当前位置: 仪器信息网 > 行业主题 > >

校正确认标准

仪器信息网校正确认标准专题为您提供2024年最新校正确认标准价格报价、厂家品牌的相关信息, 包括校正确认标准参数、型号等,不管是国产,还是进口品牌的校正确认标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合校正确认标准相关的耗材配件、试剂标物,还有校正确认标准相关的最新资讯、资料,以及校正确认标准相关的解决方案。

校正确认标准相关的资讯

  • 正确认识电子探针分析技术的优势与局限性
    电子探针技术是分析化学中重要的测试手段,其快速、无损、原位、高精准度的性能特征,以及极高性价比的使用成本和便捷易用性,在固体物质成分分析中被广泛应用。不过,电子探针虽然强大,在实际工作中也面临着诸多的测试困难和操作尬境,需要研究人员特别注意。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,北京大学地球与空间科学学院高级工程师李小犁将分享报告《正确认识电子探针分析技术的优势与局限性》,以期帮助大家在实际工作中选择适宜的实验条件和合理的测试方法。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 如何正确进行仪器性能确认(PQ)?
    分析仪器的验证作为仪器使用前的一个重要环节,其目的在于通过书面形式,证明整个测量过程能够达到预期效果,即能够获得稳定、可靠和准确的分析数据。制药生产关系到人们的生命健康,其数据的真实准确至关重要。分析仪器是进行药品质量检验工作的必要设备,《药品生产质量管理规范(2010年修订)》第一百四十条明确提出,应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准;(五)工艺验证应当证明一个生产工艺按照规定的工艺参数能够持续生产出符合预定用途和注册要求的产品。分析仪器属于检验设备,属于上述(四)的范畴,而PQ(Performance Qualification)的含义即性能确认。性能确认不仅在《药品生产质量管理规范》中有明确规定,在美国药典 USP 1225分析方法验证、ICH分析方法验证的通则里也有相关要求。分析仪器的性能确认包括哪些项目?这些项目的具体含义分别是什么?本文以药企常用的分析仪器“总有机碳TOC分析仪”为例,对性能确认作出科学诠释,旨在减少仪器故障的发生率,避免不合格情况的出现,将风险降到最低。检验方法验证检验方法验证(即检验仪器的确认)是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的实验来验证所采用的分析方法是否符合检测项目的要求。检验方法验证的基本内容包括方案的起草、审批以及检验仪器的确认。其中,方案的起草与审批,企业需根据自身情况进行撰写。至于检验仪器的确认,则包括多个检测项目。验证参数释义《药品生产质量管理规范(2010年修订)》中明确指出,检验方法验证的检测项目包括精密度、定量限/检测限、准确度、线性/范围、专属性、样品溶液稳定性以及系统适应性。以下是这些验证参数的具体含义。精密度精密度指在一定的受控条件下重复测定均一样品所得测定值的一致程度,它反映了测量系统存在的随机误差大小。比如,用不同品牌的总有机碳分析仪对同一个水样进行测定,仪器的精密度越高,测量数据就越集中,倘若测量数据均集中在真值附近,则测量结果就越理想。举例而言,同样配置500 ppb(1 ppm=1 mg C/l,1 ppb=1μg C/l)的标准蔗糖溶液,表1的两组数据中,数据A的精密度较好。表1:两组数据的精密度对比数据A(单位:ppb)数据B(单位:ppb)498476491462508536511521499509准确度准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,用来表示误差的大小。精密度和准确度的区别就如同士兵打靶,如果子弹头分布很松散,则表明射击精密度低;如果子弹头密集在一起,则表明射击精密度高。在射击精密度高的情况下,聚集在枪靶中心的子弹头越多,则准确度越高。图2表示精密度高,准确度低;图3则表示精密度低,准确度高。图2 精密度高,准确度低图3 精密度低,准确度高定量限/检测限定量限(Limit of Quantification,LOQ),指可定量测定样品中待测组分的最低浓度或最低量。此处所指的最低浓度,应满足上述精密度和准确度的要求。比如在满足1%精密度和±2%准确度的前提下,测量最低浓度为4 ppb的水样。如果低于这个值,测量结果将不再准确。检测限(Limit of Detection,LOD),指能够被识别和检测的最低浓度。当仪器处于稳定状态时,仪器本身存在着噪声会导致测量读数出现漂移和波动。此值通常是仪器噪声水平标准偏差的3倍,检测限表示检测器对测定物质敏感程度的指标,其值越低,则说明检测器性能越好。线性/范围在给定范围内,所提供的样品与测试结果之间存在线性关系。通常,两点确定一条直线,对于最后的测试数据要求,应列出回归方程、相关系数、残差平方和以及线性图(或其他数学模型)。回归系数以1为基准,距离1越近则表示线性越好。专属性专属性指在其他成分(如杂质、降解产物、辅料等)可能存在的情况下,采用的方法能准确测定出被测物的特性,反映的是对被测物质准确而专属的测定能力,是用于复杂样品分析时相互干扰程度的度量。比如,对于总有机碳分析仪而言,不论样品化学结构或分子组成如何,都能准确地测量出其中的有机碳化合物。以此建立专属性验证标样组,所使用的品种如下:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(甲醇);● 1瓶500 ppb的TOC标样(烟酰胺);● 1瓶500 ppb的TOC标样(邻苯二甲酸氢钾,简称KHP)。甲醇的分子式为CH3OH,由甲基和羟基组成,一个分子中仅含有一个碳原子,具有醇的化学性质,容易挥发和流失。即便只有一个碳原子,总有机碳分析仪仍能探测到它的存在,说明其专属性是合格的。烟酰胺含有一个氮的杂原子,同样适用于含碳物质的测试。通过专属性测试,也能够测量出其中含有的物质。KHP是一种呈无色单斜结晶或白色结晶性粉末状的化学物质,其特点是具有一个苯环,较难氧化,化学性质稳定,便于保存。可使用KHP进行检测,进而反映仪器的氧化能力。样品溶液稳定性样品溶液稳定性也称鲁棒性,是指仪器在受到扰动或者不确定的情况下,仍然可以维持某些性能的特性。英文名字为Robustness,即健壮和强壮。标样组设有以下几个品种:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(USP 蔗糖);● 1瓶500 ppb的TOC标样(USP 1,4-苯醌)。根据美国药典 USP 1225分析方法验证的要求,所使用的试验方法必须是稳定的。举例而言,TOC既与温度无关,也与pH值无关,即使改变温度或 pH值,也不会影响样品溶液的稳定性。系统适用性可通过两种最极端的物质,即一个在自然环境中最容易氧化的物质“蔗糖”和另外一种在自然环境中最不容易氧化的物质“1,4-苯醌”进行测试。各自配置500 ppb浓度的蔗糖溶液、500 ppb浓度的 1,4-苯醌溶液,以及空白溶液放置到总有机碳分析仪中进行测定,测定的响应值分别记为Rs、Rss以及Rw,通过测定三种溶液,确定总有机碳分析仪的适用性。响应效率(Re)按下列公式计算:Re=100[(Rss-Rw)/(Rs-Rw)]如果85%Re115%,则确定该分析仪适用。药企可以根据自身生产的产品对风险进行评估。建议同步进行系统适用性测试(SST),以记录整个测量系统的性能(即人员、工艺、仪器和标样)。系统适用性标样的可接受回收率范围在85%~115%。如果能够通过系统适用性测试,则表明总有机碳分析仪的氧化性能良好。结语药企质量部和工程部人员不应只满足于对照药典和药品GMP指南中有关规定的字面理解,而应该从根本上掌握性能验证与各个测定项目的真正含义。在此基础上,使用合格的分析仪器来满足药品质量检测的需要。原文刊登于《流程工业 制药业》杂志2021年第12期,作者:Sievers分析仪 王欣◆ ◆ ◆联系我们,了解更多!
  • 新品速递 | 华盛昌推出两款专业高精度标准红外校正源
    红外测温技术作为我国科技创新规划和新兴战略产业的重点关注领域,近年来,国家和各级政府相继发布各项政策,助力和推动红外测温行业的高质量可持续发展。红外测温技术应用广泛,如何保障其测量准确性数据显示,在2021年,我国红外测温市场规模就达到650亿元。红外测温行业飞速发展,在研发、工业检测与设备维护的应用范围愈来愈广泛。市场对红外测温类产品的需求也在逐年增加之中,红外测温仪器在科研、医疗、电子建筑等各行各业中发挥着举足轻重的作用。众所周知,红外测温仪器的广泛应用与其测量准确密不可分。那么此类仪器的准确测量是如何实现的呢?这里不得不提到一款仪器——红外校准源,也就是我们俗称的黑体炉。为什么黑体炉被更多选择与其他红外校准方式相比,黑体炉这一仪器校准方式有诸多优势:1、温度稳定性高。黑体炉具有出色的温度稳定性,这意味着在红外校准过程中,其能够保持恒定的温度,从而提供稳定的红外辐射源。这有助于确保校准结果的准确性和可靠性。2、操作简便。黑体炉通常采用触摸屏操作,界面简洁直观,使得操作过程变得简单方便。此外,其体积小、重量轻的特点也便于携带,不仅适用于实验室校准,也适用于现场校准工作。3、抗干扰能力强。黑体炉采用先进的技术设计,具有强大的抗干扰能力。这有助于在复杂环境中保持校准结果的准确性和稳定性,提高红外测温的可靠性。除此,部分黑体炉还有测温范围广,升降温速度快,以及耐用性和可靠性强等优点。华盛昌提供优质解决方案华盛昌新推出了两款红外校准源——专业高精度标准红外校正源BXL-500和BXC-15很好地融合众多优点,用心打造研发,为用户提供一个高效、准确、稳定、耐用的红外校准体验。BXL-500是一款测重于高温段的专业高精度标准红外校正源,简洁大气的外观设计,体积轻便,配有可提的把手,方便移动位置,除此之外,它还具有诸多优点:1、超广高温量程。35°C到500°C的超广高温量程,可以适应多种辐射温度计、红外测温仪、红外热像仪等设备的检定需求,具有广泛的应用范围。2、大面源面板。配有6英寸的大面源面板,能够提供足够的辐射面积,提高校准的准确性和可靠性。3、升降温速度快。BXL-500升温、降温速度快,能够很好地提高工作效率,减少能源消耗,同时可获得更为准确的测量结果。4、高精度、重复率好。能够更好保证测量结果的稳定性和一致性,提高测试的精度和可靠性,有效降低校准成本和时间。5、读数清晰直观。采用彩色触摸大屏显示,数据、信息清晰可见,直观易读,而且操作简单方便,易上手。BXC-15则是一款偏重于低温段的专业高精度标准红外校正源,结构紧凑,配有可收缩的把手,整体造型简洁大方。同样采取彩色触摸大屏设计,方便读数和操作。它可以实现-15℃到120℃的超广量程测量,可满足多种需求场景的应用。另外,这款BXC-15使用的是3.26英寸(83*83mm)的面源,高精度,很好地保证了测量结果的准确和可靠,升温和降温速度也快,可有效降低能源消耗,大大提升工作效率。
  • LGC:标准品的定义、分类、正确使用及杂质标准品的合规标定
    p   药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。 /p p   因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。 /p p   2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会, 会议中,LGC医药标准品资深专员杨学林将介绍《标准品的定义、分类、正确使用及杂质标准品的合规标定》。 /p p   strong  报告摘要 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 概括介绍2015版药典中对标准品的定义及杂质标准品的新要求;深入解析标准品的定义、特性及生产体系;着重对医药产品生产及研发过程中使用的一级标准品、二级标准品、药典标准品及杂质标准品进行介绍,并指导如何正确使用;由于一致性评价的深入开展及国家对杂质研究的逐渐重视,对于一些合成工艺复杂,购买困难的杂质如何合规的标定同样是在工作中急需解决的问题。对于以上提到的热点问题,我们会在本次报告中一一为您解答。 /p p   strong  报告人简介 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 杨学林,LGC医药标准品资深专员,主要负责医药标准品的市场推广及售前售后的技术支持工作,曾受邀2015版《中国药典》进行关于标准品知识方面的讲座,同时在国内多家百强企业如扬子江、罗欣药业、鲁南制药等做过关于标准品使用方面的专场介绍。2009年获得沈阳药科大学药物化学博士学位,在BMCL、LDDD等学术期刊以第一作者发表多篇研究论文及多篇授权专利;曾参与863、973、国家自然科学基金等重点项目的研究工作,拥有5年以上药物研发相关经验。曾先后就职于Bioduro、神威药业研究院,担任组长、室主任等职务。 /p p   欲了解本次会议的详细日程请点击: /p p    a title=" " href=" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target=" _self" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/ /a /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target=" _self" img title=" 点击参会.gif" src=" http://img1.17img.cn/17img/images/201707/noimg/f3ddf4d4-6b54-41b5-a520-8d1a1ef40f63.jpg" / /a /p
  • 标准物质如何正确使用?这些问题该注意!
    标准物质是化学分析和成分测量过程中量值传递的载体,对于确保化学测量结果的一致和溯源性具有重要意义,因此被形象地称为“化学砝码”。近年来,国家政策大力扶持计量标准物质的产业发展,如国务院制定的《计量发展规划(2013-2020)》就明确指出,开展基础前沿标准物质研究,扩大国家标准物质覆盖面,填补国家标准物质体系的缺项和不足,因此我国标准物质产业也迎来了快速发展期。2021年,十四五开局之年,标准物质领域将迎来怎样的新机遇?标准物质产业又将如何发展?基于此,仪器信息网特推出专题标准物质:“化学砝码”的现状与未来,为广大业内专家及用户介绍标准物质领域现状及未来发展方向。本期邀请迪马科技聊一聊标准物质该如何正确使用! 一、标准品常见的保存方法• 常温保存:通常用于化学性质比较稳定的标准品,建议保存于干燥阴凉的地方,必要时要避光保存。• +4 ℃冷藏:用于常温下不是很稳定的物质,保存于冰箱冷藏室。• -20 ℃冷冻:用于化学性质不稳定,常温下容易分解的物质,保存于-20℃冷冻室。• -80 ℃保存:一些具有生物活性的物质,需要保存于特定的-80 ℃的冰箱。 对于配制成溶液的标准品的保存大部分的溶液标准物质都是冷藏避光贮存的,使用前于(20±3 ℃ ) 平衡,并摇动均匀。安瓿瓶一经打开,应立即使用,不可再次熔封后作为标准物质使用,也可选择一次性制备成中间标准储备溶液保存、使用。对于一些溶质溶解度低,溶液性质稳定的标准溶液,为防止低温下溶质析出,可放置于阴凉干燥的地方室温保存。 对于己经打开使用的标准品如何保存溶液型的产品最好一次性使用完,如果不能一次使用完,建议打开后立即转移到样品瓶密封保存,或一次性制备成中间标准储备溶液,密封好后,冷藏避光保存。固体密封好用封口膜把瓶口包裹,放在温度、湿度均合适(产品 说明书上有)的地方;如果是固体溶解定容后的,将其从容量瓶中移至样品瓶,再将样品瓶置于较大的有盖容器里,放于冰箱中冷冻。液体同样密封好,注意避光,不要经常震动就好,也要注意温度湿度;如果原包装是安瓿瓶的,分装于棕色样品瓶中( 也可根据需要稀释几个梯度保存)。这样保存也是有一定期限的,样品浓度、封存时间等标签要做好。 二、选择标准品还是试剂?标准品的用途是定性或定量。如在色谱中确定检测物的保留时间,建立标准曲线,做内标,以及其他仪器分析中用于定性定量用途的产品,均应购买标准品。除化学标准品外,还有基质标准品或标准物质,用于作为能力验证样品或质控样品等。 三、标准品过期了,可以废物利用吗?按照CNAS 认可准则的要求,过期的标准品是不能用于与检测结果报告的相关检测的。可以这样处理:• 当作废液或者固废统一分类处理;• 用来做内部质量控制;• 对过期标样作一次核查,用新购的标液去定量( 请注意成本考量) ;• 参考一下标准品的理化性质,只要变化不大,可用作回收率试验;• 可用于标准品变化规律的研究;• 在其降解产物响应极弱的前提下,用于色谱分析的峰定性;• 农药做定性分析和快速筛查用;• 实验室内部用来做摸索实验条件用,优化参数。 四、标准品的运输条件相对于长期保存的条件,运输过程由于时间比较短,所以运输条件相对来说要求没有保存条件那么严格。合格的标准品都是经过短期稳定性检验的,短期稳定性检验的条件要比一般的运输条件苛刻。长期保存条件为常温和+4 ℃的标准品都可以在常温条件下运输,-20 ℃保存的标准品在运输时可以放入冰袋来降低温度,而-80 ℃保存的物质则需要在运输时加入干冰。但是干冰的有效时间只能维持1 天左右,所以这类型的物质不适合于长途运输。 五、关于溶剂的选择甲醇、乙腈、丙酮——用于GC、HPLC 均可环己烷、正己烷、异辛烷——基本只用于GC 检测互溶性——丙酮是很好的中间过渡溶剂 六、是否可以将瓶中产品全部溶解,按照产品规格计算?除非特别说明,所有供应商提供的产品规格均不是精确规格,而是指不少于相应质量或体积。如规格100 mg,是指产品不少于100 mg ;规格1 mL,安瓿瓶所装产品通常为1 mL。所以,除特别说明,请用户务必先对产品进行称量,在标准曲线浓度计算中使用实际称量数值。溶剂选择:请客户根据已有的方法或者物质的相关理化性质选择合适溶剂。不适当的溶剂可能造成无法溶解或者产品降解。如果没有参考资料可以用于确定溶剂,请联系我们,我们将与厂家联系看能否提供相关信息供您参考。 七、对少量标准品的称量及溶解方法当样品量非常少时,如何从瓶子中获取所有的纯物质?特别是某些标准品由于非常昂贵,厂商只能以非常小的包装提供给客户,如1 mg,5 mg,10 mg 等。此时,客户拿到产品时可能会觉得瓶子是空的,这种情况是由于粉末状的物质会分散在瓶壁和盖子上,而液体状物质会在瓶壁形成一层可能看不见的液层。客户可根据具体的实际情况,按照以下操作来获取瓶内所有产品:(1) 擦拭瓶外壁和盖子,等其晾干。(2) 称量整个瓶子( 等到天平读数稳定),记录数据,精确至0.1 mg。(3) 用合适的溶剂( 能溶解产品并容易挥发) 将瓶内的产品转移到容量瓶中。荡洗瓶盖和瓶内壁数次并都转移到此容量瓶中。(4) 中等加热或者氮吹使瓶外壁和内壁干燥。(5) 在同一台天平上称量空瓶连盖的重量,精确至0.1 mg。(6) 两次称量差值即为容量瓶内溶解的产品量。(7) 用溶剂定容至容量瓶刻度,即可计算所配溶液的浓度。 八、标准品如何进行期间核查首先需要明确的是期间核查并没有标准规定,所以期间核查的方式可根据客户自身的经济和技术条件灵活掌握。(1) 最简单的期间核查:检查标准物质的标签、证书及包装的完整性,核查标准物质的有效期及保存条件,核查标准物质的状态(包括颜色、粉末、结晶等)。(2) 对于自己制备的相关储备液,由于没有相关的稳定性和均匀性数据,所以要重点关注量值变化,可利用质量控制图进行趋势分析,也可以通过上下批次的量值比对等方法进行考察。(3) 期间核查的频次:对于预期稳定的标准物质( 比如有机氯农药),可以放宽期间核查的频次;对于预期不稳定的标准物质( 比如维生素类),要求加大审核频次,甚至要求每次进行核对。可参考《CNAS CL01 检测和校准实验室能力认可准则》中涉及标准物质期间核查的描述。 关于迪马科技:迪马科技的xStandard® 标准品的产品优势为:xStandard® 品牌创立于2007年,标准品种类丰富,含有实验室常用的单标及混标,涉及食品、环境、制药、化妆品、纺织品、石油化工等行业。迪马科技紧密跟踪最新国家标准、环境标准、行业标准等法规,及时定制相应的xStandard® 混标。xStandard® 混标严格符合标准中组分、溶度、溶解溶剂的要求,极大节省了分析工作者配制混标的时间,同时提高了分析工作者配制混标的准确度。另外,迪马科技还可根据用户的个性化需求提供混标的定制服务。xStandard® 化学标准品特点:• 农药、兽药、食品添加剂等实验室常用标准品• 紧密跟踪最新法规需求• 长期严格验证兼容性和稳定性• 全面仔细的原料控制程序• 全部去活的玻璃器皿• 详尽的分析证书(COA)• 种类齐全的单标或混标• 更为人性化的小包装量,利于保存,节约成本供稿:迪马科技
  • 饮用水协会确认农夫山泉品质标准不如自来水
    农夫山泉“品质风波”继续发酵。中国民族卫生协会健康饮水专业委员会秘书长马锦亚昨天向记者确认,农夫山泉执行的标准的确不如自来水标准。他表示,任何瓶装水企业都必须以国家强制性标准——GB5749《生活饮用水标准》为底线,若不能执行则有违反国家食品安全法之嫌。   优于自来水标准?   前晚,农夫山泉就“品质风波”发表声明,坚称“产品品质始终高于国家现有的任何饮用水标准,远远优于现行的自来水标准”。   但是,公开信息显示,农夫山泉执行的产品标准为浙江省标准DB33/383-2005,该标准由浙江质监局提出并归口,由农夫山泉作为唯一的企业代表参与制定。简单比对可知,农夫山泉执行的这一标准在有害物质砷、镉的限量方面,均宽松于国标GB5749《生活饮用水标准》,其中砷指标限量甚至放宽到5倍。   “任何一个企业生产瓶装水,都应该以国标GB5749《生活饮用水标准》为底线,这是一个基本要求。”马锦亚表示,生活饮用水指的就是平常所说的自来水,“瓶装水标准要求低于国标GB5749《生活饮用水标准》肯定是不允许的,而应该高于该标准”。   对于农夫山泉的“产品品质始终高于国家现有的任何饮用水标准,远远优于现行的自来水标准”说法,马锦亚表示,不排除存在“企业执行标准低,但产品实际检测值高于国家标准”的可能性,但是,执行标准低就意味着有些指标存在不安全的风险,“如果产品标准都不如自来水标准,何谈健康和安全?”   马锦亚昨天还向记者表示,农夫山泉产品标准不如自来水标准,有违反国家食品安全法之嫌。因为食品安全法第27条明确规定:食品生产经营用水应当符合国家规定的生活饮用水卫生标准。   地方执法倒退?   马锦亚昨天直言,从行业的角度看,低于国标的地方标准是不能备案的,地方卫生标准备案部门对低于国标的地方标准进行备案,是一种执法倒退行为。“在地方企业的非正常手段下,连国标要求都达不到的地方标准却得以通过备案。而一旦通过了备案,就等于是合法有效的了。对这样的事情,行业协会也非常痛恨。”马锦亚称。   马锦亚还向记者透露,针对目前国内各种饮用水标准不一的问题,目前协会正在参与国家食品安全标准——定型包装饮用水卫生规范的修订,今后,凡是涉及定型包装饮用水安全的标准,都要纳入国家食品安全标准体系中。   记者昨天反复拨打浙江省质监局标准化处、浙江省卫生厅的电话,但均无人接听,发给农夫山泉的采访提纲也未得到回复。   怡宝回应指责   针对农夫山泉“幕后蓄意策划者”的指责,昨晚,华润怡宝食品饮料(深圳)有限公司发布声明称:“我司从未以任何方式对农夫山泉声明中所提到的做法予以任何形式的参与 作为一家有社会责任的企业,我司一贯反对任何企业不正视自身问题、推卸自身责任,通过利用媒体转移公众视线将自身危机转嫁给竞争对手的任何行为 我司保留对农夫山泉采取法律行动的一切权利。”   该来的,躲不掉   对于“品质风波”,农夫山泉在前天发布的声明中,将矛盾焦点指向竞争对手华润怡宝幕后操作,是否如此尚有待调查。如果真有企业在幕后操作,恶意打击竞争对手,那肯定是不道德的行为。此前也曾有过蒙牛攻击伊利、鲁花攻击金龙鱼等案例在先,最终实施这些行为的幕后操作者都被绳之以法,为业界和消费者所不齿。   不过,农夫山泉不能回避的问题是:其参与制定并执行的浙江标准中,多项污染物指标为何都宽松于国家标准?在公开声明中,农夫山泉始终回避其执行的产品标准是否低于国家标准这一最关键、最核心的问题,而是含糊地称“产品品质优于国家标准”,试问,对于标准都不能达到国家标准的产品,“优于”二字从何而来,消费者又凭什么相信?   农夫山泉委屈地责怪质疑者——“说农夫山泉标准不如自来水,严重损害了农夫山泉的声誉”,但农夫山泉要明白的是,食品企业的声誉应该由消费者来打分,企业首先要严格自律、诚信守法,否则就是自毁声誉。
