当前位置: 仪器信息网 > 行业主题 > >

电池材料检测

仪器信息网电池材料检测专题为您提供2024年最新电池材料检测价格报价、厂家品牌的相关信息, 包括电池材料检测参数、型号等,不管是国产,还是进口品牌的电池材料检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池材料检测相关的耗材配件、试剂标物,还有电池材料检测相关的最新资讯、资料,以及电池材料检测相关的解决方案。

电池材料检测相关的论坛

  • 锂电池质量检测 汽车电池检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37598.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检检测中心为专业从事电池(含锂电池、蓄电池和其它特 种电池)及其原材料质量监督检测、具有第三方公正性的产品质量监督检测机构[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]锂电池质量检测 汽车电池检测检测公司:中钢国检检测资质:CMA、CNAS、ILAC检测依据:IEC、EN、UL、ANSI、GB、GJB、HB、QB等 140 余项标准检测产品:锂离子电池、蓄电池、原电池等检测项目:过充电、过放电、冲击、振动等[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]汽车电池[/td][td]过充电、过放电、冲击、振动[/td][td]GB/T18287[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检是专业的第三方检测机构,国企检测公司,实力强大,检测数据准确,检测范围广。

  • 电池质量检测 蓄电池检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37596.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]电视遥控器中的5号/7号蓄电池、充电电池、电动车电池、汽车电池等都需要进行相关的检测,合格后才能使用。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]电池质量检测 蓄电池检测检测机构:中钢国检检测项目:1.电学测试:过充电,过放电,外部短路,强制放电等。2.机械测试:挤压,针刺,冲击,振动,跌落等。3.热测试:高低温循环,燃烧,微波加热等。4.环境模拟:高空低气压模拟,盐雾试验等。检测依据: IEC、EN、UL、ANSI、GB、GJB、HB、QB等 140 余项标准对化学电源及其原材料进行检测。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]蓄电池[/td][td]过充电,过放电,外部短路,强制放电[/td][td]GB 31241-2014[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检是专业的第三方检测机构,国企检测公司,实力强大,检测数据准确,检测范围广。

  • ICP检测电池正极材料

    我主要用ICP检测电池正极材料(钴酸锂,锰酸锂,磷酸铁锂等),及原材料(碳酸钴,氢氧化锂,三元前驱体,二氧化锰等)。我本来就是icp新手,什么都不懂的,现在公司又要求测试的元素变多了,我自己折腾了3个多星期,很多都测不准。现在我能测的,相对准确的只有Mg,Ca,Cr这三个元素我能肯定。其余的:Co,Ni,Mn,Li,Fe,Ti,Al这七个元素有时准,有时不准的; 还有P,S,Na,K,Zn这五个我根本对测试结果没有谱!我现在的测试方法是:0.5g样品+1:1盐酸25ml,稀释100倍测微量;稀释2000倍测主元素含量(样品能完全溶解,标液浓度也做到了和稀释后的样品中元素含量大致一样)。但出现了以下问题:1。很多元素测不准,同一个元素,我选了几条谱线,每条谱线读数不一样,差别还有点大;2。谱线做标液的时候图形很好,但一测样品,或测到某些样品的时候,谱线图形乱七八糟的;3。测试过程中虽然有时候谱图很好,但测试结果不敢相信,有时候谱图很难看,但结果又有点靠谱;4。谱图干扰怎么弄,怎么知道是干扰?下面是我的一些谱图,请各位高手指点我一下。我应该怎么做。对上面的那些元素怎么分组测,怎样检测才能使结果更接近真实值!谢谢大家 我想得到的通过我的检测,能直接读数,不需要人为的调整谱图,并且直接读的数重现性,准确性都可以,经得起我上面领导的论证(他们经常把同一个样品,换了编号让我测)file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/B(4D$P3I]1%}PE_8LDW9Y4T.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/3L_8KD@AWE)OT3421QQ7CBG.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/KPFM[M~A@`3]SS8{8Q$6CRN.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/_5)T@@_E%`WOK05W6LT1@}F.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/LXW_G[@IE)OOZOQ5FSJOPNC.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/D9Q0P}D834@U2905IT}8X16.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/7%(H]}T]D5GE9}7CY[JCSUE.jpg[/img]

