为进行评估。落锤试验机硬度(布氏硬度、洛氏硬度、维氏硬度)衡量材料软硬程度的一种力学性能指标。布氏硬度计洛氏硬度计维氏硬度计仪器信息网:您之前讲过拉伸试验的发展状况(详情链接),请您再谈谈其它常用试验技术(冲击试验、顶锻试验、硬度试验等)的发展现状?乐金涛老师:1)夏比冲击试验1912年泰坦尼克号沉没于冰海,成了20世纪令人难以忘怀的悲惨海难。20世纪80年代后,材料科学家通过对打捞上来的泰坦尼克号船板进行研究,回答了持续80年的未解之谜。由于泰坦尼克号采用了含硫高的钢板,韧性很差,特別是在低温下呈脆性。当船在冰水中撞击冰山时,脆性船板使船体产生很长的裂纹,海水大量涌入使船迅速沉没。夏比冲击试验是鉴别温度对金属材料强韧性能影响最直接的评价方法。传统冲击试验2)全自动冲击试验技术在2005年左右,国内部分钢铁企业试验室从国外引进了推杆式全自动冲击试验机,之后国内的试验机厂家也纷纷仿制这种类型的全自动冲击试验机。基于结构上的因素,归纳下来,此类全自动冲击试验机在使用过程中经常会发生以下五个缺陷或故障:①冲击试样制冷装置经常会产生结霜现象,特别是制冷温度越低,或和环境温差越大,结霜现象就越严重,容易因结霜对推杆系统造成阻力,推送机构经常发生卡死等状况;②送样过程中,冲击试样在试验机砧座40毫米的跨距间容易掉样;③试验过程中,冲击试样机砧座上粘接的毛刺无法自动清除,影响试样的定位精度;④在GB/T 229-2007 《金属材料 夏比摆锤冲击试验方法》标准中规定:当使用液体介质冷却试样时,试样应在此温度上保持至少5min。当使用气体介质冷却试样时,试样应在规定温度下保持至少20min。但此类全自动冲击试验机由于结构的原因,其冷却方式是属于气体冷却还是液体冷却方式不明确,经常造成不同方在保温时间设定的分歧。已经颁布实施的GB/T 229-2020新版标准,将此类的冷却方式明确为气体冷却,且新版标准规定试样在规定温度下保温时间至少由20min提高到30min;⑤此类全自动冲击试验机在试验过程中由于采用端面定位方式,冲击试样的缺口对称面-端部距离27.5mm的长度尺寸公差的加工要求由±0.42上升到±0.165,为了这个加工尺寸公差的提高,就需要将原来的加工工艺发生较大的改变,花费更长的加工时间。以上五个弊端或缺陷,大大影响了企业在生产检验中的冲击试样加工和试验的工作效率,所以这种类型的全自动冲击试验机至今尚未实现普及应用,或制冷送样装置等被弃之不用。目前新开发的多关节六轴机器人全自动冲击试验机,完全克服了上述推杆式全自动冲击试验机的弊端或缺陷。试验时,试验人员根据自动接收到的试验顺序、试验温度等试验要求,将冲击试样通过机械手放置到可以按照指令自动制冷控制的低温槽→达到规定温度的保温时间→冲击试验机自动取摆→机械手自动快速抓取转移经过冷却后的试样,通过对中系统送到指定位置→冲击试验机自动放摆冲击→试验机自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。多关节六轴机器人全自动冲击试验机的应用完全符合GB/T 229-2020新版标准的各项要求,如试样从冷却装置中移出至打断的时间掌控、转移装置与试样接触部分应与试样一起冷却等功能,目前已经成为全自动冲击试验机的主流配置。多关节六轴机器人全自动冲击试验机3)顶锻试验顶锻试验是沿试样的轴线方向施加力,将试样按规定的锻压比压缩,经塑性变形后显示试样表面缺陷以判断产品表面质量的一种工艺试验方法。顶锻试验通常顶锻试验机、万能试验机、压力机等设备来实现。顶锻试验钢铁厂生产的线材棒材产量大、检测频次高、检测周期块。传统的顶锻试验机对每一规格都要相应的配置一套模具,不同的锻压比又需配置不同的模具。试样直径的加大必然使试验机的力值规格加大,顶锻模具的重量也增加,热顶锻模具的重量会更加大。现在根据试验标准要求和各大钢厂、标准件厂用户的实际需求,运用现代电液伺服技术,采用与棒线材深加工速度相似的控制速度,集校直、剪切、顶锻压扁三位一体的全自动快速顶锻试验机的开发应用,从根本上保证了顶锻试验的准确性、可比性,完全符合金属材料顶锻试验方法标准的要求。三工位快速顶锻试验机关于带机械手全自动快速顶锻试验机技术。试验时试验人员根据接收到的试验要求,将线材棒材样坯放入试样架或通过AGV小车送达指定的位置→机械手根据预先在程序上设置好的位置抓取样坯→送校直工位进行样坯校直→送剪切工位进行样坯剪切→机械手将剪切后符合高度要求的试样放置到顶锻试验机试验位置,在确保上下两端面平行的情况下自动调用预定设置好的试验方法进行试验→试验结束后机械手自动取下试样放置到评定工位→通过人工评定后将试验数据输入、保存并发送给上位机。如果前道工序已经将样坯校直并加工成合格的试样,那全自动顶锻试验机就越过矫直和剪切工位,直接进入到试验工位。自动化技术在顶锻试验上的运用,成功地解决了多工位顶锻试样上下料的问题,尤其是解决了在热顶锻试验中的送取样难题。带机械手全自动快速顶锻试验机3)硬度试验硬度试验是用一定形状的刚性压入物在一定载荷作用下与试样表面作用,试验的结果是材料的永久塑性变形信息。