  • 标准物质如何管理?有疑问的赶紧看过来
    p style=" text-indent: 2em " & nbsp 标准物质的管理 br/ 问题1:实验室应配备哪些用途的标准物质?解析:样品检测用标准物质、质控用标准物质、核查设备用标准物质。 /p p br/ /p p style=" text-indent: 2em " & nbsp 问题2:标准物质采购申请,申请人应明确哪些要求?解析:采购申请应明确标物名称、等级、状态、数量、用途、浓度(或浓度范围)或标准值、基质、不确定度、计划使用时间(在什么日期前应到货)、保存条件等要求,必要时提供CAS号(有同分异构体或名称较多时),若已知编号可告知采购人员,有必要时指定生产单位。 /p p br/ /p p style=" text-indent: 2em " & nbsp 问题3:采购到货后,标准物质验收哪些内容?解析:应验收并记录标准物质名称、标物编号、批次号、包装情况(是否完好)、标识(是否清晰)、证书、特性量值、不确定度、有效期、购入日期、购入数量、生产商、要求的储存环境、运输环境(必要时确认是否满足要求并记录)、验收人、验收日期、验收结论等。标准物质不需要技术验收。& nbsp /p p br/ /p p style=" text-indent: 2em " 问题4:标准物质标识应包含哪些内容?注意事项有哪些? /p p style=" text-indent: 2em " 解析:标准物质的标识应包含标准物质编号(具有唯一性)、有效期。 /p p style=" text-indent: 2em " 一次购买多支同一种标准物质时,即便其标物号和批次号一样,也应给每一支标准物质唯一性编号。 /p p style=" text-indent: 2em " 如果标物较小,可把标识贴在包装上。 /p p style=" text-indent: 2em " 标准物质的编号规则中尽量可以体现标物的基本信息和购置验收日期,保证能快速溯源。 /p p br/ /p p style=" text-indent: 2em " & nbsp 问题5:标准物质台账可包含哪些内容?解析:可包含标物名称、标物号、批次号、生产单位、基质、标准值、不确定度、验收日期、有效日期、规格、储存条件要求、标物唯一性编号、放置位置、注意事项、核查频率等信息。& nbsp /p p br/ /p p style=" text-indent: 2em " 问题6:标准物质领用注意事项有哪些? /p p style=" text-indent: 2em " 解析:需写领用记录,记录内容包括领用人、日期、唯一性标识、领用量、用途等内容。优先使用离保质期近的。 /p p style=" text-indent: 2em " 注意:管制(剧毒)标准物质,需双锁双人管理,用量较少时不许整瓶领走,每次使用都要写领用记录。 /p p br/ /p p style=" text-indent: 2em " 问题7:标准物质是否需要期间核查?如何进行期间核查?解析:需要期间核查。 /p p style=" text-indent: 2em " 未开封: /p p style=" text-indent: 2em " 核查是否在有效期内,以及是否按照证书上所规定储存条件和环境要求等正确保存,外包装是否完好,颜色状态是否正常。若满足要求,不需要再采用其它方式进行期间核查。 /p p style=" text-indent: 2em " 未开封的CRM在使用前进行一次核查即可。 /p p style=" text-indent: 2em " 已开封: /p p style=" text-indent: 2em " 对已开封的CRM,实验室要确保其在有效期内使用,在证书要求的开瓶有效期内,至少进行一次期间核查。 /p p style=" text-indent: 2em " 若该CRM在有效期内允许多次使用,要确保其使用及储存情况满足证书上规定的要求。 /p p style=" text-indent: 2em " 必要时,根据其稳定特性、使用频率、储存条件变化、测量结果可信度等情况,按下列核查方式中的一种对其特性量值的稳定性进行核查: /p p style=" text-indent: 2em " a)检测足够稳定的、不确定度与被核查对象相近的实验室质控样品;b)与上一级或不确定度相近的同级CRM进行量值比对;c)送有资质的检测/校准机构确认;d)进行实验室间的量值比对;e)测试近期参加能力验证且结果满意的样品;f)采用质量控制图进行趋势检查等。期间核查发现不合格的措施:在期间核查中发现不合格,须立即停止使用,并追溯对之前检测结果的影响,执行“不符合工作管理程序”。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 问题8:标准物质使用有哪些注意事项?解析:1、遵守使用和储存说明。2、应遵守证书上的有效期限,不应使用超过有效期的有证标准物质/标准样品。3、对于可多次使用的有证标准物质/标准样品,确保其包装的严密性、储存方式满足要求。某些情况下,有必要对剩余的部分重新包装,否则,给出的特性值可能无效,从而导致有证标准物质/标准样品无法使用或不可靠。用户应遵循生产者在这方面提供的使用说明。4、应按给出的最小取样量取样。小于最小取样量则没有代表性。5、对于可多次使用的有证标准物质/标准样品,使用前应再次混合均匀。否则,长此以往,剩余的有证标准物质/标准样品不再对已生产和定值的包装批有代表性,证书上给出的值和不确定度不再有效。6、标注“本标准物质开封后请一次使用完毕”的标准物质,不能倒出至其他包装中多次使用。& nbsp /p p br/ /p p style=" text-indent: 2em " 问题9:标准物质有哪些用途?解析:1、可作为样品进行方法精密度评估。比实验室的样品更均匀。2、偏倚(系统测量误差的估计值)的评估。用于校准的有证标准物质/标准样品得到的偏倚估计值可直接用于校正。对于测试,偏倚校正更加复杂,有证标准物质/标准样品的属性很难完全反映日常样品的属性。在很多情况下,建议改进方法以便减少或消除偏倚,而不是尝试校正。有些标准给出了可接受偏倚的准则。3、设备校准,建立校准曲线。4、为样品赋值。5、约定标尺。如:在地质实验中用于测量硬度的Mohs& #39 标尺,该标尺是以赋于十个硬度级的十个矿物为基础,每一比较硬的矿物都能将比较不硬的矿物划痕。pH标尺:由于绝对单离子活度不能用实验方法测量,因而pH被认为是一个不严格的物理量。为了使被测的pH尽可能有意义,采用了一个约定的pH标尺,它由赋予pH值的标准溶液来定义。这些溶液的pH值是通过测量无迁移的氢-银/氯化银电池的电动势,并根据约定用给定的计算方法计算得到的。6、质量控制。7、核查过期标物。& nbsp & nbsp /p p br/ /p p style=" text-indent: 2em " 问题10:标准物质管理人员应经过哪些培训?解析:1、实验室规则制度;2、安全相关的培训;3、体系文件培训(重点培训设备和标准物质相关的内容);4、标准物质期间核查方法;5、过期标准物质的处理;6、危险标准物质的管理和领用程序;7、试剂标物储存、验收培训& nbsp /p p br/ /p p style=" text-indent: 2em " 问题11:标准物质过期了怎么处理?解析:确认是否真的“过期”。标准物质生产单位可能会不断的更新保质期。证书上写着的保质期不一定是必须依照的。如果真的过期了:1-报废处理;2-再利用(降级作为标准样品;用于定性分析;制作加标样品· · · · · · )3-可以作为培训使用& nbsp & nbsp /p p br/ /p p style=" text-indent: 2em " 问题12:如何确定实验室的标准物质/标准样品是否能溯源?解析:1、通过ISO 17034认可的实验室生产的相应的标物可认为是能够溯源的(证书上有说明);2、国家批准的一级、二级标物和标准样品。 /p p br/ /p
  • 浊度和天然有机物(NOM)的校正
    概述YSI EXO NitraLED™ 传感器利用光学吸收的基本原理检测硝酸盐。所有光学技术都必须应对浊度干扰,浊度干扰是由悬浮粒子引起的光散射引起的。由于有机物也会吸收光,依靠紫外光范围进行测量的传感器会受到天然有机物(NOM)的吸收的干扰。本文描述NitraLED传感器的工作原理同时,重点介绍应用于传感器内的原始信号的NOM和浊度校正。EXO NitraLED传感器的基本结构该传感器配有一个主LED ,发出波长为235nm光检查水样。以各种形态存在的氮都会吸收波长为235nm的光,NitraLED传感器无法区分这些不同形态的氮。比如,亚硝酸盐也会吸收。然而,在自然水域中,硝酸盐通常是氮最普遍的形态。在传感器内,NOM由发射275nm光的发光二极管检测。像其他在235nm吸收NOx的物种一样,NOM不是水中唯一能吸收波长为275nm的光的物质。但是在一定范围内,尤其是在用户提供的环境输入,275nm的LED可以方便对原位测量进行NOM校正。校正的效果取决于NOM的性质。浊度通过利用EXO浊度传感器来处理,该传感器须始终与NitraLED传感器搭配使用。经验丰富的EXO用户已经知道,浊度传感器的工作原理是光的散射,这不同于吸光度。下文描述了EXO浊度传感器如何协助校正浊度衰减。硝酸盐是以硝酸盐氮为单位来测量。因此,在使用化学表达式的地方都使用 NO3-N形式。这是因为传感器是在工厂用NO3-N标准进行校准的,且用户校准用的校准标准也是从YSI购买的NO3-N。由于衰减效应已在传感器中得到仔细处理,标准液中的任何微粒或不规则现象都会影响校准质量从而影响测量的准确性,因此YSI标准是唯一已知不会发生这种效应的标准。其他标准液也适用于NitraLED,但这些风险应该注意。吸光度原理EXO NitraLED传感器利用吸光度原理计算硝酸盐浓度。吸光度以吸光度的单位AU来测量,遵循比尔定律:其中,A表示以AU为单位的吸光度,它是透过样品的光强,而Io是来自传感器的光强根据传感器记录的235纳米处的总吸光度,NitraLED传感器计算硝酸盐的吸光度非常简单的公式如下:在275nm波长处,用一个类似的简化方程来确定干扰的影响:利用比尔定律测量235nm波长的吸光度,然后减去由浊度引起的衰减值(已转换为 AU 单位)以及减去275nm波长下估算NOM吸光度。然后将这样计算得出的ANO3-N用于回归方程,此方程是基于工厂线性化和两点用户校准。此回归定义了吸光度和硝酸盐浓度之间的关系。在此回归的计算过程中,校准过程中使用的硝酸盐标准没有任何颗粒物或有机化合物的产生的吸光度,这一点至关重要。如前述,这也正是建议采购YSI标准液的原因之一。在KOR软件中如何进行校正软件允许EXO NitraLED用户校准和执行校正,以优化其特定测量地点的传感器,该过程涉及三个重要步骤:1、输入一个通过独立测量确定现场采集样品的硝酸盐值2、通过以下任一种方式校正浊度:a.使用软件中提供的默认浊度系数b.通过测量现场的原始(未过滤的水样)和过滤后的水样的吸光度来估计浊度衰减3、根据过滤后的现场样本,使用滑动条来优化输出,以校正NOM。首先,在进行现场特定校正之前,必须校准EXO NitraLED和浊度传感器。在校正过程中,必须从测量现场收集抓取的样本。样品的硝酸盐浓度(单位为mg/L)应通过独立方法测定,例如EXO离子选择性电极(ISE)或台式光度计。而浊度的测定,最简单的方法是使用软件的默认浊度系数。在特定地点的校正可能有好处,然而,这将由用户决定。在这种情况下,NitraLED传感器将用于比较水样品采集时的测量值,以及样品使用0.45微米过滤器过滤后的测量值。最后一步,使用滑动条来优化过滤水中的传感器输出,从而进行NOM校正。校正浊度衰减浊度对吸光度的测量有显著影响,因为它可以使从LED到探测器的路径上光发生散射。颗粒的数量、大小和形状都可能影响光的衰减程度。如下图1所示,235nm波长光的吸光度和浊度FNU之间的关系呈现较好线性。但是,这一关系的斜率因不同的浊度来源而变化。NitraLED传感器内默认的吸光度校正程序是以高岭土为基础(如图所示)。之所以选择它,是因为它非常接近YSI所处理的所有样品的平均值。图1中的一些样品(迈阿密河和独木舟俱乐部)实际上是从天然水体中采集的,而其他样品(膨润土、Arizona 试验粉尘、硅藻土、高岭土和 Elliot 粉砂壤土)是购买的。已确认所购标准液中的样品不含硝酸盐,当存在硝酸盐时,对现场样品进行了校正。该图所示仅显示235nm波长下的相关性,但在275nm波长,观察到高岭土存在类似线性。当用户在Kor软件中选择默认浊度系数时,高岭土和吸光度之间的关系将应用于传感器内的原始信号。在广泛测试的基础上,使用一组平均高岭土干扰校正系数;图 1 没有描述所有进行的高岭土测试。相反,用户可以选择做特定地点校正。例如,图1表明,在较高的FNU时,样品之间的差异越大。如果用户在较高的FNU水域使用,可能会发现这些差异对于他们的研究目标是不可接受的。例如,一个位置的浊度是120FNU,由光学工具(分光光度计、NitraLED 等)测量的吸光度为0.19AU。则特定地点浊度的方程斜率为0.00158 AU/FNU。相比之下,高岭土的斜率为0.0028AU/FNU。因此,我们可以看到,根据沉淀物类型,默认的吸光度校正值和特定地点的校正值之间差异会对NitraLED的硝酸盐计算有显著影响当使用特定站点校正,NitraLED会在内部建立新的浊度回归方程,它将覆盖处理传感器中原始信号使用的默认关系。在特定地点校正过程中,分别收集水样过滤前,和使用0.45µm 过滤器对样品进行过滤后的吸光度值。这种预期差异值应该(以AU表示)是由过滤器去除的颗粒所引起的(即浊度)。在EXO用户手册(K版本及以上)中描述了这种方法。请注意,在进行浊度测量的同时,NitraLED也使用275nm LED进行测量,就可以方便地确定每个波长相应的吸光度,并从每个传感器测量的总吸光度中减去。我们现在可以缩小NOM和硝酸盐的吸光度。上一节的方程变为:NOM在275nm波长的吸光度现在是已知的,但该数值不等于NOM在235 nm 波长的吸光度,该吸光度如下所述确定。NOM 校正NOM从275nm波长校正到235nm波长处的吸光度,大致适用于测定废水中硝酸盐的标准方法1 . NOM校正系数等于以下:NitraLED传感器有一个内部编程默认的NOM系数,但为了实现最精确的计算,还是建议进行特定站点的校正。在特定站点的校正过程中,可使用滑动条对上述比率进行微调。当这个数字被调整时,传感器的输出被调整,并且对NOM系数进行调整 ,直到输出值等于已知的硝酸盐浓度。回顾一下,硝酸盐浓度是使用独立测量方法测得。一旦确定了NOM系数,在235纳米波长下的NOM吸光度将根据上述等式的重新排列来确定:在235纳米处计算出的NOM在下面的等式中用于确定由硝酸盐测量的吸光度,该吸光度归因于硝酸盐: 计算出硝酸盐的吸光度后,然后,将其插入两点校准过程中存储在传感器中的回归方程中,从而确定被测样品中硝酸盐的最终估计浓度。传感器计算的上述说明描述了硝酸盐值的计算方法,但现场特定校正的程序没有充分定义。有关如何执行特定场地校正程序的完整说明,请参考EXO用户手册。
  • 新国标:化学分析方法确认和验证指南4月1日实施
    p   近日,中国质检总局和中国国家标准委员会发布了推荐性国家标准GB/T《合格评定 化学分析方法确认和验证指南》,标准号:GB/T 27417-2017,并将于2018年4月1日实施。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/90f06d57-8312-40d8-aaaa-84e086a1fdc6.jpg" title=" 微信图片_20180402161900.jpg" / /p p   随着科学技术的进步和国际贸易的发展,国内外对实验室化学分析方法和检测数据的质量提出了更高要求。目前,国外已经发布了一些关于化学分析方法的确认规范,但我国尚未发布关于化学分析实验室方法确认和验证的标准和指南性文件,在实验室的实际检测工作中,经常遇到现行的检测标准无法与快速发展的检测手段相适应的情况。为了提供更准确、高效率的检测服务,实验室往往需要采用自己制定或改进的检测方法,特别在化学分析领域,越来越多的实验室使用标准以外的检测方法,但如何确保这些检测方法的适宜性和可靠性,一直存在争议。为此,我国出台了该标准,是实验室对化学分析方法进行确认和方法验证的指南性文件,旨在提高实验室化学分析方法和检测数据的质量,确保化学分析实验室所提供数据的有效性、公正性和可靠性。 /p p   小编对该规范进行了初步总结,以帮助大家快速阅读和了解该《化学分析方法确认和验证指南》,以下是该标准的精简介绍和分析。 /p p   该国标共有6个章节,分别是范围、引用文件、定义、方法确认要求、方法特性参数的确认、方法验证要求。另外,该国标还有3个附录,分别是方法回收率偏差范围、实验室内变异系数、重复性和再现性自由度对照表。 /p p   strong  1 范围 /strong /p p   本标准给出了实验室对化学分析方法确认和方法验证的一般性原则,并指出适用于实验室对非标准方法、实验室制定的方法、超出预定范围使用的标准方法以及实验室对新引入的分析方法在正式使用前的方法验证。 /p p   strong  2 规范性引用文件 /strong /p p   参考了ISO/IEC 指南99:2007国际计量学词汇-基本和通用概念及相关术语等文件。 /p p   strong  3 术语和定义 /strong /p p   本部分对常见的术语进行了定义,包括:方法确认、方法验证、实验室内方法确认、实验室间方法确认、定性方法、定量方法、确证方法、筛选方法、容许限、检出限、定量限、精密度、灵敏度、测量区间、自由度、准确度等。 /p p   需要注意的是,该部分中“方法确认”对应的英文是“method validation”,而“方法验证”对应的英文是“method verification”,大家在阅读时还应注意这些和行业内的常见定义是否有区别。 /p p    strong 4 方法确认要求 /strong /p p   4.1 总则 /p p   实验室应对非标准方法、实验室制定方法、超出其预定范围使用的标准方法、扩充和修改过的标准方法的确认制定程序。对于确认过的方法,实验室应制定作业指导书。 /p p   4.2 确认方法的特定参数 /p p   实验室可在综合考虑成本、风险和技术可行性基础上,并根据预期的用途来进行方法确认。实验室进行方法确认的内容应完整,包括但不限于以下方法特性: /p p   a)方法的选择性 /p p   b)方法适用范围 /p p   c)检出限和/或定量限 /p p   d)测量范围和/或线性范围 /p p   e)精密度(重复性和/或再现性) /p p   f)稳健度 /p p   g)正确度 /p p   h)准确度 (注:测量结果的准确度由正确度和精密度两个指标进行表征。) /p p   i)灵敏度 /p p   j)结果的测量不确定度。 /p p   4.3 确认方法特性参数的选择 /p p   4.3.1 方法确认的典型特性参数 /p p   方法确认首先应明确检测对象特定的需求,包括样品的特性、数量等,并应满足客户的特殊需要,同时应根据方法的预定用途,选择需要确认的方法特征参数。 /p p   strong  典型方法确认参数的选择,参见表1: /strong /p p /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/3119a4e9-8c5a-4d05-b53b-20cafe2878bb.jpg" title=" 2018-04-02_162010.jpg" / /p p   4.3.2 实验室内方法确认 /p p   通常情况下,需要确认的技术参数包括方法的选择性、检出限、定量限、线性范围、正确度、精密度和稳健度等。 /p p   4.3.3 实验室间方法确认 /p p   通常情况下,对于定性方法,至少应确认方法的检出限和选择性 对于定量方法,至少应确认方法的适用对象、线性范围、定量限和精密度。 /p p   strong  5 方法特性参数的确认 /strong /p p   5.1 选择性 /p p   分析方法应具有一定的选择性。 /p p   5.2 测量范围 /p p   方法的测量范围通常应满足以下条件: /p p   a)方法的测量范围应覆盖方法的最低浓度水平(定量限)和关注浓度水平。 /p p   b)至少需要确认方法测量范围的最低浓度水平(定量限)、关注浓度水平和最高浓度水平的正确度和精密度,必要时可增加确认浓度水平。 /p p   c)若方法的测量范围呈线性,还应满足5.3条款的要求。 /p p   5.3 线性范围 /p p   线性范围应尽量满足如下标准: /p p   a)采用校准曲线法定量,并至少具有6个校准点(包括空白),浓度范围尽可能覆盖一个或多个数量级,每个校准点至少随机顺序重复测量2次,最好是3次或更多 对于筛选方法,线性回归方程的相关系数不低于0.98 对于准确定量的方法,线性回归方程的相关系数不低于0.99。 /p p   b)校准用的标准点应尽可能均匀地分布在关注的浓度范围并能覆盖该范围...... /p p   c)浓度范围一般应覆盖关注浓度的50%~150%,如需做空白时,则应覆盖关注浓度的0%~150%。 /p p   d)应充分考虑可能的基质效应影响,排除其对校准曲线的干扰。 /p p   5.4 检出限和定量限 /p p   5.4.1 需要评估检出限(LOD)和定量限(LOQ)的情况 /p p   通常情况下,只有当目标分析物的含量接近于“零”的情况下或者检测浓度接近检出限和定量限时,才需要确定方法的LOD或LOQ。 /p p   5.4.2 检出限(LOD) /p p   对于多数现代分析方法来说,LOD可分为两个部分,即仪器检出限(IDL)和分析方法检出限(MDL)。应注意两者的区别,在该国标中指出:使用信噪比可用来考察仪器性能,但不适用于评估方法的检出限。 /p p   确定检出限的方法: /p p   在该国标中提到了多种确定检出限的方法,包括: /p p   a)目视评价法评估LOD /p p   目视评价法是通过在样品空白中添加已知浓度的分析物,然后确定能够可靠检测出分析物最低浓度值的方法。即在样品空白中加入一系列不同浓度的分析物,随机对每一个浓度点进行约7次独立测试,通过绘制阳性(或阴性)结果百分比与浓度相对应的反应曲线确定阈值浓度。该方法也可用于定性方法中检出限的确定。 /p p   b)空白标准偏差法评估LOD /p p   即通过分析大量的样品空白或加入最低可接受浓度的样品空白来确定LOD。独立测试的次数应不少于10次(n≥10),计算出检测结果的标准偏差,具体的计算方法可参考该国标。 /p p   5.4.3 定量限(LOQ) /p p   与检出限相类似,定量限也分为仪器定量限和分析方法定量限。 /p p   5.5 正确度 /p p   测量结果的正确度用于表述无穷多次重复性测定结果的平均值与参考值之间的接近程度,测量结果的偏倚则通过回收率实验进行评估。 /p p   5.6 精密度 /p p   该国标中对精密度的描述分别从重复性、再现性两个维度进行描述。 /p p   5.7 稳健度 /p p   稳健度可通过由实验室引入预先设计好的微小的合理变化因素,并分析其影响而得出。可对样品进行预处理、净化、分析等可能影响检测结果的方面进行预实验,并分析可能影响结果的因素,必要时进行正交试验设计进行稳健度试验。 /p p   5.8 测量不确定度 /p p   该国标中列举了可能影响不确定度的多方面因素,并对测量不确定度评估时的考虑要点进行了介绍。 /p p   strong  6 方法验证要求 /strong /p p   对分析方法的验证提出总体要求,包括定量分析和定性分析。在验证总则中提到,当化学分析实验室引入标准方法时,实验室应根据该国标的相应要求进行验证,即证实该方法能在该实验室现有的设施设备、人员、环境等条件下获得令人满意的结果。 /p p   说明:本文仅是对国标《合格评定 分析方法确认和验证指南》GB/T 27417-2017 的部分节选和介绍,仅供参考,若需获得更多准确内容还请查看国标原文。 /p
  • 化学分析方法确认和验证指南,2018年4月1日实施!