  • 锂电池检测实验室

    锂电池材料检测实验室,比表、粒度,水分的检测,需要符合A003要求吗?如果要符合只需要符合A003附录C就可以还是同时需要符合正文要求。

  • 分析固含量对电池浆料的影响及浆料固含量检测仪的应用

    分析固含量对电池浆料的影响及浆料固含量检测仪的应用

    对于合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。本文主要针对负极浆料进行研究,通过优化搅拌工艺、稳定剂、固含量和浆料粘度,从而提高浆料的稳定性。 锂电浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。随着合浆结束,搅拌停止,浆料会出现沉降、絮凝聚并等现象,产生大颗粒,这会对后续的涂布等工序造成较大的影响。因而检测和控制好浆料的稳定性十分重要。一、固含量对浆料稳定性的影响 固含量和浆料粘度是合浆过程中的一个重要指标,对后段涂布工序有较大影响。同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。影响浆料粘度的因素:搅拌浆料的转速、时间控制、配料顺序、环境温湿度等。正极浆料在暴露在空气中易吸收空气中的水分,粘结剂出现凝聚,使得浆料粘度有所增大,另外,颗粒沉降及团聚也可能使粘度增加。 粘度不同对电极的影响主要是面密度的均一性。在一致性极差的情况下,在充电过程中负极会局部析锂,循环越来越差。浆料粘度本身不会影响电芯的性能,但对浆料稳定性有较大影响,且粘度会导致涂布种种问题,浆料粘度的调整,是需要根据材料的性能特性及涂布机的性能来设定调整。 随着粘度的增加,浆料稳定性随之增加,即在一定的粘度范围内,固含量越大,浆料稳定性越好,但浆料粘度过大,在后续涂布时容易产生划痕,一方面造成极片外观较差,另一方面在充电过程中易造成负极析锂,所以选择浆料粘度在4000mPa-s左右,固含量为46%左右,比较合适。二、电池浆料固含量测定仪A、仪器特点 检测速度快,只需几分钟,创行业之最;  采用最新一代传感技术,快速、简便,一键式操作;  操作简单,全自动操作模式,无可动部件;  关键零部件均采用纯进口高端材料,以保证产品检测结果的准确性;  零易损件,样品盘采用耐酸耐碱耐变形的纯不锈钢材料,无易耗品,样品盘克循环利用; 采用特质的环形卤素光源,加热均匀,加热器更耐用;http://ng1.17img.cn/bbsfiles/images/2017/02/201702270946_01_2233_3.jpgB、使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。C、工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。

  • ICP 求高手啊,检测电池正极材料及原材料

    我主要用ICP检测电池正极材料(钴酸锂,锰酸锂,磷酸铁锂等),及原材料(碳酸钴,氢氧化锂,三元前驱体,二氧化锰等)。我本来就是icp新手,什么都不懂的,现在公司又要求测试的元素变多了,我自己折腾了3个多星期,很多都测不准。现在我能测的,相对准确的只有Mg,Ca,Cr这三个元素我能肯定。其余的:Co,Ni,Mn,Li,Fe,Ti,Al这七个元素有时准,有时不准的; 还有P,S,Na,K,Zn这五个我根本对测试结果没有谱!我现在的测试方法是:0.5g样品+1:1盐酸25ml,稀释100倍测微量;稀释2000倍测主元素含量(样品能完全溶解,标液浓度也做到了和稀释后的样品中元素含量大致一样)。但出现了以下问题:1。很多元素测不准,同一个元素,我选了几条谱线,每条谱线读数不一样,差别还有点大;2。谱线做标液的时候图形很好,但一测样品,或测到某些样品的时候,谱线图形乱七八糟的;3。测试过程中虽然有时候谱图很好,但测试结果不敢相信,有时候谱图很难看,但结果又有点靠谱;4。谱图干扰怎么弄,怎么知道是干扰?下面是我的一些谱图,请各位高手指点我一下。我应该怎么做。对上面的那些元素怎么分组测,怎样检测才能使结果更接近真实值!谢谢大家 我想得到的通过我的检测,能直接读数,不需要人为的调整谱图,并且直接读的数重现性,准确性都可以,经得起我上面领导的论证(他们经常把同一个样品,换了编号让我测)file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/B(4D$P3I]1%}PE_8LDW9Y4T.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/3L_8KD@AWE)OT3421QQ7CBG.jpg[/img]file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/KPFM[M~A@`3]SS8{8Q$6CRN.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/_5)T@@_E%`WOK05W6LT1@}F.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/LXW_G[@IE)OOZOQ5FSJOPNC.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/D9Q0P}D834@U2905IT}8X16.jpg[/img] file:///C:/Documents%20and%20Settings/Administrator/Application%20Data/Tencent/Users/1129739685/QQ/WinTemp/RichOle/7%(H]}T]D5GE9}7CY[JCSUE.jpg[/img]

  • 【原创】电池原材料为什么一定要进行比表面测试?

    比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是指每克物质中所有颗粒总外表面积之和,国际单位是:m2/g,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 电池材料(如钴酸锂,锰酸锂,石墨,镍钴酸锂,氧化钴,磷酸铁锂,钛酸锂,三元素,三元素材料,聚合物,聚合物材料,聚合物电池材料,碱锰材料,锂离子材料,锂锰材料,碱性材料,锌锰材料,石英粉,镁锰材料,碳性材料,锌空材料,锌汞材料,乙炔黑,镍氢材料,镍镉材料,隔膜,活性物资,添加剂,导电剂,缓蚀剂,锰粉,电解二氧化锰,石墨粉,氢氧化亚镍,泡沫镍,改性石墨材料,正极活性物质,负极活性物质,锌粉等); 电池原材料的比表面积对浆料的配制、极片的涂布影响较大,对电池首次库仑效率和循环性能有较大影响。原材料的孔隙率大小会对高倍率充放电产生极其重要的影响。

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电池正极材料/动力电池相关

    哪种电池正极材料更有应用前景,个人觉得从安全性考虑,LiFePO4最具优势,但其能量密度需要提升。从作为动力电池来说,三元和钴酸锂更具优势。国内做电池负极材料的单位/课题组有哪些,请列举一二,欢迎交流