它是金属材料力学性能检测中比较简便的一种方法,与其他试验方法相比,具有快速、相对无损、可现场测试等优点。硬度计一般可分为静态和动态二大类:①静态硬度计。一般是都固定存放在试验室里,包括布氏、洛氏、维氏、努氏、韦氏等硬度计。此类硬度计由于受外来干扰的影响因素比较少,其测试结果相对比较准确。布氏硬度计、洛氏硬度计、维氏硬度计②动态硬度计。包括肖氏、里氏、超声波、锤击等硬度计。这类硬度计一般都在现场使用,在测试过程中容易受到外来因素的干扰,不同工况条件下测得的试验结果离散性相对较大。③全自动硬度计技术。试验人员根据自动接收到的试验要求,将硬度试样通过人工或机械手放置到指定位置→经过高速铣或磨削等设备自动完成硬度试样的表面加工→试样号自动识别→机械手按指令将加工后的试样放置到硬度计自动载物台→根据试验指令硬度计自动完成压头更换、试样力的切换等试验参数配置→通过硬度计自动载物台移动配合自动完成单点或多点的加载、保载、卸载、压痕测量等试验过程→试验数据自动保存并发送给上位机→机械手可以按照试验结果是否合格将残料分别放到不同的残样收集装置等。全自动硬度计系统另外,再讲讲通过硬度试验结果估算出材料的抗拉强度和不同硬度试验值之间的换算这个技术问题。1)相关研究表明,通过硬度试验结果可以估算出材料的抗拉强度,布氏硬度、洛氏硬度、维氏硬度和与强度呈现较好的相关性,是正相关关系。由硬度值推算抗拉强度,目前可以依据的国内标准主要有GB/T 33362—2016《金属材料 硬度值的换算》和GB/T 1172—1999 《黑色金属硬度及强度换算值》这两个标准。2)归纳国内部分试验室的验证试验结果看:布氏硬度换算抗拉强度的相对偏差要明显低于洛氏硬度和维氏硬度。3)体会及建议标准是基于试验得到了布氏、洛氏、维氏硬度与强度的换算公式。但上面提到的两个标准都没有给出,由于材料的特性、均匀性等不一样,也不可能给出换算值的不确定度数据,对于换算结果的偏差范围无从得知。标准所列换算值,是只有当试样组织均匀一致时,才能得到较准确的结果。鉴于目前还没有普遍适用的方法将某种硬度值准确地换算成其他硬度或抗拉强度,所以应尽量避免这种换算。针对不同的试验对象,还是建议按照标准或协议要求直接进行相关的拉伸或硬度试验。仪器信息网:除了拉伸试验机中配套的引伸计和力传感器,您认为当前试验机行业急需解决的关键技术有哪些?乐金涛老师:除了拉伸试验机配套的的引伸计和力传感器,试验机行业急需解决的关键技术还有:1)特种环境下的(超高温、超低温、耐腐蚀等)模拟试验箱及变形测量装置等技术;2)仪器化冲击试验机、动态试验机、双轴静态拉伸试验机等技术;3)全量程的通用或万能硬度计、全自动硬度计、高低温硬度计、现场在线硬度计等;目前国内制造的硬度计,如布氏、洛氏、维氏分开,如维氏硬度计中的显微、小负荷、大负荷分开,其技术和精度都没有问题。但如果要变成全量程的通用或万能硬度计,把布氏、洛氏、维氏功能都集合在一台设备上就不行,其根本原因就是我们传感器的量程范围和精度指标不行。 4)全自动弯曲试验和弯曲试验结果的自动判断技术;5)在冲击和落锤试验中,目前已经实现了冲击或打击等过程的全自动,但对试样断口的判定目前还只能依靠人工进行,评定过程还存在许多人为因素,国内虽然已经有配套的图像分析仪开发,但由于种种原因推广困难。综观以上几大难题,感觉都与视觉识别技术有关。仪器信息网:请您谈一谈当前我国试验机行业存在的问题或弊端?乐金涛老师:现阶段,国内高端拉伸试验机还是被欧美等国际著名品牌或公司所垄断和制约。这些品牌或公司进入中国的试验机市场,不但垄断高档试验机产品的市场份额,而且在和国内试验机企业争夺中档产品的市场份额。中低端试验机市场规模大、风险低。国内试验机企业长期在中低端市场打价格战,没有能力、也没有动力去研发高端的试验设备。日常大生产检验中试验数据的好坏,其实到工厂质检部门判定的时候,说穿了就是合格与不合格的关系。部分国内大生产企业试验机用户的需求定位不合理,不分用途,认为最好所有的试验机都要进口的,都要高精度。试验机1级精度就可以满足的非要0.5级,0.5级精度就可以满足的非要0.3级。其结果就是造成设备功能和资金浪费,运行维保困难,同时也阻碍了国产试验机技术的发展。由于体制上的原因,目前国内同时存在着以试验机生产为主导的试验机标准化技术委员会、以计量单位为主导的全国力值硬度重力计量技术委员会,和以试验机用户为主导的试验方法标准化技术委员会,这与国际上将试验方法标准、试验设备标准与标准物质校准标准归属一个技术委员会,同列一个大标准的通用做法有比较大的差异。由于相互之间缺乏协调经常造成在标准制订上各行其事。我们国家现在有关材料检测试验方法国家标准的制定,都是按照国际标准照搬翻译过来的,我们自己对关键的技术参数或指标等的验证或分析还是不够的。标准是技术规范,同样也是技术壁垒。国外知名试验机企业已经做到了利用技术上的优势在国际标准制定上占据主导权,通过设置技术壁垒来遏制其它试验机企业发展。建议我们国家在制定标准的工程中,不要轻易否定过去已经证明是成熟的标准内容,根据中国国情编制符合中国实际的国家标准。