    p style=" TEXT-ALIGN: center" img title=" e18a02a4ee114f8587a06d772e9631e0.jpg" style=" HEIGHT: 233px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/17b815ba-7f23-4cf0-b8ce-436f507b17c2.jpg" width=" 600" height=" 233" / /p p   近日,国标GB/T 27417-2017《合格评定 化学分析方法确认和验证指南》发布,并将于2018年4月1日实施。 /p p   笔者对该规范进行了初步总结,以帮助大家快速阅读和了解该《化学分析方法确认和验证指南》,以下是该标准的精简介绍和分析。 /p p   该国标共有6个章节,分别是范围、引用文件、定义、方法确认要求、方法特性参数的确认、方法验证要求。另外,该国标还有3个附录,分别是方法回收率偏差范围、实验室内变异系数、重复性和再现性自由度对照表。 /p p   1 范围 /p p   本标准给出了实验室对化学分析方法确认和方法验证的一般性原则,并指出适用于实验室对非标准方法、实验室制定的方法、超出预定范围使用的标准方法以及实验室对新引入的分析方法在正式使用前的方法验证。 /p p   2 规范性引用文件 /p p   参考了ISO/IEC 指南99:2007国际计量学词汇-基本和通用概念及相关术语等文件。 /p p   3 术语和定义 /p p   本部分对常见的术语进行了定义,包括:方法确认、方法验证、实验室内方法确认、实验室间方法确认、定性方法、定量方法、确证方法、筛选方法、容许限、检出限、定量限、精密度、灵敏度、测量区间、自由度、准确度等。 /p p   需要注意的是,该部分中“方法确认”对应的英文是“method validation”,而“方法验证”对应的英文是“method verification”,大家在阅读时还应注意这些和行业内的常见定义是否有区别。 /p p   4 方法确认要求 /p p   4.1 总则 /p p   实验室应对非标准方法、实验室制定方法、超出其预定范围使用的标准方法、扩充和修改过的标准方法的确认制定程序。对于确认过的方法,实验室应制定作业指导书。 /p p   4.2 确认方法的特定参数 /p p   实验室可在综合考虑成本、风险和技术可行性基础上,并根据预期的用途来进行方法确认。实验室进行方法确认的内容应完整,包括但不限于以下方法特性: /p p   a) 方法的选择性 /p p   b) 方法适用范围 /p p   c) 检出限和/或定量限 /p p   d) 测量范围和/或线性范围 /p p   e) 精密度(重复性和/或再现性) /p p   f) 稳健度 /p p   g) 正确度 /p p   h) 准确度 (注:测量结果的准确度由正确度和精密度两个指标进行表征。) /p p   i) 灵敏度 /p p   j) 结果的测量不确定度。 /p p   4.3 确认方法特性参数的选择 /p p   4.3.1 方法确认的典型特性参数 /p p   方法确认首先应明确检测对象特定的需求,包括样品的特性、数量等,并应满足客户的特殊需要,同时应根据方法的预定用途,选择需要确认的方法特征参数。 /p p   典型方法确认参数的选择,参见表1: /p p style=" TEXT-ALIGN: center" img title=" 44f8b9ebd5c342089c46239f71844a99.jpg" style=" HEIGHT: 273px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/69b7e8f2-6adc-4800-9c2d-8ec84ea54953.jpg" width=" 600" height=" 273" / /p p   4.3.2 实验室内方法确认 /p p   通常情况下,需要确认的技术参数包括方法的选择性、检出限、定量限、线性范围、正确度、精密度和稳健度等。 /p p   4.3.3 实验室间方法确认 /p p   通常情况下,对于定性方法,至少应确认方法的检出限和选择性 对于定量方法,至少应确认方法的适用对象、线性范围、定量限和精密度。 /p p   5 方法特性参数的确认 /p p   5.1 选择性 /p p   分析方法应具有一定的选择性。 /p p   5.2 测量范围 /p p   方法的测量范围通常应满足以下条件: /p p   a) 方法的测量范围应覆盖方法的最低浓度水平(定量限)和关注浓度水平 /p p   b) 至少需要确认方法测量范围的最低浓度水平(定量限)、关注浓度水平和最高浓度水平的正确度和精密度,必要时可增加确认浓度水平。 /p p   c) 若方法的测量范围呈线性,还应满足5.3条款的要求。 /p p   5.3 线性范围 /p p   线性范围应尽量满足如下标准: /p p   a) 采用校准曲线法定量,并至少具有6个校准点(包括空白),浓度范围尽可能覆盖一个或多个数量级,每个校准点至少随机顺序重复测量2次,最好是3次或更多 对于筛选方法,线性回归方程的相关系数不低于0.98 对于准确定量的方法,线性回归方程的相关系数不低于0.99. /p p   b) 校准用的标准点应尽可能均匀地分布在关注的浓度范围并能覆盖该范围… /p p   c) 浓度范围一般应覆盖关注浓度的50%~150%,如需做空白时,则应覆盖关注浓度的0%~150%。 /p p   d) 应充分考虑可能的基质效应影响,排除其对校准曲线的干扰。 /p p   5.4 检出限和定量限 /p p   5.4.1 需要评估检出限(LOD)和定量限(LOQ)的情况 /p p   通常情况下,只有当目标分析物的含量接近于“零”的情况下或者检测浓度接近检出限和定量限时,才需要确定方法的LOD或LOQ。 /p p   5.4.2 检出限(LOD) /p p   对于多数现代分析方法来说,LOD可分为两个部分,即仪器检出限(IDL)和分析方法检出限(MDL)。应注意两者的区别,在该国标中指出:使用信噪比可用来考察仪器性能,但不适用于评估方法的检出限。 /p p   确定检出限的方法: /p p   在该国标中提到了多种确定检出限的方法,包括: /p p   a) 目视评价法评估LOD /p p   目视评价法是通过在样品空白中添加已知浓度的分析物,然后确定能够可靠检测出分析物最低浓度值的方法。即在样品空白中加入一系列不同浓度的分析物,随机对每一个浓度点进行约7次独立测试,通过绘制阳性(或阴性)结果百分比与浓度相对应的反应曲线确定阈值浓度。该方法也可用于定性方法中检出限的确定。 /p p   b) 空白标准偏差法评估LOD /p p   即通过分析大量的样品空白或加入最低可接受浓度的样品空白来确定LOD。独立测试的次数应不少于10次(n≥10),计算出检测结果的标准偏差,具体的计算方法可参考该国标。 /p p   5.4.3 定量限(LOQ) /p p   与检出限相类似,定量限也分为仪器定量限和分析方法定量限。 /p p   5.5 正确度 /p p   测量结果的正确度用于表述无穷多次重复性测定结果的平均值与参考值之间的接近程度,测量结果的偏倚则通过回收率实验进行评估。 /p p   5.6 精密度 /p p   该国标中对精密度的描述分别从重复性、再现性两个维度进行描述。 /p p   5.7 稳健度 /p p   稳健度可通过由实验室引入预先设计好的微小的合理变化因素,并分析其影响而得出。可对样品进行预处理、净化、分析等可能影响检测结果的方面进行预实验,并分析可能影响结果的因素,必要时进行正交试验设计进行稳健度试验。 /p p   5.8 测量不确定度 /p p   该国标中列举了可能影响不确定度的多方面因素,并对测量不确定度评估时的考虑要点进行了介绍。 /p p   6 方法验证要求 /p p   对分析方法的验证提出总体要求,包括定量分析和定性分析。在验证总则中提到,当化学分析实验室引入标准方法时,实验室应根据该国标的相应要求进行验证,即证实该方法能在该实验室现有的设施设备、人员、环境等条件下获得令人满意的结果。 /p
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 小菲课堂|导致热像仪卡顿,非均匀性校正该如何选择?
    在小伙伴们使用热像仪的过程中,一定会发现在进行热图像拍摄时,有时会卡顿并且热像仪会发出咔嚓的声音,这时候没必要惊慌,它这是在进行非均匀性校正(NUC),为什么会这样呢,小菲来为你详细解答下~执行非均匀性校正可产生更高质量的图像非均匀性校正(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整增益和偏移,生成更高质量、更精确的图像。在NUC过程中,热像仪快门落在光学和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校正)。1热像仪进行NUC的时间在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,测量精度。热像仪将自动执行一个NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能。这将有助于确保准确性。2控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。3执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校正(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每像素偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。对于非均匀性校正(NUC)菲粉们还有哪些疑问呢?留言给小菲将详细为您解答哦~
  • 全国饲料工业标准化技术委员会发布国家标准《饲料质量安全检测方法建立、确认、验证和实验室内部质量控制实施指南》征求意见稿
    国家标准计划《饲料质量安全检测方法建立、确认、验证和实验室内部质量控制实施指南》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 全国畜牧总站 、中国农业大学 、上海市兽药饲料检测所 、山东省饲料质量检验所等 。附件:《饲料质量安全检测方法建立、确认、验证和实验室内部质量控制实施指南》征求意见稿.pdf《饲料质量安全检测方法建立、确认、验证和实验室内部质量控制实施指南》编制说明.pdf
  • 得利特技术组:3招教你正确判断工业溶氧仪的好坏
    得利特技术组员工表示很多销售会有客户疑惑产品质量问题,技术直接很明了表示可以教客户自己判断仪器状态,这样让客户选购的时候能有所把握。本次就教你3招正确判断工业溶氧仪的好坏一、工业溶氧仪“溶氧”档对氧电极的校正后的判断处理  测温检查正常后,测量选择开关拨至“溶氧”档。  将填有电解液后的氧电极放入5%新鲜自己制的亚硫酸钠进行“调零”电位器调零;  清洗电极放入空气中,调“校正”电位器进行气温相应氧值的校准。  如果出现读数过低、过高达不到所需数值,可根据产品说明书进行更换电池、电解液、薄膜,及对黄金阴极、银阳极的处理进行解决。如果还是达不到要求,则需更换电极。 二、工业溶氧仪“温度”档测室温时的应用判断  将氧电极插头插入仪器的插口内,测量选择开关拨至“温度”档,此时应正确显示室温值。  若实际测量值偏差很大,需用万用表欧姆档进行检测氧电极:  1.、2脚间电阻,13、5脚间电阻应都有几十KΩ(25℃时为50KΩ)。  阻值若相差很大,则需检查电极连接接头牢固与否或更换氧电极处理解决。  若阻值检查正常,则需将仪表送修。 三、检查测量显示单元  1.将不接氧电极的单个测量单元的电源开关置“调零”或“测量”任意一档,此时将测量选择功能开关置“温度”档。  显示值应为28.0左右;  2.将测量选择开关拨至“溶氧”档,电源开关置“测量”档,分别调节“调零”电位器或“校正”电位器时读数显示  应有变化。  若上述测量正常,可判断测量显示单元初步合格,否则,仪表可能有问题。
  • 岛津LC-20AT常见8大故障是什么?解析具体原因及正确解决方法
    一、泵不送液1、泵头中有气泡解决方法:将流动相用超声波清洗器进行脱气;打开排液阀,按PURGE功能键排除气泡;打开排液阀,用注射器从泵的排液管中抽液排除气泡。2、单向阀堵塞,污染,磨损造成单向阀工作不正常。解决方法: LC-20AT是双泵头串联泵,在主泵头和辅泵头的下端分别装有入口单向阀,当送液泵出现压力波动超过0.3MP或者送液压力达不到正常压力值时,排除气泡干扰的因素后,初步判断单向阀被污染导致上述现象发生,可用下面两种方法清洗。第一种方法是在线清洗:打开仪器电源,确认键盘在开启状态,拆下泵的出口管,连接阻尼管,阻尼管的出口直接接入废液瓶,将流动相换成异丙醇,打开排液阀,按PURGE键更换流动相,等待其运行结束后关闭排液阀,按FUNC键将流速设为1mL/min,按PUMP键送液清洗,需要清洗一个小时以上。第二种方法是超声波清洗:拧松并取下单向阀的管路用扳手分别松开两个泵头的入口单向阀,用手取下单向阀,用镊子将单向阀放入装有异丙醇的烧杯中,用超声波清洗15分钟,清洗完毕后将单向阀用镊子取出,装到泵头上,用扳手拧紧,将单向阀连接管路装好并拧紧,重新送液测试,如果压力正常则清洗完毕,如果故障依然存在,可能需要更换单向阀。3、吸滤头堵塞。解决方法:吸滤头清洗或者更换。清洗时将吸滤头从送液管中拔出,用镊子放入装有异丙醇的烧杯中,超声波清洗15分钟,清洗完毕后将吸滤头用镊子取出,用滤纸擦干后插入送液管,放入装有流动相的瓶中,送液测试,确认吸滤头没有气泡产生,否则应更换新的吸滤头。二、泵压力偏高1、泵的管路过滤器堵塞。断开泵的出口管路,以1mL/min送液压力高于0.3MP,说明管路过滤器堵塞。管路过滤器位于泵的出口处,用于清除由泵输送的流动相试剂中的机械杂质或柱塞密封垫磨损的碎屑。长期使用或使用含机械杂质较多的流动相时容易引起堵塞,此时需要清洗或更换过滤器上的过滤片。操作如下:拧松并取下过滤器连接管路,拧松并取下管路过滤器,用镊子将管路过滤器放入装有异丙醇的烧杯中,用超声波清洗15分钟,清洗完毕后用镊子取出过滤器,用手将过滤器拧入连接口,用手拧紧,用扳手拧紧60°~90°即可,打开泵电源开关,用纯水做流动相,以1mL/min送液,如压力值超过0.3MP,应更换新的管路过滤片。用镊子将过滤器前端的过滤片取下,把新的过滤片用纯水或异丙醇浸湿,放在过滤器座上,用手将过滤器拧入连接口,用手拧紧并用扳手拧紧60°~90°即可,连接上泵出口管路,更换完毕。2、预混合室过滤片堵塞。断开混合室出口管路,以1mL/min送液压力高于1MP,说明预混合室过滤片堵塞。当混合室压力过高时,可能是由于混合室的过滤片污染所造成。解决方法:用扳手拧开预混合室的管路,用扳手取下预混合室,取出过滤片,取下的过滤片放在装有5﹪稀硝酸溶液的烧杯中,用超声波清洗15分钟,再用纯水清洗5分钟,将清洗后的滤片安装到预混合室中,拧紧预混合室,装好连接管路,清洗完毕。如果管路压力依然偏高需要更换过滤片。3、进样器堵塞。断开进样器出口,以1mL/min送液压力高于1MP, 说明进样器流路堵塞,建议使用清洗液洗进样器流路。4、色谱柱堵塞或污染。断开色谱柱出口,送液压力仍高,说明色谱柱堵塞或污染,建议按色谱柱使用说明书清洗或者更换色谱柱。5、检测池堵塞。断开检测池出口,送液压力仍高,说明检测池堵塞。SPD-20A紫外检测器和SPD-M20A二极管阵列检测器的清洗:打开并取下检测器前面板,拧下检测器出口和入口管路接头,断开连接,再拧松两个连接头的固定螺丝,拔掉检测池加热线,拧松检测池固定螺丝,取下检测池,将适配器连接到检测池的入口并拧紧螺丝,用注射器吸取50mL异丙醇缓缓地把溶剂推入检测池中,清洗完毕后拆下适配器,观察检测池中是否留有异物,如果清洗不彻底,应分解清洗检测池,用螺丝刀拧下检测池一侧的透镜固定螺丝,用镊子取下透镜和垫片,注意镊子不要划伤透镜表面,用螺丝刀拧下检测池另一侧的透镜固定螺丝,用镊子取下透镜和垫片,将透镜放入装有异丙醇的烧杯中,用超声波清洗10分钟。同时观察检测池内是否还有异物,如有异物,先将保温罩拆下,将检测池朝下放入装有异丙醇的100毫升烧杯中,注意液面刚好没过检测池孔即可,不益使用过大烧杯,以致溶剂接触到加热线,用超声波清洗10分钟,清洗完毕后,取出检测池和透镜放在滤纸上,将池体表面的液体擦干,装回保温罩,将新的垫片装入检测池左侧池孔中,再将凸透镜放在垫片上面,注意垫片和透镜应放在检测池的凹槽中,透镜的凸面应朝上,拧上透镜固定螺丝,将新的垫片放入检测池右侧池孔中,将平面透镜放在垫片上面,拧上透镜固定螺丝,螺丝的紧固程度应该以检测池不漏液为准,过紧可能会损坏透镜,将检测池装到检测器上,检测池上的箭头方向应朝上,拧紧固定螺丝,将连接头固定在检测器上,插入检测池加热线,分别连接好检测池的入口和出口连接管路,装上前面板,检测池清洗完毕。三、泵压不稳1、泵头中有气泡。解决方法:将流动相用超声波清洗器进行脱气;打开排液阀,按PURGE功能键排除气泡;打开排液阀,用注射器从泵的排液管中抽液排除气泡。2、单向阀堵塞,污染,磨损造成单向阀工作不正常。清洗单向阀或者更换。参见在线清洗或超声波清洗单向阀操作步骤。3、吸滤头堵塞。超声波清洗吸滤头或更换。4、柱塞密封垫漏液。检查泵头是否漏液,如果漏液需更换柱塞密封垫。操作如下:柱塞密封垫磨损时密封性减弱,就会发生漏液,密封垫漏液会产生以下现象:泵头后面的清洗管路有流动相流出,如果连接泵头自动清洗装置时,装清洗液的瓶内清洗液会增加,此时需要更换新的柱塞密封垫。下面以更换左泵头密封垫为例,打开仪器电源,确认键盘在开启状态,重复按FUNC键到屏幕显示CONTROL,按ENTER键进入P-SET,输入数字“1”,按ENTER键确认,泵运行指示灯亮,等待指示灯熄灭,此时柱塞回到初始位置,用扳手拧松并取下左泵头上的连接管路,用手拧下泵头下的进液管接头,然后用内六角扳手交替拧松并取下两个泵头固定螺栓,将泵头平行取出,平放在桌面上,将密封垫装卸工具有突起的一端插入柱塞密封垫中,拉出密封垫,注意密封垫的下面还有一个小垫片,取出柱塞密封垫时应避免小垫片掉出,此时检查泵头内部,如有异物可用超声波将其清洗干净。新的密封垫先用异丙醇或乙醇浸泡5分钟,再将新密封垫套入装卸工具平直的一端,插入泵头并顶紧,将密封垫装卸工具从密封垫中拉出,再将泵头边上的凹槽与泵头座上的销钉对齐,将泵头安装到泵头固定座上,使销钉滑入槽中,将两个内六角螺栓放入泵头的螺栓孔中,先用手拧紧,再用内六角扳手将螺栓交替均匀的拧紧,将泵头上下的管路装好并拧紧,然后将左泵头的送液量清零。操作如下:按“CE”键直到屏幕回到初始画面,重复按“VP”键直到屏幕显示MAINTENANCE,重复按FUNC键直到屏幕显示“L SEAL DELIVERED”输入数字“0”,按ENTER键确认,将左泵头的送液量记录归零。注意右泵头密封垫送液量清零选择“R SEAL DELIVERED”按同样方法可更换右泵头密封垫。 四、基线漂移1、色谱柱污染。用洗脱力强的溶剂长时间清洗色谱柱或更换色谱柱。2、管路污染。用清洗液清洗流路或更换被污染的部件。3、流动相污染或纯度不够。流动相重新配置,净化处理或更换纯度 高的流动相。4、检测池污染。清洗检测池,参见检测池清洗操作步骤。5、环境温度变化大。6、泵压力不稳。参见泵压不稳故障诊断。五、基线噪音大 1、检测池有气泡。参见检测池清洗操作步骤。2、流动相纯度不够,或流动相在使用波长下吸收大。更换纯度高的 流动相或更 换流动相种类。3、检测池能量低。更换光源或光路部件。4、仪器接地不良。重新连接地线,确定接地。六、峰面积重现性差1、手动进样器污染。手动进样阀的清洗:峰面积重现性差或出杂峰时,有可能进样阀受到污染,在日常清洗不能解决问题时,需分解进样阀进行清洗,如果出现漏夜现象,通常需要更换进样阀转子密封垫。首先用附带扳手拧下进样阀2号口和3号口连接管,再拧下5号口和6号口废液管,用附带内六角扳手拧松手柄的两个固定螺丝,取下进样阀,用附带的内六角扳手交替拧松进样阀后盖的三个固定螺丝,取下固定螺丝,取下进样阀后盖,取出转子密封垫和定子,放入烧杯中,分别用水和异丙醇超声清洗10分钟。清洗完毕后将定子和转子密封垫取出,放到干净的滤纸上,查看转子密封垫的表面是否有划痕,如有划痕需更换,将转子密封垫晾干后,装入进样阀,注意安装的正反面,导针孔要对应好,将定子装入后盖中,再将后盖装到进样阀上,注意定位销要对准,将三个固定螺丝放到进样阀后盖螺孔中,用扳手交替并均匀拧紧,将进样阀装回拧紧固定螺丝,将5号口和6号口废液管连接好,将2号口和3号口连接管恢复,装上进样阀手柄,拧紧固定螺丝,进样阀清洗完毕。2、手动进样器的进样口漏液。更换转子密封垫。3、自动进样器清洗液流路有气泡。选择合适的清洗液并脱气,使用PURGE功能冲洗进样阀,排除气泡。4、自动进样器进样口漏液。在流路中进样口发生漏液时,通常是进样口密封垫损坏造成,这时需要更换进样口密封垫。操作如下:打开电源开关,仪器开始自检结束后,确认键盘在开启状态,重复按FUNC键,直到屏幕显示CONTROL,按ENTER键进入,重复按FUNC键,直到屏幕显示ZHOME,按ENTER键执行,这时进样针提起并移到ZHOME位置,关闭仪器电源,打开进样器门,取出样品架,拧下挡板螺丝,取出挡板,用手拧松进样口密封垫并取下,将新的进样口密封垫插入高压阀中并用手拧紧即可,安装挡板,拧上固定螺丝,放回样品架,并关紧进样器门,打开仪器电源,仪器开始自检,自检结束后,确认键盘在开启状态,按VP键直到屏幕显示MAINTENANCE,按FUNC键直到屏幕显示NDL SEAL USED,输入“0”,按ENTER键确认,将密封垫的使用计数归零,按“CE”键两次回到初始画面,进样口密封垫更换完毕。进样口位置校正:进样针在进样口的位置发生偏移时,可能造成进样口漏液或损坏进样口密封垫,这时需要调整进样针位置。操作如下:打开仪器电源,仪器开始自检,自检结束后,确认键盘在开启状态,重复按VP键直到屏幕显示CALIBRATION,按FUNC键,输入密码,初始密码是五个零,按ENTER键进入,重复按FUNC键,直到屏幕显示ADJUST INJ PORT,按ENTER键进入,打开自动进样器门拆下挡板,按ENTER键开始调整进样器位置,依次用键盘上的上下箭头调整针的上下位置,依次用左右箭头调整针的左右位置,用FUNC和BACK键调整针的前后位置,直到进样器的针尖调整到密封垫的水平面并在密封垫的孔的中间,按ENTER键仪器自动测试调整后的位置,安装挡板,关上进样器门,输入数值“1”保存调整好的位置,输入数值“1”按ENTER键磨合进样口密封垫,进样口位置调整完毕,按CE键两次,回到初始画面,将仪器恢复。5、自动进样器流路污染。使用清洗液清洗进样器管路。6、色谱柱污染或劣化。用洗脱力强的溶剂长时间清洗色谱柱或更换色谱柱。七、保留时间重现性差1、泵压力不稳。参见泵的故障诊断。2、环境温度变化大。3、色谱柱未充分平衡好。充分平衡色谱柱。4、梯度洗脱时流动相混合比例异常。确认各流路的流速是否正确。八、峰形异常1、色谱柱污染或劣化。用洗脱力强的溶剂长时间清洗色谱柱或更换色谱柱。2、流路污染。使用清洗液清洗流路。3、流路死体积大。检查管路连接处,正确连接管路,消除死体积