  • 【开始报名啦】“锂离子电池检测技术及应用”主题网络研讨会----2019.03.26

    【开始报名啦】“锂离子电池检测技术及应用”主题网络研讨会----2019.03.26

    [b]会议名称[color=#3333ff][color=#000000]:[/color]“锂离子电池检测技术及应用”主题网络研讨会[/color]会议简介[/b]:仪器信息网([url]https://www.instrument.com.cn/[/url])将于2019年3月26日,举办[color=#ffa500][b]“锂离子电池检测技术及应用”主题网络研讨会[/b][/color],会议将邀请锂电检测领域研究应用专家、锂电检测相关仪器技术专家,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电检测市场良性发展。[b]会议日期:[color=#3333ff]2019年3月26日[/color][/b]会议安排:[table=95%][tr][td=1,1,13%]09:30-10:00[/td][td=1,1,50%]原位电镜在锂电池研究中的应用[/td][td=1,1,37%]黄建宇(燕山大学)[/td][/tr][tr][td=1,1,13%]10:00-10:30[/td][td=1,1,50%]锂电池中的原位检测手段[/td][td=1,1,37%]郝正明(岛津)[/td][/tr][tr][td=1,1,13%]10:30-11:00[/td][td=1,1,50%]加速量热仪技术在锂离子电池失效分析中的角色浅谈[/td][td=1,1,37%]薛钢(苏州玛瑞柯检测技术有限公司)[/td][/tr][tr][td=1,1,13%]11:00-11:30[/td][td=1,1,50%]雷尼绍拉曼光谱技术在锂离子电池材料检测中的应用及发展[/td][td=1,1,37%]王志芳(雷尼绍)[/td][/tr][tr][td=1,1,13%]14:00-14:30[/td][td=1,1,50%]锂离子电池正极纳米材料及相关表征技术[/td][td=1,1,37%]褚卫国(国家纳米科学中心 )[/td][/tr][tr][td=1,1,13%]14:30-15:00[/td][td=1,1,50%]原子光谱在锂电池行业的应用[/td][td=1,1,37%]王元飞(安捷伦)[/td][/tr][tr][td=1,1,13%]15:00-15:30[/td][td=1,1,50%]锂电池定制化失效分析的机遇与挑战[/td][td=1,1,37%]周健(纳凡检测技术(上海)有限公司)[/td][/tr][tr][td=1,1,13%]15:30-16:00[/td][td=1,1,50%]X射线衍射在电池研究中的应用[/td][td=1,1,37%]王林(马尔文帕纳科)[/td][/tr][tr][td=1,1,13%]16:00-16:30[/td][td=1,1,50%]锂离子电池失效的分析解析[/td][td=1,1,37%]韩广帅(上海蓄熙新能源材料检测有限公司)[/td][/tr][/table][b]免费报名:[/b][url=https://www.instrument.com.cn/webinar/meetings/ldc/][b]https://www.instrument.com.cn/webinar/meetings/ldc/[/b][/url]

  • 【分享】锂电池材料构成主要有哪些?锂电池主要材料简单介绍

    [font=&]锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,锂电池已经成为了主流。[/font][font=&]一、锂电池材料构成主要有哪些[/font][font=&]碳负极材料:实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。[/font][font=&]锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。[/font][font=&]氮化物:没有商业化产品。[/font][font=&]合金类:包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,也没有商业化产品。[/font][font=&]纳米级:纳米碳管、纳米合金材料。[/font][font=&]纳米氧化物:根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大地提高锂电池的充放电量和充放电次数。[/font][font=&]二、锂电池的四大主要材料[/font][font=&]锂电池材料构成主要包括正极材料、负极材料、隔膜和电解液。[/font][font=&]1、正极材料:在锂电正极材料当中,最常用的材料有钴酸锂,锰酸锂,磷酸铁锂和三元材料(镍钴锰的聚合物)。[/font][font=&]2、负极材料:在负极材料当中,目前锂电池负极材料主要以天然石墨和人造石墨为主。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。[/font][font=&]3、隔膜:市场化的隔膜材料主要是以聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)为主的聚烯烃(Polyolefin)类隔膜。锂电池的结构中,隔膜是关键的内层组件之一。[/font][font=&]4、电解液:电解液由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。[/font]

  • 6月1日直播:第三届“锂离子电池检测技术与应用”网络会议

    4月29日,工信部消费品工业司数据显示,2021年第一季度,全国电池制造业主要产品中锂离子电池产量47.9亿只,同比增长83.4%;另据中汽协数据显示,今年一季度我国动力电池产量达32.8GWh,同比增长296.5%;销量达23.9GWh,同比增长201.0%;装车量达23.2GWh,同比增长308.7%;共有48家动力电池企业实现装车配套。近年来,锂离子电池市场保持高速持续增长。业界广泛关注的锂电池材料的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能与材料多种性质相关,没有特别统一的规律,这给电池的研究带来很大挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。基于此,仪器信息网将于[b][color=#1f497d]2021年6月1-2日[/color][/b],组织[color=#1f497d][b]第三届“锂离子电池检测技术及应用”网络会议[/b][/color],分设成分分析技术、失效/热性能分析技术、结构形貌分析技术、颗粒度/安全可靠性等测试技术四个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电检测市场良性发展。[color=#ff0000][b]注:[/b][/color]会议不收报名费,广大网友点击“立即报名”填写信息即可届时免费参会![color=#ff0000][b]点击报名:[url]https://www.instrument.com.cn/webinar/meetings/ldc2021[/url][/b][/color]

  • 汽车电池材料革命

    丰田汽车公司发表,计划于2027年向市场投放 “全固态电池”的纯电动汽车(EV)。这种全固态电池充电不到10分钟,即可行驶约1200公里,而且电池耐用年限可达10年左右(目前锂电池一般为3年)。EV车发展到今天,电池材料与技术一直是关键,目前的锂电池汽车的最大续航里程约为600-700公里,如果快速充电30分钟,也只能充到80%,按照设计里程,一般的锂电池汽车的实际行驶里程,最多也只能跑500公里(不开空调的前提下)