仪器信息网:最后,您能否对智慧试验室建设工作提一点建议?乐金涛老师:我们国家原来靠国家扶植的相关试验设备研究院所都转制成了自负盈亏的经营性公司,且技术、观念落后。国内相关试验设备制造单位合作少,缺乏对共性问题的验证分析、关键技术的合作开发,现在都是靠自己来摸索或仿造,不利于我国检测行业整体技术水平的快速提升和发展,期望相关的行业协会可以起到组织引导作用。目前智慧试验室的建设工作处于初级阶段,许多相关技术还不成熟,各个试验室要根据自己拟突破的关键工序、现有场地和资金等情况,结合技术的发展来综合考虑规划。对于项目实施可能三年不见效、项目中新技术含量超过三分之一的,建议要慎重考虑,切忌盲目跟风。在国内钢铁行业的检测系统中原料检验和炉前快分检验的自动化已经发展得很快,但力学性能检测整个流程自动化、智能化还是处在刚起步阶段,相关单体试样加工和试验设备的自动化程度和稳定性不够等状况,困扰整个自动化线长期持续稳定运转,业内同行深感顾虑。智慧试验室的建设工作,任重而道远,需要试验室和相关设备制造单位等各方脚踏实地的努力。小结:感谢以上乐金涛老师的分享,同时也希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展方向,在高档或专用试验设备的研发制造等方面争取再获突破,以促进我国试验设备在自动化技术方面水平的提升。
  • 食品检测仪器设备-食品检测仪器设备-食品检测仪器设备
    食品检测仪器设备-食品检测仪器设备-食品检测仪器设备【霍尔德】多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。 一、食品检测仪器设备应用范围: 多功能食品安全检测仪可现场快速检测非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等200多项目的快速定性定量检测。如甲醛、二氧化硫、吊白块、过氧化氢、亚硝酸盐、蛋白质、蜂蜜果糖和葡萄糖、蜂蜜中蔗糖、过氧化值、酸价、白酒中的杂醇油、铅、汞砷、锡、镉、硼砂、食盐中亚铁氰化钾、食盐中碘、过氧化苯甲酰、红色色素(胭脂红、苋菜红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)、食醋的总酸、酱油的总酸、苯甲酸钠、甜蜜素、木耳中硫酸镁、芝麻油纯度、油脂丙二醛、溴酸钾、余氯、谷氨酸钠、挥发性盐基氮、山梨酸、糖精钠、饮料中维C、酱油氨基酸态氮、肉制品酸价、水中氰化物、水发产品中组胺、蜂蜜定粉酶、蜂蜜酸度、罗丹明B、三聚氰胺、盐酸克伦特罗、沙丁胺醇、莱克多巴胺、四环素类、硝基呋喃类、磺胺类、沙星类、氯霉素、孔雀石绿磺胺类、猪蓝耳病毒、猪瘟病毒、黄曲霉毒素B1、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感等快速检测。 二、食品检测仪器设备产品性能: 1、安卓智能操作系统,采用更加效率高和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复功能。 3、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。 4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。 6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 8、食品安全检测仪CT线自动识别,无需手动调整。 9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。 10、样品处理简单省力,整体操作快速、安全、便捷。 11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。 12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 14、仪器具有重新校准、锁定、恢复出厂设置功能。 15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。 16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。 三、食品检测仪器设备主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、四波长冷光源,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专业光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。 5、光源亮度自动调节与校准 6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、不间断进样,连续检测 9、样本编号自动累加。 10、检测项目可扩充。 11、检测结果可批量打印,批量上传。 12、检测结果为Excel表格,连接电脑即可拷贝。 13、检测结果存储容量20万条 14、支持U盘存储,标准USB接口,免驱动安装。 15、固件可升级 16、仪器尺寸:43×35×20cm,主机净重:5.1kg