  • 正确的使用手持式电导率计可以提高测量的精准度
    手持式电导率计适用于精密测量各种液体介质的电导率仪、TDS和盐度值的仪器,配置CON1型铂金电导电极,有一点按键自动校准、自动量程转换、自动信息提示等优点。仪器广泛适用于各领域的科研和生产。 手持式电导率计是如何使用的: 1.使用前观察表针是否指零。 2.将校正测量开关扳在“校正”位置。 3.插接电源线,打开电源开关,并预热数分钟调节“调正”调节器使电表指示满度。 4.当使用(1)-(8)量程来测量电导率低于300μS.cm-1的液体时,选用“低周”,这时将高/低周开关扳向低周即可。当使用(9)-(10)量程来测量电导率在300μS.cm-1至105μS.cm-1范围里的液体时,则将扳向“高周”。 5.将量程选择开关扳到所需要的测量范围,如预先不知被测溶液电导率大小,应先把其扳到zui大电导率测量档,然后逐渐下降,以防表针打弯。 6.电极的使用:使用时用电极夹夹紧电极的胶木帽,并把电极夹固定在电极杆上。 7.将电极插头插入电极插口内,旋紧插口上的紧固螺丝,再将电极綅入待测溶液中。 8.接着校正当用(1)-(8)量程测量时,校正时扳到低周,当用(9)-(12)量程测量时,则校正扳到高周,扳到“校正”,调节校正调节器,使指示在满度。 9.当用(0-0.1)或(0-0.3)μS.cm-1这两档测量高纯水时,先把电极引线插入电极插孔,在电极未綅入溶液前,调节电容补偿调节器使电表指示为zui小值。 手持式电导率计的产品特点: 1.仪器配置:CON1型铂金电导电极1支,温度探棒1支,9V电池1节,BEC-530/531/540 型配置CON10型电导电极1支。 2.可设定TDS系数:根据电导分析法,测量水质溶解性总固体时应准确估算,设定TDS系数,530/540可在0.01至1.00之间设定以保障测量值的精确可靠。 3.可设定温度系数:含有不同离子的溶液往往具有不同的温度系数,准确设定温度系数对精确测量至关重要,BEC便携型可在0至3.9%每摄氏度的范围内进行设置。 4.一点按键自动校准:仪器配合标准电导液可以进行每个量程1点自动校准,校准时,仪器自动识别校准液,如果您使用错误的或与设定值偏差较大的电导液进行校准,仪器将自动报警。 5.可设定电极常数:测量高或低电导溶液时,您需要选配不同常数的电导电极,BEC便携型具有三个电极常数可选,您可以根据选用的电极自行设定,仪器将自动转换终点测量值。 6.自动量程转换:测量电导率或溶解性总固体(TDS)时,仪器具有自动量程转换功能。当电极传感器浸入溶液后,BEC便携型将自动扫描当前测量值并转换量程,仪器将以精确的分辨率显示终点测量值。 7.手持式电导率计带有自动信息提示:BEC便携型具有操作信息提示功能,当您进入某一项设置或测量信息栏将帮助您了解仪器在当前状态下可执行什么操作及如何操作,它等同于使用手册的操作步骤说明。通过信息栏的引导,您能轻松完成某项设置或测量任务。
  • 北京市农林科学院王冬:浅谈多元校正建模的几个常见问题
    浅谈多元校正建模的几个常见问题王冬北京市农林科学院质量标准与检测技术研究所, 北京 100097摘要 本文分别从样品代表性、数据分集、线性与非线性算法、关键变量筛选、异常样本的剔除、模型维数的选择与模型评价等方面分析了多元校正建模的常见问题。本文可为多元校正模型的建立、优化与维护提供一定的参考。1. 引 言近年来,化学计量学的发展、计算机技术和制造技术的进促使近红外光谱以及近红外高光谱技术高速发展。采用近红外光谱、近红外高光谱建立待测物质中目标物质含量的定量校正模型是近红外光谱、近红外高光谱分析过程的重要环节。本文对多元校正定量模型的建立过程,从样品代表性、数据分集、线性与非线性算法、关键变量筛选、异常样本的剔除、模型维数的选择与模型评价等方面对多元校正建模的常见问题展开讨论,以期为多元校正建模过程提供一定的参考。2. 多元校正建模的常见问题以下分别从样品代表性、数据分集、线性与非线性算法、关键变量筛选、异常样本的剔除、模型维数的选择与模型评价等方面分析多元校正建模的常见问题。2.1 样品代表性样品代表性强调多元校正建模需使用具有代表性的样品,即代表性样品。代表性样品是建立多元校正模型的基础。样品的代表性一般包含样品的品种代表性、空间(地域)代表性、时间代表性。在建立多元校正模型前,需要特别注意所收集样品是否具有足够的代表性。一组具备良好代表性的样品应尽量包含分析工作中遇到的各种情况。以建立樱桃可溶性固形物含量多元校正模型为例,所收集的代表性样品应均匀覆盖一定的品种和地域范围,例如一定的园区、县域、市域等,尽量涵盖各品种的样品。另一方面,欲建立一个较为稳健的校正模型,尤其对农产品,还需考虑农产品的时间代表性。对于农产品,时间代表性主要体现在两方面:一是一年之内的时间代表性,例如樱桃从成熟、采摘到入库、储存;二是跨年的时间代表性,例如对某地樱桃连续3~5年采样。这样做的原因是,农产品内部各种物质的相对含量会因水肥、光照、温度等的年度差异而不同,且农产品不能用已知材料“勾兑”;因此对于农产品需要连续3~5年采样,并根据具体情况逐年维护,从而保证校正数据中含有足够多的、代表性充足的样品,进而为提高所建模型的稳健程度提供具有充足代表性的基础数据。2.2 数据分集数据分集将全部数据中的一部分划分为外部验证集,该部分样品不参与模型的建立过程,只用来对模型的预测性能做出评价;余下的样品作为校正集。因此,所选的外部验证集必须要有足够的数据代表性。这里所谓的“数据代表性”主要是指所选的外部验证集数据、校正集数据应该和全部样本数据具有相似的数据分布特征或趋势,以图1为例说明。图1中,第1行示意全部样本数据的分布,第2~6行蓝色圆圈表示校正集数据的分布,红色菱形表示外部验证集数据的分布。从图1可见,很明显,只有ExVal.-1的外部验证集数据和其对应的校正集数据与全部样本数据具有相似的数据分布特征;ExVal.-2数据分布位于原数据集的左侧,即数值偏小;ExVal.-3数据分布位于原数据集的右侧,即数值偏大;ExVal.-4数据分布集中于原数据集的中部;ExVal.-5数据分布位于原数据集的左右两端;ExVal.-6数据分布集中于原数据集的中部且数据量明显少于其他外部验证集。图1 各数据集分布示意图为了对数据分集所得的校正集和外部验证集的数据代表性进行量化分析,对全部样本(All)数据、校正集(Calib.)数据、外部验证集(ExVal.-1)数据以及其他几种外部验证集(ExVal.-2 ~ ExVal.-6)数据分别计算样本容量(n)、最小值(Min)、最大值(Max)、平均值(Ave)、样本标准差(Std)、极差(Rx)和变异系数(CV),如表1所示。从表1数据可见,根据Min、Max、Ave、Std、Rx、CV的数据特征可以得知,Calib.和ExVal.-1皆与All具有相似的数据分布特征。ExVal.-2由于所选外部验证集数值偏小,其数据分布特征和All的数据分布特征的差异主要体现在Max、Ave、Std、Rx、CV;ExVal.-3由于所选外部验证集数值偏大,其数据分布特征和All的数据分布特征的差异主要体现在Min、Ave、Std、Rx、CV;ExVal.-4由于所选外部验证集集中于All的中部,其数据分布特征和All的数据分布特征的差异主要体现在Min、Max、Std、Rx、CV;ExVal.-5由于所选外部验证集分布于All的左右两端,其数据分布特征和All的数据分布特征的差异主要体现在Std、CV;ExVal.-6由于所选外部验证集集中于All的中部且数据量明显少于其他外部验证集,其数据分布特征和All的数据分布特征的差异主要体现在Min、Max、Std、Rx、CV,同时,ExVal.-6的n也可间接说明了该问题。最后要注意的是,校正集和外部验证集的样本容量之比一般为3:1 ~ 5:1;特殊情况除外。表1 各数据集统计信息Stat.AllCalib.ExVal.-1ExVal.-2ExVal.-3ExVal.-4ExVal.-5ExVal.-6n2520555552Min1.191.192.931.198.595.651.196.04Max10.2410.249.584.1510.246.5210.246.38Ave6.306.266.432.729.416.086.426.21Std2.432.482.491.390.660.374.700.24Rx9.059.056.652.961.650.879.050.34CV38.6%39.6%38.7%51.0%7.0%6.1%73.1%3.9%从以上分析可见,当数据集划分不合理时,所选数据集(例如外部验证集)的Min、Max、Ave、Std、Rx、CV的数值会表现出和全部样本数据对应统计量数值的差异,从而提示数据集划分存在问题。因此,建立校正模型前,应对校正集数据、外部验证集数据和全部样本数据分别计算n、Min、Max、Ave、Std、Rx、CV统计量,并比较三个数据集的各统计量是否存在明显差异。2.3 线性和非线性算法选择线性拟合算法、亦或是非线性拟合算法,是建立校正模型过程的重要问题。线性拟合和非线性拟合各有优点,也各有不足。一般地,非线性拟合模型较线性拟合模型具有更高的复杂程度和更多的不确定性,选择拟合算法应以合适为原则。以下举例说明线性拟合算法和非线性拟合算法的选择。图2(a)中“▲”代表校正集数据。线性拟合模型、非线性拟合模型的预测值-参考值回归方程和测定系数(Determination Coefficient, R2)如表2所示。结合图2(a)和表2数据可见,非线性拟合模型的拟合准确度更高。然而,待测样本的数据分布如图2(b)的菱形(◆)所示。显然,对于如图2(b)所示的待测样本数据,用线性拟合模型所得的预测值将具有更小的预测误差。(a)(b)图2 线性拟合模型和非线性拟合模型示意图▲校正集数据, ◆待测数据表2 线性拟合模型和非线性拟合模型的预测值-参考值回归方程和测定系数模型回归方程R2线性Y=1.7333X+4.28890.6999非线性Y=-0.0145X6+0.4367X5-5.1345X4+29.851X3-89.49X2+130.05X-60.6440.9912在这里需要注意的是,如果数据本身确实是遵循非线性规律,就需要使用非线性拟合算法对其建立校正模型。2.4 关键变量筛选对于近红外光谱,通过一定的算法筛选关键变量在一定程度上可以减少参与建模的变量个数,减轻运算负荷并提高运算速度。然而,对于建立校正模型,特别是定量校正模型,所选变量的稳定性是筛选关键变量不可避免的问题。这里所谓的“变量的稳定性”,是指所选变量在校正集发生变化时还能保持其关键变量特征的属性。这里建议采用蒙特卡洛方法和变量筛选方法相结合,通过设置蒙特卡洛方法的单次采样率和蒙特卡洛次数2个关键参数,相当于获得了基于原校正集的多个子校正集。再通过对多个子校正集筛选关键变量,从而进一步对所选变量的稳定性进行比较与评估,进而提高所选关键变量的稳定性。2.5 异常样本的剔除在建立校正模型时,常会遇到异常样本。异常样本对模型准确度具有很大的负面影响。正确地识别异常样本并对其进行剔除,可以有效提高模型的准确度。异常样本的识别方法有很多,本文采用预测残差和杠杆值相结合的方法对异常样本进行识别。通常,预测残差阈值设定为全部校正集样本预测残差平均值的2倍,杠杆值阈值设定为全部校正集样本杠杆值平均值的3倍。当某个样本同时满足预测残差大于预测残差阈值、杠杆值大于杠杆值阈值时,可判定该样本为异常样本,应予以剔除。下面以图3结合表3数据说明剔除异常样本对模型的影响。图3(a)是剔除异常样本前预测值-参考值相关关系图。从图3(a)结合表3数据可见,由于异常样本的存在,模型测定系数(Determination Coefficient, R2)仅0.5766,均方根误差(Root Mean Square Error, RMSE)为2.17。当剔除异常样本后,如图3(b)所示并结合表3数据可见,模型R2提高到0.9977,RMSE下降到0.19。可见,剔除异常样本有利于减小模型的误差、提高模型的准确度,进而可提高模型的预测性能。(a)(b)图3 剔除异常值前(a)、后(b)的预测值-参考值相关关系图表3 剔除异常样本前、后的预测值-参考值回归方程、测定系数和均方根误差剔除异常样本回归方程R2RMSE剔除前Y=0.7797X+0.90810.57662.17剔除后Y=1.0174X+0.01600.99770.192.6 模型维数的选择与模型评价不同于一元线性回归只有1个自变量,多元校正模型有多个自变量。在建立多元校正模型时,模型自变量的个数即模型维数的选择成为另一个关键问题。一般地,在建立多元校正模型的过程中,往往计算多个维数,再通过预测残差平方和(Prediction Residual Error Sum of Squares, PRESS)随模型维数(Nf)的下降趋势判断多元校正模型的最佳维数。图4分别为PRESS随Nf变化的3种较为典型的情况。图4(a)中,PRESS随Nf的增加先下降、后上升,在Nf= 6时达到最小;此种情况一般选PRESS最小值所对应的Nf作为模型的最佳维数。图4(b)中,PRESS随Nf的增加一直下降,此种情况需要对各维数PRESS下降值做显著性检验,当PRESS下降不显著时,则取上一个Nf作为模型的最佳维数;图4(b)中,Nf从6到7时PRESS下降不显著,因此模型的最佳维数定为6。图4(c)是较为隐匿的情况,Nf从4到5时PRESS下降不显著,但PRESS在Nf从5到6又发生了显著下降,因此该种情况模型的最佳维数应定为6而不是4。 (a)(b)(c)图4 PRESS随Nf变化示意图在建立多元校正模型时还需注意模型的欠拟合和过拟合问题。如图5所示,所谓欠拟合是指模型维数低于最佳维数,导致所建模型的预测能力不足;所谓过拟合是指模型维数高于最佳维数,亦会导致所建模型的预测能力下降。图5 欠拟合、过拟合、理想情况的PRESS随Nf变化示意图欠拟合、过拟合和理想情况的预测值-参考值的相关关系图如图6所示,其对应的回归方程、R2和RMSE如表4所示。图6(a1)、图6(a2)分别是欠拟合校正、交互验证数据的预测值-参考值相关关系图;结合表4数据可见,欠拟合的校正、交互验证R2皆不高,RMSE皆较大。图6(b1)、图6(b2)分别是过拟合校正、交互验证数据的预测值-参考值相关关系图;结合表4数据可见,过拟合的校正R2很高,而交互验证R2不高,二者相差很大;另一方面,过拟合的校正RMSE很小,而交互验证RMSE很大,二者相差也很大。图6(c1)、图6(c2)分别是理想情况校正、交互验证数据的预测值-参考值相关关系图;结合表4数据可见,理想情况的校正、全交互验证R2皆较高且二者相差不大,RMSE皆较小且二者相差不大。欠拟合、过拟合皆不能用于实际工作。造成上述现象的主要原因是:对欠拟合模型,由于模型维数过低,没有提取到足够的有用信息,导致模型的预测准确度下降。对过拟合模型,由于模型维数过高,在提取有用信息的同时还裹挟了校正集的噪声信息;由于模型维数过高,模型对校正数据进行自预测的准确度显然是很高的,但是对于交互验证,由于所建模型裹挟了校正集的噪声信息,因此对交互验证的预测准确度很低。图6 欠拟合、过拟合、理想情况的校正、交互验证数据预测值-参考值相关关系图(a1)欠拟合校正, (a2)欠拟合全交互验证, (b1)过拟合校正, (b2)过拟合全交互验证,(c1)理想情况校正, (c2)理想情况交互验证表4 欠拟合、过拟合、理想情况校正、交互验证回归方程、测定系数和均方根误差拟合情况数据集回归方程R2RMSE欠拟合校正Y=1.0676X+0.17420.79861.75全交互验证Y=0.9135X+0.51150.71231.79过拟合校正Y=0.9989X+0.02990.99960.07全交互验证Y=0.9671X+0.10710.76981.62理想校正Y=0.9918X-0.05640.96300.60全交互验证Y=0.9770X+0.20670.95970.62对多元校正模型的评价,主要从相关性和误差两个方面进行。对多元校正模型的相关性一般采用测定系数(Determination Coefficient, R2)作为评价参数:R2取值范围为0 ~ 1,且R2值越接近1,模型的相关性越强,反之亦反。对多元校正模型的误差一般采用均方根误差(Root Mean Square Error, RMSE)作为评价参数:一般地,RMSE值越小,模型的误差越小,反之亦反。对应不同的数据集,测定系数有:校正测定系数(Determination Coefficient of Calibration, R2C)、交互验证测定系数(Determina Coefficient of Cross Validation, R2CV)、预测测定系数(Determination Coefficient of Prediction, R2P),均方根误差有:校正均方根误差(Root Mean Error of Calibration, RMSEC)、交互验证均方根误差(Root Mean Error of Cross Validation, RMSECV)、预测均方根误差(Root Mean Error of Prediction, RMSEP)。除此之外,评价模型的另一个重要指标是相对预测性能(Ratio Performance Deviation, RPD)。RPD的大小反映模型预测性能的高低。一般地,RPD ≥ 3.0表示模型预测能力较好,可以用于实际工作;1.5 ≤ RPD 2.7 避免“假线性”在建立多元定量校正模型时还需要注意避免“假线性”。如图7所示,从图7(a)和图7(b)可见,这两组数据的线性很差。然而,当把图7(a)和图7(b)的数据放在一起,如图7(c)所示,结合表5数据可知,放在一起的数据,即数据集(c),所建模型的R2超过0.999,貌似线性很好,但实际上这是“假线性”。从RMSE数据可见,数据集(c)的模型并未因其R2的增大而明显减小。数据集(c)的模型如果用于实际工作,会存在很大的风险。导致该现象的主要原因是,两组数据之间跨度过大,并且在两组数据之间缺失样本。这样的“假线性”应特别注意并避免。(a)(b)(c)图7 三种数据集的预测值-参考值相关关系图表5 三种数据集的预测值-参考值回归方程、测定系数和均方根误差数据集回归方程R2RMSE(a)Y=0.4436X+1.86850.27533.03(b)Y=0.0482X+290.360.00214.30(c)Y=1.0023X-1.16270.99953.623. 总结校正模型是近红外光谱、近红外高光谱能够进行高效分析的数学基础。建立性能良好的校正模型对实现近红外光谱、近红外高光谱无损、快速、高效分析是非常重要的。多元校正建模过程需要注意很多细节,包括样品代表性、数据分集、算法选择、关键变量筛选、异常样本剔除、模型维数选择、模型评价等。在其中,样品代表性是基础,也是决定建模工作成败的关键之一。对于农产品,还要特别注意样品的时间代表性。建立校正模型并不是一劳永逸的工作。模型不是产品,而是一种方法。当样品的情况发生变化时,所建模型很可能不再适合当前样品,就需要对模型进行维护,甚至重建。需要特别注意的是,多元校正模型有严格的应用前提;如果不满足模型的应用前提,模型预测值的准确性将难以保证。进一步地,建模过程要秉承客观公正的原则。例如:在剔除异常样本方面,对异常样本的识别需要有一定的根据,不能凭感觉剔除所谓的异常样本;在模型评价方面,需要客观地根据有关统计量的数据对模型的准确度、精密度、预测性能等进行客观公正的评价,不可以根据主观好恶随意调节模型维数。作者简介:王冬,男,1982年生,籍贯北京;2010年毕业于中国农业大学,获得农学博士学位;现就职于北京市农林科学院质量标准与检测技术研究所,副研究员;主要研究方向为振动光谱分析与化学计量学,主要从事近红外光谱、中红外光谱、拉曼光谱、太赫兹波谱无损快速分析工作。曾主持完成中国博士后科学基金会、科技部国家科技支撑计划子课题任务、北京市农林科学院博士后基金、北京市农林科学院青年基金、北京市农林科学院科技创新能力建设专项储备性研究课题等,曾以科研骨干身份参加农业农村部公益性行业(农业)科研专项课题、科技部国家重大科学仪器设备开发专项、北京市科委专项课题等。截至目前在振动光谱和化学计量学等有关领域发表学术论文60余篇,其中第一作者论文40余篇;获授权发明专利9项、实用新型专利3项;获得软件著作权2项;参编著作及科普读物4部;参与制定国家标准1项;合作指导硕士研究生2名;获得中华人民共和国教育部高等学校科学研究优秀成果奖-科技进步奖一等奖1项、中华人民共和国农业农村部神农中华农业科技奖一等奖1项。作者邮箱: wangd@iqstt.cn, nirphd@163.com.