  • 锂电池材料检测项目的领域分类

    锂电池材料检测项目的领域分类

    [img=,666,121]https://ng1.17img.cn/bbsfiles/images/2022/05/202205141408547123_9616_3056172_3.png!w666x121.jpg[/img][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2022/05/202205141408548412_3679_3056172_3.png!w690x416.jpg[/img]石墨材料以上的检测项目需要符合A003要求吗?如果需要符合这些项目是电气材料的的电气性能、安全和环境试验中的哪一类呢?个人理解是只需要符合CL01,不需要符合A003要求。

  • 浅谈锂电池固含量的检测方法

    浅谈锂电池固含量的检测方法

    摘要:锂电浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。随着合浆结束,搅拌停止,浆料会出现沉降、絮凝聚并等现象,产生大颗粒,这会对后续的涂布等工序造成较大的影响。因而检测和控制好浆料的稳定性十分重要。 对于合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。本文主要针对负极浆料进行研究,通过优化搅拌工艺、稳定剂、固含量和浆料粘度,从而提高浆料的稳定性。一、固含量与粘度对浆料稳定性的影响 固含量和浆料粘度是合浆过程中的一个重要指标,对后段涂布工序有较大影响。同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。影响浆料粘度的因素:搅拌浆料的转速、时间控制、配料顺序、环境温湿度等。正极浆料在暴露在空气中易吸收空气中的水分,粘结剂出现凝聚,使得浆料粘度有所增大,另外,颗粒沉降及团聚也可能使粘度增加。 粘度不同对电极的影响主要是面密度的均一性。在一致性极差的情况下,在充电过程中负极会局部析锂,循环越来越差。浆料粘度本身不会影响电芯的性能,但对浆料稳定性有较大影响,且粘度会导致涂布种种问题,浆料粘度的调整,是需要根据材料的性能特性及涂布机的性能来设定调整。http://ng1.17img.cn/bbsfiles/images/2017/02/201702131431_01_3005855_3.png上图比较了负极配方所制得的几种不同粘度下浆料的稳定性,经比较从图3可见,对于配方所制得的几种浆料,随着粘度的增加,浆料稳定性随之增加,即在一定的粘度范围内,固含量越大,浆料稳定性越好,但浆料粘度过大,在后续涂布时容易产生划痕,一方面造成极片外观较差,另一方面在充电过程中易造成负极析锂,所以选择浆料粘度在4000mPa-s左右,固含量为46%左右,比较合适。二、电池浆料固含量测定仪A、仪器特点 检测速度快,只需几分钟,创行业之最;  采用最新一代传感技术,快速、简便,一键式操作;  操作简单,全自动操作模式,无可动部件;  关键零部件均采用纯进口高端材料,以保证产品检测结果的准确性;  零易损件,样品盘采用耐酸耐碱耐变形的纯不锈钢材料,无易耗品,样品盘克循环利用;采用特质的环形卤素光源,加热均匀,加热器更耐用;http://ng1.17img.cn/bbsfiles/images/2017/02/201702131432_01_3005855_3.jpgB、使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。C、工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。D、冠亚水分仪资质:1.SFY系列红外线|卤素快速水分测定仪器(专利号:2005301013706) 2.冠亚水分仪是目前国内唯一一家取得《中华人民共和国制造计量器具许可证》的高科技术公司,证件号(吉制00000018号)3.目前行业中唯一通过ISO 9001:2008质量管理体系认证的厂家

  • 【分享】锂离子电池的负极材料分类介绍

    [font=&]锂离子电池的负极材料主要有碳素材料和非碳材料两大类,已实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球(MCMB)、石油焦、碳纤维、热解树脂碳等,此外,人们也在积极研究开发非碳负极材料。[/font][font=&]1、碳素负极材料[/font][font=&]碳材料根据其结构特性可分成两类:易石墨化碳及难石墨化碳,也就是通常所说的软碳和硬碳材料。通常硬碳的晶粒较小,晶粒取向不规则,密度较小,表面多孔,晶面间距(d002)较大,一般在0.35~0.40nm,而软碳则为0.35nm左右。[/font][font=&]软碳主要有碳纤维、碳微球、石油焦等。软碳主要有碳纤维、碳微球、石油焦等。其中,普通石油焦的比容量较低,约为160 mAhg-1,循环性能较差,对石油焦(国产)等通过改性处理,可使比容量提高到250 mAhg-1,并且具有较好的循环性能。硬碳中主要有树脂碳,有机聚合物(PVA、PVC、PVDF、PAN等)热解碳以及碳黑(如乙炔黑)等。[/font][font=&]与非石墨化碳材料相比,石墨导电性好,结晶度较高,具有良好的层状结构,更适合Li离子的脱/嵌,形成LiC6锂-石墨层间插入化合物Li-GIC。[/font][font=&]石墨材料主要包括人造石墨和天然石墨两大类。人造石墨是将易石墨化碳(软碳)经高温石墨化处理制得。作为锂离子电池负极材料的人造石墨类材料主要有石墨化中间相碳微球、石墨纤维及其他各种石墨化碳等。[/font][font=&]2、非碳负极材料[/font][font=&]含锂过渡金属氮化物是在氮化锂Li3N高离子导体材料(电导率为102cm-1)的研究基础上发展起来的,可分为反CaF2型和Li3N型两种,代表性的材料分别为Li3-xCoxN和Li7MnN4。Li3-xCoxN属于Li3N型结构锂过渡金属氮化物(其通式为Li3-xMxN,M为Co、Ni、Cu等),该材料比容量高,可达到900 mAhg-1,没有不可逆容量,充放电平均电压为0.6V左右,同时也能够与不能提供锂源的正极材料匹配组成电池。[/font][font=&]Li7MnN4属于反CaF2型结构锂过渡金属氮化物(其通式为Li2n-1MNn,M代表过渡金属),比容量较低,约为200 mAhg-1,但循环性能良好,充放电电压平坦,没有不可逆容量,特别是这种材料作为锂离子电池负极时,还可以采用不能提供锂源的正极材料与其匹配组成电池。[/font][font=&]TiS2、MoS2等硫化物也可作锂离子电池的负极材料,可与LiCoO2、LiNiO2、LiMn2O4等4V级正极材料匹配组成电池。这类电池电压较低,如以TiS2为负极,LiCoO2为正极组成电池,电压为2V左右,其循环性能较好,可达到500次。[/font]