  • 普洛帝与卡尔德就颗粒检测传感器性能提升达成共识
    经过一番深入的探讨和交流,普洛帝与卡尔德终于就颗粒检测传感器的性能提升达成了共识。他们认识到,随着市场的不断发展和竞争的加剧,传感器的性能提升成为了满足市场需求和提高产品竞争力的关键所在。在会议上,普洛帝向卡尔德详细介绍了他们的传感器技术和产品特点。他们展示了在颗粒检测领域所取得的突破性研究成果,以及在实际应用中所积累的丰富经验。普洛帝的介绍让卡尔德深刻体会到了他们在颗粒检测传感器领域的专业性和技术实力。卡尔德也向普洛帝坦诚地分享了他们目前所面临的挑战和问题。他们列举了传感器精度、稳定性、可靠性和成本等方面的具体问题,并表达了对提升传感器性能的迫切需求。他们的分享让普洛帝更加了解到了卡尔德的实际需求和关注点。经过深入的讨论和交流,双方决定展开紧密的合作。他们共同探讨了新型颗粒检测传感器的研发方向,并确定了提高传感器精度和稳定性的关键目标。为了实现这些目标,他们决定在技术上进行创新,并深入研究传感器材料和制造工艺等方面的问题。此外,双方还就优化传感器制造工艺达成了共识。他们认为,优化制造工艺是提高传感器性能和降低成本的重要途径。为此,他们将深入研究制造过程中的每一个环节,从原材料的选取、加工到成品检测,都进行精细化的管理和控制。同时,加强技术交流和人才培养也被双方视为提高技术水平和创新能力的重要途径。他们计划建立完善的技术交流机制,促进双方的技术交流和合作。通过这样的交流机制,他们可以互相学习、互相借鉴,共同提高技术水平和创新能力。为了确保合作顺利进行,双方还制定了详细的合作计划和时间表。他们将定期召开会议,评估合作进展情况,解决合作中遇到的问题和挑战。同时,建立有效的沟通渠道,保持密切联系,确保合作项目的顺利推进。普洛帝与卡尔德的合作无疑将为颗粒检测传感器技术的发展和应用注入新的活力。他们坚信,在双方的共同努力下,一定能够取得更加丰硕的成果,为人类的生产和生活带来更多的便利和效益。
  • 国家“十四五”重点研发计划“高性能免疫现场快速检测系统研发”项目启动,将重点攻关微流控免疫检测技术
    12月16日,由中国医学科学院阜外医院周洲教授担任项目负责人、深圳市亚辉龙生物科技股份有限公司(下称“亚辉龙”)任牵头单位的“高性能免疫现场快速检测系统研发”项目启动会在深圳成功召开。中国科学院院士、南方科技大学代理副校长顾东风,加拿大健康科学院院士、香港中文大学(深圳)医学院创院院长郑仲煊,国家卫健委中国生物技术发展中心副主任郑玉果,深圳市发展和改革委员会副主任王浚,深圳市科技创新委员会副主任钟海,龙岗区人民政府副区长张玉庆等领导出席会议。本次项目启动会旨在交流心脑血管诊断研究进展,讨论快速免疫检测系统关键技术与项目实施方案,高质量完成重点专项。“高性能免疫现场快速检测系统研发”项目(下称“项目”)属于“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项,由一支产学研医检的多学科优势团队共同参与,针对现场快速免疫检测准确定量的临床需求,通过关键技术攻关,构建并优化高性能免疫现场快速检测系统,并完成多种心脑血管标志物检测试剂的研发,致力于解决现场全血检测干扰多、微量检测灵敏度低、检测环节点多耗时长等问题,整体提升现有危急重症等特定场景下的医疗服务能力。项目重点攻关的技术之一就是开发基于微流控化学发光技术的心脑血管疾病检测系统,涵盖仪器、试剂、芯片三大部分。微流控免疫检测技术是一种对微纳升流体进行操控的新兴科学技术,相比以往大部分疾病检测需要在特定的医护条件下在大型仪器上进行抽血、上机、离心等复杂操作,微流控技术可将样本分离和免疫检测的多个步骤集成到微小芯片上,可仅用一台电脑主机大小的仪器实现即时检测,用血量也大大减少。与同类其他技术相比,微流控表体比大、传质短、传热快、反应体系转化率高,具有样本用量少、分析速度快和易实现多联检的优势,为心脑血管多标志物现场快速检测提供了一个新的平台,可以说在与死神争夺病人抢救的黄金时间。据介绍,该项目预计在4年的执行期内完成多项相关创新产品的发布,实现微流控芯片和光检测装置国产化。“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项:针对高端诊疗装备和生物医用材料依赖进口、新冠肺炎疫情中暴露的应急医疗装备短板以及医药领域安全监管长期处于被动型和回溯性模式等问题,聚焦于医疗装备、生物医用材料、体外诊断等领域的重大产品,以及所涉及的关键技术及核心部件、前沿技术及样机、应用解决方案、监管科学、应用示范,实现高端引领,促进我国高端诊疗装备和生物医用材料整体水平进入国际先进行列。本专项执行期为 2021—2025 年,按照全链条部署、一体化实施的原则,设置了前沿技术研究及样机研制、重大产品研发、应用解决方案研究、监管科学研究、应用示范研究五项任务。