  • 血清沉淀的正确处理方法
    明明是一瓶优质的血清偏偏出现沉淀和血清质量有关吗?会影响细胞培养吗?如何避免沉淀?出现沉淀如何处理? “血清沉淀,其实属于常见现象,并不会影响血清的品质,大家不必惊慌!但很多人对这一现象还不是很了解。”为此,我们对“血清沉淀”的几个常见问题进行了总结,供广大科研青年参考。 血清沉淀是什么?血清中经常会出现肉眼可见的沉淀,其成分有多种类型,产生的原因有很多,主要有纤维蛋白、磷酸钙还有一些其它成分。1. 纤维蛋白(Fibrin)血清中肉眼可见的沉淀物大多属于这一类型。由于在生产过程中,血清采集、过滤(3 次 0.1 μm过滤)和灌装处理都是在低温条件下快速完成, 此时血清中纤维蛋白原(Fibrinogen)处于溶解状态。但在解冻之后, 血清中纤维蛋白原往往会发生凝集,形成肉眼可见的沉淀。下图是血清因反复冻融而造成纤维蛋白原的凝集2. 磷酸钙(Calcium Phosphate)这是一种常见的沉淀成分,通常会造成血清出现云雾状浑浊。当产品在 37℃保存时,这种现象尤其明显,在倒置显微镜下可观察到小黑点的存在。这些小黑点在布朗运动的作用下四处游动,常被误认为是微生物污染。3. 其他成分(Other) 血清中的其他成分也会形成沉淀,例如胆固醇形成的油脂滴和其他蛋白沉淀等血清沉淀会影响细胞培养吗?1. 细胞生长我们在出厂前都会对血清进行一系列质检测试,确保血清质量达到严格标准。血清测试和细胞培养经验也表明,其沉淀成分不会影响血清作为细胞培养添加物的表现。这一点得到了众多客户和其他血清供应商的肯定。解冻之后, 血清中纤维蛋白原往往会发生凝集,形成肉眼可见的沉淀。2. 怀疑污染磷酸钙颗粒经常会被当成微生物污染而引发不必要的担忧。一般情况下,当操作人员融化血清后注意到有雾状浑浊时,常将其存放在 4℃冰箱中观察,并考虑接下来是否继续使用。但这样会使沉淀进一步增多,反而会使血清更加浑浊,进而误以为存在血清污染。并且,在倒置显微镜下,可在血清中观察到四处游动的小黑点(磷酸钙颗粒的布朗运动),更容易使人误以为存在微生物污染。为防止这类误解的产生,我们不建议客户培养血清来验证是否存在污染,而是将血清直接接种在细菌培养基上进行培养,以观察是否有细菌的增殖。并且,进行革兰氏染色,并在油镜(100 X 10 倍)下观察可直接确认是否存在微生物污染。怎样操作可以尽量避免沉淀出现?1. 正确解冻首先,应按照逐步解冻的方式正确解冻血清:从-20℃取出后,置于 4℃冰箱缓慢解冻,最后置于室温完成解冻。如果直接从-20℃拿到室温或 37 ℃水浴解冻,则非常容易产生沉淀。在解冻过程中,请注意时不时缓慢摇晃瓶子,减少沉淀的产生。为避免反复冻融,建议您将血清分装使用。2. 使用和保存注意事项血清沉淀很难预测和避免,出现沉淀后也无需担忧,这并不会影响血清的品质。已知血清沉淀在以下条件下会有增多的可能:1) 热灭活;2) 37℃培养;3) 反复冻融;4) 伽马射线照射; 5) 2-8℃长期保存; 6) 长期保存于可自动化霜的冰箱中(温度不稳定)。血清沉淀的形成机理多种多样,具体的机理尚不十分明确。我们尚不能准确预测和控制血清沉淀的产生。目前市面上所有品牌的血清产品都存在沉淀现象,这一点可以在各品牌官方网站上关于沉淀问题的声明上得到证实。出现血清沉淀该如何处理?我们建议您采用2000 rpm 离心5分钟,取上清使用就好,比过滤方便,不需要另外准备滤心和针筒,又不容易污染。总 结:血清产品中出现沉淀属于常见现象,但不会影响血清的品质,对细胞培养而言也是没有任何问题的,大家可以放心使用!
  • 第114号化学元素再次被实验确认
    德国美因茨大学6月25日报告说,一个国际研究小组在德国重离子研究中心通过实验再次确认了第114号化学元素。   在为期4周的实验中,科学家在120米长的粒子加速器内用钙离子轰击涂有钚涂层的薄箔,共制造出了13个第114号化学元素的原子。虽然数量看上去并不多,但这已是目前世界上第114号化学元素合成效率最高的实验了。科学家在实验中还鉴定出了第114号化学元素质量数分别为288和289的两种同位素,其半衰期大约为一秒。   在有关实验中,科学家使用了近年来开发的复杂测量设备“超锕系元素分离器和化学仪器”(TASCA)。这一设备能很有选择性地将第114号化学元素的原子从加速器其他反应产物中分离出来,并将其移入一个特殊的半导体检波器中。通过测量元素衰变时的辐射即可准确鉴定出第114号化学元素的原子。   德国科学家说,TASCA装置是世上现有效率最高的验证加速器中超重元素的设备。它将帮助科学家在未来实验中对第114号元素附近的超重元素进行化学检验,以便在化学元素周期表中为这些元素正确定位。科学家还希望TASCA能帮助他们发现第118号化学元素之后的新元素。   第114号化学元素是俄罗斯杜布纳核研究所的科学家于10多年前首次合成并确认的。其后美国科学家也制造出了两个该元素的原子。但该元素迄今尚未得到国际纯粹与应用化学联合会的正式承认。
  • 使用标准积分球和全积分球测试透镜
    1. 前言  使用紫外分光光度计测定固体样品时,会用到积分球。积分球的种类繁多,有不同的尺寸、形状、涂层材质。日立紫外可见近红外分光光度计UH4150具有多种积分球检测器,可以满足不同样品的测量需求。图1 日立UH4150及其丰富附件这里以透镜测定为例,介绍标准积分球和全积分球。 2. 积分球结构标准积分球的内壁涂层为BaSO4,副白板的材质为Al2O3。它不但可以测定透过率,还可以测定全反射率和漫反射率。全积分球的副白板位置处无开孔,其内层材质同样为BaSO4。因此,全积分球不能测定全反射率和漫反射率。图2 标准积分球和全积分球的结构 3. 透镜的测定实例当测定如透镜类的样品时,其透射光束会在积分球内发生较大变化,若使用标准积分球时,透射光会从积分球背面的副白板溢出,并由副白板和积分球内壁反射。如图3所示,由于Al2O3和积分球内层BaSO4的反射率不同,因此基线校正(仅通过副白板反射校正)和样品测定时的光学条件不同,无法得到正确的测光值。图3 Al2O3和BaSO4的反射光谱详细信息请点击:https://www.instrument.com.cn/netshow/SH102446/s930350.htm 4. 总结 日立提供多种积分球,包括全积分球和标准积分球,以及开口倾角不同的标准积分球等,满足多种样品的精确测定。拨打400-830-5821,联系我们。
  • 海岸鸿蒙标准物质|溶液标准物质的选择指南:确保分析准确性的关键
    在化学分析领域,容量分析是一种重要的定量分析方法。它以溶液标准物质为基础,通过精确测量溶液体积来实现对物质含量的测定。溶液标准物质在容量分析中扮演着举足轻重的角色,堪称基石。今天,让我们一起来了解一下溶液标准物质应该如何正确购买。溶液标准物质,顾名思义,是一种已知浓度、具有特定化学性质的溶液。它作为一种参照物,为分析测试提供可靠的比较基准。溶液标准物质的主要特点如下:高准确性:溶液标准物质的浓度值经过精确测定,具有很高的准确性和可靠性。重复性好:溶液标准物质在制备过程中严格控制条件,确保每次制备的溶液具有良好的一致性。稳定性强:溶液标准物质在储存和使用过程中,浓度值不易发生变化,保证了分析结果的稳定性。适用范围广:溶液标准物质涵盖了各类化学物质,可满足不同领域、不同分析方法的实际需求。以下是一份详细的挑选指南,帮助您做出明智的选择。一、明确分析目的首先,我们需要明确分析的目的。无论是环境监测、药品质量控制,还是材料成分分析,不同的应用场景对标准物质的要求各不相同。例如,环境分析可能需要检测多种重金属,而药品分析则更关注药物成分的准确浓度。二、匹配待测物质接下来,根据待测物质的种类选择相应的标准物质。如果你正在检测水中的铅含量,那么你就需要购买含有铅的标准溶液。确保标准物质与你的分析目标一致,是保证结果准确的前提。三、考虑浓度要求标准物质的浓度应该与你的分析方法和仪器的灵敏度相匹配。过高或过低的浓度都可能导致测量不准确。选择时,要确保标准物质的浓度覆盖你的样品预期浓度范围。四、关注准确度和精度准确度和精度是衡量标准物质质量的关键指标。选择有证标准物质(CRM)可以确保其经过严格的质量控制,并提供详细的不确定度信息,这是提高分析可靠性的重要保障。五、认证和溯源性挑选经过权威机构认证的标准物质,确保其具有可追溯性。这意味着标准物质的生产、检验和分发过程都受到严格监管,从而保证了其质量和可靠性。六、稳定性和保质期检查标准物质的稳定性和保质期,确保它们在储存和使用期间不会发生变化。这对于保持分析结果的稳定性至关重要。七、包装和保存条件最后,不要忽视标准物质的包装和保存条件。正确的储存可以防止标准物质变质,确保其在整个使用周期内保持有效。挑选流程一览&bull 确定需求:根据实验或测试的具体要求,确定所需标准物质的种类、浓度、体积等。&bull 查找供应商:选择信誉良好的供应商,审查其提供的产品信息。&bull 审查证书:仔细审查标准物质的证书,确认其关键参数。&bull 比较选项:综合考虑价格、质量和服务,做出最佳选择。&bull 购买样本:如有条件,先购买小样本进行测试验证。&bull 质量控制和验证:通过标准曲线等质量控制程序验证标准物质性能。&bull 记录和存档:记录所有相关信息,并妥善存档,以便追溯。通过以上步骤,我们可以确保挑选到最合适的溶液标准物质,为我们的科学研究和技术检测提供坚实的基础。记住,正确的选择是获得可靠分析结果的第一步。海岸鸿蒙自主研发的溶液标准物质涵盖单元素、容量分析、临床分析、保健品成分分析、食品添加剂及限量物质、农药残留、油液污染、环境检测等系列,共6000余种产品。其中,700多种产品被国家市场监督管理总局批准为国家标准物质。
  • 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 18px " strong 【简介】 /strong /span br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/c8389825-135e-47c3-8dd3-de93f46e828e.jpg" title=" 91b36629-908d-449c-8019-9fb14da2dc83.jpg" alt=" 91b36629-908d-449c-8019-9fb14da2dc83.jpg" / /p p style=" text-align: center " strong Ondrej L. Krivanek /strong /p p style=" text-align: justify text-indent: 2em " Ondrej Krivanek出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。 /p p style=" text-align: justify text-indent: 2em " 剑桥大学毕业后,Ondrej Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。 /p p style=" text-align: justify text-indent: 2em " 1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该成果于2002年发表。 /p p style=" text-align: justify text-indent: 2em " Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。他与Maximilian Haider、Knut Urban、Harald Rose一起获得了2020年度科维理奖(Kavli Prize)。 /p script src=" https://p.bokecc.com/player?vid=C5FEDAA47F2B90169C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-align: center " span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " br/ /span /strong /span /p p style=" text-align: center " span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " 【自传】 /span /strong /span /p p span style=" font-size: 18px " strong span style=" color: rgb(0, 112, 192) " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 我出生于捷克斯洛伐克(现为捷克共和国)的布拉格,那时候,苏联和其他社会主义国家为自身的科学技术成就和教育体系感到自豪。1961年4月,Yuri Gagarin成为第一个绕地飞行的人。我和伙伴们因此受到鼓舞,成立了宇航员俱乐部,并且,我们的“火箭乘员RP-35”文章在布拉格最受欢迎的日报—— img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d887de42-7b70-4098-af27-5c91367cfc71.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 头版发表,这是一件非常开心有趣的事。 /p p style=" text-align: justify text-indent: 2em " 我父母是在第二次世界大战结束后相遇,战争给他们带来了苦难。父亲是一名化学工程师,专门研究彩色摄影化学,并且撰写了摄影方面的书籍,退休后,他还从事编辑月刊Zpravodaj。母亲的专业是新闻学,后来她成为了一名图书管理员。祖父是学校法律方面的专家,外祖父从事摩托车研制,在布拉格的捷克国家技术博物馆(the Czech National Technical Museum)中就展出了一辆他设计的摩托车。 /p p style=" text-align: justify text-indent: 2em " 高中时期,我最喜欢的科目是数学和物理,学校鼓励对这些科目感兴趣的学生参加课外竞赛,也会布置一些具有挑战性的家庭作业,我非常喜欢解决这些有难度的任务。那时候,我参加了全国的数学和物理比赛,并且都获得了奖项。获奖的学生就可以进入更高级别的比赛,1968年6月,我代表捷克斯洛伐克参加了在布达佩斯举行的第二届国际物理奥林匹克竞赛,获得了第二名。 /p p style=" text-align: justify text-indent: 2em " 奥林匹克竞赛由 img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ced3a030-e739-47df-84af-2d8e25f854cd.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 教授和另外几个专职老师于1959年在捷克斯洛伐克发起,并于1967年成为了国际比赛。我们获得了第二名,仅次于匈牙利的“本土”团队。从那以后,我有幸与另一位前国际物理奥林匹克选手niklas Dellby共事,他是我在Nion的搭档。 /p p style=" text-align: justify text-indent: 2em " 我的另一大爱好是使用轻木和半透明的轻质纸组建飞机模型。我喜欢组建飞机模型和研究如何使它们变得更好。控制飞机飞行是一件非常有趣的事情,但对我来说,设计和组建的过程更令人有满足感。 /p p style=" text-align: justify text-indent: 2em " 在选择大学专业时,我在数学和物理之间左右为难。飞机模型组建的爱好使我选择了物理学,因为它是一个更加实用的专业,也许能让我建造出有趣的机器。我参加布拉格查尔斯大学(Charles University)数学-物理系的入学考试后,就去了法国和英国过暑假,并计划在大学开学的时候回到布拉格。 /p p style=" text-align: justify text-indent: 2em " 1968年8月,当苏联及其追随者入侵捷克斯洛伐克以阻止由 img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/70a12fb8-ad0f-4a07-a1ab-226cf1f533d5.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / 领导的民主运动时,我正在伦敦,并决定留下来,而我的父母和姐姐移民到了瑞士的弗里堡附近定居。 /p p style=" text-align: justify text-indent: 2em " 英国人非常同情这个被苏联坦克占领的欧洲小国的公民。利兹大学(The University of Leeds)慷慨地为想要在英国学习的捷克斯洛伐克学生提供了五项奖学金,我很幸运,获得了其中一项。我在利兹大学学习了三年物理,度过了一段美好的时光。我学会了用约克郡口音讲英语,遗憾的是,后来这项技能被遗忘了。我以全班第一名的成绩毕业,并被剑桥大学Cavendish实验室录取,成为一名研究生。Archie Howie教授是我的博士生导师,他灌输的严谨标准陪伴了我的整个学术生涯。 /p p style=" text-align: justify text-indent: 2em " 我的研究课题是使用电子显微镜表征非晶态材料的结构,然后使用最新的电子显微镜解析各种材料的原子平面。我从“非晶态”碳中获得了0.3 nm分辨率的图像,并且表明了碳中含有小的石墨纳米晶体(Krivanek, Gaskell and Howie, Nature 1976)。这项工作让我意识到,只有具有更高分辨率的电子显微镜才能在原子尺度上清晰地观察物质的结构。 /p p style=" text-align: justify text-indent: 2em " 20年后,当像差校正显示出可使分辨率大幅提高的希望时,我又回到了这个课题。电子显微镜是探索原子世界的强大工具,用途广泛,我迷上了使用它们,并产生想要让它们变得更好的想法。当时,世界上分辨率最高的电子显微镜在日本京都大学(Kyoto University)Keinosuke Kobayashi教授的实验室里:Yoshinori Fujiyoshi用一台500 keV的仪器获得了铜酞菁分子图像,所有原子(氢除外)都清晰地分辨了出来。我向英国皇家学会申请延长居留时间,并获得了成功。 /p p style=" text-align: justify text-indent: 2em " 当去了京都之后,我发现纸上的电子显微镜是世界上最好的,它的电子源很弱,不能使我们看到足够好的图像以优化显微镜的设置。因此,Seiji Isoda和我开发了一种快速的“辅助调节”程序,使人们能够正确地设置显微镜且不需要盯着昏暗的屏幕看。结果得到了清晰的锗晶体中复杂缺陷的图像,所有投射原子的位置都可以从图像中“读出”。这是我研发改进显微镜调整方法的开始,事实证明,这是成功进行像差校正的必要组成部分。 /p p style=" text-align: justify text-indent: 2em " 在京都待了一段时间之后,我又进行了三个月的陆路旅行,从亚洲返回欧洲,体验了许多不同的文化,然后在美国新泽西州默里山的Bell实验室开始了博士后工作。那时候,Bell实验室非常有实力,我与其他人共同工作,其中一位是Dan Tsui,他发现了分数霍尔效应(the fractional Hall effect),并因此在几年后获得了诺贝尔奖。 span style=" text-indent: 2em " Bell实验室有许多有趣的材料和设备,但没有显微镜能够解析它们的原子结构。当时的解决办法是,在Bell实验室制备样品,然后经John Silcox教授和Steve Sass教授的协助,在康奈尔大学(Cornell University)使用和我在博士期间所用的相同类型电子显微镜对它们进行成像。这项工作制备出了MOSFET器件中最重要的Si-SiO sub 2 /sub 界面的原子分辨成像。 /span /p p style=" text-align: justify text-indent: 2em " 我的下一个博士后工作是在加州大学伯克利分校的Gareth Thomas教授团队。该团队隶属于材料科学系,但是与材料相比,我对先进的技术和仪器更感兴趣。我认为电子能量损失谱(Electron Energy Loss Spectroscopy,EELS)是一项特别有趣的技术。 /p p style=" text-align: justify text-indent: 2em " 1978年,我在康奈尔举行的分析电子显微镜研讨会上第一次接触到这项技术,在那里,我遇到了一些人,他们成为了我一生的朋友,如Pat Batson、Christian Colliex、Ray Egerton和Mike Isaacson,我们被期望建立自己的光谱仪——那时候还没有商业模型。因此,在Peter Rez的大力帮助下,我设计并制造了一台紧凑型光谱仪,Peter Rez为这台光谱仪编写了软件。从最初的构想到一台可以工作的光谱仪,整个过程共耗时10个月,这是我第一次研制一个完整的仪器并把它应用到有趣的问题上。我遵循了五个简单的原则,这些原则对我后来的项目也非常有用: /p p style=" text-align: justify text-indent: 2em " 1)& nbsp 适度启动,从一个比大项目更容易完成的小项目开始。 /p p style=" text-align: justify text-indent: 2em " 2)& nbsp 仔细考虑那些会影响性能并且以后很难更改的设计选择。 /p p style=" text-align: justify text-indent: 2em " 3)& nbsp 动作要快,不要把事情搞砸。 /p p style=" text-align: justify text-indent: 2em " 4)& nbsp 从第一个设计中吸取教训,然后再进行第二个设计,以解决仅在第一个设计开始工作后才变得清晰的问题。 /p p style=" text-align: justify text-indent: 2em " 5)& nbsp 与他人合作以帮助项目更快地进行。 /p p style=" text-align: justify text-indent: 2em " 后来我添加了第六条: /p p style=" text-align: justify text-indent: 2em " 6)& nbsp 当进入由新仪器支持的未开发的研究区域时,请通过产学合作进行研究,其中由工业合作伙伴提供仪器以及如何操作仪器的专业知识,由合作大学(或研究机构)提供解决问题的方法、样本、理论知识以及热情的学生和博士后。 /p p style=" text-align: justify text-indent: 2em " 我的第一台光谱仪的主要局限性在于,除了一阶,它没有像差校正功能,这限制了可以提供良好能量分辨率的入口孔径大小,从而导致信号收集效率低下。因此,我采用了第4和第5个原则,与Gatan的Peter Swann和顾问Joe Lebiedzik以及康奈尔大学的Mike Scheinfein密切合作,研制出了修改设计,组建出的光谱仪具有完整的二阶像差校正,其信号采集效率比第一款光谱仪高约100倍。这是像差校正有用性的有利验证。我还从Peter那里学到了很多东西,Peter拥有出色的设计天赋,我们成为了密友。那款光谱仪被称为Gatan系列EELS 607型,获得了商业上的成功。 /p p style=" text-align: justify text-indent: 2em " 这个设计是在我转任新职位后完成的,即在亚利桑那州立大学(Arizona State University)担任由NSF资助的HREM设施的助理教授和副主任。Gatan向ASU捐赠了一款新的光谱仪,我们与合作者一起将其应用于许多有趣的问题,并把迄今为止使用的所有稳定元素的EELS图集汇总在一起。 /p p style=" text-align: justify text-indent: 2em " ASU是一个工作的好地方,员工或长期来访者中有许多电子显微镜专家:John Cowley、 Peter Buseck、John Spence、Johann Taftø 、Naoki Yamamoto、Channing Ahn、Kazuo Ishizuka、Ray Carpenter、Sumio Iijima (2008年Kavli奖获得者)等。 /p p style=" text-align: justify text-indent: 2em " 但是,当Peter Swann将Gatan研发中心从匹兹堡移至旧金山湾区时,加利福尼亚的魅力就变得不可抗拒。1985年,我成为Gatan的研究主管。接下来是一段富有成果的时期,在此期间,我们推出了许多成功的仪器,包括并行检测EELS、柱后成像滤镜、CCD相机、扫描图像采集系统以及数字显微照相和EL/P软件。这段时间里,Gatan的规模增长了近10倍,我了解到,制造商用仪器是资助仪器研究的一种好方法,尤其是当与志同道合的研究人员和精通科学的管理人员合作时,他们能了解比较好的科学价值。 /p p style=" text-align: justify text-indent: 2em " 我们在Gatan研制的成像滤波器使用了四极光学器件,并使用六极杆校正了二阶像差和畸变(图1)。成像滤镜执行两个不同的电子光学任务:它们在能量选择狭缝上形成能量损失谱,充当光谱仪,然后将通过狭缝选择(滤波)的部分光谱转换成图像,作为投影镜头系统。这使得它们的光学与整个电子显微镜的非常相似。我们的滤波器使用的校正原理和后来由我和Niklas Dellby研制的像差校正器相同:四极杆赋予高阶多极杆内部光束不同的一阶特性,多极杆校正了高阶像差/失真。尽管当时的光学系统看起来很复杂,但对软件的认真学习可以让仪器变得易于操作。更高版本的滤波器使用八极杆实现了三阶像差校正。这项课题的完成使我相信,我有很大可能性来校正电子显微镜物镜的三阶(球面)像差——自从Otto Scherzer在1930年代和40年代研究该问题以来,这就是电子光学中的一个经典问题。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 571px height: 355px " src=" https://img1.17img.cn/17img/images/202011/uepic/b4172849-171a-4ab0-bc28-a33dd8674086.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 571" height=" 355" / /p p style=" text-align: justify text-indent: 2em " strong 图1. 