  • 锂电池碳负极材料消解方法

    如题,大家有没推荐的好方法哈。我们实验室目前的处理方法是:王水消解后直接定容,再离心后取上清液过滤,取滤液上机测试。用该处理方法做了下加标回收率,很多元素只有60%多的回收率。 求大侠能指导下针对锂电池碳负极原材料的消解方法。不胜感激!!!

  • 【原创大赛】【原创】场发射扫描电镜观测电池隔膜材料的参数设定

    【原创大赛】【原创】场发射扫描电镜观测电池隔膜材料的参数设定

    场发射扫描电镜观测电池隔膜材料的参数设定中国的锂离子电池行业近几年在迅猛发展,国内出现一大批掌握核心制造技术的电池原材料生产厂家。电池隔膜﹝separation film﹞在锂电池结构中是关键的内层组件之一,作为隔离正负电极的装置放置于两极之间,能够让电解质离子通过,又能避免两极上的活性物质直接接触而造成短路。电池隔膜一般是用高分子材料PE(聚乙烯)或PP(聚丙烯)来制备,孔径大小通常在10nm至300nm左右。扫描电镜是用来检测电池隔膜孔径大小和孔洞分别是否均匀的常用仪器,为达到观测要求,图像放大倍率通常需要达到2万倍至10万倍甚至更高。不同材质和生产工艺(单向或双向拉伸,干法或湿法等)的电池隔膜在导电性方面有所差异,但作为绝缘高分子材料,直接放入扫描电镜下观察都有一定难度。采用离子溅射仪喷镀的方法,能够解决电池隔膜在扫描电镜观测过程中放电的问题,但溅射Au、Pt等重金属离子的过程中也有可能损伤和改变隔膜样品的原始形貌。采用场发射扫描电镜在不对电池隔膜喷镀的情况下直接观察原始真实形貌,需要解决图像放电和电子束对样品的热损伤问题,其中设定扫描电镜参数非常重要,主要涉及到加速电压、探针电流和扫描模式。这三个参数需要找到平衡点,加速电压的设定原则是电子束打在样品上的加速电压(着陆电压)越低,图像放电和样品损伤越小,但分辨率也会相应降低;探针电流的设定原则是电子束打在样品上的探针电流越小,图像放电和样品损伤越小,但图像信噪比也会相应降低;扫描模式的设定原则是电子束停留在样品上每扫描点时越少,图像放电和样品损伤越小,但图像信噪比也会相应降低。参数设定在不同型号的场发射扫描电镜操作不同,但大致方法和原则是类似的,本文采用的是日立S-4800冷场发射扫描电镜,电池隔膜样品是没有经过喷镀直接采用低加速电压和低束流观察,放大倍率为2万倍至30万倍。首先看几张电池隔膜在扫描电镜图像放电和受到电子束损伤的照片。http://ng1.17img.cn/bbsfiles/images/2012/12/201212272354_416497_1804341_3.jpg图1 图像严重放电,电镜参数加速电压1kV,扫描模式Slow 40s1kV的加速电压对于扫描电镜来说已经属于低加速电压了,另外图1中电镜参数设定为发射束流设定为10μA,Probe current设定为normal,聚光镜C1值为5,扫描模式为40秒Slow模式,放大倍率3万5千倍,但图像严重放电,连样品的基本特征形貌都无法获得。其他参数不变,将扫描模式由40秒Slow模式改为40秒CSS模式获得图2照片,图像依然放电,但明显减轻而且孔洞边缘清晰度不错。http://ng1.17img.cn/bbsfiles/images/2012/12/201212272355_416498_1804341_3.jpg图[siz