  • 第二届检博会在京召开 同期举行仪器性能竞赛
    仪器信息网讯 2014年第二届国际检验检测技术与装备博览会(以下简称&ldquo 检博会&rdquo )于7月31日在北京国家会议中心举办。 开幕式现场   &ldquo 检博会&rdquo 由中国出入境检验检疫协会主办,是目前质检系统唯一的检验检测综合性博览会,首届&ldquo 检博会&rdquo 在青岛举办。&ldquo 检博会&rdquo 由学术会议和展览展示两部分组成。今年的&ldquo 检博会&rdquo 以&ldquo 高端技术、服务民生&rdquo 为主题,参展的单位既有检测仪器设备供应商,也有提供检测技术服务的检测机构。展示面积1.1万平米,参展单位220余家,为检测服务机构、仪器设备企业搭建一个广阔的交流平台。   在仪器设备区,普析通用等国内外知名企业参展参会,推介各自最新的仪器装备。在检测服务机构区,中检集团、上海出入境检验检疫局等检验检测机构,充分展示了各自的技术优势和服务能力。 展览现场   &ldquo 检博会&rdquo 同期还设置了中国检验检测机构品牌建设与发展高层论坛 食品检测仪器及纺织检测仪器性能竞赛活动 食品、纺织、计量等多项专题技术交流活动 技术发布对接类等10多场主题和专题会议。   食品检测仪器及纺织检测仪器性能竞赛活动是本届&ldquo 检博会&rdquo 全新推出、备受关注的亮点活动之一。&ldquo 食品检测仪器性能竞赛&mdash &mdash 原子荧光仪竞赛&rdquo 在&ldquo 检博会&rdquo 召开之前即举行,北京东西分析仪器有限公司、北京海光仪器有限公司、北京金索坤技术开发有限公司、北京吉天仪器有限公司、北京普析通用仪器有限公司五家厂商参与。详细内容请见&ldquo 五家厂商的原子荧光光谱仪同台竞技&rdquo 。   &ldquo 纺织检测仪器性能竞赛&mdash &mdash pH计竞赛&rdquo 决赛在&ldquo 检博会&rdquo 现场进行,进入决赛的分别是雷磁PHS-3C,梅特勒-托利多SevenCompact S220,科伲可StratosEvo三台pH计。据介绍,此次竞赛是按照JJG-2005《实验室pH(酸度)计计量检定规程》,分别对结果获得时间、仪器示值误差、仪器示值重复性、操作速度等指标进行考核。评审专家现场根据评测标准对竞赛结果进行评审并给出综合得分。比赛结果将会于&ldquo 检博会&rdquo 期间公布,由相关领导、专家现场向获奖厂家颁奖,获奖产品信息将在总局网站政府采购栏目进行公布。 竞赛现场
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 聚焦锂电安全与高性能:跨界专家共议检测技术与锂电产业
    p   strong  仪器信息网讯 /strong 2019年3月26日,由仪器信息网主办的“锂离子电池检测技术及应用”主题网络研讨会线上召开,会议邀请9位锂离子电池领域科研专家、第三方检测机构及相关科学仪器生产商技术代表,以在线报告交流形式,同台共议锂电产业高速发展与安全问题凸显新形势下的“检测技术与锂电产业链”协同发展。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/6992ed0d-f99d-4731-870f-979e273385a7.jpg" title=" 001.jpg" alt=" 001.jpg" style=" width: 600px height: 131px " width=" 600" vspace=" 0" height=" 131" border=" 0" / /p p   近来,锂离子电池在不断满足并加速普及数码产品、信息化电子产品的需求基础上,新能源汽车的快速发展,推动了动力电池的异军突起,我国已经成为全球最主要的锂离子电池生产国之一。在“新能源”、“战略新兴产业”标签背书之下,“高性能”与“安全”逐渐成为飞速发展锂电产业的两大关注焦点。两者相辅相成,其发展都离不开全方位检测技术在锂电研发、生产过程中的发挥的重要作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a2e68838-ca68-4923-858a-b4dc647cbc83.jpg" title=" 000.jpg" alt=" 000.jpg" style=" width: 600px height: 286px " width=" 600" vspace=" 0" height=" 286" border=" 0" / /p p   会议中,锂电科研专家、检测机构及仪器商技术代表分别从锂电技术痛点及对检测技术的需求、锂电检测市场的发展之路、锂电检测新技术及难点等与在线网友一一分享探讨,共同为我国锂电产业链的良性发展建言献策。 