一款使用四极(Q)和六极(S)校正二阶像差和畸变的成像滤波器。它工作得很好,使我充满信心,显微镜物镜的球面像差校正器将不会很难制造。O.L. Krivanek et al., Microsc. Microanal. Microstruct. 2 /strong /p p style=" text-align: justify text-indent: 2em " 1950年代至70年代,德国和英国制造了几台成功的原理校正器,但在实际性能方面,其取得的成功都没能超过最好的未经校正的显微镜所达到的成就。有几个有雄心且费钱的校正器项目未能实现目标,给研究像差校正的人员带来了一种不可能成功的思想。这使得研制像差校正器对Gatan来说成为了一个过于投机的项目。 /p p style=" text-align: justify text-indent: 2em " 我很想研制一台,因此我尝试在其它地方进行。我第一次为校正器争取资金是在1992年左右与时任伯克利国家电子显微镜中心主任的Uli Dahmen聊天,但没有成功。幸运的是,我说服了我母校(剑桥大学)的Mick Brown,他有一台备用的真空发生器冷场发射(CFE)扫描透射电子显微镜(STEM),我们应该尝试为它建立一个校正器。 /p p style=" text-align: justify text-indent: 2em " 1994年初,我们与Andrew Bleloch一起向英国皇家学会申请了资金,并从保罗仪器基金会获得了8万英镑的资助。1995年9月,我与家人一起移居剑桥,在Cavendish实验室工作了两年,并在那里获得了博士学位。我于五年前和Niklas Dellby在Gatan合作,当时他正在麻省理工学院攻读博士学位,还有其他人加入了这个项目,Robinson学院授予了我Bye奖学金。 /p p style=" text-align: justify text-indent: 2em " 我们有两个关键的认识。第一,像差校正对STEM的益处最大,与传统透射电子显微镜相比(CTEM),STEM的工作受到色差的影响较小,且校正的益处是传统透射电子显微镜的两倍:小型探头具有更好的空间分辨率和更强的束流,从而大大改善了STEM的光谱性能。这就是为什么我们从一开始就专注于STEM像差校正,结果证明我们的预感是正确的:现在,世界上像差校正STEMs的数量是像差校正CTEMs的两倍以上。第二,球差校正需要复杂的电子光学器件,这必然会引入很多“寄生”像差。这些问题不能通过精心构造而避免,但是可以对其进行特征化和逐一取消。如果不采取此步骤,校正器也许能够固定球差,但是强寄生像差可能会使整体成像性能变差。我们专注于研发STEM自动调谐算法,该算法使用我在之前表征像差的工作中率先提出方法来量化寄生像差。在这部分的项目中,我们得到了Andrew Spence和Andy Lupini的大力帮助。 /p p style=" text-align: justify text-indent: 2em " 如果电子显微镜可以使用玻璃透镜,那么像差校正将非常容易:只需按照要求对关键的“物镜”进行形状调整,使其形成正确的四阶抛物线形状,以消除球差(Cs)。但是,与穿过玻璃而没有太多散射的光不同,电子会被物质强烈散射,并且由固体材料制成的透镜对它们不起作用(除了一些特殊的例外)。取而代之的是,它们被延伸到真空的磁场聚焦,在真空中电子传播,场分布服从拉普拉斯方程,其结果是在圆形透镜中无法避免强烈的正球差。 /p p style=" text-align: justify text-indent: 2em " 我们的解决方案与1960年代在英国剑桥研制的原理验证校正器类似,它使用非圆形四极和八极透镜,其中电子束的横截面制成椭圆形,且先在一个方向上,然后在垂直方向上,赋予了理想的像差特性。我们还确保可以测量并修复每个重要的寄生像差。 /p p style=" text-align: justify text-indent: 2em " 1997年夏,我们获得了修正STEM分辨率的校正图像,同年夏天,Heidelberg-Julich CTEM校正器项目获得第一批改善后的图像,并在1997年在剑桥举行的EMAG会议以及1998年在拉德洛港举行的TARA研讨会上介绍了我们的研究结果。我们在剑桥的研究结束了,1997年10月,我回到了美国。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d145154a-980d-4ba5-85ca-198b88c25d64.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p style=" text-align: justify text-indent: 2em " strong 图2. 第一个STEM Cs校正器的中心部分,提高了内置显微镜的分辨率,它具有6个多极载物台,其中包含强四极和八极,还有96个辅助线圈,用于消除寄生像差。 校正器Ø ~12cm /strong /p p style=" text-align: justify text-indent: 2em " 现在,校正器(图2)在Cavendish实验室的玻璃盒中展示,旁边展示的还有Deltrap的原理验证四极八极校正器和Cavendish的“皇冠上的珠宝”(包括J.J. Thompson发现了电子以及Watson和Crick建立的DNA模型)。我们的剑桥校正器没有改进当时最好的未校正STEM的性能,但我们的mark II校正器可以改进。在我成为西雅图华盛顿大学的研究教授后,我和Niklas Dellby设计并研制了该校正器,并在1997年底创建了Nion公司。 /p p style=" text-align: justify text-indent: 2em " 图3为Nion的创始人以及Nion的第一名员工George Corbin。George Corbin大学刚毕业就被我们雇佣,在Nion工作的22年里,他为公司做出了巨大的贡献。我们建了一个实验室,以3万美元的价格购买了一台二手VG STEM(它比我们在剑桥使用的STEM还要新),然后开始研究新的校正器。资金主要来自位于纽约约克镇高地IBM TJ Watson研究中心的Phil Batson。该项目具有双重优势:它是第一台商业校正器,于2000年6月/7月交付并安装在IBM公司,并且成就了第一款能够将电子束聚焦到直径小于1埃(0.1 nm)的STEM, 由Phil设定为120 keV,之后不久,当我们在Oak Ridge国家实验室(ORNL)将类似的校正器组建到300 keV STEM中时,结果很快有了进展,Matt Chisholm和Pete Nellist解析了相距0.78埃的原子柱。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 481px height: 304px " src=" https://img1.17img.cn/17img/images/202011/uepic/ec02e79e-1114-459c-b372-f3f663748d72.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 481" height=" 304" / /p p style=" text-align: justify text-indent: 2em " strong 图3. Ondrej Krivanek,George Corbin和Niklas Dellby在Nion I大楼前,该大楼设有一个大型车库,后来我们改建把它改造为机械装配室,因此,Nion在某种程度上可以称其起源于一个车库。 /strong /p p style=" text-align: justify text-indent: 2em " 像差校正很快成为电子显微镜的新领域。德国CEOS公司为老牌电子显微镜制造商提供校正器,最初有CTEM,后来又有STEM,而Nion公司则专注于STEM校正器,并独立完成所有的工作。 /p p style=" text-align: justify text-indent: 2em " 首先,我们为VG STEM制作了校正器,将其分辨率提高了近2倍。我们下一个“大胆的想法”是:我们可以通过设计全新的电子显微镜来拓展校正器的功能,并且我们会比老牌的显微镜制造商做得更好。我们研发的显微镜Nion UltraSTEM& #8482 建立了许多性能基准,它使人们对材料的性质有了新认识。之后,我们为显微镜增加了许多其他的,通常是革命性的功能,如下所述。 /p p style=" text-align: justify text-indent: 2em " 例如,我们的新STEM制出了二维材料(如石墨烯)和一维材料(如纳米管)令人惊叹的图像。我们利用来自爱尔兰都柏林三一学院(Trinity College)的Valeria Nicolosi和日本先进工业科学技术研究院(National Institute of Advanced Industrial Science and Technology)的Kazu Suenaga所提供的样品进入了这一领域。Niklas和我把这些样品带到橡树岭国家实验室(ORNL),在那里,我们花了一个周末的时间研究Nion交付给客户的第四架电子显微镜。 /p p style=" text-align: justify text-indent: 2em " 当时的普遍观点是,我们使用的成像技术(高角度环形暗场(HAADF)成像)不能有效地对像碳这样的光原子进行成像,认为该信号太弱而无法对单个原子进行成像。与这种“观点”相反,我们在一次60 keV的情况下获得了纳米管和石墨烯的清晰图像,避免了样品的严重破坏。我花了很多时间操作其他电子显微镜,但从未见过像Nion仪器所显示的那样清晰的图像。我不是一个喜欢惊呼的人,但我记得我停了一下,把椅子从控制台往后推开,然后宣布:“Niklas,我们做了一个非常好的显微镜!” /p p style=" text-align: justify text-indent: 2em " 我不是唯一这样认为的人,一天晚上,在ORNL做博士后的Juan Carlos Idrobo走进实验室,当他看到我们获得的结果时,他看很长一段时间,好像粘在了那个地方一样。不久之后,他和其他人开始在ORNL进行类似的实验,几个月后,Matt Chisholm制出了一张标志性的BN单分子层原子取代图像,并登上了《自然》的封面上(图4)。随后在ORNL获得的结果显示了固定在石墨烯薄片上的由6个硅原子组成的结构是如何在两个相当稳定的构型之间来回跳跃。 /p p style=" text-align: justify text-indent: 2em " 大约同一时间,在橡树岭和Daresbury Super-STEM实验室中,从嵌入石墨烯中的单个Si原子获得了具有精细结构特征的EEL光谱,也在实验室中从2D MoS sub 2 /sub 片中雕刻了半导体MoS sub 2 /sub 纳米线,并且维也纳大学的一个研究小组能够通过电子束在石墨烯片中按选定的方向“驱动”单个Si原子。可用束流的增加,使材料的元素组成能够通过EELS和能量色散X射线光谱法(EDXS)在原子分辨率上有效地映射出来,这正是我们所期望的。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/2b803d25-ee00-4eb7-8f95-9ce510239343.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: justify text-indent: 2em " strong 图4. 《自然》期刊2010年3月25日的封面。 它显示了具有原子取代的单层BN的中角环形暗场(MAADF)STEM图像。将实验图像着色以对应于使用图像强度识别的原子类型,并在透视图中进行渲染。红色= B(硼),黄色= C,绿色= N,蓝色= O。Krivanek等人,Nature 464(2010)571-574. /strong /p p style=" text-align: justify text-indent: 2em " 也可以使用不同元素的EEL光谱中的化学位移来映射成键信息(图5)。所有这些功能只是Nion经像差校正的STEM所能实现的不同研究的一小部分。现在,全球有超过20台这样的仪器,还有约700台由其他制造商制造的像差校正STEM。在一个专题论文中覆盖使用这些仪器完成的所有创造性工作是不可能的。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/6665f87c-c8c7-476e-ab7c-91e55449b3b7.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-align: justify text-indent: 2em " strong 图5. EuTiO sub 3 /sub 晶体中Eu原子的EELS图导致了与DyScO sub 3 /sub 原子尖界面。图中每个像素的强度显示了从该像素获得的光谱算出的Eu浓度,无论原子是3+Eu(绿色)还是2+Eu(红色),颜色都是如此。插入图显示了从界面(绿色)和远离界面(红色)的Eu M4,5边缘阈值峰,由于Eu价的变化,化学位移为2.5 eV。 L.Kourkoutis,D.A. Muller等人,proceedings IMC17 (Rio de Janeiro, 2010). /strong /p p style=" text-align: justify text-indent: 2em " 我们在软件方面的努力增强了像差校正的先进性,使仪器功能更强大且更易于使用。如果没有像差校正,将无法实现能量分辨率的提高:我们研发的单色仪和电子能量损失光谱仪都采用了我们首先介绍的用于像差校正的设计原理。这些仪器的光学特性和无与伦比的稳定性已将EELS的能量分辨率达到3 meV(相对于不使用单色仪的电子显微镜,能量分辨率提高了约100倍),并且在常规情况下可达到5 meV。这种分辨率级别允许在电子显微镜下进行振动光谱分析,并开辟了的新研究领域:声子(包括声学声子)的0.2-2 nm空间分辨率成像及其与晶体缺陷的相互作用; 检测和绘制氢分布图的能力; 区分不同的同位素(图6); 以及有机和生物样品的无损分析。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/4e3ccdd0-225d-455b-99d6-7452bd28efcb.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" text-align: justify text-indent: 2em " strong 图6. L-丙氨酸两种形态的实验振动光谱,其区别在于单个的12C原子被13C取代。由于C=O键的延伸,在200 meV处,高峰的4.8 meV位移可以映射为揭示约100 nm空间分辨率下这两种类型分子的位置。J.Hachtel等人,Science 363 (2019) 525–528. /strong /p p style=" text-align: justify text-indent: 2em " 在电子显微镜下分析生物样品的振动特征且不会造成重大损坏的能力尤其令人兴奋。它基于在我们所研究的振动能量(20-500 meV)下,激发光声子的偶极相互作用被局域化了,并有可能在30-100 nm甚至更远距离电子束的区域探测分子振动。当电子束离得很远时,每个高速电子可以传递到样品的能量通常被限制在& lt 1eV,并且没有明显的辐射损伤。空间分辨率不如将电子束照射到样品上并利用非偶极子信号时高,但在30-100 nm分辨率下探测冷冻水化生物样品中存在什么分子的技术仍有很多重要用途。 /p p style=" text-align: justify text-indent: 2em " 我是在柏林洪堡大学的Christoph Koch小组里,与洪堡大学的Christoph、Benedikt Haas、Zdravko Kochovski和JohannesMü ller以及Nion的Tracy Lovejoy、Niklas Dellby和Andreas Mittelberger合作,一直在探索这一想法。当冠状病毒大流行袭来的时候,我们已经把所有需要的仪器放在一起准备开始实验,并且,我决定返回华盛顿州。 /p p style=" text-align: justify text-indent: 2em " 我们计划在疫情允许的情况下尽快恢复工作。仪器设备的研发类似于探索未知领域,就像于200年前Alexander Mackenzie和David Thompson探索美国太平洋西北地区的方式,猜测在哪个方向上会有什么欢迎之地,之后是漫长的探险之旅,每天克服困难和障碍的聪明才智决定了成败。所有的探索者都尽了最大的努力,有时偶然的发现会给正确的方向带来关键性的推动。我非常感谢Nion实验室的合作伙伴,感谢他们付出的巨大的且显有成效的努力(图7)。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202011/uepic/d1542126-534d-489f-9a1b-aeb13ae166f2.jpg" title=" 图片7.png" alt=" 图片7.png" style=" text-align: center max-width: 100% max-height: 100% width: 617px height: 133px " width=" 617" height=" 133" / /p p style=" text-align: justify text-indent: 2em " strong 图7. 2019年8月Nion Open House集体合影。照片中Nion团队有Niklas Dellby、Tracy lovejoy、Chris Meyer, George Corbin、Russ Hayner、Matt Hoffman、Peter Hrncirik、Nils Johnson、Josh Kas、Ben Plotkin-Swing、Lemek Robinson、Zoltan Szilagyi、Dylan Taylor、Janet Willis和Ondrej Krivanek,以及Nion的合作伙伴Toshi Aoki、Nabil Bassim、Phil Batson、Andrew Bleloch、Wouter van den Broek、Peter Crozier、Christian Dwyer、Meiken Falke、Jordan Hachtel、Fredrik Hage、Bethany Hudak、Juan Carlos Idrobo、Demie Kepaptsoglou、Jani Kotakoski、Richard Leapman、Andy Lupin、Alan Maigne、Clemens Mangler、Molly McCartney、David Muller、Matt Murfitt、Xiaoqing Pan、Luca Piazza、Quentin Ramasse、David Smith、Rhonda Stroud、Toma Susi、Luiz Tizei、Kartik Venkatraman、Wu Zhou等。 /strong /p p style=" text-align: justify text-indent: 2em " 我特别感谢Niklas Dellby,我们与他一起创建了Nion,并愉快地合作了近30年。没有他的才华和努力,就不可能有这里所描述的进展。真是一次美妙的航行! /p p style=" text-align: justify text-indent: 2em " 对我们所爱的人来说,持续研究并不容易,正是他们的关心和支持让我们继续前行。感谢我的女儿Michelle和Astrid,感谢我的侄子David对我的爱和理解,也感谢Eda Lacar(图8)对我的爱和支持,她以许多奇妙而出乎意料的方式扩展了我的视野,使我成为一个更好的人。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/85cd3419-d863-42e7-ac6e-7559c9efdf5c.jpg" title=" 图片8.png" alt=" 图片8.png" / /p p style=" text-align: justify text-indent: 2em " strong 图8 Ondrej Krivanek和 Eda Lacar在亚利桑那州立大学西南像差校正电子显微镜中心前。 该中心有3台像差校正电子显微镜,在纳米表征方面发挥着世界领先的作用。 /strong /p p style=" text-align: justify text-indent: 2em " strong br/ /strong /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Harald Rose /span /a /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Maximilian Haider /span /a /p p style=" text-align: left text-indent: 0em " strong /strong /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 样品与鲎试剂的1:1比例:其重要性以及在Sievers Eclipse月食细菌内毒素检测仪上的确认过
    目的细菌内毒素检测(BET,Bacterial Endotoxins Testing)的创新技术问世后,证明平台间检测的等效性就变得至关重要。“Sievers® Eclipse比例确认测试”旨在确认使用96孔板时的样品与鲎试剂的1:1比例始终对使用Eclipse微孔板也同样有效。只要保持1:1比例,就能使样品和鲎试剂(LAL,LimulusAmoebocyte Lysate,鲎变形细胞溶解物)之间的生物化学反应保持不变。即使在使用Sievers Eclipse平台时减少光学孔的总容积,每个孔中的1:1比例也能保持不变,用户可以确信样品和标准品的内毒素测量值是准确有效的。背景和重要性使用96孔板的动态显色法细菌内毒素检测技术,要求在每个孔中加注标准品或样品与鲎试剂的混合液,然后观察液体的颜色变化。检测成功的关键在于精确控制样品和鲎试剂的用量。USP 规定,对于某些检测参数(例如体积比、反应起效时间、pH值等),应遵循鲎试剂生产商提供的使用说明(IFU,Instructions for Use)。使用说明通常以下两种方式之一来表明如何达到正确的样品和鲎试剂的体积比:❶ 直接表明样品和鲎试剂的比例应为 1:1;❷ 指示用户加入100 µ L的空白鲎试剂水、内毒素标准品、产品样品、阳性产品对照,然后向所有使用的孔中加入100 µ L的鲎试剂。有的使用说明指示用户准备1:1样品与鲎试剂混合液时,建议使用100 µ L(而非典型的200 µ L)作为孔的总容积,并指出100 µ L有助于达到最佳的检测灵敏度。该使用说明表明,1:1的比例关系(而非孔的总容积)才是检测成功的关键。只要每个孔中的样品和鲎试剂的比例是1:1,反应就能准确进行,产生的结果就是等效的。如果比例不是1:1,那么样品与鲎试剂的用量就不对,就会对反应动力学过程和整体检测结果产生显著影响。除了孔的总容积之外,还需考虑反应速度。如果反应较快,那么起始反应时间就较短,内毒素浓度就较高。如果反应较慢,则情况相反——起始反应时间较长,内毒素浓度较低。错误的比例还会影响鲎试剂在与样品混合时的自然缓冲能力。如果达不到1:1的精确比例,则反应混合液的pH值就不在建议的6-8范围之内,就会影响检测的整体反应动力学过程。1:1比例确认测试1:1比例确认测试旨在证明在Sievers Eclipse微孔板的104个孔中都达到了鲎试剂和样品的1:1精确比例。进行测试时,用户需要一个新的Sievers Eclipse微孔板和Sievers Eclipse 1:1比例确认套件,该套件包括一个水瓶和一个染色剂瓶。开始分析之前,Eclipse软件会指导用户在对应的位置和鲎试剂LAL端口,完成水和染色剂的准备和注射。然后,Eclipse微孔板按照正常分析时的步骤运行。1:1比例确认测试不依赖于动力学酶促反应,因此测试所需的总时间较短。1:1比例确认测试的报告内容分析完毕后,Eclipse软件的“1:1比例结果(1:1 Ratio Results)”选项卡中会显示报告。报告内容除了包括在运行测试之前输入的常规信息(例如分析仪序列号、Eclipse微孔板信息、1:1比例确认样品信息),还包括104个光学孔的各自的平均光密度。在报告的“结果”部分下面,分别显示微孔板“染色剂”部分和“水”部分的总体平均光密度。染色剂分别同微孔板另一半上的染色剂和水混合,产生上述两个平均值。下面的方程1用于计算总体平均光密度值,该值显示溶液的混合是否成功。这可以用来表示在正常分析时样品和LAL是如何混合的。方程式1:在染色剂与染色剂混合的孔中,理想的比例为1(即染色剂平均值)。在染色剂与水混合的孔中,染色剂被稀释到原来浓度的一半,理想的比例为0.5(即水平均值)。将这两个平均值相除,得出的理想比例为2,表示到达光学孔的染色剂和水的量完全相同。对于本次测试来说,1.90至2.10之间的比例都是有效的,不影响整体反应动力学曲线和内毒素回收率。结论Sievers Eclipse微孔板是精密设计的微流控液体处理设备。此款微孔板利用计量分配腔,以恒定的通道几何形状和运动方式,将精确等量的样品和鲎试剂同时送到光学孔中。正是Eclipse微孔板的精密的液体控制能力,确保了每次检测的所有104个光学孔中都达到样品与鲎试剂的1:1关键性比例。鲎试剂生产商提供的使用说明可能会直接表明1:1比例,也可能会指导用户混合一定量的样品和鲎试剂,但液体总体积未必一定是200 µ L。如果光路径较长,或者为了进行精确移液,生产商会建议设置较大容积,以提高检测精度。对于标准的96孔微孔板来说,建议设置的孔的总容积在75-200 µ L范围内。“为了进行有效测量,建议设置的微孔板的最小孔容积通常大于最大孔容积的1/3。”1 所以,每次检测的每个孔中的样品与鲎试剂的比例达到1:1,非常重要,而没有必要使用整个孔的容积。在Sievers Eclipse平台上进行1:1比例确认测试的结果证明,即使孔的总容积显著减小,每次检测的每个光学孔中都能达到至关重要的1:1比例。始终保持1:1的精确比例,用户就能确认在转换平台时,生物化学过程是等效的。建议每年由Sievers分析仪认证的现场服务工程师或代表来完成此项确认测试任务。参考文献Pusterla, Tobias, PhD. “Which is the best microplate for my assay?” BMG Labtech, 2018 May 30. https://www.bmglabtech.com/which-is-the-best microplate-for-my-assay/◆ ◆ ◆联系我们,了解更多!