  • 电池容量检测仪的作用是什么

    修电动车使用频率最高的三个主要工具分别是:数字万用表、修车宝以及电池容量检测仪。[b]百检检测[/b]为你解答 这两个工具呢,相对来说是比较便宜的,也就几十块钱一个,相信大多数的维修店里都配备了。那电池容量检测仪呢,相对来说价格比较高一点,有可能一个电池容量检测仪,可能要好几百块钱。不过每家电动车售后店及电池经销商一定会配备一个这样的电池容量检测仪。因为经常有电池需要检测。 当然那种简易款的安时表对于电动车的电池检测来说效果不是很好。所以电池经销商一般都不使用种按时表检测电池是否有故障。 我们知道电池的平衡性是非常重要的,这个也是一直以来行业内努力解决的一个问题,也是公认的难题。如果说哪家公司能把电池平衡性完美地解决了,电池的寿命将会大幅度延长。 我们用容量检测仪,它的作用其实有两个,第一检测单独每块电池的放电时间是否在标准时间之内。另外一个就是看它的平衡性。放电时间最长与最短的时间差最不得超过10分钟。电池平衡性越好,电池的放电时间差越短,在5分钟以内,甚至3分钟以内。 两轮电动车上使用的单块电池最常见的是12V的电池,少量电动车上使用16V的电池。 电池容量检测仪的最大好处是,对每一块电池进行单独放电。检测结果互不影响,这样保证了数据的准确性。当我们把容量检测仪红色夹子夹电池正极,黑色夹子夹电池负极。它会自动识别电池是12V还是16V的电池?如果是12伏的电池欠压保护值自动设为10.5V,如果是16伏的电池自动切换成欠压保护值14V。我们放电的电流一般选择是电池容量的一半,比如说20AH的电池,放电电流调整为10A,如果是12AH的电池放电电流设为6A。 当我们设置好放电电流与电压时,我们就可以按启动按键进行放电,那么在放电仪上,它会显示放电时间。当我们的电池电压达到10.5V的时候,它会自动断开,然后我们就可以查看电池的放电时间。放电时间有一个对照的参数表。根据电池的使用时间长短不同以及室外温度不同,放的时间略有不同。我们以25度左右的气温换新期内,电池的正常放电时间是120分钟为准。 当然放电时间只是其中的一个基数,还和平衡性有非常大的关系。当比如说某组电池的放电时间,长的有145分钟,短的只有120分钟,那么这组电池也是有问题的,也就是说它的平衡性太差。 另外就是我们之前一直提到过的,看它的回升电压。它的回升电压不得超过12V,这个数字在半小时之内会固定下来,如果超过12伏,那这个电池也是不耐用的。 目前有一些最近才出的电池容量检测仪,还多了一个充电和容量显示容量显示的,其实意思也差不多,比如说时间8个月以后,电池容量能达到90%就算比较正常。当一组电池的一个电池的容量低于70%,那说明电池也是不行的。还有我们可以查看每一块电池的容量是否相差很大,其实这个也是检测电池的平衡性。

  • 4.24:10余种锂电检测技术、动力电池标准解读:欢迎参加锂电检测技术网络大会

    4.24:10余种锂电检测技术、动力电池标准解读:欢迎参加锂电检测技术网络大会

    近年来,消费电子产品需求不断增长、电动汽车的普及促进锂离子电池市场稳定增长。锂电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。基于此,仪器信息网将于2020年4月24日,组织[color=#002060][b]“锂离子电池检测技术及应用”[/b][/color]主题网络研讨会,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台。[color=#ff0000][b]报名参会链接:[/b][/color][url]https://www.instrument.com.cn/webinar/meetings/ldc2020/[/url][b]本次报告涉及内容摘要:[/b]新能源[color=#3333ff]动力电池标准解读[/color][color=#3333ff]电池失效分析[/color]及仪器表征技术[color=#3333ff]X射线CT[/color]技术在锂电检测中应用[color=#3333ff]GCMS[/color]技术在锂电检测中应用[color=#3366ff]热分析[/color]技术在锂电检测中应用[color=#3333ff]电镜[/color]技术在锂电检测中应用[color=#3333ff]电子能谱XPS[/color]技术在锂电检测中应用[color=#3366ff]X荧光光谱[/color]技术在锂电检测中应用......[b][color=#ff0000]欢迎参会!!![/color][color=#000099]附:会议日程[/color][color=#000099][img=,690,350]https://ng1.17img.cn/bbsfiles/images/2020/04/202004141617413052_1682_2817550_3.jpg!w690x350.jpg[/img][/color][/b][table=95%,transparent][tr][td=1,1,13%]09:00-09:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6231]电动汽车动力电池标准解读与检测[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6231]吴志芹(北京市产品质量监督检验院)[/url][/td][/tr][tr][td=1,1,13%]09:30-10:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6232]X射线CT无损成像技术在锂电池研究中的应用[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6232]袁春晖(天津三英精密仪器股份有限公司)[/url][/td][/tr][tr][td=1,1,13%]10:00-10:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=1563]锂电池失效背后的材料表征科学--如何利用通用仪器进行锂电研究?[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=1563]周健(TA仪器特邀嘉宾,纳凡检测技术(上海)有限公司 )[/url][/td][/tr][tr][td=1,1,13%]10:30-11:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=540]GCMS在锂电材料或锂电研发领域应用进展[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=540]袁智泉(安捷伦)[/url][/td][/tr][tr][td=1,1,13%]11:00-11:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6310]锂电行业热分析解决方案介绍[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6310]王荣(耐驰科学仪器商贸(上海)有限公司)[/url][/td][/tr][tr][td=1,1,13%]11:30-12:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6233]锂电池高电压正极材料表界面性质研究[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6233]王怡(天目湖先进储能技术研究院)[/url][/td][/tr][tr][td=1,1,13%]12:00-14:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=4030]午休时间[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=4030]午休音乐(午休)[/url][/td][/tr][tr][td=1,1,13%]14:00-14:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=1192]钴酸锂正极材料失效机理的电子显微学研究[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=1192]闫鹏飞(北京工业大学 )[/url][/td][/tr][tr][td=1,1,13%]14:30-15:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6248]微焦点X射线透视及CT装置在锂电池行业中的应用[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6248]黄军飞(岛津企业管理(中国)有限公司)[/url][/td][/tr][tr][td=1,1,13%]15:00-15:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=839]热分析技术在锂电池行业中的应用[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=839]袁宁肖(梅特勒-托利多)[/url][/td][/tr][tr][td=1,1,13%]15:30-16:00[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6272]原位光电子能谱在锂离子电池研究中的应用[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6272]谢方艳(中山大学)[/url][/td][/tr][tr][td=1,1,13%]16:00-16:30[/td][td=1,1,50%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6277]基于X荧光的新型锂电正极材料元素分析仪及技术[/url][/td][td=1,1,37%][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6277]田宇纮(烟台大学,烟台博光分析仪器有限责任公司)[/url][/td][/tr][/table]