a href=" https://www.instrument.com.cn/webinar/meetings/ldc/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 【报告专家介绍及视频回放链接】 /span /a /p p   span style=" color: rgb(255, 0, 0) "   strong 锂电科研专家:高性能与安全相辅相成,检测技术保驾护航 /strong /span /p p   基础力学问题是制约锂电池发展和应用的瓶颈所在,但由于实验困难,对这些基础力学问题的研究还处于初级阶段。这些力学问题如锂电池在循环过程中电极材料反复嵌锂和脱锂会引起其体积反复膨胀和收缩,从而导致电极材料和固体电解质膜的疲劳断裂等。利用原位电镜技术,黄建宇研究组在锂电池纳米力学研究领域做出了一些原创性工作。在国际上率先制造出在高真空度电镜中工作的锂电池,发明了在原子尺度实时观察锂离子电池充放电过程的新技术,开创了原位纳米尺度电化学和纳米力学研究的新领域,为研究锂离子电池的关键性课题提供了有效的技术条件,发现了锂嵌入晶体硅的临界尺寸效应:当晶体硅的晶粒尺寸大于150nm时,锂嵌入晶体硅后会断裂并粉末化 但当硅晶粒尺寸小于150nm时,晶体硅颗粒就不会断裂或粉末化。这些研究结果为研发高能量密度、高功率密度、长寿命锂电池提供了坚实的科学基础。 /p p   褚卫国首先介绍锂离子电池发展趋势、典型锂离子电池正极纳米材料以及纳米技术提高锂离子电池电极材料性能的基本原理。通过几类锂电正极材料的研究实例说明各种表征方法在锂电正极材料研究中的作用,并构建结构-性能关系,为发展新型高性能锂电正极材料提供指导。最后对不同表征方法在锂电正极材料研究中的角色进行简单总结。最终结论包括,根据需要的信息选择适当的表征方法 多种表征方法联合 多角度选取表征方法,相互印证结果 表征技术在特定条件下与分析方法结合能够获取特定重要信息等。 /p p   span style=" color: rgb(255, 0, 0) "   strong 锂电检测机构:锂电产业高速迭代之下,检测机构为锂电产业链赋能 /strong /span /p p   苏州玛瑞柯测试科技有限公司定位于第三方锂电热特性和热安全测试分析并提供技术咨询服务。薛钢首先主要介绍锂离子电池的失效分类、锂离子电池失效原因、锂离子电池失效常见测试分析方法。常见失效测试分析方法包括成分、结构、形貌、价态、界面、电性能、热性能等。薛钢主要介绍了热性能分析中的加速量热仪(ARC)技术,即通过引入外部热源诱发锂电池的热失效,进而对造成电池失效的内部因素进行数据解析。该技术在锂电热失效中的应用主要包括材料热稳定性测试和电池热安全性测试。大量案例也表明,加速量热仪可以从材料层面和电池层面分别探索热失效的现象、特征和机理,进而对改进电池设计及性能提供量化数据支持。 /p p   近年来随着锂电池应用场景的日益多样化,锂电池安全问题也层出不穷。然而在锂电池安全事故发生后,国内目前却少有机构能对其进行深度的失效分析,找出其失效原因,并制定相应的预防性解决方案。锂电池的安全并非简单的电芯材料与结构问题,而是涉及到系统设计和使用环境的的综合性课题,并通常没有可以重复的操作流程,需要依据客户的案例情况定制分析方案。所以设计锂电安全性的失效分析对人才,设备以及团队的经验积累都提出了巨大的挑战。在此次报告中,周健结合系列实际技术案例,与大家探讨目前国内锂电池失效分析行业的机遇与挑战。具体案例包括CT无损分析观察电池内部结构变化、气质分析了解电池劣化机理、电池拆解确认电池失效模式、商用电池异常自放电根源研究等。 /p p   2018-2019年部分电动车起火事件,据不完全统计已经发生50余起!随着锂电市场的推动需求,安全检测已成为重中之重。韩广帅主要介绍了系列锂电失效整体解决方案,包括逆向分析流程、正向分析流程等。逆向分析流程包括外观/电位观察调整、气体抽取、电解液抽出、电池解体写真记录、非大气暴露分析等。正向分析则从正负极材料、隔膜、电解液角度,依次讲解了各自的综合检测方案。 /p p    span style=" color: rgb(255, 0, 0) " strong 仪器商:迎合需求,开发更多更广泛锂电解决方案 /strong /span /p p   王志芳主要介绍了雷尼绍inVia显微拉曼光谱系统在锂电研究领域的应用案例。正极材料方面的应用包括微结构变化、材料改性、识别正极材料及循环产物等。负极材料应用包括评价锂电可逆容量、探测低浓度粘合剂、负极组分及分布、石墨负极劣化评价、探测低浓度粘合剂等。最后,关于联用技术方面,Raman-AFM联用技术在锂离子嵌入过程、高空间分辨率(纳米量级)下的拉曼成像等。 /p p   郝正明主要介绍了岛津锂电检测的原位检测技术。XRD原位分析技术——产品系列包括中端XRD-6100与高端XRD-7000。在锂电领域的应用包括高低温附件用于样品原位的变温物相分析。电池附件用于锂电电极材料充放电过程中物相分析等。