  • 温馨小贴士|长假前后,发生器正确开关机指南
    一月底,各大高校陆续开启放假模式,春节假期也将在下个月到来,贴心的Peak为各位整理了部分Peak发生器的长假开/关机注意事项,不要小看这简单的开关机,如不正确操作会造成机器无法正常使用,严重的甚至可能损坏发生器!今天咱先来说说Precision系列气体发生器的正确开/关机。 1.Precision Hydrogen 关机操作:1.确认氢气发生器的应用端(如气相色谱仪)已经停止用气2.按“STOP”停止供气3.按“MENU”后,再按“SHUT DOWN”键4.关闭发生器的供电,关机完成注意:必须严格遵守关机步骤,不能直接关闭发生器的供电来关机开机操作:1.给氢气发生器接上电源,发生器的用电为220V,50/60Hz2.给氢气发生器供水i) 使用超纯水,水质必须符合要求(电导率小于1μS/cm)ii) 外接水瓶里储水量足够,保证发生器的吸管可以吸到超纯水iii)外接水瓶和气体发生器应安放于同一平面,严禁将外接水瓶放置在气体发生器上方3.按“POWER”电源按钮启动氢气发生器,发生器进入自检程序,若自检不通过,请联系PEAK4.自检通过后,设定氢气的输出压力,确认氢气发生器和应用端管道连接完好注意:必须使用洁净程度符合要求的管道(铜管或不锈钢管道)5.按“START”开始供气 2.Precision Nitrogen Trace 关机操作:1.确认应用端已经停止使用和消耗氮气2.按Power按钮来关闭供电。氮气发生器关机完成开机操作:1.确认有压缩空气供应给氮气发生器,若客户现场有Precision Air Compressor空压机来提供压缩空气,请确保空压机处于启动状态。注意:在没有压缩空气供应的情况下,严禁开启氮气发生器2.确认氮气发生器的供电正常,发生器的用电需求为:220V,50/60Hz3.按Power按钮来启动氮气发生器,发生器的前面板上LED灯亮起并发出黄光4.等待大约2-4小时左右,发生器前面板上LED灯颜色由黄变为绿色,氮气发生器预热完毕,发生器进入工作状态5.氮气发生器启动完毕,可以给应用端供应高纯氮气 3.Precision Zero Air关机操作:1.确认零级空气发生器后端的应用设备停止使用零级空气2.按POWER按钮来关闭零级空气发生器开机操作:1.确认零级空气发生器的供电正常,用电需求为220V,50/60Hz2.确认压缩空气供应正常,供应给零级空气发生器的压缩空气流速和压力足够,严禁在没有压缩空气供应的情况下,长时间开启零级空气发生器3.按POWER按钮启动零级空气发生器4.等待约半小时后,发生器的前面板LED灯由黄变绿,说明发生器已经准备就绪5.开机完成,零级空气发生器可以开始供气 4.Precision Air Compressor 关机操作:1.确认空压机后端的设备已经停止消耗压缩空气2.按POWER按钮,给空压机断电,关机完毕开机操作:1.确认空压机的供电正常,空压机供电为220V,50/60Hz,空压机必须接地2.确认空压机的排水管连接到盛放废液的容器或排水槽注意:空压机排水时会有少量气体排出,盛放空压机排出废液的容器不能密封,需和大气相通3.确认空压机的压缩空气输送管道已经接好,气体输送管道的密封性必须良好4.按POWER按钮启动空压机,等待片刻,前面板上的LED灯由黄变绿5.空压机启动完毕注意:空压机在工作过程中会产生热量,空压机后端的需预留一定的空间来散热希望以上温馨小贴士能帮到各位小伙伴,当然,如果您想了解其他型号Peak发生器的开/关机指南,也可以给Peak来电或者在“毕克气体”微信公众号留言,我们会选择提问较多的产品给大伙进行科普。
  • 多项国际标准发布!涉及测量辐射、船舶电磁等
    ISO发布关于第三方支付安全新标随着支付趋势从现金转向在线金融交易,诸如PayPal等第三方支付(TPP)服务商的使用将越来越多。虽然这种支付方式便捷,但其使用量的增加不可避免地会带来更大的安全风险。为促进技术的安全发展,ISO最近刚刚发布了一项提供 TPP 服务的信息系统新标准。TPP提供商是一种可以在没有商家账户的情况下接受在线支付。但由于中间商的存在,这种处理付款的方式增加了欺诈风险,所以不一定安全。ISO 23195《第三方支付服务信息系统的安全目标》,提供了一个全球一致的术语和定义清单,2个逻辑结构模型和一个安全目标清单。为确保最大限度的相关性,该标准中的逻辑结构模型、资产、威胁和安全目标都基于现实实践。认识到TPP服务商正在不断设法减少支付欺诈的风险,这一标准是对现有措施的坚实补充。ISO 23195是由ISO/TC 68“金融服务”技术委员会的ISO SC 2金融服务与安全分技术委员会制定。ISO/TC 68/SC 2的秘书处工作是由ISO的英国成员BSI承担。ISO发布第一项无障碍旅游国际标准对于全世界10亿多残障人士来说,旅游是件难事。认识到消除旅游业中不必要的障碍十分重要,因此ISO发布了一项新标准,以帮助每个人享受无障碍旅游。发布的标准:ISO 21902《旅游业和相关服务--无障碍旅游--要求与建议》提出了让所有人都能平等获得良好的旅游体验要求和指南,无论年龄大小或活动能力如何,包括有肢体障碍或有特定访问要求的人,比如残疾人和老年人。玛丽娜迪奥塔列维(Marina Diotallevi)是世界旅游组织(UNWTO)的成员,也是制定这项标准的专家工作组召集人。她认为:“各国对于构建无障碍的旅游设施与服务没有一致且明确的规范,而这种状态会继续增加旅游的障碍。这些障碍常常是因为行业内缺乏相关知识与培训造成的,这也意味着善意的努力被白白浪费了。现在各国之间,甚至同一个国家的民族之间,都有不同的现行标准。旅游业急需规范如何正确应用无障碍旅游相关标准。”耶稣埃尔南德斯(Jesús Hernández)是ISO 21902项目负责人、ONCE基金会普遍无障碍与创新部主任。他补充道:“有的国家根本没有适用的标准,因此旅游业供应商没有指南,不知如何调整旅游设施与产品,以满足每个人需求。ISO 21902是第一项旨在填补这一关键空白的国际标准,从而提高整个旅游价值链的无障碍设施。”新的标准旨在满足从事旅游业及接触旅游业的每个人的需求,这一群体包括国家旅游局、市政府、负责基建政策的公共部门,以及发展与立法/规范体系。同时,还将惠及所有旅游相关业务,比如旅游公司/旅行社、交通公司、住宿设施、医院、餐饮,以及建筑师、信息与通信技术开发者等相关支持方,当然还有游客们。ISO 21902是由ISO/TC 228“旅游及相关服务”技术委员会制定,其秘书处是由ISO的西班牙成员--西班牙标准化协会(UNE)承担。IEC发布关于测量辐射标准使用锗探测器测量辐射水平的例子有:测定土壤样品中的放射性污染物、确保医疗放射治疗的剂量正确、侦测非法贩运放射性材料以及保护核材料。为保障这些探测器性能,IEC发布了新版IEC 61452《核仪器——伽马射线放射性核素活度或放射率的测量——锗基光谱仪的校准和使用》。该项标准规定了校准和使用锗基光谱仪的方法。锗基光谱仪可以测量光子能量和发射率,并根据测量结果计算放射性核素活度。该标准让锗半导体探测器的常规校准和使用设定基础成为可能。该标准提供了统一的方法,以评估锗半导体探测器的性能特征,从而提高了仪器系统的质量和准确度。一、认识锗基光谱仪伽马射线光谱仪由锗探测器及其液氮或机械冷冻低温恒温器和前置放大器组成,与模拟或数字电子模块有关,包括探测器偏置和信号处理(放大、多通道转换和存储)以及数据读出装置。此外,探测器周围一般有辐射屏蔽,以尽量减少背景辐射可能造成的影响。锗晶体中光子(X射线和γ射线)相互作用,将能量传递给电子。通过产生电子-空穴对,电子的能量被释放。汇集电子和空穴,可产生脉冲,其振幅与锗晶体有效体积中沉积的能量成正比。这些脉冲被放大、整形和分类,根据脉冲高度直方图,显示出探测器吸收的光子数量。光子数量是能量的函数。收集足够多的脉冲后,直方图会显示有一个或多个峰值的频谱,峰值对应的是将自身全部能量转移到探测器的光子。排放率的测量用于确定给定样品中放射性核素的活度。二、IEC 61452的范围为确保锗基光谱仪的正常运作和校准,IEC 61452规定了以下内容:性能测试,以确保光谱仪在可行范围内运转脉冲堆积的测量和校正方法进行测试,以确定符合相加的大致范围检查探测器中,由级联伽马射线的真符合相加造成的大误差的光谱分析结果的技术该标准还提出了建立放射性核素识别、衰变校正和将伽马射线辐射率转换为衰变率数据库的建议。该标准的上一个版本发布于1995年。IEC发布关于船舶电磁新标准的第一版IEC(国际电工委员会)即将发布旨在保护非金属船体免受电磁(EM)干扰的重要标准第一版,该文件旨在满足IMO resolution A.813(19)决议的要求。IEC 62742 ED1提供了关于如何在非金属材料(包括玻璃纤维等各种复合材料)船体的船舶上实现电磁兼容(EMC)的指南。该项标准也可以用于具有金属船体但装备非金属上层结构或部件的混合船。它是对IEC 60533的重要补充,IEC 60533规定了对金属船体的要求。简基斯范德文(Jan-Kees van der Ven)负责IEC/TC18船舶电磁标准化技术委员会工作,他解释说,“随着越来越多的船主选择更轻的船只,复合材料制造的船体正变得越来越普遍。然而,与金属不同,常规的复合材料不能保护电子设备免受电磁干扰。IEC 62742建立了不同的方法来保护基本设备,例如无线电设备的传输电缆,这是船舶上的关键电气设备。再比如,屏蔽式电缆是一种选择,并且为此制定了标准计划”。由于屏蔽物可以容纳和转移电磁能量,屏蔽式电缆辐射的电磁能量更少。屏蔽物可以采用铝箔,也可以采用缠绕在电缆布线上的铜编织的形式。
  • 如何正确地解读标准物质证书
    标准物质证书虽然只有短短一两页的内容,但其实传递的信息量非常巨大,阅读的不仔细或方法不对不仅会遗漏化合物的重要信息,严重的话甚至会影响实验结果哦!下面小编给大家从9个方面深度解读一下标准物质证书:1、定值机构的名称、地址及其资质该部分(常在证书上端以显著的字体写出)是出具该证书的团体或组织的名称。除名称之外,还包括其生产资质、通讯地址、电话和传真号码等信息,有时也包括其官网网址以方便使用者查询。2、文件(证书)的标题及其证书编号应有清晰明显的标题,如:分析证书或测量证书。除此之外证书编号及其版本号也需要体现在证书上,方便使用者确定不同时期不用版本的证书。3、标准物质的名称 标准物质的名称应当尽可能详细地描述样品的类型、规格,方便使用者明确该物质并与其相似的标准物质相区分。4、标准物质的编号与批号每个标准物质/标准样品都应当与其对应的编号和批次号,且该批次号具有唯一性,这便于标准物质的溯源并让使用者在同时使用不同批次的标准物质/标准样品时避免引起混乱。5、定值日期、保质期和储存条件定值日期是指此批次标准物质第一次确定准确量值的日期。保质期是指有一个定值单位不再保证标准值有效的截止日期。当给出截止日期时,证书则包含着承诺:在证书规定的有效期内,标准值将会在适当间隔的时间内进行监测,在有效期内,标准物质发生的降解导致重新定值或失效,均将告知购买者。同时当测量方法有所改进时,也可能重新进行再定值。因此,生产者应当保留购买者名录。当到达证书的截至日期后,当测量显示标准值没有改变时,定值单位可以更新标准物质证书上的保质期,新的保质期是根据上次证书给出的有效期内证明的稳定性而定的。储存条件是指为了保证标准值的准确性,需要将标准物质长期存放到特定的存储条件下,储存条件发生变化其标准值和保质期都会发生变化。标准物质使用者必须要遵守相应的储存条件。6、标准值及其不确定度 根据测量不确定度的表述指南和(化学)测量中不确定度的定量分析,标准物质应当清楚准确的描述其特性和其标准值以及标准值的不确定度。标准值及其不确定度的评估方法也要描述。当处理测量结果采用纯粹的统计方法时,应当注明该处理的方法。关于标准值的说明需要使用者特殊关注,特别是当标准物质含盐含结晶水时需要重点关注标准值的说明。7、溯源性 ISO指南30中,标准物质的定义要求标准物质特性值用建立了溯源性的程序确定,可溯源到用于表示该标准值的计量单位。溯源性指的是测量结果的一种特性,借助它可让使用者通过有给定的不确定度的连续的比较链与规定的标准(通常为国家或国际标准)联系起来。因此,标准物质特性值的测定,理论上应当可溯源到国际单位制(SI)或一个国际一致认可的测量标尺。8、生产者单位负责人的姓名和签字 不可忽视的是证书中应当包括代表生产者单位的负责人的姓名,表明这个人对证书的内容负责。9、更详尽的信息危险情况有关标准物质安全性的信息应当包含在标签和证书里。任何有关危险性质和所采取的适当预防措施的细节应当在标准物质/标准样品附带的数据单里提供。使用范围给出标准物质对应的使用范围,避免使用者超范围使用。
  • 环境标准物质是什么?有什么用途
    海岸鸿蒙标准物质知识课堂开课啦~今天来讲讲环境标物的一些相关知识!环境标准物质的基本概念标准物质是指具有一种或多种规定特性、足够均匀和稳定的材料,已被确定其符合测量过程的预期用途。有证标准物质(CRM)是指附有由权威机构发布的文件,提供使用有效程序获得的具有相关不确定度和溯源性的一个或多个特性值的标准物质。环境标准物质是环境监测中传递准确度的基准物质,也是控制实验室分析质量的物质基础。环境监测实验室标准物质的分类一、物理特性标准物质:主要有声级校准器、标准砝码、标准放射源等。二、化学特性标准物质:1、气体标准物质,用于气体监测项目的量值溯源,如甲烷标气、二氧化硫、一氧化氮等;2、液体标准物质,分标准溶液和标准物质;3固体标准物质,通常使用的为固体标准物质,包括土壤、煤质、植物、生物和工业固废等标准物质。三、微生物检测标准物质:用于培养基质量检定和微生物监测的质量保证和质量控制。环境标准物质的用途一、监测仪器的验收和校准:1、对强制检定的仪器的检定,溯源到国家标准;2、日常监测中的仪器的校准,控制测量准确度和精密度。二、保证测量结果的一致性、可比性:通过被分析物质含量准确已知的有证标准物质来校准仪器输出的信号,简历仪器响应值和测量浓度的定量关系,保证测量结果的一致性、可比性。三、监测方法的验证:用标准物质对方法的性能指标进行验证和评价和对实验室正确使用标准方法进行确认。四、日常质量控制:通过平行样测试、加标回收、实验室间比对、质量控制图等,实验室可以快速、准确的判别检测系统是否处于质量控制之中,或分析数据的偏离情况,以便检测人员及时采取纠正预防措施加以预防控制,保证监测结果的准确可靠。五、质量考核依据:用标准物质考核和评价分析人员的测试技术及实验室的工作管理质量。环境标准物质的使用标准物质的正确使用包含正确选择、正确使用(防止误用)和使用注意事项。1、应优先考虑使用国家批准的有证标准物质,保障量值的准确性、可比性与溯源性。2、选用标准物质应与预期监测分析样品尽可能接近,这主要包括基体、形态、浓度水平等。其中基体匹配是需要重点考虑的因素。3、分考虑标准物质的定值方法以及标准物质的预期使用要求。在标准物质使用之前应仔细、全面地阅读标准物质证书。只有认真阅读标准物质证书中提供的信息,才能保证正确使用标准物质。4、特别注意标准物质证书中所规定的取样量与取样方法。就IERM制备的标准物质而言,固体标准物质主要是最小取样量,最小取样量是此类标准物质均匀性的重要条件,不重视或忽略了最小取样量,测量结果也就失去了准确性和可信度。5、标准物质的量值稳定是有条件的。有些标准物质的储存条件非常苛刻,储存条件不当,有可能会影响标准物质量值的准确性,因此在收到标准物质时,应根据标准物质证书规定的储存条件保存好标准物质,并尽早使用,不要久存。凡已超过证书规定有效期的标准物质切不可随便使用。 6、当不能正确分析一个标准物质时,应首先对自己实验室的检测系统进行检查,如自己查不出原因,也可以请别人帮忙。但有时正确地分析一个标准物质同样也可能得不到正确的结论;尽可能分析覆盖整个浓度范围的几个标准物质是评价整个检测系统的最好方法,一般可以考虑分析高、中、低三个浓度水平的标准物质。当然,选用标准物质的时候,最最重要的就是选择国家批准的有证标准物质啦,海岸鸿蒙拥有万余种自研产品,800多种国家标准物质哦,那么以上就今天的内容分享啦~
  • 2000版标准认证证书2009年11月停发
    国家认监委日前发出通知,要求认证机构自2009年11月15日起,不得再颁发2000版标准认证证书。2010年11月15日起,任何2000版标准认证证书均属无效。   通知还要求,认证机构在颁发2008版认证证书时,应确保审核员参加了经国家认监委批准的质量管理体系审核员培训机构提供的GB/T19001-2008转换培训,取得培训合格证书后方可从事GB/T 19001-2008/ISO9001:2008版认证审核工作。该培训课程应符合中国认证认可协会《GB/T19001-2008转换培训与考试大纲》要求。认证机构颁发认证证书标注的认证依据标准为:GB/T19001-2008/ISO9001:2008。   各认证机构要切实做到在认证实施过程中,关注质量管理体系实效与产品质量,以最终产品质量和顾客满意为焦点,确认获证组织已符合2008版标准要求后,换发2008版标准证书。对存在问题或达不到2008版标准要求的获证组织,提出整改要求,并确保验证合格,避免认证工作中重文件程序审核,轻过程结果的做法。   中国认证认可协会将制定2008版标准培训及认证人员注册转换要求,重点做好审核员转换培训、考试和换发证书工作,确保转换工作满足获证组织和认证机构证书换版的需求。认证人员转换2008版注册证书时,应参加统一转换考试,对不能按要求完成转换的人员,应依据相关注册要求做出暂停、降级或撤销资格的处理决定。   中国合格评定国家认可中心要结合国际认可组织的统一要求,根据我国认证机构工作实际,制定标准换版工作要求,开展认可证书换证工作。要把认证机构从事质量管理体系认证的能力作为重点,依此确定人员能力和认可业务范围,对不具备能力的业务范围要依据认可规范要求做出缩小认可范围或撤销认可资格的处理决定。同时,结合GB/T27021:2007《合格评定 管理体系审核认证机构的要求》标准实施,对存在问题或达不到认可规则要求的认证机构,提出整改要求并验证合格,严把认可证书换证工作质量关。   各认证培训机构要尽快依照中国认证认可协会《GB/T19001-2008转换培训与考试大纲》要求,编制转换培训教案,加强对本机构培训教师GB/T19001-2008版标准的学习与研讨,正确理解标准核心与要求,规范培训活动行为,向学员正确讲授标准换版的信息,帮助认证人员加深标准理解,以利于审核能力的提高。 各认证咨询机构要加强对GB/T19001-2008版标准的学习,加深标准理解,提高自身能力。在咨询过程中,要向企业正确传达标准换版的信息,树立企业正确的质量管理观念,为企业提供应用标准解决组织实际问题方案,切实做到使企业管理与GB/T19001-2008标准有机结合。   去年11月15日,2008版ISO 9001《质量管理体系 要求》国际标准正式发布,中国国家标准GB/T 19001-2008已经发布并将于今年3月1日实施。修订后的国家标准不仅对原文变化部分做出了修改,同时结合我国采用GB/T 19000族标准的实践,对很多地方做了修正,更清晰、明确地表达标准的要求。
  • 显示屏色彩管理与校正解决方案
    显示屏在当今社会扮演着至关重要的角色,触及游戏、办公、影视娱乐、零售业、交通出行等多个领域。屏幕的性能标准因应用而异,展现出广泛的多样性。这种多样性不仅体现在技术规格和视觉效果上,还反映了不同制造商和用户群体对于色彩精确度与一致性的独特需求。在这个基础上,探索各行各业的显示屏色彩测量与管理解决方案成为一项挑战,但也为技术创新和应用优化提供了广阔的空间。了解和应对这些需求,意味着能够提供定制化的色彩管理方案,以适应不同领域对视觉表现和色彩准确性的具体要求。一、电子价签的应用在现代零售环境中,电子价签正在逐渐取代传统的纸质标签,为商家提供了便捷的库存管理和产品信息更新方式。顾客也能通过扫描价签上的二维码,迅速获取商品的详细信息。然而,随着电子价签的普及,显示技术的色彩准确性和价签外壳颜色的一致性成为了重要考虑因素,尤其是在维护品牌形象和消费者体验的一致性方面。为了有效管理和控制色彩的一致性,采取以下措施至关重要:利用i1 Pro3高精度色彩测量工具及其配套软件,评估显示屏在不同颜色反射下的色彩饱和度,以及在亮度和色调方面的显示准确性。这种方法不仅帮助确保显示内容的视觉效果符合预期,也为优化用户体验提供了基础。采用Ci6x系列便携式色差仪测量电子价签外壳的色差(ΔE)数据,以准确分析和判断外壳的颜色偏差及其一致性。这一步骤对于保证产品外观质量和增强品牌识别度至关重要。通过这些专业的色彩管理工具和方法,商家可以有效地解决显示屏色彩不准确和价签外壳颜色不一致的问题,从而确保产品信息的准确传达和品牌形象的统一性。二、大尺寸高精度拼接屏应用在现代视觉展示领域,大尺寸高精度拼接屏广泛应用于多样化的场景中,随着技术的进步,这些拼接屏的边框越发微小,色彩呈现能力显著提升。尽管如此,保持各个组成单元在非工作状态下的色彩一致性依旧是一项挑战。观察从特定角度可见,即便是同一大屏,不同小屏组件展示的颜色差异明显,有的显色较深,有的则较浅,这些视觉差异影响了整体的观看体验。为了有效地管理和控制这些色彩差异,以下步骤是关键:利用高精度色彩测量工具,如eXact或Ci6x系列设备,来详细采集每个拼接屏单元的色彩数据。这一过程能精确识别各单元间的色差。根据测量得到的色差数据,将拼接屏单元按照色差大小进行系统性排序和安装,确保色差较小的单元相邻排列。这样的安排促使相邻屏幕之间的色彩差异最小化,整体色彩表现呈现出更加均匀和连贯的视觉效果。通过采用这些精细的色彩管理策略,可以大幅提升大尺寸高精度拼接屏的视觉一致性,从而优化整体观赏体验,满足高端显示需求。三、手机屏幕的应用在当代生活中,手机已成为人们日常使用频率最高的电子设备之一,随着消费者对视觉体验要求的提高,手机屏幕的色彩展现成为了一个重要的关注点。特别是在手机处于息屏或关机状态时,黑色显示的一致性尤为关键,这不仅关系到视觉效果,还影响到用户对品牌的整体印象。为了确保手机屏幕黑色显示的一致性以及在使用过程中的显色效果,以下色彩管理策略是必不可少的:反射测量:采用高端色彩测量仪器,如Ci7x00系列台式分光光度仪或Ci6x系列便携式分光光度仪,进行手机显示屏的颜色数据和反射率的准确测量。通过这些精确的数据,可以有效地进行色差管理,确保每一块生产出来的手机屏幕在色彩上的一致性。透射测量:推荐使用Ci7800或Ci7600台式分光光度仪,对手机触摸屏的透光率和雾度进行专业测试与分析。这种测量不仅有助于评估屏幕材料的质量,也是优化显示效果和提升用户体验的关键环节。通过上述色彩管理方法,可以在手机研发阶段就确保屏幕的色彩表现和质量达到高标准,从而满足消费者对高品质视觉体验的期待。四、专业显示器/笔记本终端客户对于专业设计师和摄影师而言,使用的显示器或笔记本电脑在色彩的准确性和一致性上有着极高的要求。他们常面临的挑战包括图像和视频的色彩无法真实还原或存在严重的色偏问题,以及难以评估所使用的显示设备是否达到了专业颜色标准。为确保色彩的准确管理和控制,以下方法是至关重要的:色彩校正解决方案:采用i1 Pro3色彩管理工具,这款集硬件与软件为一体的校色解决方案能够精确测量并校正显示设备的关键色彩参数,如白点、Gamma曲线、对比度和RGB色彩平衡。通过这一过程,可以建立精确的ICC色彩特性曲线,并将其加载至Windows或MAC操作系统,从而实现对显示设备的精准校正。后校正评估:在完成校正过程后,再次利用i1 Pro3等高精度测量工具对已校正的显示设备进行色彩精准度和色彩均匀性的综合评估。这一步骤不仅确保了校正结果的有效性,还能为用户提供详细的检测报告,展示校正前后的色彩表现差异。通过上述专业的色彩管理和校正流程,专业用户可以确信他们的显示设备在色彩还原和表现上达到了行业标准,有效提升了工作效率和创作质量。这种方法不仅适用于新设备的初次校正,也适合作为定期维护的一部分,以保持设备性能的持续优化。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 【自传】像差校正电镜技术先驱之Harald Rose