  • 解析如何检测电池水分含量及SFY-20A含水率测试仪的应用

    解析如何检测电池水分含量及SFY-20A含水率测试仪的应用

    电池中的水分来源哪里?  对于电池中的水分,它的来源就主要来之于材料,当然也涉及环境。  正极片:正极片如果使用的是纳米材料,这种纳米材料具有很强的吸水性,很容易周围的空气中吸收水分。  负极片:负极片比正极片来说,吸水性相对低一点,当然,在没有控制湿度的环境下,其从环境空气中吸水数量也是相当乐观的。  隔膜纸:隔膜纸也是一种多孔性的塑料薄膜,其吸水性也是很大的。  电解液:电解液是一种非常怕水的物质,它也是非常容易吸水,他它会和水进行反应,直至所有的电解液物质反映完成,也就是说,它喝水的能力是永无止境,直到自己死掉。  其他金属零件:虽然金属零件本身对水分的吸收有限,但是,金属零件对水分却很怕,因为水分的存在会使其生锈或者腐蚀。 材料中的水分含量是电池中水分的主要来源,当然,环境湿度越大,电池材料越容易吸收水分。(来源:仪器信息网)http://ng1.17img.cn/bbsfiles/images/2017/02/201702271001_01_2233_3.jpg水分对锂离子电池影响巨大  如果水分过高,电解液和水分反应,生成微量有害气体,对注液房环境有不良影响;这也会影响电解液本身的质量,使得电池性能不良,还会使电池柳钉生锈。  水分和电解液中的一种成分反应,生成有害气体,当水分足够多时电池内部的压力就变大,从而引起电池受力变形。如果是手机电池,就表现为鼓壳;当内部压力在高的时候,电池就有危险了,爆裂使得电解液喷溅,电池碎片也很容易伤人。  电池内部水分过高;损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。消耗了锂离子,电池的能量就减少了。  用26650电池给电钻供电,充满电后本来可以使用1小时,因为电池内部有水分,就只能使用50分钟了。  当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸(氢氟酸是一种腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。如果电池漏液,电池的性能将急速下降,而且电解液还会对使用者的机器进行腐蚀,终而引起更加危险的失效。如何检测电池材料中的含水率 对于电池材料含水率的检测,行业内一般使用SFY-20A快速水分检测仪来精确测定材料的水分含量。A、SFY-20A快速水分检测仪技术指标 1、称重范围:0-90g 可调试测试空间为3cm 2、水分测定范围:0.01-100% 3、样品质量:0.100-90g 4、加热温度范围:起始-205℃ 加热方式:可变混合式加热 微调自动补偿温度最高15℃ 5、水分含量可读性:0.01% 6、显示参数:7种    红色数码管独立显示模式 7、外型尺寸:380×205×325(mm) 8、电源:220V±10% 9、频率:50Hz±1Hz 10、净重:3.7Kghttp://ng1.17img.cn/bbsfiles/images/2017/02/201702270957_01_2233_3.jpgB、SFY-20A快速水分检测仪使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。C、SFY-20A快速水分检测仪工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。

  • 物理前沿分享:新型电池材料充电仅需2分钟

    新型电池材料充电仅需2分钟韩国蔚山科学技术大学和LG化学技术研究院电池研究所8月15日发表声明称,开发出了2分钟内完成充电或者放电的充电电池(Secondary Battery)电极用的新材料。手机或电动车用此电池不仅能大举缩短充电时间,而且可以在短时间内通过大量放电,较好地提高电动车的输出功率。报道称,“制作充电电池的新材料称之为“纳米管”,是在十分纤细的锗(Germanium,Ge)线表面抹上极微量的锑(Antimony,Sb)粒子,再以700摄氏度的温度进行加热,然后在锗线的中心位置会出现直径约为200纳米的洞窟。在制作锂电池时用上这种纳米管,结果显示比现有的充电电池的电流流量快了200倍,仅2分钟就能结束充电。而现有的电池则需要30~60分钟。在进行了400次的反复充电放电后,电池的容量仍维持在98%左右。”声明指出,现有的硅半导体纳米管合成技术很难大量投入生产,如果这种新材料实现商用化,在加油站或者家里都可以在短时间内完成充电。并且使爬坡时需要瞬间输出大量能量的“强劲电动车”的开发成为可能。此外,也将打开手机等使用充电电池的各种电子产品高速充电的方便之门。这项研究成果以特别(VIP)论文的形式,刊登在8月16日应用化学领域世界级学术杂志德国《应用化学》(Angewandte Chemie International Edition)的国际版上。(来源:科技部网站)

  • 锂电池负极材料介绍

    第一种是碳负极材料:  目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。  第二种是锡基负极材料:  锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。  第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。  第四种是合金类负极材料:  包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,目前也没有商业化产品。  第五种是纳米级负极材料:纳米碳管、纳米合金材料。  第六种纳米材料是纳米氧化物材料