SPM原位分析技术——SPM-9700HT和环境控制舱,应用案例包括原位加热隔膜样品、电化学液体池模拟电池内部电解液环境等。XPS原位分析技术——Axis Supra,全固态锂电利用XPS技术进行相关原位分析研究等。 /p p   王元飞首先介绍了锂电检测现行的先关检测标准。接着针对这些检测项目,具体介绍了安捷伦原子光谱产品技术在锂电检测领域的系列检测方案案例,包括:痕量杂质分析-易电离元素干扰消除、电解液直接进样+光谱干扰消除、主量元素分析等。 /p p   陈京一主要介绍了马尔文帕纳科XRD技术在电池研究中的应用情况。在正极材料研究中的应用包括物相鉴定及阳离子混排、PIETVELD结构精修计算离子混排等。在负极材料研究中应用包括石墨化度、石墨电极片取向性等。并介绍了马尔文帕纳科对分布函数(PDF)对全散射的分析,为电池材料精细结构及机理研究提供全新实验室方案,使得在XRD知其然的基础上,PDF实现知其所以然。 /p p    span style=" color: rgb(112, 48, 160) " strong 查询更多海量锂电检测解决方案、锂电检测标准点击进入: /strong /span a href=" https://www.instrument.com.cn/application/SampleFilter-S25-T000-1-1-1.html" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 行业应用栏目——电池专场 /strong strong /strong /span /a /p
  • 《氦质谱检漏仪性能要求与检测方法》团体标准发布并实施
    日前,广东省测量控制技术与装备应用促进会发布T/GDCKCJH 046—2021《氦质谱检漏仪性能要求与检测方法》团体标准,并于2021年12月17日起正式实施。标准详细信息标准状态 现行标准编号 T/GDCKCJH 046—2021中文标题 氦质谱检漏仪性能要求与检测方法英文标题 Performance requirements and test method for helium mass spectrometer leak detector国际标准分类号 17.120.01 流体流量的测量综合中国标准分类号 N68国民经济分类 M732 工程和技术研究和试验发展发布日期 2021年12月17日实施日期 2021年12月17日起草人 刘洪华、冯周、刘浩、汤文广、彭水勇、曾宏勋、石霞、邓军、许亮、赖海梁、彭强、高磊、廖桃兴、谭贝、李尚虹、王刚、张勇、颜训雄、曾海钦、肖岩、刘春平起草单位 深圳天溯计量检测股份有限公司、深圳市中测计量检测技术有限公司、深圳市华溯智慧计量研究院范围 本文件适用于以质谱分析法作为检测手段的检漏仪性能检测,其他检漏仪可参考使用。主要技术内容 本文件规定了氦质谱检漏仪的术语和定义、性能要求及检测方法。是否包含专利信息 否标准文本标准下载链接:https://www.instrument.com.cn/download/shtml/1014901.shtml
  • 如何正确进行仪器性能确认(PQ)?
    分析仪器的验证作为仪器使用前的一个重要环节,其目的在于通过书面形式,证明整个测量过程能够达到预期效果,即能够获得稳定、可靠和准确的分析数据。制药生产关系到人们的生命健康,其数据的真实准确至关重要。分析仪器是进行药品质量检验工作的必要设备,《药品生产质量管理规范(2010年修订)》第一百四十条明确提出,应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准;(五)工艺验证应当证明一个生产工艺按照规定的工艺参数能够持续生产出符合预定用途和注册要求的产品。分析仪器属于检验设备,属于上述(四)的范畴,而PQ(Performance Qualification)的含义即性能确认。性能确认不仅在《药品生产质量管理规范》中有明确规定,在美国药典 USP 1225分析方法验证、ICH分析方法验证的通则里也有相关要求。分析仪器的性能确认包括哪些项目?这些项目的具体含义分别是什么?本文以药企常用的分析仪器“总有机碳TOC分析仪”为例,对性能确认作出科学诠释,旨在减少仪器故障的发生率,避免不合格情况的出现,将风险降到最低。检验方法验证检验方法验证(即检验仪器的确认)是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的实验来验证所采用的分析方法是否符合检测项目的要求。检验方法验证的基本内容包括方案的起草、审批以及检验仪器的确认。其中,方案的起草与审批,企业需根据自身情况进行撰写。至于检验仪器的确认,则包括多个检测项目。验证参数释义《药品生产质量管理规范(2010年修订)》中明确指出,检验方法验证的检测项目包括精密度、定量限/检测限、准确度、线性/范围、专属性、样品溶液稳定性以及系统适应性。以下是这些验证参数的具体含义。精密度精密度指在一定的受控条件下重复测定均一样品所得测定值的一致程度,它反映了测量系统存在的随机误差大小。