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【简介】 /span /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/efc046ba-50b1-4340-87d3-9ae63656c042.jpg" title=" Harald Rose.jpg" alt=" Harald Rose.jpg" / /span /strong /span /p p style=" text-align: center " strong Harald Rose /strong /p p style=" text-align: justify text-indent: 2em " Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,在1930年代做了一些电子显微镜的开创性工作。 /p p style=" text-align: justify text-indent: 2em " Harald Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。 /p p style=" text-align: justify text-indent: 2em " 他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。 /p p style=" text-align: justify text-indent: 2em " 自2009年以来,Harald Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖,以及与Maximilian Haider、Knut Urban、Ondrej L. Krivanek一起获得2020年度科维理奖(Kavli Prize)。他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【自传】 /span /strong /span /p p span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 1935年2月14日,我在不来梅出生,是父母Anna-Luise和Hermann Rose的第二个孩子。我的父母在数学上都很有天赋。父亲出生在一个奏乐世家,他本人擅长弹奏钢琴。由于20世纪20年代初的恶性通货膨胀,祖父破产,父亲被迫经商。父亲在商业上非常成功,在1937年成为黑森州著名公司Kaffee-Hag的销售代表。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 322px " src=" https://img1.17img.cn/17img/images/202011/uepic/416726c6-966b-4f3b-b7dd-1d5755b7ee9a.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 450" height=" 322" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 5岁的我(右)、母亲Anna-Luise和7岁的哥哥。 /strong /p p style=" text-align: justify text-indent: 2em " 1937年,我们搬到了达姆施塔特,在那里,父亲在一个名为Mathildenhohe的高档社区里建造了一栋非常漂亮的房子,这是德国新艺术(Art Nouveau)的聚焦点。1939年,我们搬进了这栋房子。 span style=" text-indent: 2em " 一年后,希特勒发动了第二次世界大战,我父亲应征加入了德国军队。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 到1944年止,我只见父亲几次,最后一次有父亲的消息是1944年2月,也就是我9岁生日那天,父亲被报道在东线的行动中失踪,我们再也没有见过他。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 1944年9月11日,由于皇家空军袭击,我们的房屋被摧毁,12,000名平民也因此丧生。幸运的是,母亲和哥哥幸存下来了,并搬到了乡下的一个小村庄。1945年3月,美国士兵抵达这里时,对我们来说,战争结束了。 /span /p p span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " /span /strong /span /p p style=" text-align: justify text-indent: 2em " 同年年底,我通过了达姆施塔特实科中学的入学考试,母亲在税务局找到了一份工作。由于没有住房,我们不得不搬到房子废墟里潮湿的地下室。每当下雨天,水从楼板上滴下来,母亲就将床移到干的地方。此外,食物很难买到,在二战结束和1948年5月德国货币改革期间,我们经常饿肚子。 /p p style=" text-align: justify text-indent: 2em " 母亲不得不同时工作和照顾两个孩子,因此没有时间帮助我们完成学校作业。幸运的是,和德国其他大多数州一样,母亲不必支付黑森州文理高中(Gymnasium)的费用。在文理高中期间,我对数学越来越感兴趣。因为没钱买昂贵的数学书,所以我经常去达姆施塔特黑森州立图书馆(Hessische Landesbibliothek),该图书馆在指定时间内免费向学生提供科学书籍,学习书籍可以帮助我轻松地理解学校的数学知识。结果,我在学校几乎没有做过任何数学题,但在考试成绩中始终是最好的。1955年初,我以优异的成绩通过了自然科学的期末考试(Abitur)。 /p p style=" text-align: justify text-indent: 2em " 因为成绩优秀,我被录取到达姆斯达特工业大学(现为Technical University Darmstadt)学习。 当时,由于大多数房屋物尚未修复,因此严格限制出入(numerus clausus)。& nbsp span style=" text-indent: 2em " 那时候,由于母亲不得不从银行借钱来重建我们的房屋,家里的财务状况仍然很危急。因为在黑森州读州立大学是免费的,所以我能够上得起大学。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 我想报读电气工程课程,但由于电学的基础知识很少被提及,该课程没有达到我的期望。因为对电动力学的基础更感兴趣,所以我决定遵从自己的喜好,在学期结束的时候转到了物理和数学课。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 当时,祖父和母亲对我的决定很不满意。课程的变化对我来说并不容易,因为我错过了第一学期的物理和数学课程,这两门课程一般在4月份开始。为了赶上进度,我学习了大学理论物理学教授Otto Scherzer的力学讲义课程。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " Otto Scherzer是20世纪上半叶最著名的理论物理学家之一Sommerfeld的学生和助手。和他的老师Sommerfeld一样,Scherzer在微积分领域也很出色,并且对物理现象的本质有着深入的了解。在量子力学课程中,他通过将数学的形式主义与对原子世界神秘本质的物理解释相结合,展示出了卓越的教学技巧。由于我正确解答了所有的习题,Scherzer给我提供了一个带薪职位,即作为理论物理习题助手。我非常高兴,因为这给我带来了足够的经济支持来养活自己,而不必在假期从事建筑工作。此外,我可以免费住在母亲的房子里,那里距离学校步行只有几步路。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 450px height: 340px " src=" https://img1.17img.cn/17img/images/202011/uepic/6379f81a-a42e-40a5-b9c5-52e65e4615a4.jpg" title=" 图片2.png" alt=" 图片2.png" width=" 450" height=" 340" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong 我于1997年在达姆施塔特工业大学应用物理研究所的研讨室中介绍六极校正器的功能。 /strong /p p style=" text-align: justify text-indent: 2em " 我很钦佩Scherzer作为老师具有的杰出能力。因此,由于已经加入Scherzer的研究所,我决定在他的指导下完成Diplom论文,课题是找出通过利用电子显微镜不同的角度散射行为来检测不同原子的可能性。结果表明,由于当时的仪器技术水平不足,无法实现这一概念。尽管这令人沮丧,但量子力学散射的深入研究为我以后的电子显微镜成像工作奠定了基础。 /p p style=" text-align: justify text-indent: 2em " 1961年初,我获得了学士学位。那时,大多数学生和科学家都渴望在科学的中心,即美国的一个科学研究机构待上一段时间。因此,我很高兴收到了正在Scherzer研究所休假的Fischer博士的录用通知,在马萨诸塞州贝德福德的空军剑桥研究所担任为期一年的研究顾问。我的研究重点是极短光脉冲半导体光电探测器。虽然这个课题很有实际意义,但并不符合我的兴趣。 /p p style=" text-align: justify text-indent: 2em " 1962年回到达姆施塔特,我很高兴Scherzer同意我再次加入他的研究所攻读博士学位。按照Scherzer的建议,我在自己的论文中详细研究了非旋转对称电光系统的成像特性。目的是研制能够以另一种方式实现补偿球面像差的可行系统,就像在Scherzer-Seeliger校正器中实现的那样,并研制针对圆形透镜不可避免的球面和色差进行校正的系统。这个性质被称为Scherzer定理,它阻碍了电子显微镜在低于原子位移阈值的电压下工作时的原子分辨。 /p p style=" text-align: justify text-indent: 2em " Scherzer用非相对论近似推导了这个结果,我花了一些时间证明它在相对论下仍然有效。此外,我还证明了在任何光轴为直线的磁性系统中,色差校正是无法补偿的,但附加的电四极子是必不可少的。 /p p style=" text-align: justify text-indent: 2em " 尽管Gottfried Mollenstedt在一个独创性的实验中表明,Scherzer-Seeleger校正器可以补偿球差,但这种校正并没有提高电子显微镜的分辨率,因为它受到了机械和电磁不稳定性的限制,而不是透镜光学缺陷的限制。 /p p style=" text-align: justify text-indent: 2em " 为了能真正的改进,我计算了稳定性标准,必须满足此标准才能使像差校正提高分辨率。如今,不稳定性的影响在对比传递理论中被称为信息极限。计算表明,校正元件的数量必须尽可能少,并且必须机械固定,以最大程度地减少由不稳定性引起的非相干像差。我设计了一个电磁多极校正器,该校正器由四个电磁八极元件组成,每个元件都可以激发四极和八极场以及偶极和六极场的磁场以补偿寄生对准像差,从而避免了机械运动。 /p p style=" text-align: justify text-indent: 2em " 获得博士学位后,Scherzer为我提供了一份薪酬丰厚的助理职位,为德语国家教授资格考试工作,这需要获得“venia legendi”,即在大学任教和成为教授的资格。 /p p style=" text-align: justify text-indent: 2em " 在我题为“球面校正消色差透镜的性能”的“取得在大学授课资格的论文(habilitsschrift)”中,我论述了当时所有已知的校正器都有巨大的离轴昏迷,从而过度地减小了视野范围。因此,这些校正器不适用于常规透射电子显微镜(TEM)。 /p p style=" text-align: justify text-indent: 2em " 为了补偿球差和色差和轴外彗差,并尽可能减少元素数量,我设计了一种利用对称特性的新型五元素校正器。后来证明,在设计高性能的滤光器、单色仪、镜面电子显微镜中的光束分离器以及六极校正器时,引入对称特性是关键。 /p p style=" text-align: justify text-indent: 2em " 校正器是在1972年至1982年由德国研究基金会(DFG)资助的达姆施塔特项目框架内在Scherzer研究所成功制造和测试的。实验表明,该校正器引入了过大的五阶像差。为了充分减少这种像差,于1980年加入我团队的Max Haider用十二极杆元件替代了校正器的中央八极杆元件,该元件是在他的“毕业论文(Diplomarbeit)”中研制的。但是,由于没有计算机控制,他无法在短于光学系统稳定持续的时间内校准系统。结果就是显微镜的分辨率没有得到提高,尽管该项目在1982年Scherzer去世后结束并取得了成功。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 313px " src=" https://img1.17img.cn/17img/images/202011/uepic/425afc87-d62b-403e-82d4-661f1809265b.jpg" title=" 图片3.png" alt=" 图片3.png" width=" 450" height=" 313" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1998年,我在测试SMART项目的镜像校正器。 /strong br/ /p p style=" text-align: justify text-indent: 2em " 在通过教授资格考试一年后,我于1970年被任命为达姆施塔特工业大学(TU)理论物理学的二级教授。1972年,Albert Crewe邀请我到芝加哥大学(University of Chicago)他的小组里待了一年。在此期间,我设计了一个新的探测器,可以在扫描透射电子显微镜(STEM)中实现高效相衬。而且,我计算了由非弹性散射电子形成图像中的非局部性。结果由Mike Isaacson和John Langmore在Crewe实验室使用STEM进行了证实。之后的20年里,我一直致力于解决与非弹性散射有关的相位问题,并与Helmut Kohl合作,他在其博士学位论文中对图像形成进行了深入的量子力学描述。 /p p style=" text-align: justify text-indent: 2em " 1976年初,我离开达姆施塔特移居美国,被任命为纽约州奥尔巴尼市卫生局首席研究科学家以及纽约州特洛伊市RPI物理系的兼职教授。在奥尔巴尼期间,我遇到了辐射损伤问题,这限制了生物样品的电子显微镜图像的分辨率。为了尽可能的降低这种不良影响,电子显微镜小组的主要任务之一就是找到在可耐受电子剂量下提供有关样品最大信息的方法。一种可能性是,许多相同粒子(如核糖体)的低剂量图像的相关性。 /p p style=" text-align: justify text-indent: 2em " 比我早几个月加入该小组的Joachim Fran研究了该方法很多年。他的成功的开创性工作于2017年获得了诺贝尔化学奖。我研究的是寻找方法提高仪器的光学性能,可以让所有散射电子都被利用。在该项目中,我设计了几种新的电子光学元件,如磁单色仪、象限STEM探测器和像差校正的Ω成像滤镜,它们由柏林的Dieter Krahl制造并成功测试,后来被纳入蔡司的TEM中。此外,我提出了STEM中的集成差分相衬成像技术,该技术已在几年前由FEI在商用仪器中实现。我们和同事Jü rgen Fertig首次研究了聚合电子波在STEM中通过厚晶物体的传播,结果表明,如果入射波的锥角超过布拉格角,相邻原子柱之间会发生强串扰。 /p p style=" text-align: justify text-indent: 2em " 1980年,我回到达姆施塔特大学,成为应用物理研究所的全职教授,长期从事像差校正的研究。直到1986年,我每年都要回到奥尔巴尼几个月,以保持与奥尔巴尼的联系。 /p p style=" text-align: justify text-indent: 2em " 回到达姆施塔特后不久,我在1980年夏季发现了一种出乎意料的简单校正器,可用于消除采用对称条件的电子透镜的球差,这是我在达姆施塔特四极八极杆校正器中使用的。众所周知,六极除了有三倍像差外,还有一个小的球差,其符号与圆形电子透镜的相反。因此,如果有可能以某种方式消除大的寄生三倍像差,则该系统可以用作校正器。计算表明,如果系统对近轴射线表现出双重对称性而不受六极场的影响,这确实是可能的。这种最简单的设置可以用作STEM的校正器,它由被两个六极杆包围的两个相同的圆形透镜组成。但是,没有足够的资金来实现这种校正器,因为那时所有高分辨率电子显微镜的分辨率都受到不稳定性的限制,而不是受到透镜缺陷的限制。到1980年代末,仪器的稳定性已不再是阻碍原子分辨的主要限制因素。 /p p style=" text-align: justify text-indent: 2em " 1989年,通过在物镜和六极校正器之间增加另一个圆透镜二倍体,我发现了一个类似光学平面系统,该系统没有球差和离轴彗差。根据这一特性,校正器可以在稳定的TEM中实现大视野的原子成像。由于电子-光学平面的高对称性和简单性,我请教了Max Haider对利用这种新型校正器成功实现像差校正的看法。 /p p style=" text-align: justify text-indent: 2em " 当时,Max正在海德堡的欧洲分子生物学实验室开发和试验用于低压扫描电子显微镜的四极八极校正器的性能,因此,他可以对我观点的可行性做出最好的判断。令我惊讶的是,Max从一开始就坚信校正器可以提供真实的原子分辨率。但是,需要足够的资金才能实现该校正器。 /p p style=" text-align: justify text-indent: 2em " 幸运的是,在1989年9月于萨尔茨堡举行的Dreilä ndertagung会议上,我们与Knut Urban就材料科学成功进行像差校正的前景进行了成果颇丰的讨论。Knut Urban意识到校正像差的重要性,建议向大众基金会提交一个共同的(Rose, Haider, Urban)提案,因为美国暂停了对实现像差校正的资助,其它资助机构都拒绝了该提案。与其它机构做出的令人沮丧的决定相反,大众基金会冒险于1991年开始筹资。这种支持成就了Max Haider在1997年6月成功降低基础(未校正)的点分辨率后,大众基金会有史以来最成功的一个项目。 /p p style=" text-align: justify text-indent: 2em " 1997年,柏林电子同步加速器BESSY II投放市场,并为开发新型光子源功能的新项目提供了资金。SMART项目的组织者Alex Bradshaw和Eberhard Umbach希望我成为致力于开发像差校正电子显微镜的科学家中的一员,该电子显微镜可以作为一个使用反射电子的低能量电子显微镜(LEEM)来工作,还可以作为一个由光子从表层发射的电子来形成图像的光发射电子显微镜(PEEM)来工作。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 我团队的任务是设计、构造和测试磁物镜浸没透镜、分离入射和反射电子束的无像差分束器以及补偿透镜球差和色差的镜校正器。四年后,这些任务完成,主要是由我的非常优秀且有远大志向的学生Dirk Preikszas、Peter Hartel和HeikoMü ller实现的。除SMART项目外,我团队还参与了由ManfredRü hle发起的Sub-eV Sub-Angstroem显微镜(SESAM)项目,以开发具有高空间和高能量分辨率的电子过滤电子显微镜(EFTEM)。Stefan Uhleman的博士论文中设计了高性能的MANDOLINE滤光片,该滤光片由Zeiss制造,并结合到SESAM显微镜中。直到今天,显微镜在斯图加特的Max Planck研究所一直以出色的性能在运行。 /span /p p style=" text-align: justify text-indent: 2em " 尽管我所在的团队取得了巨大的成就,在国际上享有很高的声誉,也获得了许多科学家和行业的称赞,但在2000年4月,达姆施塔特技术大学却在我退休后放弃了我的研究领域。由于和美国的许多同事保持良好的联系,应美国同事的邀请,我在橡树岭国家实验室(Oak Ridge National Laboratory)担任了一年的研究员。在这里,我遇到了来自阿尔贡(Argonne)的Murray Gibson,他的目标是研制一种可以进行任何形式原位实验的高分辨率电子显微镜。因为只有大的物镜室才能满足此条件,所以必须校正物镜的球差和色差,以在中压下获得约0.2 nm的高分辨率,这对于减少辐射损伤是必需的。 /p p style=" text-align: justify text-indent: 2em " 我接受了Murray提出进行经校正物镜设计的邀请,于2001年9月移居阿尔贡。但是,2002年4月,因为检查出患有早期前列腺癌,我不得不停止在阿尔贡的工作。幸运的是,癌症尚未扩散,存活的机率很高。在美因兹大学(the University of Mainz)接受手术后,我花了一年多的时间进行康复。与此同时,随着Murray换任高级光子源主任,Lawrence Berkeley国家实验室(LBNL)的Uli Dahmen成为TEAM项目主任。美国能源部改变了该项目的目标,要求使用彩色球面校正的中压电子显微镜提供0.05 nm的分辨率。 /p p style=" text-align: justify text-indent: 2em " 2003年9月,我搬到伯克利,成为LBNL高级光源(ALS)的一名研究员。由于ASL距国家电子显微镜中心(NCEM)仅几步之遥,所以我接受了Uli的邀请成为TEAM项目顾问,该项目始于2004年,并于2009年成功以0.047 nm的分辨率结束,这大约是氢原子的半径。我与CEOS公司合作设计了TEAM校正器,通过用电磁四极八极杆五联体替换六极校正器的每个六极杆,所得校正器通过保持双重对称性来补偿色差、球差和彗差。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ae3742be-568d-4dcb-8b7c-780a1720ceaf.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: center " strong 2009年,我在M&M会议上与Hannes Lichte教授讨论问题。 /strong /p p style=" text-align: justify text-indent: 2em " 2007年,乌尔姆大学(University of Ulm University)的Ute Kaiser教授邀请我就像差校正进行演讲,特别是关于六极校正器的设计和功能。该校正器是其新TITAN电子显微镜的一部分,该电子显微镜是FEI公司在2005年提供的第一台商业像差校正TEM。 /p p style=" text-align: justify text-indent: 2em " Ute Kaiser对二维物体(如石墨烯)的原子结构可视化很感兴趣。然而,在300 kV电压下操作显微镜时,样品立即被破坏。幸运的是,由于进行了像差校正,显微镜能够提供在80 kV(仪器的最低可调电压)下的原子分辨率。由于该电压低于石墨烯中原子位移的阈值电压,因此能够对其原子结构进行成像。该结果证明辐射损伤也限制了材料科学中许多物体的分辨率。由于很多对辐射敏感的二维物体的撞击阈值在20 kV至80 kV之间,因此对像差校正低压电子显微镜的需求很明显。因为在这种低电压下,色差超过了物镜的球差,并且需要大的可用孔径角才能获得原子分辨率,所以有必要开发新型的校正器。高性能SALVE校正器是通过将达姆施塔特四极杆-八极杆校正器的中央多极杆分成两个在空间上分离的元素而获得的。以该系统为起点,CEOS公司成员在由Ute Kaiser发起和领导的Sub-Angstroem低压电子显微镜(SALVE)项目的框架内开发了校正器。SALVE项目于2009年开始,在蔡司终止TEM生产后于2011年中断。2013年,FEI与CEOS公司一起继续了该项目,并于2017年结束,取得了意想不到的成功,显微镜的分辨率比合同所要求的提高了近30%。在SALVE项目开始时,我成为Ute Kaiser团队成员,并于2015年被任命为Ulm大学的高级教授。 /p p style=" text-align: justify text-indent: 2em " 除了和在量子力学基础上设计电子光学组件和发展电子显微镜成像理论外,我对了解电子的基本性质也一直很感兴趣。特别是,我花了20多年的时间尝试了解自旋的起源、电荷和电子的质量。为此,我采用了一种相对论的量子力学方法,其与相对论电动力学和狄拉克理论密切相关。可能是因为我不属于基本粒子领域,所以我解释基本粒子结构的新理论被忽略了,投稿的文章未经审查就被拒绝。不过,2019年12月10日,我可以在乌尔姆大学的一次特殊物理座谈会上发表我的新理论,并希望我的演讲能引发对该主题富有成果的讨论。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/544effa6-64ee-4899-92ad-11a4ff02c2d1.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-align: center " strong 80岁生日之际,与蔡司的代表一起在乌尔姆大学2015学术研讨会展示半块欧米茄过滤器。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/646ca763-0f23-4140-b909-ca5cd73c8a0e.jpg" title=" 图片6.png" alt=" 图片6.png" / /p p style=" text-align: center " strong 2012年,与网球伙伴聚会。 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 374px " src=" https://img1.17img.cn/17img/images/202011/uepic/23d35705-a80e-44f2-b9f4-38127f463ad5.jpg" title=" 图片7.png" alt=" 图片7.png" width=" 450" height=" 374" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 2012年2月14日,我和Dorothee在一家餐厅庆祝生日。 /strong /p p style=" text-align: justify text-indent: 2em " 在我上学后的所有时间里,我都热衷于打曲棍球、冬天滑雪和秋天在阿尔卑斯山远足。曲棍球是一项非常苛刻的运动,但会有严重受伤的风险,且这种风险随着年龄的增长而增加。因此,我不得不在50岁时放弃这个爱好,并寻找其他活动。 /p p style=" text-align: justify text-indent: 2em " 我选择学习网球是很自然的事,因为我的妻子Dorothee是一位非常有才华的网球运动员,曾在当地一家体育俱乐部的球队中打过球。她愿意给我上网球课,因为没有其他人愿意和初学者一起玩。在她的帮助下,我能够找到合作伙伴并成为团队成员。尽管由于年龄大而不能进行单打,我每周与几个伙伴打双人网球。此外,我和Dorothee每年都会与前曲棍球队友及其妻子一起远足数天。 /p p style=" text-align: justify text-indent: 2em " 在我的科学生涯中,我与世界各地的许多同事都有联系,这些年来,许多联系也变为了友谊。我非常感谢这些友谊,它们是宝贵的礼物。最后,我要感谢我的妻子,多年来在我周末的工作期间所给予的支持和耐心。 /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: left text-indent: 0em " span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " 【自传】像差校正电镜技术先驱之Maximilian Haider /a /span /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制