  • 新能源汽车电池检测设备必然发展

    在目前能源危机下,新能源的发展已经是必然趋势,那么,随之而来的汽车行业中,新能源作为其动力电池使用也是相当广泛的,冠亚新能源汽车电池检测设备也随之而推出市场。  能源危机和环境污染催生了新能源汽车的发展,而新能源汽车的技术关键就是动力电池的性能,动力电池分为很多种,如铅酸蓄电池、镍镉蓄电池、镍氢蓄电池、锂离子蓄电池、锌空气蓄电池、燃料蓄电池 等,动力电池组是电动汽车的重要组成部分,直接影响着电动汽车的起动、加速、行驶里程等多项性能。  因此,新能源汽车电池检测设备对动力电池组进行测试是电动汽车研发的重要环节,电池管理系统与电池紧密结合在一起,对电池的电压、电流、温度进行时刻检测,同时还进行漏电检测、热管理、电池均衡管理、报警提醒,计算剩余容量、放电功率,还根据电池的电压电流及温度用算法控制输出功率以获得最大行驶里程、以及用算法控制充电机进行电流的充电,通过总线接口与车载总控制器、电机控制器、能量控制系统、车载显示系统等进行实时通讯。  新能源汽车电池检测设备是对新能源电池的检查,还需要对电池系统进行管理,实时监测电池状态,通过检测电池的外特性参数( 如电压、电流、温度等),采用适当的算法,实现电池内部状态( 如容量和SOC 等) 的估算和监控,这是电池管理系统有效运行的基础和关键,在正确获取电池的状态后进行热管理、电池均衡管理、充放电管理、故障报警等;建立通信总线,向显示系统、整车控制器和充电机等实现数据交换。  新能源汽车电池检测设备的发展在当前新能源市场中也是相当有竞争力的,所以,唯有在自身原有的基础上,推陈出新,加强新能源汽车电池检测设备的性能,占据市场的有利地位。

  • 【原创】锂离子电池正极材料磷酸铁锂发展分析

    电动汽车行业发展可为风起云涌,而车用动力电池作为其中的重要组成部分,已经引起学术界、投资界和产业界的高度关注。目前,已经在各种车辆上实现应用的电池种类主要有铅酸电池、镍氢电池与锂离子电池3种,由于铅酸电池污染大、克容量小,其成本优势不足以抵消其劣势,故在车辆动力方面至今仅在小型电动自行车等领域得以应用;镍氢电池现为混合动力汽车领域应用的主要产品,其制造工艺成熟,购置和使用成本较低,故而在短期内仍将是混合动力汽车的首选,但其自放电率高、比能量较小,记忆效应和充电发热等方面的问题直接影响到该电池的使用,这些缺点的存在使镍氢电池可能只是作为过度产品存在;锂离子电池是90年代发展起来的高容量可充电电池,能够比镍氢电池存储更多的能量,比能量大、循环寿命长、自放电率小、无记忆效应,能够满足对体积、寿命、功率等要求较高的乘用车方面的需求,已成为今后纯电动汽车应用的理想产品。锂离子电池的正极材料种类较多,主要品种有钴酸锂、锰酸锂、镍锰钴三元材料及磷酸铁锂等,其中钴酸锂是现有正极材料中工业化程度最高、技术最成熟、产量最大的品种,主要用于手机、数码产品等小型电池领域,但由于原材料钴和镍金属的价格高昂,污染较重,且电池在大型化后,会有过热着火或爆炸的危险。故相对而言,正极材料为锰酸钾、三元材料和磷酸铁锂的锂离子电池安全性能更好,成本更为低廉,所以目前产业的投入主要集中于这几种材料之上。其中,磷酸铁锂由于具有另外两种材料所不具备的循环寿命和材料成本方面的潜在优势,而被业界普遍看好,代表着动力电池正极材料的未来发展方向。国际上主要的磷酸铁锂电池材料生产厂商有加拿大Phostech、美国Valencn、美国A123、台湾地区的台塑长圆能源科技、立凯等,其中,前3家企业掌握着较为成熟的量产技术。2008年全球磷酸铁锂出货量为1500吨左右,其中美国A123公司供应750吨,几乎占了一半的份额,国内厂商供应量只有几百吨,2009年全球磷酸铁锂出货量约为1600吨,2010年全球磷酸铁锂出货量为1370吨左右。据悉,目前国内磷酸铁锂正极材料厂商超过60家,实现批量生产的企业接近20家,呈现“诸侯混战”的局面。从公开资料统计来看,全国磷酸铁锂总产能约6400吨/年,但实际产量远低于产能(不足产能的1/10)。总体来说,我国磷酸铁锂的产业化发展与国际基本同步,目前国内部分产品的成本比国外同类产品要低,在性能、单位产能方面的差异并非遥不可及,但也该冷静的看到,国内目前尚未诞生真正的领军企业,行业缺乏原始创新技术,低端跟风模仿风气较盛,整体来看,磷酸铁锂材料行业处于产业化临界点之下。未来随着磷酸铁锂生产技术的不断完善,其市场前景依然为产业界所看好,除电动汽车、自行车、代步车和电动工具市场外,磷酸铁锂电池在风电、太阳能发电储能装置,矿灯电源和植入性医疗器械领域也有着广泛的应用前景。通过静态测算可以得出结论,磷酸铁锂电池在未来5-7年内,若根据10%-20%的产品渗透率计算,国内仅仅在电动汽车、电动工具、电动自行车和电动代步车这4个领域就拥有大约150亿元的市场规模,其中磷酸铁锂材料本身占到电池成本的30%左右,对应约45亿元的市场规模,年需求量可望达到3万吨。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制