比如,用不同品牌的总有机碳分析仪对同一个水样进行测定,仪器的精密度越高,测量数据就越集中,倘若测量数据均集中在真值附近,则测量结果就越理想。举例而言,同样配置500 ppb(1 ppm=1 mg C/l,1 ppb=1μg C/l)的标准蔗糖溶液,表1的两组数据中,数据A的精密度较好。表1:两组数据的精密度对比数据A(单位:ppb)数据B(单位:ppb)498476491462508536511521499509准确度准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,用来表示误差的大小。精密度和准确度的区别就如同士兵打靶,如果子弹头分布很松散,则表明射击精密度低;如果子弹头密集在一起,则表明射击精密度高。在射击精密度高的情况下,聚集在枪靶中心的子弹头越多,则准确度越高。图2表示精密度高,准确度低;图3则表示精密度低,准确度高。图2 精密度高,准确度低图3 精密度低,准确度高定量限/检测限定量限(Limit of Quantification,LOQ),指可定量测定样品中待测组分的最低浓度或最低量。此处所指的最低浓度,应满足上述精密度和准确度的要求。比如在满足1%精密度和±2%准确度的前提下,测量最低浓度为4 ppb的水样。如果低于这个值,测量结果将不再准确。检测限(Limit of Detection,LOD),指能够被识别和检测的最低浓度。当仪器处于稳定状态时,仪器本身存在着噪声会导致测量读数出现漂移和波动。此值通常是仪器噪声水平标准偏差的3倍,检测限表示检测器对测定物质敏感程度的指标,其值越低,则说明检测器性能越好。线性/范围在给定范围内,所提供的样品与测试结果之间存在线性关系。通常,两点确定一条直线,对于最后的测试数据要求,应列出回归方程、相关系数、残差平方和以及线性图(或其他数学模型)。回归系数以1为基准,距离1越近则表示线性越好。专属性专属性指在其他成分(如杂质、降解产物、辅料等)可能存在的情况下,采用的方法能准确测定出被测物的特性,反映的是对被测物质准确而专属的测定能力,是用于复杂样品分析时相互干扰程度的度量。比如,对于总有机碳分析仪而言,不论样品化学结构或分子组成如何,都能准确地测量出其中的有机碳化合物。以此建立专属性验证标样组,所使用的品种如下:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(甲醇);● 1瓶500 ppb的TOC标样(烟酰胺);● 1瓶500 ppb的TOC标样(邻苯二甲酸氢钾,简称KHP)。甲醇的分子式为CH3OH,由甲基和羟基组成,一个分子中仅含有一个碳原子,具有醇的化学性质,容易挥发和流失。即便只有一个碳原子,总有机碳分析仪仍能探测到它的存在,说明其专属性是合格的。烟酰胺含有一个氮的杂原子,同样适用于含碳物质的测试。通过专属性测试,也能够测量出其中含有的物质。KHP是一种呈无色单斜结晶或白色结晶性粉末状的化学物质,其特点是具有一个苯环,较难氧化,化学性质稳定,便于保存。可使用KHP进行检测,进而反映仪器的氧化能力。样品溶液稳定性样品溶液稳定性也称鲁棒性,是指仪器在受到扰动或者不确定的情况下,仍然可以维持某些性能的特性。英文名字为Robustness,即健壮和强壮。标样组设有以下几个品种:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(USP 蔗糖);● 1瓶500 ppb的TOC标样(USP 1,4-苯醌)。根据美国药典 USP 1225分析方法验证的要求,所使用的试验方法必须是稳定的。举例而言,TOC既与温度无关,也与pH值无关,即使改变温度或 pH值,也不会影响样品溶液的稳定性。系统适用性可通过两种最极端的物质,即一个在自然环境中最容易氧化的物质“蔗糖”和另外一种在自然环境中最不容易氧化的物质“1,4-苯醌”进行测试。各自配置500 ppb浓度的蔗糖溶液、500 ppb浓度的 1,4-苯醌溶液,以及空白溶液放置到总有机碳分析仪中进行测定,测定的响应值分别记为Rs、Rss以及Rw,通过测定三种溶液,确定总有机碳分析仪的适用性。响应效率(Re)按下列公式计算:Re=100[(Rss-Rw)/(Rs-Rw)]如果85%Re115%,则确定该分析仪适用。药企可以根据自身生产的产品对风险进行评估。建议同步进行系统适用性测试(SST),以记录整个测量系统的性能(即人员、工艺、仪器和标样)。系统适用性标样的可接受回收率范围在85%~115%。如果能够通过系统适用性测试,则表明总有机碳分析仪的氧化性能良好。结语药企质量部和工程部人员不应只满足于对照药典和药品GMP指南中有关规定的字面理解,而应该从根本上掌握性能验证与各个测定项目的真正含义。在此基础上,使用合格的分析仪器来满足药品质量检测的需要。原文刊登于《流程工业 制药业》杂志2021年第12期,作者:Sievers分析仪 王欣◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制